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This paper presents a cognitive model that simulates an adaptation process to

automation in a time-critical task. The paper uses a simple tracking task (which

represents vehicle operation) to reveal how the reliance on automation changes as the

success probabilities of the automatic and manual mode vary. The model was developed

by using a cognitive architecture, ACT-R (Adaptive Control of Thought-Rational). We

also introduce two methods of reinforcement learning: the summation of rewards over

time and a gating mechanism. The model performs this task through productions that

manage perception andmotor control. The utility values of these productions are updated

based on rewards in every perception-action cycle. A run of this model simulated the

overall trends of the behavioral data such as the performance (tracking accuracy), the

auto use ratio, and the number of switches between the two modes, suggesting some

validity of the assumptions made in our model. This work shows how combining different

paradigms of cognitive modeling can lead to practical representations and solutions to

automation and trust in automation.

Keywords: automated operation, reinforcement learning, ACT-R, Semi-Markov Decision Process, trust calibration

1. INTRODUCTION

Automation technology, which can partially substitute for human cognitive functions, has made
remarkably progress recently. Although the application area of such technology is diverse, one
of the recent prominent areas is the automatic operation of vehicles. The operation of ships and
aircraft has commonly been automated in our society. For cars, automation of some functions such
as speed control (i.e., adaptive cruise control) and braking (anti-lock) have also been used for a long
time. In recent years, automatic control of steering has been actively developed due to the rapid
progress of sensing and machine learning technologies. However, there are still barriers to the full
application of automatic driving (self-driving cars). For a while, it has been assumed that automatic
control will be used with driver’s monitoring to intervene immediately at any time if the automatic
control fails to respond properly (National Highway Traffic Safety Administration, 2016).

When new technologies, not limited to automatic control of vehicles, are introduced, misuse
(overreliance) and disuse (underutilization) of the technologies has often become a problem.
For sustainable industrial development in our society (United Nations Industrial Development
Organization, 2015; Fukuyama, 2018), it is important to understand how humans adapt to new
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technologies. Disuse of new technology results in less innovation,
while misuse of new technology can cause serious accidents. In
the field of human factors, such problems have been repeatedly
discussed (e.g., Bainbridge, 1983; Parasuraman and Riley, 1997).

However, previous studies in the field have not fully
considered time factors involved in the adaptation process to new
technologies. Contrary to some other tasks studied in human
factors, vehicle operation is a dynamic continuous process in
which the cycle of perception, judgment, and action sequentially
repeats. Automated vehicle systems partially substitute for such
human operation. In a case where an operator can use automatic
operation, s/he repeats the cycle of perception and judgment
while observing that an automation system executes the overall
cycle. When the operator notices that the auto control has
problems, s/he needs to immediately turn off the automation to
return to manual control.

We suggest that the above adaptation mechanism
to automation technology can be partially explained by
reinforcement learning, which updates selection probabilities of
actions with rewards from the environment (Sutton and Barto,
1998). In a broader context, this paradigm has already been
used to model the interaction between human and automation
systems. As will be described in section 2, Gao and Lee (2006)
proposed a computational model called Extended Decision Field
Theory that simulates how operators adapt to a system that
automates plant operation. In their model, a selection probability
of using the automation system is dynamically changed through
iterated environmental feedback.

However, it is not simple to apply the paradigm of
reinforcement learning to a task that involves time-critical
decision making. Generally, reinforcement learning has been
applied to discrete tasks through Markov Decision Processes
(MDP)—like bandit tasks (Sutton and Barto, 1998). Contrary
to typically applied fields of reinforcement learning, vehicle
operation does not directly fit into aMDP representation. Rather,
it can be expressed as a SMDP (Semi-Markov Decision Process).
SMDP introduces the concept of a time delay between action
selection and state transition, and rewards that can be delivered
at different points in time (Duff and Bradtke, 1996; Asada et al.,
1999; Sutton et al., 1999; Georgeon and Ritter, 2012; Rasmussen
and Eliasmith, 2013).

In this paper, we present a simple task that has some
characteristics of continuous vehicle operation with automation
and construct a model to reveal what type of mechanisms can
simulate human adaptation to automation in a time-critical task
like automatic vehicle operation. We specifically try to answer
this question integrating a traditional reinforcement learning
algorithm with a cognitive architecture. Using a cognitive
architecture, we will explore this question using appropriate time
constraints on behavior.

In the next section, we review research associated with the
present study, showing a framework to simulate human behavior
in real-time, and research on adaptation to automated systems.
After that, we present the task, initial human data, the model, and
the simulation results, describing a mechanism that can simulate
a human adaptation process to automatic vehicle operation and
show how it predicts and explains human performance on the

task. Finally, we summarize the results obtained in this study and
their implications.

2. RELATED STUDIES

This section presents previous work relating to the method and
the tasks of the previous studies that define the theories and
models that we use.

2.1. Research About Cognitive Architecture
Many reinforcement learning studies have been conducted so
far. Currently, this approach is being used as a framework
for end-to-end simulation in tasks such as games and maze
search (Silver et al., 2016; Banino et al., 2018). However, these
simulations are still unclear in terms of their correspondence with
human behavior.

In contrast, cognitive architectures can be regarded as a
framework to simulate human behavior with detailed time
predictions. Usually, cognitive architectures include modules
responsible for perception and action to model the overall
behavior in a task. Among several cognitive architectures that
have been proposed so far, the present study focuses on ACT-R
(Adaptive Control of Thought-Rational; Anderson, 2007; Ritter
et al., 2019 for a recent review) because this architecture has
a large community and the mechanisms are well-tested. The
present study aims to extend such mechanisms to the time-
critical domain. Other architectures such as Soar (Laird, 2012)
and EPIC (Kieras and Meyer, 1997) could probably be used to
simulate this phenomenon as well. Kotseruba and Tsotsos (2020)
review numerous other architectures.

So far, ACT-R has been used to model many tasks in
the fields of human factors including driving (Salvucci, 2006),
teleoperation (Ritter et al., 2007), and air-traffic control tasks
(Byrne and Kirlik, 2005; Taatgen, 2005). The rule utility learning
mechanism of this architecture also has been applied to simple
decision making (Fu and Anderson, 2006) and strategy selection
tasks (e.g., Lovett and Anderson, 1996). However, few studies
are applying this architecture to the problem of automation
use especially in the time-critical field. In the present study, we
describe behavioral constraints in amodel of automation use with
the ACT-R cognitive architecture.

2.2. Models of Automation Use
In the field of human factors, it has been discussed that
automation systems cannot replace human cognitive tasks
completely. Bainbridge (1983) claimed that even highly
automated systems need human operators to monitor system
performance and to make decisions of system use. Some
researchers have also pointed out that human decision-making
of system use is not optimal. Parasuraman and Riley (1997)
noted that there are two types of maladaptive uses of automation:
misuse (the overreliance of automation), and disuse (the
underutilization of automation). Some studies indicated that
human users have a bias to use automation (misuse, Singh et al.,
1997; Skita et al., 2000; Bahner et al., 2008). On the other hand,
other research has indicated that human users have a bias toward

Frontiers in Psychology | www.frontiersin.org 2 October 2020 | Volume 11 | Article 2149

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Morita et al. Cognitive Modeling of Automation Adaptation

FIGURE 1 | The process of Extended Decision Field Theory (Gao and Lee,

2006), modified and reproduced from the original figure.

manual control and away from the use of automation systems
(disuse, Dzindolet et al., 2002, 2003; Beck et al., 2009).

de Vries et al. (2003) experimentally indicated that the reliance
of automation use is influenced by both the capability of auto
controls (Ca) and capability of manual controls (Cm), which
cannot be directly observed by operators, but estimated from the
displayed performance of each mode. Extended Decision Field
Theory (EDFT theory), proposed byGao and Lee (2006), explains
how Ca and Cm are estimated by people and have an effect on
the reliance on automation. This theory extends psychological
decision-making theory (Busemeyer and Townsend, 1993),
including the effect of previous decisions in the context of
multiple sequential decision processes. Figure 1 shows the basic
process of the EDFT theory. The theory is given Ca and Cm
values, and constructs beliefs of Ca and Cm (Bca, Bcm) based
on partially displayed Ca and Cm values. From the belief values,
the theory constructs trust (T) and self-confidence (SC). The
preference for automation (P) is determined by subtracting T
from SC. If P exceeds an upper threshold (θ), then the theory
turns the current control mode to auto. If P falls below a lower
threshold (−θ), then the theory turns the current control mode to
manual. In every cycle, values of Bca, Bcm, T, and SC are updated
by difference equations. Through this computation, T and SC
dynamically change to approach the actual Ca and Cm.

The EDFT theory is an abstract mathematical representation
that simply explains the reliance on automation in dynamic
situations. The strength of this theory is its generality. It can apply
to a wide range of situations involving automation. This theory,
however, does not have any knowledge about tasks. It cannot
interact with a task environment, and it provides no prediction
of human performance. Therefore, the present study tries to
implement basic assumptions of the EDFT theory in the ACT-
R architecture to make detailed predictions of human behavior
on a specific task.

FIGURE 2 | The Line-following task environment.

3. THE TASK

The present study simulates the behavior of participants in a
behavioral experiment conducted by Maeghigashi et al. (2013).
The task used in the study was a simple tracking task, called
the “line-following task.” Figure 2 shows the task environment.
In this task, the operators are required to control the horizontal
position of the vehicle (red circle) to follow the black line that
scrolls down at 24 pixels per second. The screen is updated every
40 ms. If the vehicle does not overlap the line, a warning is
presented outside of the window. The line is drawn by randomly
combining 48 pixels high line patterns of varied angles (30, 45,
90, 135, and 150 degrees, equally chosen).

The vehicle is controlled by commands of “left,” “straight,”
or “right.” If the vehicle receives a left command, the vehicle
moves 1 pixel left from the original position. The command is
sampled at 48Hz. If a key-press event is detected, a flag of sending
commands is set to on. This flag is off when a key-release event
is detected1. If an operator’s finger is put on the right arrow key,
the vehicle keeps receiving a right command every 20 ms until
the key is released. Therefore, maximally, the vehicle can move 2
pixels per one-pixel scroll of the line.

An operator can choose manual or auto controls to send
commands. In the manual control, operators use left and right
arrow keys to send commands, often several in a row, simulating
turning a steering wheel. In the auto control, operators monitor
that the auto control moves the vehicle. The auto control tries to
follow an optimal line presented as the green line in Figure 2. An
optimal line is the shortest line to pass “goals” located on each
corner shown as blue dots. If the center of the vehicle is off the
optimal line, the auto control system sends a command to correct
the vehicle position. In the experiment, the optimal line and goals
are not visible to participants.

In both control modes, commands are not always successfully
sent to the vehicle. Failures occur at specified rates; Ca and Cm

1Therefore, the command rate is not influenced by a key-repeat rate setting in an

operating system or keyboard.
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specify these rates. If Ca or Cm is low, the vehicle controlled
by the corresponding mode is lagged, and it becomes hard
to follow the line. To conduct the task successfully, operators
need to select a suitable mode in each situation. The operators
freely change between modes by pressing the space-bar. The
experiment conducted by Maeghigashi et al. (2013) used the task
in 25 conditions where Ca and Cm levels were manipulated (5
levels of Ca ranging from 30 to 70% v.s. 5 levels of Cm ranging
from 30 to 70%). In each condition, the participants (n = 63)2

performed the task for 40 s.
The results of this experiment are summarized as Figure 3.

The graph on the left shows the performance of the task, which is
the ratio of time that the vehicle was able to follow the line during
the task. The middle graph indicates the auto use ratio, which
represents how long the auto mode was used during the task. The
right graph presents the number of switches, which represents
how many switches occurred between the two modes during
the task. All graphs have the x-axis and y-axis corresponding to
Ca and Cm levels, respectively, and it can be observed that the
values of the z-axis rise from the front to the back. However, the
directions of the x and y axes are different in each graph to make
the surfaces more visible. For the performance graph, the lowest
level of Ca and Cm is placed in the front. As for the auto use ratio,
the highest level of Cm and the lowest level of Ca are arranged in
the front. Concerning the number of switches, both the highest
Cm and Ca levels are placed at the front of the graph.

That is, we can observe that the performance got higher as
both Ca and Cm levels increased. The auto use ratio increased
as the level of Cm decreased and the level of Ca increased. The
number of switches increased as the values of Ca and Cm were
lower. The present study tries to construct a cognitive model
that reproduces these trends under the same conditions as the
human experiment. Although this task is very simple compared
to driving in the real-world, the cycle of perception and actions
in real-time and the choice to trust automation (or not) is
reproduced. We suggest that the task is appropriate to explore
adaptation mechanisms to automation in time-critical fields.

4. MODEL

In this section, we will first present the architecture and then the
detailed mechanisms of the model will be explained.

4.1. Architecture
This study uses ACT-R to construct a model for the line-
following task. This architecture integrates several cognitive
modules including a visual module, a motor module, and
a production module. The visual module is used to take
information from an external environment. The motor module
manipulates devices like a keyboard or a mouse in an external
environment. These modules have buffers to temporarily hold
declarative information called a chunk. The production module
integrates the other modules by production rules, which consists

2The original experiment (Maeghigashi et al., 2013), experiment 1, employed 27

participants, but we included additional data in the their later study (Maehigashi

et al., 2014), experiment 1.

of a condition/action pair that is used in sequence with other
productions to perform a task. Conditions and actions in
production rules are specified as patterns in the buffer contents
of modules. Further reviews are available (Anderson et al., 2004;
Anderson, 2007; Ritter et al., 2019 also see act.psy.cmu.edu).

Importantly, each event executed by ACT-R’s modules has a
parameter of performance time. For example, ACT-R production
rules take 50 ms to apply. Events including visual perception and
motor actions, such as eye-movements, mouse-movements and
key-presses, also have time parameters. These parameters have
been developed and validated by psychological studies (Anderson
et al., 2004)3. By using these parameters, ACT-R makes real-time
simulations possible.

ACT-R also includes sub-symbolic cognitive processes that
modulate the probabilities of firing (applying) production rules.
When several rules match to the buffer conditions, a rule must
be chosen. This is called conflict resolution. The choice is made
based on comparisons of the utility values associated with each
matching production rule. More specifically, the probability of
firing production i is described by Equation (1).

P(i) =
eUi/

√
2s

∑
j e

Uj/
√
2s

(1)

s is a parameter that determines the variance of the noise
distribution according to a logistic distribution;Ui is the utility of
the production i that competes with the number of productions
with utility values Uj. The learning of Ui is controlled by
Equation (2).

Ui(n) = Ui(n− 1)+ α[Ri(n)− Ui(n− 1)] (2)

α is the learning rate; Ri(n) is the reward value given to
production i at time n. The learning occurs when a reward is
triggered, and all productions that have fired since the last reward
are updated. Though the official theory of ACT-R (Anderson,
2007) does not explicitly note it, this learning is the same as the
basic reinforcement learning method called Q-learning, which
updates the quality of a state-action combination by receiving
rewards from the environment (Sutton and Barto, 1998). The
relations between the two theories were also discussed by Fu and
Anderson (2006).

We considered that the above characteristics (the visual and
motor modules to interact with external environments, the
real-time simulation, the utility update based on reinforcement
learning) are useful for modeling an adaptation process on
automatic vehicle operation.

4.2. Simulated Task Environment
By using the ACT-R Graphical (user) Interface (AGI) tool
that is part of ACT-R 6 (Anderson, 2007; as a technical

3This approach was originally developed by Card et al. (1983) based on the finding

by Sternberg (1969). The perceptual-motor system of ACT-R was also developed

based on EPIC architecture (Kieras and Meyer, 1997).
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FIGURE 3 | The results of the human experiment. Error bars represent σ/2 (plots are rotated to show data more clearly).

reference see Bothell, 2007)4, we developed a simulated task
environment with which the constructed model interacts. The
simulated environment is the same as the original environment
in the keyboard layout, screen update rates, line scrolling speed,
vehicle size, line width, and screen size. The auto control
mode is implemented with Common Lisp in the simulated task
environment. However, unlike the original environment, visible
goal positions are set at each corner to allow themodel to perceive
the path.

4.3. Basic Cycle of the Model
Figure 4 describes the basic cycle of the model. The model uses
the production, goal, vision, and motor modules of ACT-R 6, and
11 production rules. These rules consist of a perceptual (the top
part of the figure) and motor process (the bottom part of the
figure) similar to previous driving models in ACT-R (Salvucci,
2006; Ritter et al., 2007; Salvucci and Taatgen, 2010).

In the perceptual process, the model picks visual information
from a visual location buffer that holds location information
of objects in the environment. The FindVehicle rule finds the
horizontal position of the vehicle and places it into the goal
buffer. The FindGoal rule finds the horizontal position of the
nearest goal position and places it into the goal buffer. The
position information in the goal buffer is used in the subsequent
motor process. After the motor process, the information in the
goal buffer is cleared to begin the next cycle.

The motor process depends on the current mode. In
each mode, there is a rule to switch the current mode
(ToAuto/ToManual). These mode-switching rules send a
command to release currently pressed keys to the motor module.
After finishing the key-release, the PressSpace rule sends a motor
command pressing the space-bar, toggling the mode.

To fire the mode-switching rules, the model needs to solve
conflict resolution (Equations 1 and 2) with other rules in each
situation. In the auto mode, the ToManual rule conflicts with the

4The latest version of ACT-R is 7.14. We used version 6 because we first

implemented the model in that version. The latest version has a richer interface

but the basic structures and functions have not largely changed.

KeepA rule that just clears the goal buffer. In the manual mode,
the ToAuto rule competes with the KeepM, ToLeft, ToRight,
LtoS, and RtoS rules. These five rules have different conditions
specifying the vehicle and the goal positions, and current move-
commands (left, right, straight). The action clauses of the ToLeft,
ToRight, LtoS, RtoS rules send a command to hold or release a
key to the motor module5. The KeepM rule does not have any
action clauses relating to the motor module. This rule just clears
the goal buffer.

Figure 5 presents a time flow diagram showing the relations
between the environmental changes and the model cycles. Each
column of the diagram represents events of the environment and
the modules of the model. The environment regularly updates
the screen every 40 ms. Individual rule firings take 50 ms, but the
cycle of the model is not regulated. There are delays due to the
interaction with the environment. The processing of the visual
location module itself has no delay. The model recognizes the
vehicle or the goal position on the screen at the same time as
the corresponding rule fires. However, the ACT-R motor module
needs preparation and execution time, which depends on the
status of the motor module. These delays disadvantage manual
control by the ACT-R model compared to the automatic control
in the task simulation.

4.4. Learning and Mode Switching
We now explain how the model adapts to the two modes. First,
we describe the default mechanism of ACT-R and then our
modification of the mechanism.

4.4.1. Default Learning of ACT-R
In studies that use ACT-R reinforcement learning (Lovett and
Anderson, 1996; Anderson et al., 2004; Anderson, 2007), a reward
parameter is assigned to the specific rules by a modeler. When a
rule with a reward value fires, all rules that have fired since the

5The default implementation of ACT-R 6 does not include key-press and key-

release functions (but see the extras folder for a new draft implementation of

this capability). We used a customized module in which the time parameter of

key-punch is used for these actions.
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FIGURE 4 | The basic cycle of the model.

FIGURE 5 | Time flow diagram of the ACT-R model components as they perform the task.
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last utility update receive the reward. Following this paradigm,
this study assigns a reward parameter to the FindVehicle rule
(see Figure 4). In every cycle of the model, this rule perceives
the vehicle location. Thus, it is reasonable to assume that this
rule triggers rewards by checking a relative position between the
vehicle and the line to follow.

More specifically, the default framework of ACT-R divides the
FindVeheicle rules into two variations: the FindVeheicleOnline
rule that fires when the vehicle is on the line, and the
FindVeheicleOffline rule that fires when the vehicle is off the line.
Then, it sets the reward value triggered by the former to positive,
and the reward value triggered by the latter to zero. As a result,
when the vehicle is on the line, the utilities of the rules included in
the current mode rises, and when the vehicle is off the line, those
utilities go down. As the FindVeheicleOffline rule keeps firing,
the utility of the rules for mode switching (ToManual in the
auto mode/ToAuto in the manual mode) becomes higher than
the competing rules (KeepA in the auto mode/KeepM, ToLeft,
ToRight, LtoS, RtoS in the manual mode), and causes the model
to switch to another mode.

However, there are the following two difficulties for simply
applying this paradigm to our model:

1. The problem of rewarding.
As shown in Figure 5, there are motor delays in the ACT-R
architecture. Reflecting these delays, the rules in the manual
mode fire slightly less often than the automatic mode rules
over similar time periods when they are preferred. They thus
receive less opportunity for updating rewards.

2. Absence of direct comparisons.
During the cycle in Figure 4, the utilities of the two modes
are not directly compared. The rules keeping the current
mode (KeepA/KeepM) receive rewards corresponding to how
well the vehicle moves in the current mode. On the other
hand, rewards for the mode-switching rules are influenced
by the vehicle movement in both of the two modes because
the perception-action cycle of mode-switching bridges across
the two modes (see Figure 5). Accordingly, mode switching
is made only based on the utility for the current mode
without considering how well the vehicle moved in the other
mode. Adaptation to the proper mode may be possible even
if this problem exists. However, it is reasonably assumed
that humans can predict future rewards by remembering
past experiences.

4.4.2. A Solution to the Problem of Rewarding
The present study uses the reinforcement learning method
from SMDP to solve the problem of rewarding. Unlike the
MDP situation where rewards are regularly given, in the SMDP
situation, it is necessary to appropriately distribute the rewards
given irregularly to the rules. According to Sutton and Barto
(1998), the expectation value of the reward received at time t
under SMDP is defined by Equation (3).

R(t) =
T∑

k=0

γ krt+k+1 (3)

T is the elapsed time since the last reward; γ is the time discount
rate; r is the immediate reward received k units time ago. Because
T is not fixed in the SMDP theory, the frequency of receiving
rewards is possibly different between rules. To solve this, the
above equation sums immediate rewards to balance the amount
of rewards received over the long term. Following this definition,
the present study assumes the travel distance of the vehicle
per unit time (speed) as an immediate reward, and the model
received the summation of the immediate reward across the
interval of reward acquisition.

Specifically, distinguishing the FindVehicleOnlineSMDP
rule that fires when the vehicle is on the line from the
FindVehicleOfflineSMDP rule that fires when the vehicle is off
the line, the reward is calculated as follows.

• The reward calculation of FindVehicleOnlineSMDP

Rt = MaxVehicleSpeed× DurationFromReward (4)

• The reward calculation of FindVehicleOfflineSMDP

Rt = abs(vposit − vposit−1) (5)

In Equation (4), the maximum vehicle speed (MaxVehicleSpeed)
is set to 48 pixels/s. The duration from the last reward
(DurationFromReward) is estimated by using the temporal
module of ACT-R, which is used to simulate the estimation of
subjective time (Taatgen et al., 2004). In Equation (5), the vehicle
position at the last reward (vposit−1) is stored in the goal buffer
and compared to the current vehicle position (vposit).

Thus, these equations represent approximations of the travel
distance of the vehicle from the previous reward to the current
reward. The model cannot grasp the exact travel distance of the
vehicle, because the vehicle position is recognized only when the
FindVehicle rule fires.

4.4.3. A Solution to the Problem of Conflict Resolution
To date, several researchers have investigated applications of
reinforcement learning to complex tasks that are broken into
several subtasks (Singh, 1992; Sutton et al., 1999; Doya et al.,
2002). Gating is a mechanism used for such tasks. At each point
of the task, the agent selects a subtask, and switches to use a
correspondingmodule that independently learns the utility of the
primitive action.

Subtasks in the present study correspond to auto and manual
operation. To select these modes, a gating mechanism is applied
before selecting the primitive rule. As represented in the EDFT
model by Gao and Lee (2006), adaptation to an automated system
is regarded as a problem of balancing between self-confidence
(SC) of manual operation and trust (T) of an automation system.
Therefore, in this study, we assumed that the gating mechanism
compares SC and T to select the auto and the manual modes. In
this research, these utility values are represented as competition
between two rules that can be kept in ACT-R’s production
module. In our model, SC can be interpreted as a utility of a
rule representing the manual mode. On the other hand, T can be
regarded as a utility of a rule representing the auto mode. Thus,
KeepM and KeepA correspond to SC and T, respectively. In this
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paper, we call this mechanism, what might be seen as a type of
buffer holding a specific type of information, the “gate module”.

The gate module controls the gate that transitions the
subtask. In our model, the transition between modes becomes
possible only when the gate is opened. This mechanism can
be implemented by including the following conditions in the
ToAuto and ToManual rules.

• The condition of the gate module in ToAuto: SC < = T
• The condition of the gate module in ToManual: SC > = T

In other words, prior to comparing utilities of primitive rules, SC
held by the gate module is compared with T. These values change
only when the corresponding mode is selected. The value of SC
decreases when the manual mode is selected and the vehicle is off
the line. When the auto mode is selected and the vehicle is off the
line, the value of T decreases. When the order relation between
SC and T changes, the gate opens, and it becomes possible to
fire the rule to switch the mode. By providing such a mechanism,
the model is able to make decisions based not only on the utility
within the current mode, but also with the mode used in the past.

5. MODEL SIMULATIONS

We now present two simulations of the model, demonstrating
its performance on the two conditions in Maeghigashi et al.
(2013) after presenting a test of our implementation of the
line-following task.

5.1. Simulation 1: Base-Level Simulation
Before presenting a simulation involving the two modes, we
conducted a simulation of Experiment 1 by Maeghigashi et al.
(2013) to confirm the correspondence of the base performance of
the auto and manual modes in the two implementations.

5.1.1. Method
Maeghigashi et al. (2013) compared the performance of the
manual mode with the auto mode for each corresponding Ca and
Cm level. In their experiment 1, the participants conducted the
task without using the auto controlmode (Data-Manual: n = 65).
We ran the model more than the number of participants because
we wanted firm predictions from the model (Ritter et al., 2011).

Similarly, we ran the model with the initial control mode
set to manual and removed the ToAuto rule from the model
(Model-Manual: n = 1,000). We also compared baseline auto
performance between the original environment implemented
in Java (Java-Auto: n = 65) and the simulated environment
implemented in ACT-R’s interface, AGI (CL-Auto: n =
1,000). This comparison was performed to make sure our
replicated task environment followed Maeghigashi et al. (2013)’s
original environment.

5.1.2. Results
Figure 6 indicates the performances of the four conditions in
each Ca and Cm level, showing the ratio of time that the vehicle
is on the line. From this figure, it can be observed that the
performance of all four lines increases with higher Ca/Cm levels,
consistent with the manipulations of capability. In addition, we

FIGURE 6 | Performance of the model and the data in the baseline simulation.

Error bars represent σ/2.

can confirm that the auto controls are better than the manual
controls in both the experimental data and the simulation. This
result illustrates the manual disadvantages in this task. Although
the performance of the model is relatively lower than that of the
data, the correlations between the experiment and the simulation
are high (Auto: r2 = 0.993, RMSE = 0.022, Manual: r2 = 0.999,
RMSE = 0.014)6. These results indicate that we succeeded in
implementing a firm base for the simulation involving the choice
of the two modes.

5.2. Simulation 2: Simulation With the Two
Modes
This simulation is conducted to simulate Experiment 2 by
Maeghigashi et al. (2013) that specifies the automation use ratio.

5.2.1. Method
In Experiment 2, participants could use the auto control mode.
The results were shown in Figure 3. In this simulation, to
examine the adaptation process in this task, we manipulated the
methods of rewarding and conflict resolution as follows.

• Rewarding

– Default: The model receives a reward according to the
method in section 4.4.1.

– SMDP: The model receives a reward according to the
method in section 4.4.2.

6Although we used the same algorithm and parameters as the original experiment,

slight differences occurred in the automatic modes used in the two task

implementations due to random factors such as the random number seed and the

actual course segments chosen.
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• Conflict resolution

– Default: The model switches mode according to the method
in section 4.3.

– Gating: The model switches mode according to the method
in section 4.4.3.

Combining the methods of rewarding and conflict resolution,
four models [Default-Default, Gating-Default, Default-SMDP,
Gating-SMDP] were prepared. Each model was run 500 times
under the same conditions as the participants. All models have
the default learning rate (alpha = 0.2), the default noise level (egs
= 0)7, and the same initial utilities of rules (utilityall = 5). In the
default rewarding models, the reward of the FindVeheicleOnline
rule was set to 10, and the reward of the FindVeheicleOffline rule
was set to 0.

5.2.2. Results
The results of the simulation are shown in Figures 7–9. Similar
to Figure 3, these show the performance (the ratio of time that
the vehicle was able to follow the line), the auto use ratio, and
the number of mode switches, respectively. All figures contain
the results of the four models with the green (dark) planes while
the human participant data initially presented in Figure 3 are
indicated with the meshed plane (the mesh being close to the
planes indicates a good fit). Most of the models in the figures
replicated the trends observed in the behavioral data: the increase
of performance as Ca and Cm increase, the increase of the auto
use ratio with as the Cm level decrease, the decrease of the auto
use ratio as the Ca level increases, and the decrease of the number
of switches as theCa andCm levels increase. However, themodels
without the SMDP rewarding failed to replicate the influence
of the Cm level in the auto use ratio; these models were not
influenced by the capability of the manual mode.

To quantify the fit between the model and the data, we
computed R2 and the Root-Mean Square Errors (RMSE) as
shown in Table 1. Although the degree of the fit varies between
the three behavioral indices, we can observe the best fit of the
model includes the two new model features (Gating-SMDP)
for all the behavioral indices. This result generally supports the
validity of our model. Especially in the performance and the
automation use, the model with the two solutions achieved a high
fit to the data. However as shown in the number of switches
(Figure 9), there are still differences between the model and
the participants; the model made more switches compared to
the participants.

6. CONCLUSION

The present study simulated adaptations of automated vehicle
operation in a simple tracking task. We assumed that a
general paradigm of reinforcement learning can be applied to
this problem. Based on this assumption, we used the ACT-
R architecture to explore mechanisms to simulate the human

7In the ACT-R manual (Bothell, 2007), this parameter is expected gain s, the noise

(s in Equation 1 and egs in the ACT-R system) added to the expected utility value

of each rule.

FIGURE 7 | The results of the simulation (Performance). Error bars

represent σ/2.

FIGURE 8 | The results of the simulation (Auto Use Ratio). Error bars

represent σ/2.

participant behavior data. The results of the simulation show
overall correspondence with the experimental data, suggesting
the validity or at least usefulness of our assumptions. In this final
section, we presents implications and limitations of the study.
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FIGURE 9 | The results of the simulation (the number of switches). Error bars

represent σ/2.

TABLE 1 | Fit of the model predictions (N = 500) to the participant data (N = 63).

Measurement Models R2 RMSE

Performance Default-default 0.792 0.135

Default-SMDP 0.926 0.107

Gating-default 0.907 0.101

Gating-SMDP 0.969 0.053

Auto use ratio Default-default 0.462 0.213

Default-SMDP 0.794 0.138

Gating-default 0.618 0.149

Gating-SMDP 0.945 0.072

Number of switches Default-default 0.433 14.781

Default-SMDP 0.683 15.585

Gating-default 0.612 11.117

Gating-SMDP 0.798 6.004

The bold numbers indicate the best fit.

6.1. Implications
As an implication from the current study, we first claim the
advantage of connecting an abstract theory (EDFT) to a cognitive
processmodel (ACT-R). Figure 10 summarizes the process of our
model (Gating-SMDP) in the framework of the EDFT theory.
The utility module of ACT-R corresponds to Belief and Trust in
the EDFT theory. However, unlike the previousmodel, ourmodel
has knowledge to execute the task and performs the task. Our
model also does not perceiveCa/Cm directly. Randomized course
conditions influence the performance (success/failure) of the
task. Moreover, complex perceptual/motor factors are involved
in manual mode performance. Therefore, the model’s reliance on

the automation interacts with the performance of the task in our
model, which in turn influences reliance on the automation. As
Bainbridge (1983) noted, to understand decision making about
the use of automation, one needs to consider monitoring the
performance of the auto and manual performance. This work is a
first step to include performance factors into modeling the use of
automation though there are still many limitations to applying it
to actual systems in the real world.

The present work can also be seen as a contribution to both the
field of reinforcement learning and ACT-R cognitive modeling.
ACT-R has so far been used to simulate many psychological
experiments. Because of this background, this architecture made
it possible to produce a simulation that can be directly compared
with the participant data. In our study, the perceptual and motor
modules of ACT-R were used to represent the time constraints
of the task (as shown in Figure 5). However, to simulate
the human behavior, we needed to extend the reinforcement
learning implemented in ACT-R. These extensions included the
summation of rewards over time and the gating mechanism.
Without these previously developed for SMDP (Sutton et al.,
1999), we could not have achieved as good a fit to the data
(Figures 7–9).

Combining these different modeling approaches allows us
to predict human behavior in time-critical tasks. Despite the
long history of this architecture, studies using reinforcement
learning in ACT-R have not been so common. In this community,
instance-based learning (IBL), which uses declarative knowledge
as past problem-solving experiences, is more popular than
reinforcement learning (Lebiere et al., 2007, 2009). However,
because of the long time delay in retrieving declarative
knowledge, IBL is not suited to model decision making in
time-critical tasks, rather it is limited to modeling cognitive
processes in discrete-time step tasks (MDP). On the other hand,
reinforcement learning in SMDP has been mainly developed
in the field of control engineering and robotics (e.g., Asada
et al., 1999; Sutton et al., 1999; Doya et al., 2002; Elfwing et al.,
2004), which was not directly aimed to make predictions of
human behavior.

Contrary to the above previous research, our gating module
enables a fast decision making process with a human-
comparable time constraint represented in ACT-R. In addition,
we hypothesize that thismechanism relates to topics of prediction
in the sense of the free energy principle (Friston, 2010), which is
a general brain theory integrating information theory, Bayesian
inference, and reinforcement learning. In this framework,
reinforcement learning in complex tasks is modeled with belief-
based schemes (Friston et al., 2016), which calculates a future
prediction based on a belief of the world constructed by past
experience. Although our current model does not explicitly have
a prediction process, the gating module plays a role to hold a
belief of the world constructed from past experience. In other
words, we consider that the gating module is necessary to include
as a prediction process in reinforcement learning in ACT-R.

We also assume that by implementing the prediction
process, we can extend our model to include more subtle
emotional processes such as disappointment (Joffily and
Coricelli, 2013) caused by a large prediction error. Such
an emotional process based on a prediction possibly could
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FIGURE 10 | Correspondence with the EDFT model.

improve the fit of our model especially in the number
of switches.

In sum, our study has not only the practical merit of
presenting modeling techniques for adaptations on automated
vehicle operation but also the theoretical merit emerged from
combining ACT-R with reinforcement learning theories.

6.2. Limitations and Future Study
We can also consider other several directions for future studies.
The first direction is expanding the task to complex real-world
situations. In this study, we chose an abstract simple task to be
tractable in the default ACT-R architecture. However, to apply
the findings to real-world situations, we need more realistic
models of continuous control of steering and speed. To model
such factors, we will need to add some functions converting
the discrete action of production rules to continuous physical
controls. We consider that such modeling can be accomplished
by adding motor components in ACT-R like a previous model of
driving (Salvucci, 2006).

It is also desirable to explore further factors influencing
automation adaptation. In the real world, this problem is not
purely a cognitive problem, but it includes social and ethical
issues. Although it might not be easy to answer such a problem
by cognitive modeling alone, we can accumulate understanding
on the individual cognitive process to approach the problem.
The other assumed factors influencing automation adaptation
include mental workload (Rajaonah et al., 2008; Maehigashi
et al., 2014), mental models (Beggiato and Krems, 2013), and the
understandability of the system (Maehigashi et al., 2018). Such
factors seem to be compatible with a cognitive architecture like
ACT-R because it provides a way to represent mental models in
declarative memory, which is utilized in IBL. The other possible
factors involved in this problem such as anxiety or opportunism
can also be modeled referring to recent studies of emotion

representations in ACT-R (Dancy et al., 2015; Juvina et al., 2018;
Van Vugt et al., 2018). We consider that combining such various
levels of mental functions possibly provides a novel explanation
of the complex nature of reliance on automation.
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