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There is no consensus on which statistical model estimates school value-added (VA)
most accurately. To date, the two most common statistical models used for the
calculation of VA scores are two classical methods: linear regression and multilevel
models. These models have the advantage of being relatively transparent and thus
understandable for most researchers and practitioners. However, these statistical
models are bound to certain assumptions (e.g., linearity) that might limit their prediction
accuracy. Machine learning methods, which have yielded spectacular results in
numerous fields, may be a valuable alternative to these classical models. Although
big data is not new in general, it is relatively new in the realm of social sciences and
education. New types of data require new data analytical approaches. Such techniques
have already evolved in fields with a long tradition in crunching big data (e.g., gene
technology). The objective of the present paper is to competently apply these “imported”
techniques to education data, more precisely VA scores, and assess when and how they
can extend or replace the classical psychometrics toolbox. The different models include
linear and non-linear methods and extend classical models with the most commonly
used machine learning methods (i.e., random forest, neural networks, support vector
machines, and boosting). We used representative data of 3,026 students in 153
schools who took part in the standardized achievement tests of the Luxembourg School
Monitoring Program in grades 1 and 3. Multilevel models outperformed classical linear
and polynomial regressions, as well as different machine learning models. However,
it could be observed that across all schools, school VA scores from different model
types correlated highly. Yet, the percentage of disagreements as compared to multilevel
models was not trivial and real-life implications for individual schools may still be
dramatic depending on the model type used. Implications of these results and possible
ethical concerns regarding the use of machine learning methods for decision-making in
education are discussed.
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INTRODUCTION

Value-Added Modeling
Value-added (VA) models are statistical models designed to
estimate school (or teacher) effectiveness based on students’
achievement. More specifically, they intend to estimate
the “value” specific schools (or teachers) add to students’
achievement, independently of students’ backgrounds (e.g.,
Amrein-Beardsley et al., 2013). VA scores are estimated by
juxtaposing the actual achievement attained by students
attending a certain school with the achievement that is expected
for students with the same starting characteristics (e.g.,
pretest scores).

The use of VA models is highly consequential because VA
scores are often used for accountability and high-stakes decisions
to allocate financial or personal resources to schools (for an
overview from a more economical point of view, see, Hanushek,
2019). These high stakes can make estimating VA scores a
politically charged topic, especially in the US, where many
states have implemented VA-based evaluation systems (Amrein-
Beardsley and Holloway, 2017; Kurtz, 2018). In 2015, 41 states
recommended the use of VA scores or other student growth
measures for human resource decisions (Kurtz, 2018). However,
in recent years, the consequential use of VA models seems to be
decreasing again in many states (Close et al., 2020).

Despite both the practical and political relevance, there is
currently no consensus on how to best estimate VA scores
(Everson, 2017; Levy et al., 2019). This lack of consensus can
be observed for various aspects of the VA model, including
the applied statistical model, methodological adjustments (e.g.,
for measurement error or missing data), and the selection of
covariates used to compute the VA score. In the present study,
we focused on how the choice of the statistical model affects VA
scores, which are used to evaluate the effectiveness of schools, as
VA scores and thus measures of school effectiveness may vary
greatly depending on the statistical method used (e.g., Sloat et al.,
2018). In particular, we compare classical models for prediction
with those drawn from machine learning.

Statistical Models for the Estimation of
School VA Scores
While VA models stem originally from economics (Hanushek,
1971), they consist of statistical methods that are common in
educational or psychological sciences. Even though there are
many different possible statistical models, all VA models follow
the same logic. As shown in Eq. 1, this expected achievement ŷ
is estimated for every student i in school j as a function f (e.g.,
linear regression) of their initial characteristics xij at an earlier
time point (e.g., prior achievement) and an error term eij.

ŷij = f (xij) (1)

In a second step and as demonstrated in Eq. 2, the VA score for
each school j is estimated by calculating the mean difference (i.e.,
residuals) between the expected achievement ŷ and the actual
achievement y for all n students in this school j. This is equal to

the average error term e of all students in school j.

VAj =

∑j
i (yij − ŷij)

nij
=

∑j
i (eij)

nij
(2)

Positive VAj values mean that students in school j achieved
better than expected, while negative VAj values mean that they
achieved worse than expected. The aim is to statistically eliminate
all factors that cannot be influenced by a school, such that
everything that is left (i.e., the residuals) will be attributed to
the effect of a certain school. Hence, the quality of the initial
prediction step (i.e., Eq. 1) is crucial for the estimate.

Classical Approaches in the Estimation of
Value-Added Scores
There are currently two main classical models to compute VA
scores: linear regression and multilevel models (Kurtz, 2018; Levy
et al., 2019). These models are often claimed to be interpretable
for most researchers and practitioners (see, e.g., Molnar, 2020).
However, they make strong assumptions (e.g., linearity), which
may limit their accuracy. Intuitively, most people would agree
that learning does not happen linearly (e.g., as illustrated in
this blog entry, McCrann, 2015). This is underlined by findings
that at least in some cases, non-linear models fit the data better
than linear models, implying that the typical linearity assumption
might not be warranted (Lopez-Martin et al., 2014). However, this
does not necessarily mean that non-linear models are also more
appropriate for the estimation of VA scores. For example, one
finding from a national project on VA modeling was that even
though the data fit was better when using a curve rather than a
straight line, this had almost no effect on VA scores (Fitz-Gibbon,
1997). In situations with high noise, low model complexity can
have better performance (Friedman et al., 2001), but as data
quality and amount improve more complex methods may be
more appropriate.

Machine Learning Approaches for the Estimation of
Value-Added Scores
In educational research, as in many other domains, the amount
of available data is consistently growing (as reflected in the
development of the new domain of “educational data mining”;
see, e.g., Romero and Ventura, 2010; Baker, 2019). Although big
data is not new in general, it is relatively new in the realm of social
sciences and education, requiring new data analytical approaches.
This is both a challenge and an opportunity, as it is becoming
feasible to use the strength of interdisciplinary approaches and
combine expertise from the domains of Education, Psychology,
and Computational Sciences to apply machine learning methods
to estimate VA scores. While machine learning seems to be
promising for practices within the classroom (see, e.g., Kaw et al.,
2019; Moltudal et al., 2020), the focus of the present study is on
their potential use for the estimation of school VA scores.

The collaboration of educational, psychological, and data
scientists offers an alternative approach to the classical models:
machine learning methods. Machine learning (ML) has yielded
spectacular results in numerous fields, such as automated face
identification (Taigman et al., 2014) or beating human players
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at the game Go (Silver et al., 2017). The fields of statistics and
machine learning highly overlap in terms of tools and methods,
primarily differing on focus of problems and applications (for
a discussion, see, e.g., Harrell, 2018). With larger data sets,
the social sciences are now drawing more on machine learning
approaches (e.g., as in computational social sciences, Lazer
et al., 2009), which may provide higher prediction accuracies.
Often these approaches draw from more general non-linear
function fitting approaches (e.g., kernel methods) or combine
several weaker models to improve performance (e.g., boosting or
random forests). However, these approaches often require large
datasets and involve models that can be more difficult to interpret
(i.e., black boxes).

Recent research in learning analytics and educational data
mining has applied, with great success, machine learning to a
wide set of educational problems (Romero and Ventura, 2020),
such as predicting student performance in higher education (for
recent reviews of the literature, see, e.g., Hellas et al., 2018;
Papadogiannis et al., 2020). While a wide variety of models
have been tested (e.g., decision trees, neural networks, support
vector machines, and linear regression; Rastrollo-Guerrero et al.,
2020), there is no consensus yet on which model is the “best”
(Papadogiannis et al., 2020). This state of affairs is partially
due to studies using different covariates or model performance
metrics (Hellas et al., 2018). Such differences between studies
make direct comparison of their results difficult, and may lead
to inconsistencies and confusion (Papadogiannis et al., 2020).
The lack of standardized benchmarks means that while it is clear
that these machine learning methods may overall perform well
in predicting student performance, determining which specific
model to privilege requires direct statistical comparison on a
given dataset. In addition, one should note that most predictive
models are influenced by their modelers (see, e.g., Kuhn and
Johnson, 2013), which begs the question of how far the VA scores
from these predictive models differ from those obtained via more
classical approaches.

The specific fruitfulness of machine learning methods for the
application of school VA models is supported by recent research
reporting higher accuracy and more reliable estimates of school
VA scores when comparing “random forests” regression to a
classical linear regression (Schiltz et al., 2018). To the best of our
knowledge, this is the only study that has compared machine
learning methods to a classical approach for the estimation
of school VA scores. In Schiltz et al. (2018), simulated data
and population data from Italy were used to investigate the
application of random forests for the estimation of school VA
scores. They reported that random forest models predicted
outcomes more accurately than linear regression models. Not
only did VA scores differ numerically depending on the
model type used, the ranking of VA scores across schools
differed as well (in particular among schools that ranked very
high or very low) which implies that the choice of model
type may have substantial practical consequences. The authors
recommended the use of random forests over linear regressions
when estimating school VA scores, especially when using VA
scores for high-stakes decisions, as higher accuracy may prevail
over transparency. Random forests methods can capture complex

non-linear relationships between dependent and independent
variables and are far more flexible than linear regression models;
if the data deviates from linearity and the dataset is large enough,
techniques like “random forests” can grasp patterns that classical
linear models cannot.

This means that these random forests have an advantage over
the classical linear regression model, as they do not assume
a linear relationship. However, random forests only represent
one type of machine learning approach, and so it is unclear
whether the improved performance is due to either the non-
linearities or the ensemble nature of the method. Additionally,
linear regressions are only one of the two typically used model
types in the estimation of school VA scores (Kurtz, 2018; Levy
et al., 2019); the other one, multilevel models, was not considered
in their study. Finally, it is unclear how their result will generalize
across other datasets, in particular given differences in covariates
and populations.

Hence, we expand on this work by considering a broader
class of predictive models, which will be described in detail in
the method section. In brief, we compare: linear, multilevel, and
polynomial regression, random forest, neural networks, support
vector machines, and boosted approaches (see also Table 1
for an overview).

The Present Study
As mentioned above, there is currently no consensus on how
to best estimate school VA scores (e.g., Levy et al., 2019, but
see also Schiltz et al., 2018). One previous study has sought to
analyze systematically different covariate combinations in school
VA models (Levy et al., 2020), with one limitation of this study
being the use of only one model type (i.e., multilevel model).
The present study thus aims to expand the study by Levy et al.
(2020) by examining different model types for the estimation
of school VA scores by the interdisciplinary approach of adding
methods typically used in computational sciences to the typically
psychometric approaches.

We aim to extend the study from Levy et al. (2020) by
examining different model types for the estimation of school VA
scores, and the study from Schiltz et al. (2018) by using a different
data set with population data, by adding multilevel models, by
adding non-linear “classical” models, and by adding different
types of machine learning methods (e.g., with and without the
assumption of linearity) to the comparison.

A common and appropriate way of comparing predictive
models is by using a class of methods called cross-validation
(Hastie et al., 2009). Cross-validation allows us to estimate
a model’s out-of-sample performance, that is performance on
predicting data that the model was not fit on. It achieves this by
randomly splitting the data into “train” and “test” subsets. The
model is then fit on the training set, and performance (e.g., R2) is
evaluated on the testing set. This process can then be repeated,
either by randomly subsampling or by an initial partitioning,
allowing the results to be averaged. For all models used in our
analysis, VA scores were computed based on average residuals per
school, in the same way as the linear model.

For our analysis, we used the same selection of covariates
across all statistical models. This allows for a fair comparison
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TABLE 1 | Description of the applied models.

Model Relationship Specifics Package and
function

Hyper parameters

Classical approaches

Linear regression Linear stats (R Core Team,
2019): lm

/

Multilevel model Linear Hierarchical structure taken
into account

lme4 (Bates et al.,
2015): lmer

/

Polynomial regression Non-linear Third degree to all
continuous variables

stats (R Core Team,
2019): lm

/

Machine learning approaches

Random forest Non-linear Extension of decision trees ranger (Wright et al.,
2020): ranger

– Randomly selected predictors: 2, 5, 8
– Splitting rule of variance, extra trees, maxstat
– Minimum node size: 5, 8, 10.

Neural networks Non-linear Sequential logistic
regression

nnet (Venables and
Ripley, 2002): nnet

– Number of hidden units: 1, 3, 5, 10
– Weight decay: 0, 0.001, 0.1, 0.5, 0.9

Linear support vector machines Linear Extension of regression
approaches; combination
of finding the minimal
margin hyperplane and the
kernel method

kernlab (Karatzoglou
et al., 2004): svmLinear

– Cost of constraint violation: 0.001, 0.01, 0.1,
0.5, 0.9, 1

Polynomial support vector machines Non-linear kernlab (Karatzoglou
et al., 2004): svmPoly

– Polynomial degree: 1, 2, 3
– Distance measure for kernel: 0.001, 0.010,

0.100
– cost of constraint violation: 0.001, 0.01, 0.1, 1

Radial support vector machines Non-linear kernlab (Karatzoglou
et al., 2004): svmRadial

– Distance measure (kernel): 0.01, 0.05, 0.1, 0.5, 1
– Cost of constraint violation: 0.001, 0.01, 0.1,

0.5, 0.9, 1

Boosting Linear Ensemble method; models
sequentially trained based
on performance of past
models

xgboost (Chen et al.,
2019): xgbLinear

– Number of boosting iterations: 25, 50, 100
– L1 and L2 regularization: 0, 0.01, 0.01, 0.1, 1
– Learning rate: 0.05, 0.1, 0.3, 0.6

between models. The choice of covariates was made based on
the basis of models of school learning (e.g., Haertel et al.,
1983; Wang et al., 1993), findings on predictors of students’
achievement and recent findings from systematic analyses
on covariate selection in school VA models (Levy et al.,
2020). More specifically, these results were obtained by using
multilevel models and indicated that the inclusion of prior math
achievement, prior language achievement, and covariates related
to students’ sociodemographic and sociocultural backgrounds
(i.e., socioeconomic status of the parents, languages spoken at
home, migration status, and sex) into school VA models can
make a difference in controlling for between-school differences
in student intake and in the resulting school VA scores. Hence,
these covariates were included into all statistical models in the
present study. One limitation of the study by Levy et al. (2020)
was that only one model type was used (i.e., multilevel model);
here we contrast several model types.

We addressed two main research questions:

(1) How is the predictive power of school VA models (in
predicting student academic scores) affected by different
types of classic and more modern models?

(2) How sensitive is schools’ VA ranking to the selection of
model types for the VA model?

MATERIALS AND METHODS

Participants
This study is a secondary analysis and uses longitudinal large-
scale data obtained from the Luxembourg School Monitoring
Programme ÉpStan (LUCET, 2019). ÉpStan assesses students’
academic competencies (in math and languages), their subjective
achievement motivation as well as information on their
sociodemographic and sociocultural background at the
beginning of the grade levels 1, 3, 5, 7, and 9. Every year,
the entire student population in each of the concerned grade
levels participates in the ÉpStan. In the present paper, we used
longitudinal data from the student cohort that participated in
ÉpStan in grade 1 in 2014.

For our analyses, we included only those N = 3,026 students
attending 153 primary schools with complete cases on all
variables (see Table 2 for details on sample composition and
excluded students). Excluded students (N = 1,977) were either
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TABLE 2 | Details on the sample composition and excluded students.

Included
studentsa

Excluded (at least
one missing

value)

Excluded (no
participation in

grade 3)

Excluded
(students

switched school)

Number of students 3,026 577 1,068 332

Mean prior math ach. in grade 1 523 (SD = 91) 503 (SD = 90) 437 (SD = 103) 499 (SD = 82)

Mean prior language ach. in grade 1 523 (SD = 92) 495 (SD = 97) 441 (SD = 103) 489 (SD = 85)

Percentage of female students 50 48 47 49

First language of instruction not spoken at home 49 58 65 60

Mean HISEI score 50.1 (SD = 15.4) 47.0 (SD = 15.0) 42.6 (SD = 15.5) 44.9 (SD = 15.2)

Mean math ach. in grade 3 519 (SD = 103) 495 (SD = 108) – 479(SD = 93)

Mean language ach. in grade 3 518 (SD = 101) 482 (SD = 101) – 474 (SD = 103)

ach., achievement. aBased on the criteria described above.

absent on the day of testing in third grade (N = 1,068; e.g., due
to illness or grade repetition), or they changed schools between
grades 1 and 3 (N = 332), or they had at least one missing value in
the relevant covariates (N = 577). Excluded students had lower
achievement values than included students, indicating among
others that non-participation in grade 3 could most likely be due
to repeating a grade between first and third grade. Treatment of
missing data is a highly debated subject in many areas, also in VA
research (e.g., Dearden et al., 2011). Here, we decided to analyze
only complete cases, as the model comparisons would otherwise
depend on assumptions made at the imputation process which
could favor particular model types and hence prevent a clear
interpretation of their results.

The ÉpStan has a proper legal basis and the national
committee for data protection gave its approval. Appropriate
ethical standards were respected (American Psychological
Association, 2017). All participating children and their parents
or legal guardians were duly informed before the data collection,
and had the possibility to opt-out. To ensure students’ privacy
and in accordance with the European General Data Protection
Regulation, collected data were pseudonymized with a so called
“Trusted Third Party” (for more information see LUCET, 2019).
For the present analysis, an anonymized dataset was used.

Measures
Academic Achievement
VA modeling requires a choice of academic achievement as
outcome measure, and often uses previous academic achievement
as a covariate. Since for our data we have two equally
appropriate choices—namely math and language achievement—
we computed VA scores for both and report all results (for
a recent meta-analysis on the mutual relationship between
language and mathematics, see Peng et al., 2020). These two
achievement measures from grade 3 were used as outcome
variables, while the same scores from grade 1 were used as
covariates (i.e., as a measure of prior achievement). At the
very beginning of grades 1 and 3, all achievement measures
were assessed with standardized achievement tests, which were
developed on the basis of the national curriculum standards
(defined by the Ministry of National Education, Children
and Youth, 2011) by interdisciplinary expert groups, thus

assuring content validity (Fischbach et al., 2014). The tests were
administered in the classroom setting, given in a paper-and-
pencil format, and mostly based on closed-format items. To scale
the items, a unidimensional Rasch model was used (Fischbach
et al., 2014; see Wu et al., 2007; Nagy and Neumann, 2010).
Weighted likelihood estimates (WLE; Warm, 1989) were used
as measures of students’ achievement (Fischbach et al., 2014).
The reliability scores of all achievement scales were calculated
using the function WLErel from the TAM package version 3.3.10
(Robitzsch et al., 2019), which estimates reliability scores based
on WLE values and their standard errors.

Math achievement
The math tests in grade 3 were constructed in German because the
language of instruction in grades 1 and 2 is German. Math items
assessed children’s competencies in three areas: “numbers and
operations,” “space and form,” and “quantities and measures.”
The reliability of the math test scores in grade 3 was 0.90.
Math achievement in grade 1 (i.e., prior math achievement)
was assessed in Luxembourgish (which is, although politically
and culturally a language on its own, linguistically speaking a
variety of German, see Dalby, 1999) because the language of
instruction in preschool is Luxembourgish. Mathematics items
assessed children’s competencies in the domains “numbers and
operations,” “space and shape,” and “size and measurement”1. The
reliability of the math test scores in grade 1 was 0.75.

Language achievement
Language achievement in grade 3 was operationalized by
the children’s listening and reading comprehension in the
German language. Listening comprehension was based on the
subskills “identifying and applying information presented in
a text” and “construing information and activating listening
strategies.” Reading comprehension was assessed with the
subskills “identifying and applying information presented in
a text” and “construing information and activating reading
strategies/techniques”1. The reliability of the listening
comprehension and the reading comprehension test scores
in grade 3 were 0.81 and 0.88, respectively. The correlation
between those two achievement scores was 0.69. We computed

1https://epstan.lu/en/assessed-competences-31/
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a mean score across listening and reading comprehension
in the German language to represent students’ language
achievement in grade 3 in order to have only one dependent
variable. Language achievement in grade 1 (i.e., prior language
achievement) consists of “early literacy comprehension” and
“listening comprehension” in Luxembourgish in grade 1 because
the language of instruction in preschool is Luxembourgish.
Listening comprehension was assessed with the two subskills
“identifying and applying information presented in a text” and
“construing information and activating listening strategies”
with different kinds of texts, which were played from an audio
recording. Early literacy comprehension was assessed with the
subskills “phonological awareness,” “visual discrimination,” and
“understanding of the alphabetic principle”2. The reliability of
the listening comprehension and the reading comprehension
test scores in grade 1 were both 0.70. Contrary to the language
achievement measures in grade three, both the listening and the
reading score were included into the models instead of averaging
them in order to keep as much information as possible, as these
two scores only correlated with each other at 0.50.

A note on psychometric quality of achievement measures
The present study is a secondary analysis and relies on archive
data for which only limited information on psychometric quality
of achievement measures is available (see Appelbaum et al., 2018).
Of note the underlying data are already used in real-life and drive
political decisions and hence psychometric data quality has been
optimized in that regard. As noted above, the present domain-
specific tests were developed by expert panels (i.e., teachers,
content-specialists on teaching and learning, psychometricians)
to ensure content validity of all test items. All test items
have also undergone intensive pilot-testing and psychometric
quality checks concerning their empirical fit to the Rasch-Model
that was used to derive WLE estimates representing students’
domain-specific achievements in grades 1 and 3. Further, all
test items were examined whether they exhibit differential
item functioning across student cohorts attending the same
grade level to allow for commensurable measures across time.
These psychometric quality measures helped to ensure structural
validity of the test items within and across student cohorts.
Additional analyses on their convergent and discriminant validity
showed that domain-specific achievement test scores in both
grade 1 and grade 3 followed the theoretically predicted
pattern to academic self-concepts in matching and non-matching
domains (Niepel et al., 2017; van der Westhuizen et al., 2019).
Finally, the WLE-scores representing students’ domain-specific
achievement demonstrated score reliability (with score reliability
ranging between 0.70 and 0.90) that suffices research purposes
(Schmitt, 1996).

Sociodemographic and Sociocultural Background
Variables
To obtain information on children’s sociodemographic and
sociocultural background, a parents’ questionnaire was
administered in grade 1. Parents were asked to locate their

2https://epstan.lu/en/assessed-competences-21/

profession within a given list of occupational categories
(e.g., academia or craft); these categories were based on the
ISCO classification (International Standard Classification of
Occupations). For each occupational category, the average
value of the ISEI scale, which is a validated scale (International
Socio-Economic Index of occupational status, see Ganzeboom,
2010), was computed to obtain a proxy for the socioeconomic
status of the parents (SES). In our grade 1 dataset, ISEI values
have a mean of 50.1 and a standard deviation of 15.4. In the first
PISA tests in 2000, the average ISEI for all OECD countries was
48.8 (OECD and UNESCO Institute for Statistics, 2003). Parents
were also asked where they and their child were born to indicate
their immigration status, resulting in the immigration status
categories “native,” “first generation,” and “second generation.”
In the present analyses, immigration status was coded as dummy
variables with “native” being the reference category. In addition
to the questionnaire filled out by the parents, grade 1 students
also filled out a questionnaire on their own, where they were
asked to indicate language(s) spoken with their father and
their mother, respectively. As the first language of instruction
is Luxembourgish, not speaking any Luxembourgish at home
represents a challenge for the newly enrolled students. We thus
created a dummy variable to differentiate between those students
who do not speak any Luxembourgish at home and those
who speak Luxembourgish with at least one parent (reference
category). Students’ sex was retrieved from the official database
of the Ministry of National Education, Children and Youth.
Table 2 includes among others an overview of sociodemographic
and sociocultural variables of all 3,026 students from 153 schools.

Analysis
All analyses were conducted using R version 3.6.1 (R Core Team,
2019); the scripts can be found online at https://osf.io/rgt8x/
?view_only=752453b81cd243e0b4ebfe33e1a74c33. In order to
run models as similarly as possible, the caret package version
6.0.85 (Kuhn, 2019) was used as a wrapper of most functions. For
all models except for the multilevel model, we followed the steps
in Eqs 1 and 2 for prediction and VA estimation. Unless otherwise
stated, the function call of the model was defined as follows:

Achievement_in_grade_3 ∼ Prior_Math_Achievement +
Prior_Reading_Achievement + Prior_Language_Achievement +
SES + migration_status + language_spoken_at_home + sex.

Hence, achievement in grade 3 is our outcome y variable with
the others as covariates (see the caret package for details on
function calls). Note that the “+” operator is treated as selecting
covariates from the data, where the model type determines how
the covariates are combined (e.g., for random forest covariates
are selected to form tree branches, hence the “+” is not
literal addition).

As is standard in machine learning, the dataset was randomly
split into a training-set which contains 70% of the data and
is used to fit or “train” models and a test-set which contains
the remaining 30% of the data and which is used to evaluate
the fitted model’s ability to predict new (“out-of-sample”) data
(prediction accuracy was estimated via R-squared). To prevent
the results from being dependent on a particular split of the
data, the above procedure (i.e., split, train, test) was repeated
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100 times, thus creating 100 training- and test-sets and the
prediction performance averaged across those repetitions (100
was chosen to balance estimation with computing limitations).
The parameter ranges we specified for hyper parameter selection
(i.e., grid search) were selected for each parameter in order to
span reasonable values. These are generally based on suggested
default ranges for each model that come from standard practice,
while respecting computational limitations. We report all values
tested below. We performed cross-validation for hyper parameter
selection, comparing the resampled results across models for
the best performing hyper parameter set (for more detail on
resampling procedures, see, e.g., Hothorn et al., 2005; Eugster
and Leisch, 2011). For models with no hyper parameters (e.g.,
linear regression) we performed the identical cross-validation
resampling procedure for between model comparison. Model
performance was then compared on the resampled results.

Model Comparison
Fundamentally, when creating a predictive model of the form
y = f(x), both statistics and machine learning practitioners would
specify a function space to optimize over (e.g., polynomials)
given some loss criterion (e.g., mean-squared error). Where
they differ is in these details of function space, criteria, and
fitting procedure. Table 1 depicts an overview of the different
model types used, which relationship they assume between
dependent and independent variable(s), some specific criteria
to each model type, which package and function was used,
and which hyper parameters were defined. We use common
models for prediction, including ensemble approaches (random
forest and boosting) which combine across many weaker models
to improve performance, and general function fitting models
(neural networks and support vector machines) which transform
the inputs into a potentially more useful space for prediction.
A more detailed conceptual description and implementation can
be found in the Online Supplement A1.

Estimation of VA Scores
For most statistical models used, school VA scores were calculated
as the mean difference between the actual and the predicted
achievement values from each student in a certain school
(i.e., the residuals).

The only exception were multilevel models, where the VA
score of a school was quantified in terms of an estimate of the
random effect for a particular school at school level (i.e., the
residual of a certain school; see Ferrão and Goldstein, 2009).
School VA scores were thus estimated using the ranef function
from the lme4 package (Bates et al., 2015). Note that this is only
the case for the VA score; the resampling results were estimated
the same way across all models.

Operationalization of the Research Questions
To address Research Question 1, we evaluated the predictive
power of the underlying VA model in terms of the total
amount of variance (R2s) explained. This was estimated with the
resamples function from the caret package (Kuhn, 2019) by the
same estimation process for all models used (i.e., based on the

comparison between predicted and observed values of student
achievement, using the model’s predict function).

Further, we tackled Research Question 2 on how the VA
ranking of schools depends on the model selection by computing
correlations of school VA scores with each other as obtained
from various school VA models and by analyzing the implications
of model selection on benchmark classifications. Specifically,
following current benchmarks (e.g., Marzano and Toth, 2013),
we classified the best 25% of schools (in terms of VA scores)
as “highly effective,” the worst 25% as “needs improvement,”
and the remaining 50% of schools (i.e., between the 25th and
75th percentiles) as “moderately effective.” For every school
VA model, we computed the percentage of disagreements by
calculating the percentage of schools identified at a different
benchmark classification as the one resulting from the multilevel
model, which is one of the two most commonly used school
VA models and which in this analysis serves as a reference
(Kurtz, 2018; Levy et al., 2019). More concretely, to get the
percentage of disagreements, for every model, the number
of schools ranking at a different benchmark than by the
multilevel model was divided by the total number of schools and
multiplied by 100. Smaller values represent a higher concordance
with the benchmark classifications from the multilevel model;
higher values indicate a higher rate of disagreements. While
all preceding operationalizations include results from all 153
schools, real-life implications of benchmark classifications based
on different model types will be illustrated based on five
example schools.

RESULTS

Research Question 1: How Is the
Predictive Power of School VA Models
Affected by Different Types of Classic
and More Modern Models?
School VA Models for Math Achievement
Figure 1A shows the mean and the confidence intervals of the
amount of explained variance (R2) for the 100 cross-validations
of each statistical model with math achievement as a dependent
variable. It can be observed that the values of the different models
are close to each other, with the highest predictive power error for
the multilevel model (mean R2 of 0.51) and the lowest for neural
networks (mean R2 of 0.40). For all the other models, the mean
R2 was between 0.44 and 0.47.

School VA Models for Language Achievement
Figure 1B shows the confidence intervals of explained variance
(R2) for the 100 cross-validations of each statistical model with
language achievement as a dependent variable. The results are
analogously to the school VA models for math. It can be observed
that the values of the different models are close to each other, with
the highest predictive power for the multilevel model (mean R2

of 0.54) and the lowest mean R2 for neural networks (0.44) and
linear boosting (0.46). For all the other models, the mean R2 was
between 0.48 and 0.49.
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FIGURE 1 | Amount of explained variance (R2) for each statistical model with math achievement (A) and language achievement (B) as a dependent variable with
confidence intervals computed on the out-of-sample measures obtained via the 100 repetitions. Error bars represent 95% confidence intervals computed on the
out-of-sample measures obtained via the 100 repetitions. SVM, support vector machines.

Research Question 2: How Sensitive Is
Schools’ VA Ranking to the Selection of
Statistical Models Types for the VA
Model?
Correlations Between School VA Scores by Model
Type
School VA models for math achievement
Table 3 shows the correlations between the school VA scores
resulting from the VA models for math achievement based on
different statistical models. They range between 0.88 and 1.00

(Mdn = 0.98). The lowest correlations can be observed for those
school VA scores resulting from linear boosting (ranging from
0.88 to 0.94) and neural networks (ranging from 0.94 to 0.97).
For all other model types, the resulting school VA scores correlate
with each other to at least r = 0.98.

School VA models for language achievement
A similar pattern can be observed for school VA models
for language achievement (Table 4). Correlations between
the resulting school VA scores range between 0.89 and 1.00
(Mdn = 0.98). The lowest correlations can be observed for those
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TABLE 3 | Correlations between school VA scores resulting from different model types with math achievement as a dependent variable.

Model type Linear
regression

Multilevel
model

Polynomial
regression

Random
forests

Neural
networks

Linear
SVM

Poly-nomial
SVM

Radial
SVM

Linear regression –

Multilevel model 0.98 –

Polynomial regression 1.00 0.98 –

Random forests 0.99 0.98 0.99 –

Neural networks 0.96 0.94 0.96 0.97 –

Linear SVM 1.00 0.98 1.00 0.99 0.96 –

Polynomial SVM 1.00 0.98 1.00 0.99 0.96 1.00 –

Radial SVM 1.00 0.98 1.00 0.99 0.96 1.00 1.00 –

Linear boosting 0.93 0.92 0.93 0.94 0.88 0.93 0.93 0.93

SVM, support vector machines. All correlations are significant with p < 0.01.

TABLE 4 | Correlations between school VA scores resulting from different model types with language achievement as a dependent variable.

Model type Linear
regression

Multilevel
model

Polynomial
regression

Random
forests

Neural
networks

Linear
SVM

Poly-nomial
SVM

Radial
SVM

Linear regression –

Multilevel model 0.97 –

Polynomial regression 1.00 0.96 –

Random forests 0.99 0.95 0.99 –

Neural networks 0.93 0.93 0.92 0.94 –

Linear SVM 1.00 0.97 1.00 0.99 0.93 –

Polynomial SVM 1.00 0.96 1.00 0.99 0.93 1.00 –

Radial SVM 0.99 0.96 1.00 0.99 0.94 0.99 1.00 –

Linear boosting 0.96 0.92 0.96 0.97 0.89 0.96 0.96 0.96

SVM, support vector machines. All correlations are significant with p < 0.01.

school VA scores resulting from linear boosting (ranging from
0.89 to 0.97) and neural networks (ranging from 0.92 to 0.94).
For all other model types, the resulting school VA scores correlate
with each other to at least r = 0.95.

Percentage of Disagreement in Comparison to the
Multilevel Model
In the following section, we evaluate to what extent the
classification of schools into one of the three benchmark
classifications “needs improvement,” “moderately effective,” and
“highly effective” depends on the particular model used to
compute the VA scores. More specifically, we will use the
classification that results from the multilevel model as the
reference against which to compare the classifications that results
from all other VA scores estimation methods.

School VA models for math achievement
Figure 2 shows the percentage of disagreement as compared
to the school VA scores based on the multilevel model. In
Figure 2A, representing the school VA models with math
achievement as a dependent variable, it can be observed that for
most statistical models, the percentage of disagreement is under
10%. The only exceptions are school VA scores based on the
neural network model (21% of disagreements) and the linear
boosting model (17% of disagreements). A detailed overview of
percentages of disagreement from school VA models for math

achievement compared to those from the multilevel model can
be found in Table 5.

School VA models for language achievement
Figure 2B shows how many schools’ benchmark classifications
would be in disagreement based on their language VA scores
resulting from the different statistical models. Analogously to
the results for the school VA models for math achievement, it
can be observed that the percentages of disagreement of most
statistical models are similar to each other. More specifically,
the percentages of disagreement are around 10% for all models
except for the neural network (24%). A detailed overview of
percentages of disagreement from school VA models for language
achievement compared to those from the multilevel model can be
found in Table 6.

Real-Life Implications on the Example of Five
Schools
Figure 3 illustrates the real-life implications that the use of
different statistical models for the estimation of VA scores may
have for five schools that were chosen as examples (see Table 7
for descriptive data on these schools; these are the same schools
that were presented in Levy et al., 2020). It shows the range of
the VA percentiles resulting from the different statistical models
for these schools and illustrates that, despite high correlations
across schools, there is variation within individual schools.
More specifically, for most schools, when comparing schools’
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FIGURE 2 | Percentage of disagreement as compared to the benchmark reached based on VA scores from the multilevel model with math achievement (A) and
language achievement (B) as a dependent variable. SVM, support vector machines.

TABLE 5 | Percentage of disagreement as compared to the benchmark reached based on VA scores from the multilevel model with math achievement as a
dependent variable.

Classified by multilevel model as:

Model Needs improvementa Moderately effectiveb Highly effectivec Total percentage of disagreement

Linear regression 7.89 5.19 2.63 5.23

Polynomial regression 2.63 2.60 2.63 2.61

Random forest 7.89 9.09 10.53 9.15

Neural network 23.68 20.78 18.42 20.92

Linear boosting 10.53 16.88 23.68 16.99

Linear SVMd 7.89 5.19 2.63 5.23

Polynomial SVMd 8.89 6.49 5.26 6.54

Radial SVMd 2.63 5.19 7.89 5.23

aBelow the 25th percentile. bBetween the 25th and the 75th percentiles. cAbove the 75th percentile. dSVM, support vector machines.

TABLE 6 | Percentage of disagreement as compared to the benchmark reached based on VA scores from the multilevel model with language achievement as a
dependent variable.

Classified by multilevel model as:

Model Needs improvementa Moderately effectiveb Highly effectivec Total percentage of disagreement

Linear regression 7.89 9.09 10.53 9.15

Polynomial regression 7.89 10.39 13.16 10.46

Random forest 5.26 9.09 13.16 9.15

Neural network 21.05 23.38 26.32 23.53

Linear boosting 13.16 11.69 10.53 11.76

Linear SVMd 7.89 10.39 13.16 10.46

Polynomial SVMd 7.89 11.69 15.79 11.76

Radial SVMd 5.26 10.39 15.79 10.46

aBelow the 25th percentile. bBetween the 25th and the 75th percentiles. cAbove the 75th percentile. dSVM, support vector machines.
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FIGURE 3 | Range of percentiles resulting from math (A) and language (B) VA scores for five example schools. Every dot represents the school VA percentile as
obtained from a certain VA model. At the 25th and 75th percentiles, there are cut-off lines to define the border between schools classified as “needs improvement”
(colored in red), “moderately effective” (colored in yellow), and “highly effective” (colored in green). VA percentiles resulting from the multilevel model are marked in
black. All the other models are represented by dots in the same color as the area the VA percentile from the multilevel is situated, allowing to see how often schools’
classifications would be in disagreement.

VA percentiles within the same dependent variable, schools
would be categorized within the same benchmark (i.e., constantly
within “needs improvement,” “moderately effective,” and “highly
effective”), regardless of the statistical model used (the exact
values can be found in Table 8). However, for school 2, depending
on the type of model used, the school is classified differently.
Interestingly, for every school except for school 1 the most
extreme values of VA percentiles (i.e., highest or lowest) are
reached with the multilevel as the underlying school VA model.

DISCUSSION

School VA models are statistical models designed to estimate
school effectiveness (i.e., school VA scores) based on the

evolution of students’ achievement. These VA scores are often
used for accountability and high-stakes decisions to allocate
financial or personal resources to schools. However, despite
their practical relevance, there is currently no consensus on
how to best estimate VA scores. The two most commonly used
statistical models are linear regression and multilevel models
(Kurtz, 2018; Levy et al., 2019) and some researchers have
applied non-linear models for the estimation of school VA scores
(Fitz-Gibbon, 1997; Lopez-Martin et al., 2014). An alternative
approach to these classical models involves machine learning
methods, which social sciences are drawing on more as larger
and more complex data sets become increasingly available,
as new types of data require new data analytical approaches.
Such techniques have already evolved in fields with a long
tradition in crunching big data (e.g., gene technology). One
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TABLE 7 | Descriptive data from the five example schools shown in Figure 3.

School 1 School 2 School 3 School 4 School 5

Number of students 18 52 33 49 26

Mean prior math achievement in grade 1 459 575 509 592 534

Mean prior language achievement in grade 1 468 567 511 587 506

Percentage of female students 33% 54% 61% 53% 58%

Percentage of “First language of instruction not spoken at home” 66 33 55 80 46

Mean HISEI score 41.0 56.2 54.6 56.8 48.2

Mean math achievement in grade 3 504 540 543 498 517

Mean language achievement in grade 3 476 579 527 470 510

TABLE 8 | Percentiles resulting from different VA models for the five example schools.

School 1 School 2 School 3 School 4 School 5

Math Language Math Language Math Language Math Language Math Language

Linear regression 88 55 21 77 89 86 1 2 54 39

Multilevel model 88 53 14 82 91 88 0 1 53 39

Polynomial regression 88 57 20 75 90 85 1 2 57 43

Random forest 87 59 19 72 89 83 2 2 55 42

Neural network 77 26 39 75 85 84 5 5 55 45

Linear boosting 91 57 16 76 89 85 7 3 55 47

Linear SVM 88 57 20 74 89 87 1 2 53 38

Polynomial SVM 88 61 22 74 90 88 1 2 55 39

Radial SVM 88 56 22 74 90 86 1 2 57 44

SVM, support vector machines.

reason to investigate the use of machine learning methods
for the estimation of VA scores is because they can take
complex interactions between students’ intake characteristics
as well as complex functional forms how these characteristics
are related to outcome variables into account. This is different
to the classic approach of how VA scores are computed
where typically only a linear function is specified that relates
the pretest measure (and perhaps further covariates) to the
outcome measure. Our goal in the present paper was to
contribute to the discussion on how best to compute VA
scores while at the same time evaluating the potential of
modern machine learning methods in this discipline. More
specifically, the present study aimed to address two main research
questions:

(1) How is the predictive power of school VA models affected
by different types of classic and more modern models?

(2) How sensitive is schools’ VA ranking to the selection of
model types for the VA model?

In the following, we discuss the implications from the
results of the math and language school VA models together
because the focus of the present paper is on the model choice
rather than on the domain of the dependent variable. The
findings are consistent across both domains, which suggests
that they are robust and that the results from of the math
and language school VA models can be grouped together
in the discussion.

How Is the Predictive Power of School
VA Models Affected by Different
Types of Classic and More Modern
Models?
The predictive power of school VA models was very similar
for most model types. The only exceptions were the values
from the multilevel model and from the neural network, which
were significantly different from the other model types. More
concretely, the multilevel model performed better than all the
other models and the neural network worse. These findings were
consistent across dependent variables (i.e., math achievement and
language achievement).

The fact that most of the machine learning models were
not significantly different from the linear, and the multilevel
model outperforming, might seem surprising on the first
sight. However, this is likely due to a few reasons. One
is a simple model complexity tradeoff, and that out-of-
sample performance penalizes overfitting the training data.
The performance of these data driven approaches is always
subject to basic statistical issues of model complexity and bias-
variance tradeoffs (e.g., Hastie et al., 2009). Models with low
complexity (e.g., low number of parameters) can perform better
for out of sample (or “test”) datasets, as complex models
are prone to overfit (i.e., adjust the model to noise). While
educational domains are likely highly structured, it is not
a priori obvious if atheoretical non-linear or complex models
will be able to capture this structure. Without formal theory

Frontiers in Psychology | www.frontiersin.org 12 August 2020 | Volume 11 | Article 2190

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-02190 August 21, 2020 Time: 11:39 # 13

Levy et al. VA Scores: Contrasting Different Approaches

that makes strong predictions in this domain, we must rely on
statistical comparisons to select the machine learning models
for estimating VA scores. Either the non-linear structure is
not appropriate for the data (hence no benefit beyond a
linear equation) or the noise in data is high enough to prefer
the simpler models.

Additionally, the multilevel model’s performance could be
explained by the fact it took into account the nested structure
of the data, which the other models did not. This indicates that
fitting VA models only across schools is not enough, as there
seems to be important information within schools that can add
to explaining variance. Of course, it could be argued that the
multilevel models received more information than the other
models, as schoolID was added to the equation. However, the
standard logic of VA estimation means such information cannot
be appropriately included, unless one can estimate school-level
error independent of non-school factors (which the multilevel
model allows). They are the only one of the model types chosen
for the present analysis that is able to take into account the
nested structure of the data appropriately. Just adding school
as a covariate to the other models would thus not contribute
to a solution, as this would result in breaking the logic in
estimation of VA scores, as they are calculated for schools without
school information.

As opposed to the findings from Schiltz et al. (2018), the
predictive power of the linear regression was not significantly
different from the random forest. This could be due to differences
in the datasets: Schiltz et al. (2018) used Italian population data,
while we used Luxembourgish population data. Additionally,
Schiltz et al. (2018) used secondary school students from Italian
population data, while we used primary school students from
Luxembourgish population data. These differences suggest that
model performance can depend on the dataset used, and that
caution should be given in generalizing beyond one dataset.
Additionally, different covariates were included, such as our
inclusion of language(s) spoken at home, a significant variable
for the Luxembourgish population (e.g., Ugen et al., 2013;
Martini and Ugen, 2018). Given our previous results (Levy
et al., 2020), covariate choice is highly important in model
performance, and therefore a critical concern in comparing
different datasets.

However, the present results of the superior performance of
multilevel models offer a suggestion on default model choice. The
exploration of school VA scores on primary school aged children
is especially relevant in heterogeneous populations such as
Luxembourg, as socioeconomic disparities appear already within
the two first grades of primary school (Hoffmann et al., 2018).
For this specific context, multilevel models outperform classical
linear and polynomial regressions, as well as different machine
learning models. While in many domains linear regression is
widely accepted as the default model, changing this default to
multilevel modeling works well for hierarchically structured data
(as discussed by McElreath, 2017). This seems to be the case
for school VA models, as well. While this is sensible since the
data clearly have a hierarchical structure (e.g., students nested
within schools); the present results statistically demonstrate the
multilevel model’s performance.

How Sensitive Is Schools’ VA Ranking to
the Selection of Model Types for the VA
Model?
School VA scores resulting from the different model types
correlated highly with each other (ranging from 0.88 to 1.00 for
school VA models in math and from 0.89 to 1.00 for school
VA models in language). At first glance, this might suggest
that the resulting school VA scores are similar to each other
across schools, which could even lead to the—premature—
conclusion that the least complex model, in terms of parsimony
and transparency (i.e., the linear regression because of its intuitive
interpretability, see, e.g., Molnar, 2020) should be chosen (see
e.g., Cohen, 1990; Wilkinson and Task Force on Statistical
Inference, 1999). However, high correlations between different
school VA scores will not necessarily prevent disagreements of
classifications from individual schools (e.g., Timmermans et al.,
2011; Ehlert et al., 2014; Levy et al., 2020). This is why, in a
second step, the school VA scores were transferred to percentiles
and then benchmarks were used to classify schools (i.e., “needs
improvement,” “moderately effective,” and “highly effective”).

We compared the resulting benchmarks from all models
to those obtained by the multilevel model by calculating the
percentage of disagreement. The percentage of disagreement was
mostly around 10%. The only exceptions were neural network for
school VA scores in math and language and linear boosting for
school VA scores in language. However, these two model types
were also the ones with the lowest predictive power and it is
thus not surprising that their resulting benchmark classifications
deviate the most.

As for all the other models, the percentage of disagreement
seems low. However, 10% of disagreement means that for most
models, at least 15 out of these 153 schools would be classified
differently if another model than multilevel models is used
(assuming multilevel models provide the reference classification).
Given that these benchmark classifications can have high-stakes
consequences, the present results underline the relevance of
model choice, as individual schools’ VA rankings are sensitive
to the selection of model types. To further illustrate the real-life
implications the model selection can have on individual schools,
we will discuss the example of five schools.

Real-Life Implications
Despite very high correlations between school VA scores across
models, we can still see differences in benchmark classifications
for some of our example schools depending on the model used.
This raises the question “how high should a correlation be for it
not to matter?” This question cannot be answered in a general
way, as it depends on the very practical and political issue of
how these VA scores are used in practice. Rather, it should be
kept in mind by any researcher, practitioner, or politician when
applying or interpreting results from school VA models. Most
importantly, it should be kept in mind, especially when taking
high-stakes or accountability decisions based on VA models, that
any single value used to evaluate schools’ effectiveness represents
only one possible truth; a single point estimate. One alternative
would be to include confidence intervals on VA score rankings
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and classifications, as well as a combination of interdisciplinary
methods as was done in the present study. This would allow
a range of possible VA scores for every school VA scores,
incorporating uncertainty underlying the estimate. However,
ethical implications of the results from the present study and of
the use of machine learning methods for consequential decisions
in a discipline they were not specifically designed for (i.e.,
education) should be discussed.

Ethical Implications
The idea of using machine learning to make better and more
objective predictions than with conventional statistical methods
sounds promising for the application on school VA models, and
ideas on how to use machine learning methods for education
have been around for decades (Romero and Ventura, 2007,
2010, 2020). However, even though machine learning techniques
have driven progress in numerous other disciplines, such as
automated face identification (Taigman et al., 2014) or beating
human players at the game Go (Silver et al., 2017), their potential
downsides and limits need to be discussed, too (see, e.g., Synced,
2018). For example, one study on the diagnostic analysis of
medical images reported that out of 516 studies, only 6% tested
their algorithms on datasets in different hospitals (Kim et al.,
2019). This can result in false associations, such as the association
between images from portable x-ray machines and illness (as
described by Couzin-Frankel, 2019). This happened because
these portable x-ray machines were only used when the patients
were already too ill to get out of their bed and as images from
these x-ray machines look different from the ones when a patient
is not lying down and was thus a circular conclusion. This shows
how important data collection processes are, as biased data will
lead to biased results, regardless of the applied model.

Image recognition has the advantage that it is still comparably
easy for humans to objectively judge whether the classification
done by a certain algorithm is true or not. However, this becomes
more challenging for concepts such as school VA scores, where
the entire point is that we do not know schools’ effectiveness,
which is why we are estimating VA models in the first place, in
order to approximate a measure of schools’ effectiveness. Model
performance is always limited by the model’s assumptions and the
data used to train it (e.g., Hastie et al., 2009; Alpaydin and Bach,
2014). This highlights the importance of transparency and clear
communication in how these models are estimated, selected, and
used, as is also underlined by recent lawsuits (Paige, 2020; Paige
and Amrein-Beardsley, 2020).

Implications for Educational Practice
As discussed, a core concern with decisions based on estimates
of VA scores is how to appropriately communicate limitations
to stakeholders. For example, even if there were no differences
across schools in “real” VA scores, a ranking of schools can still
be constructed (based purely on randomness). These concerns,
along with others presented above, leads to the suggestion that
models used for the estimation of school VA scores should never
be used alone for high-stakes decisions. This has been elaborated
on a more general level in Barocas et al. (2019), where the authors
stress the importance of the complementary use of these models

together with observational, qualitative, and/or ethnographic
studies. This goes in line with researchers recommending a
combination of VA scores and observations for high-stakes
decisions (e.g., Bacher-Hicks et al., 2019) or of using school VA
scores only for informative purposes rather than accountability
(e.g., Leckie and Goldstein, 2019). Additionally, even though
multilevel models provided the best predictive power within the
present dataset, this finding may not generalize to other contexts.
We thus recommend that practitioners do not just implement
the model suggested by the field, but instead follow a process
for model selection with different model types which combine
the expertise from different disciplines, as it has been done in
the present study. Future work should develop standardized
processes and benchmarks, such as following those from Hothorn
et al. (2005) and Eugster and Leisch (2011). Optimally, a
transparent process for model selection with different model
types, combining expertise from multiple disciplines, should be
implemented for the estimation of VA scores.

Limitations and Future Work
Treatment of missing data is a highly discussed subject in many
areas, also in VA research (e.g., Dearden et al., 2011). We
decided to analyze only complete cases, as the model comparisons
would otherwise already depend on assumptions made at the
imputation process and could lead to differences in VA scores.
For future research, it would be interesting to include those with
missing cases, possibly comparing different imputation methods
and/or by dummy coding whether an entry is missing or not.
However, this should be done after the principle differences
between different model types have been investigated, hence the
importance of the present study.

School VA scores were computed differently in multilevel
models as compared to the other model types (i.e., estimated
based on the random effects at school level). On the one hand,
this might make the comparison between the resulting VA scores
unfair in favor of multilevel models. On the other hand, the
amount of explained variance was estimated in the same way
for all model types. Additionally, this estimation of VA scores by
the random effects at school level is specifically how school VA
scores are estimated in most cases, thus representing a realistic
representation of practice (Ferrão and Goldstein, 2009; Levy
et al., 2019). Furthermore, in most other studies comparing
classical and machine learning approaches, machine learning
approaches have an advantage due to less strict assumptions.
More specifically, it is not possible to get a comparison that is
fair in every aspect. However, we tried to keep as many aspects
constant across model as possible.

Furthermore, the data was obtained with pen and paper rather
than using a computer. The latter would have allowed to compute
response time and avoid transcription errors. However, particular
steps were taken to maximize objectivity and consistency, for
example by double coding a random set of answers (Fischbach
et al., 2014). However, other measures such as discriminant
of convergent validity do not exist, yet. Future studies should
thus investigate these important quality criteria, for example
by matching the achievement test results with school grades.
Given that the present study is a secondary analysis and relies
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on archive data, only limited information on the psychometric
quality of achievement test scores was available and presented
here (see Appelbaum et al., 2018). Of note, the domain-specific
achievement tests that we used in the present study were
developed to support their use for real-life and political decisions
in educational settings in Luxembourg. The achievement tests
also demonstrated score reliability that is typically considered to
suffice research purposes (see Schmitt, 1996). Nevertheless, future
work should consider whether the underlying reliability of the
measures has an impact on model selection.

Additionally, as the present data set was already prepared (and
thus simplified) by classical psychometric methods (i.e., IRT and
WLE), it would be interesting for future works to compare the
different models when using the raw data instead, as it could be
that the machine learning models can make use of the higher level
of complexity in the data.

The Luxembourgish school system consists of learning cycles,
which usually take 2 years but can be extended to 3 years. Thus,
the number of students who took part in grade 1 in 2014 but not
in grade 3 in 2016 was quite high. This can introduce biases into
our dataset, since the excluded students had lower achievement,
lower socioeconomic status values, and a higher percentage of
students who did not speak the first language of instruction at
home than those who met the inclusion criteria. However, this
problem exists in most educational datasets, as students who
switched schools or repeated a grade are generally excluded from
VA models in prior research; given the VA estimates are typically
used for accountability purposes. This means that our data and
results largely reflect the reality of how VA scores are typically
estimated. Additionally, biases in the dataset will impact any
model trained on that dataset similarly.

As previously discussed, the dataset is important in
generalizing claims about model performance. Luxembourg
is a particularly diverse and multilingual educational context
compared to other school systems. Additionally, most
applications of VA models estimate performance based on
a 1-year time difference, while for us the difference between
time points was 2 years (representing one learning cycle in the
Luxembourg school system). Future research should replicate the
present study to more homogeneous settings, and longitudinal
data sets with 1 year, to determine to what degree our results are
specific to the particular setting in Luxembourg.

The present study only used data from a single student cohort
to obtain school VA score estimates. However, previous research
suggests there is a naturally high variability in VA scores across
cohorts (e.g., Sass, 2008; Newton et al., 2010; Minaya and Agasisti,
2019). Future research could thus extend the present study by
including school VA scores obtained for several student cohorts
to investigate whether there are schools with stable VA scores
across cohorts/time within (or across) models and the extent to
which the stability across cohorts is related to model selection.

While future work might be in creation of theory-driven
models rather than a more explorative use of machine learning
approaches, we were most interested in comparing standard
approaches (both from machine learning and VA models). Our
approach thus provides a relevant first step in extending existing
research on the estimation of school VA models by investigating

all those different approaches that are typically used to estimate
school VA scores in particular or to deal with big amounts of
data in general. As the multilevel model outperformed any of
the standard machine learning approaches used, future research
might expand the present study by considering machine learning
models with a hierarchical structure that respect the logic
underlying VA estimate.

CONCLUSION

The present study investigated different statistical models for
the estimation of school VA scores, finding that multilevel
models outperformed classical linear and polynomial regressions,
as well as a selective sample of different machine learning
models. Even though the estimated VA scores from different
model types correlated highly across schools, the percentage of
disagreement as compared to benchmark classifications based
on the multilevel model was substantial. Additionally, real-
life implications for individual schools may be consequential
depending on the model type used. Based on the present dataset,
multilevel models would be recommended for the estimation of
school VA scores because these models provide the most accurate
predictions of student’s achievement. Also, because we observe
that VA scores vary depending on specific model choices, we
suggest that school VA scores should not be used as the only
measure for accountability or high-stakes decisions and that
they always be presented with confidence intervals. Optimally,
a transparent process for model selection with different model
types, combining expertise from multiple disciplines, should be
implemented for the estimation of VA scores.
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