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Speed climbing involves an optimization of the velocity of the ascent and the trajectory

path during performance. Consequently, any amount of energy spent in the two other

directions than vertical, namely the lateral direction and the direction perpendicular to

the wall plane, is a potential loss of performance. To assess this principle, we present

a study on 3D motion analysis and its 3D visualization for a subject during a speed

climbing performance. The fundamentals of geometrical measurement in 3D require to

integrate multiple 2D cues, at least two, in order to extract 3D information. First results

with two drones following an athlete’s ascent show that a 3D velocity profile can be

provided from the tracking of a marker on the harness, pointing critical phases in the

ascent where the vertical speed is not dominant any more. We further investigate 3D

motion of full body using markerless video-based tracking. Our approach is based on

a full body 3D avatar model of the climber, represented as a 3D mesh. This model and

its deformation are learned in a laboratory studio. The learning needs to be done only

once. Result is a manifold embedding of the 3D mesh and its deformations, which

can be used afterwards to perform registration onto video of performance of speed

climbing. The results of the tracking is an inference of the 3D mesh aligned onto videos

of speed climbing performance. From this 3D mesh, we deduce an estimation of the

center of mass (COM). We show that this estimation from 3D mesh differs from the usual

approximation of the COM as a marker on the harness. In particular, the 3D mesh COM

takes into account the whole body movement such as the influence of the limbs which

is not detected by a marker on the harness.

Keywords: speed climbing, video analysis, biomechanics, motion analysis, 3D visualization, center of mass

1. INTRODUCTION

Video analysis is now regularly used by high-level athletes and coaches to address performance
optimization. Sequences are usually acquired through portable devices or fixed environment,
allowing to quickly visualize a current trial and providing an instant feedback on the performance.
The quantification of benefit of such video feedback in self-control condition has been reported in
Basketball shot for example (Aiken et al., 2012) and specifically in climbing (White and Olsen,
2010). While some angle of view are naturally preferred, typically dorsal view in our case of
interest about speed climbing, it logically provides a 2D view only of the performance. One might
consider this as a limitation since the range of motion of the performance is deeply embedded
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in 3D. One straight-forward solution is to use additional
viewpoints such as a side view to better assess the tri-
dimensionality of motion. This raises the problem of presenting
the user with several “windows” whichmay lead to overwhelming
information spread over all views. We present here an
original approach to automatically visualize a speed climbing
performance in 3D through: (i) the geometrical reconstruction
of the climbing scene and (ii) markerless video tracking of
a 3D avatar of the performance of the athlete. As an end-
result, an interactive 3D scene can be manipulated by non-
technical user to inspect all aspect of motion within a single
window interface.

Previous works on climbing motion rely wether on 2D video
analysis only or inertial measurement unit (IMU) as depicted
in the literature review by Orth et al. (2017). Among first
kinematical studies of climbing, Cordier et al. introduced the
concept of entropy in climbing, based on the convex hull span
by the trajectory of a marker on the harness (Cordier et al.,
1993). For climbing motion, Seifert et al. stressed the importance
of addressing motor-control issues in 3D (Seifert et al., 2014,
2015). From jerk data, calculated using 3D linear accelerations
and body orientation, they defined the concept of fluency which
can account for the performance of climbers. For 3D position,
it is well-known that it is not reliable to deduce this quantity
from 3D acceleration due to the propagation of noise in the
double numerical integration of the signal. Our goal is to tackle
a biomechanical quantity such as COM (Sibella et al., 2008;
Zampagni et al., 2011), motivating our focus on the body as a
3D volume. Assessment of the 3D location of COM in climbing
has been reported by Sibella et al. (2008). The data were collected
from a markers-based system and limited to a 3 m high wall.
Such an experimental approach is difficult to adapt for speed
climbing, motivating a markerless video-based technique. With
the recent advances of Machine Learning approaches, numerous
techniques exist now for video-based 3D motion analysis. All of
them target a general purpose application with huge learning
sets. We focus on a specific athlete for which we built a
dedicated 3D biomechanical twin, or avatar. Using this model,
we adapted one of our previous work on manifold learning
of 3D body shapes in motion (Duveau et al., 2012) to speed
climbing gesture.

We describe here a method to capture 3D information about
the motion of a speed climbing athlete from video acquired
by several points of view, fixed, or possibly moving such as
drones. The key aspect of our method is to be based on a 3D
avatar of the athlete. This avatar is first learned in a laboratory
studio. Granting themorphology of the athlete is not significantly
changing, this learning needs to be done only once. Afterwards,
the learned 3D avatar is automatically registered onto any video
of the performance of the athlete, without the need for any
markers. The end result of the approach is an animated 3D
representation of the performance which can be interactively
explored by changing viewpoint. In addition, we show that a
prediction of the 3D trajectory of the COM can be derived from
this 3D representation, providing an estimation more reliable
than a marker on the harness.

2. METHODS

2.1. Calibration of Viewpoints
In video recording of climbing performance, viewpoints from
the ground classically introduce artifacts such as bottom view
distortion which impedes the efficiency of visual inspection and
automatic processing. For this experiment, we have thus used
two drones as they provide high-quality video capabilities and
can be easily monitored to follow the ascent of the athlete. As
each drone is moving with respect to the environment, motion
recorded in the video mixes both the motion of the athlete and
the motion of the drone. This is resolved by performing an auto-
calibration of the drones 3D position and orientation at each
frame with respect to reference frame linked to the wall. Drones
usually embed inertial and GPS sensor to monitor their position.
Such sensors turned out to be not precise enough to compute an
accurate estimation of their relative position and orientation—
accuracy goal is to be <1 cm and 1 degree per frame). We used
instead a geometrical approach, based on a prior 3D scanning of
the wall. At each frame, a prior 3D model of the wall is registered
onto the video view by aligning salient features of the holds.
Registration is performed by optimizing the 3D location and
orientation of the drone with respect to a metric on wall features.
Like for traditional markers-based system, the quality of such
a calibration can be assessed through back projection. Results
showed that the required accuracy can be achieved.

2.2. Extraction of the 3D Trajectory of a
Marker
As a first result following calibration and as amatter of validation,
we implemented a 3D reconstruction of the trajectory of amarker
on the harness. While not exactly the COM (as detailed later),
such a location is close enough to COM to be worth noticing
and to be considered as a good representative of the overall
body 3D location. The 2D location of the marker is tracked
on each view using normalized cross correlation. As the 3D
location and position of each drone is known at each frame, the
3D location of the marker can be derived using Direct Linear
Transform approach (DLT). Drones are calibrated with respect
to a fixed reference frame related to the wall, hence the extracted
3D location of the marker. By derivating this 3D location using
finite difference and knowing the video frame rate, the athlete’s
speed can be estimated in metric units. This constitutes a first
visualization of a motion quantity in 3D, with a possibility to
identify key moment where the vertical speed is decreasing or
when the climber is getting too much away from the wall,
inducing a loss of performance for the goal of reaching the top
in minimal time.

2.3. Construction of the 3D Avatar
To go beyond the 3D trajectory of an isolated marker, we
focus now on 3D visualization of the body as a whole based
on a 3D mesh representation. This 3D representation will be
used to implement a markerless video tracking approach (next
section). To build this 3D model of the athlete, we used a
laboratory facility consisting in a studio equipped with 68 video
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cameras. This studio allows to compute, for each video frame,
a full 3D reconstruction of the body surface in motion using a
convex hull approach (Laurentini, 1994). The process consists
in, first, calibrating the video camera so that their location and
orientation in 3D space are known. During the live performance,
the silhouette of the subject is segmented using background
substraction. From this silhouette, a 3D generalized cone is
computing for each camera view, made of the camera location
at the apex and the silhouette at the base. Finally, the geometrical
3D intersection of all the cones provides the resulting 3D surface
of the subject. Unlike a range scanner, such an approach does not
deliver the exact 3D surface but an approximating tangent hull.
However, with as many as 68 cameras, it can be considered that
the convex hull is closely approaching the true 3D surface within
a sub-millimeter accuracy. Having a 3D surface allows to easily
derive an estimation of the COMusing geometrical computation,
under the assumption of a constant density of 1 kg/dm3.
This experimental data provides the required information to
learn the manifold of all the deformations of the athlete’s 3D
body surface. This learned model can subsequently be used
for tracking live motion from video during a performance on
the wall.

2.4. Automatic Tracking of Whole Body 3D
Motion From Video
It cannot be envisioned to deploy a set-up with 68 fixed
cameras or 68 drones at the speed climbing wall for a day-
to-day practice. Instead, we use the set of 3D meshes in
motion to learn a manifold of 3D shapes of the athlete. The
tracking procedure consists in registering the 3D mesh model
of the athlete onto the two drones video view by optimizing
the manifold parameters with respect to salient body features
(Duveau et al., 2012). The manifold allows for a reduction in
dimensions which guarantees the convergence of the registration.
At the end of this stage, an instance of the 3D surface of the
athlete is inferred onto video, providing a 3D encoding in the
frame reference of the climbing wall. Using a registration on two
views prevents from ambiguities and occlusions and guarantees
a better fit between the 3D model and the real pose of the athlete
during ascent.

One female climber performed a set of maximal speed ascents
on the official route. We selected the best trial (ascent time
= 7.9 s) for this analysis. The performance has been filmed
with two drones (DJI Mavic pro) with resolution 3,840 x 2,160
pixels at 30 fps. Drones are following a purely vertical ascent,
at a distance of about 8 m from the athlete (one pure dorsal
view, one apart from 45 degrees angle). The two drones have
been temporally synchronized at the frame level with a common
light signal triggered at the beginning of the performance. The
procedures (data collection and analysis) were approved by the
French Federation of Mountaineering and Climbing (FFME),
and conformed to the declaration of Helsinki. It has been
approved by the University of Lyon ethic committee as not
invasive because it is limited to the video recording of a regular
practice without any contact with the subject’s body. Piloting of
the drones was performed under the supervision of a certified

pilot (drone certificate MAVIC-53) in a closed non-public
environment. Flying was limited to a vertical ascent of <20 m.

2.5. Assembling the 3D Scene
We assemble all the results into a final 3D scene. First, the 3D
scan of the wall used for calibration can be directly imported.
Dedicated texturing can be added to augment the quality of
the rendering. The 3D mesh representation of the athlete in
motion is integrated, with also a possible texturing for aesthetics
consideration. It is worth noticing that such texturing needs to
be done only once off-line as the topology of the mesh remains
constant. Only the 3D location of the vertices is updated by
the automatic tracking phase. For the sake of validation of the
process, the original video of the drones can be first augmented
with the projection of the 3D animated scene (Figure 2). The
3D animated scene can also be explored from 3D viewpoint,
different from the original drone video viewpoint, following a
subjective camera principle (Figure 3). Lastly, the 3D view can
be augmented with information such as the 3D trajectory of the
COM or velocity cues. Hints on time of grasping of the holds can
also be visualized by computing 3D velocity of mesh vertices at
limbs extremities.

3. RESULTS

3.1. Subject Trial
Center of mass of the subject has been first approximated by
a marker attached to her harness, close to the middle of the
pelvic ilium bones. The 2D trajectory of this marker has been
digitized on each video using image normalized correlation. The
3D reference frame is made of the horizontal ground (plane XZ)
and the gravity vertical axis (axe Y), with the origin at the bottom
of the wall (Figure 1). Triangulation provides the 3D trajectory of
this marker into this world reference frame. This paper presents
the methodology of the 3D visualization and focuses thus on a
single trial.

3.2. 3D Trajectory of the Harness Marker
We report on Figure 1 the three components of the 3D position
of the marker (first row). Data have been processed with a
low-pass Butterworth filter (order 5, cut-off frequency 5 Hz).
X direction is lateral, Y direction is vertical, and Z direction
is perpendicular to the wall minus 5 degrees because of the
wall inclination. We also report the corresponding velocity
component for this marker in m/s (second row) and the overall
3D norm of the velocity (black curve, identical on each plot). As
the trajectory is measured in 3D in world reference frame (gravity
exactly vertical), the 5 degrees inclination of the wall appears
but can be easily canceled out. This is of particular interest for
the Z direction, as such a cancelation allows to clearly visualize
the distance of the climber with respect to the wall. Figure 1
shows both the results in the world reference frame (red, green,
and blue) and in the wall reference frame after wall inclination
correction (magenta, yellow, and cyan). Biggest difference is on
the Z-component, with of course no impact on the overall speed
norm. Red andmagenta curves are exactly overlapping as the two
reference frames differs only in X-axis rotation.
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FIGURE 1 | Trajectory and velocity of a marker on the harness. (Left) Standard speed climbing wall with lateral axis (X-red), vertical axis (Y-green), and axis

perpendicular to XY plan (Z-blue). (Top right): (upper) 3D trajectory of XYZ components over time of a marker on the harness (dark blue is the world-space Z-trajectory,

light blue is the Z-trajectory with the cancelation of the 5 degrees inward inclination of the wall, corresponding to the exact perpendicular distance to the wall); (lower)

corresponding XYZ velocity components. (Bottom right): (upper) Velocity euclidian norm across time; (middle) XYZ velocity components ratios with respect to the

velocity euclidian norm; (lower) Vertical progression of the marker with respect to the hold numbers as represented on the left.

On bottom of Figure 1, we explore the ratio of the velocity
components with respect to the total velocity. First row is a recall
of the total velocity, second row the three velocity component
ratios together, and the last row indicates the evolution of the
ascent with respect to “hand” holds number (we omit “feet” holds
for clarity). The curve corresponds to themoments when the hips
marker vertical position goes above the holds. The different flat
areas thus provide an estimate of the time spent between two
holds during vertical ascent.

The velocity ratio clearly outline moments when the vertical
ascent is less dominant. It typically corresponds to “dyno”
transition from hold 8 to 9 and hold 16 to 17. During
these periods, the wall-orthogonal Z-axis component becomes
dominant, corresponding to a posture which is getting farther
from the wall. On hold 7 to 8 and hold 13 to 14, the velocity
components ratios profiles show that the lateral X-axis becomes
important with respect to the vertical Y-axis. They correspond to

a required change of route but also show a drop in the vertical
component. The visualization of these 3D cues provide first
insights on speed climbing performance.

3.3. 3D Full Body Tracking
The previous steps validated the experimental infrastructure to
extract 3D information from video in terms of the trajectory
of a single marker. We report here the extension to full body
analysis through its 3D visualization. The official 15 m high speed
climbing wall can obviously not be replicated into the laboratory
as the volume which can be captured at the laboratory facility
is limited to 5 × 5 × 3 m. Consequently, the athlete has been
asked to perform a mimicry of the speed climbing ascent as the
route is standardized and completely memorized. Protocol for
the simulation of movement has been left to the expertise of
the climber who is a word-level athlete. We used this sequence
to learn the manifold of 3D shape variation of the athlete’s
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3D surface appearance. We used a Gaussian Process Latent
Variables Model as described in Duveau et al. (2012). Simulation
of motion in laboratory conditions has been used to bootstrap the
prediction algorithm through themachine learning phase. It does
not impose the real wall condition to exactly replicate the motion
in laboratory as some generalization is allowed. Joint angles start
from the configuration collected in laboratory but are modified in
value and timing to fit the real world case using model alignment.
Figure 2 on the left shows the model learned in the laboratory
and the result of the automatic registration onto a video from
a drone. It is noticeable that the fit between the learned 3D
model and the real silhouette of the athlete on the ascent does
not match exactly. For the sake of robustness and prevent from
drifting in tracking, we currently constrain the model to stay very
closed to the learned manifold in the laboratory. The difference
between 3D motion during learning and 3D motion during real
ascent at the wall explains the local mismatch. Future works
include allowing more degrees of freedom in the model so that
local features such as feet and hands orientations can be better
recovered. As for now, we focus only on the overall 3D motion
of the body. In particular, we explore here the prediction of the
COM from the 3D mesh on which local adjustments of feet and
hands will not have a significant impact.

3.4. COM Estimation : Marker on the
Harness vs. Prediction From 3D Mesh
We examined here the approximation of considering the COM
as a fixed marker on the harness near the hips vs. a prediction
as the COM of 3D mesh. The prediction from 3D mesh was
automatically computed from the 3D mesh as the barycenter of
the enclosed 3D volume with the hypothesis of uniform density.
We compared this trajectory to the trajectory of the marker on
the harness with the result of this prediction. Results show that
the mean distance between the marker on the harness and the
COM from 3D mesh are, respectively in the three directions:
7.3 ± 5.9 cm for the X direction (lateral), 8.7 ± 4.6 cm for the
Y direction (vertical), and 24.1 ± 4.3 cm for the Z direction
(perpendicular to wall). The biggest difference is on the Z

direction as the marker is attached on the back while the 3Dmesh
COM is more likely also influenced by limbs projection toward
the wall. Figure 3 illustrates on overall comparison between the
trajectory of the marker and the trajectory of the 3D mesh COM.
It shows that the actual trajectory of the 3D mesh COM appears
smoother than the trajectory of the marker. We also report
a situation where the difference in vertical direction has been
reported maximal (3D mesh COM is 16.1 cm above the marker).
It corresponds to a case where the legs are flexed into an upward
position. This explains well why the 3D mesh COM is actually
moving upper than the marker on the harness which thus proves
not to be always a good approximation of the true COM.

3.5. Visualization of Extra Cues in 3D
The 3D scene can be visualized from different angles and as such
represent a valuable enhancement of standard video. In addition,
visual cues can be added onto the 3D scene such as velocity. In
Figure 4, all the position of the COM have been reported during
ascent, with a color ramp associated with magnitude of velocity
ranging from minimal velocity in red to maximal velocity in
green. Other visual cues can be integrated into the 3D view.

4. DISCUSSION

Results show that the trajectories of a marker on the harness
and the 3D mesh COM differ. Although no exact measurement
of the true COM exists for validation, its estimation from the
3D mesh follows some rational insight and tends to prove it
is more reliable. Typically, unlike the marker, the 3D mesh
method accounts for the projection of the limbs toward the wall
or the flexion of the legs. Therefore, we compared the velocity
computed from the marker with the one computed from the
COM, following the same scheme as Figure 1. Results in Figure 5
show significant differences, especially around the “dyno” section
when body crosses hold 08. Trajectory of the marker is displayed
in dashed line and trajectory of 3D mesh COM is in plain line.
After a close look at this section, it confirms that the COM from
3Dmesh provides a more meaningful interpretation with respect
to the true COM, compared to the marker. Indeed, at this section,

FIGURE 2 | 3D avatar of the athlete and its overlay onto video : during training at the lab (left), original test input condition (middle), tracking result overlay (right).
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FIGURE 3 | Comparison between trajectories from marker on the harness (red curve) and COM computed from 3D mesh (green curve).

FIGURE 4 | Velocities with color ramp related to velocity magnitude (minimal-red to maximal-green).

even if the pelvis is actually stopping, inducing a loss of vertical
speed of the marker, the legs are still moving upward. Similarly
to the case reported on Figure 3, it suggests why the true COM
maintains an upward velocity and why the 3D mesh COM is a
better estimate.

Video-based technology is a promising alternative to makers-
based system because of its practical use. It is however difficult
to exactly evaluate its accuracy against the later approach unless
both set-up, with and without markers, are installed at the
same location. However, the experiment presented here shows

the potential of the approach, first for a qualitative feedback
through 3D visualization and also, for quantification of high-
level features such as an estimation of the 3D trajectory of
the COM. As an example of complementary features extraction
and visualization, the 3D tracking allows to measure valuable
cues on the timing of holds grasping. Indeed, by inspecting the
velocity of the mesh vertices at hands and feet, a duration of
the grasping can be deduced. Figure 6 shows the result for this
ascent with a threshold of 1 cm/s to identify grasping from
velocity magnitude of limbs extremity vertices (Figure 6). In
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FIGURE 5 | Comparison of trajectories and velocities between marker on the harness (dashed line) and COM computed from 3D mesh (plain line). Curves correspond

exactly to the same layout as in Figure 1: Top-right are XYZ trajectories and velocities, Bottom-right are velocities and vertical progression (see caption of Figure 1 for

details).

FIGURE 6 | Detection of contacts on the holds and the wall. Each line corresponds to one of the body limb extremity (right foot, left foot, right hand, left hand). It is

plain when a contact is detected. A contact is assumed to be hold when velocity of its corresponding vertex on the 3D mesh is below a threshold of 1cm/s.
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this case, a user evaluation can be performed as the extracted
information is binary, on or off, and is visually identifiable.
Results revealed that the identification of grasping duration
is perfectly accurate and even include cases when the athlete
is using contacts with parts of the wall outside hands and
feet holds.

5. CONCLUSION

In the absence of side-by-side experiments with both equipments,
it cannot be claimed that a markerless video-based method
reaches yet the accuracy of a standard markers-based systems.
However, we show that our technique provides reliable cues
such as a usable 3D visualization of the whole body in
motion and estimation of the 3D trajectory of the center
of mass (COM). In particular, our finding is that they are
some noticeable discrepancies between the 3D trajectory of
a marker on the harness, approximating the COM, and an
estimation of the COM of the 3D model of the athlete
registered on videos. The estimation of the 3D trajectory of
the COM from our video-based 3D mesh tracking tends to
follow rational insights that a marker-based approach does
not allow.

Future works will explore more precisely dynamics in speed
climbing. The goal will be to extend our previous experience in
this domain, obtained in a laboratory set-up, to similarly address
the context of athletic speed climbing (Quaine and Vigouroux,
2004). In particular, following the markerless objective, we will
continue to adapt our previous approaches for prediction of
contact forces from kinematical data only (Quaine et al., 2017)
through numerical optimization.
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