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Prior research has used an Interactive Landslide Simulator (ILS) tool to investigate
human decision making against landslide risks. It has been found that repeated
feedback in the ILS tool about damages due to landslides causes an improvement
in human decisions against landslide risks. However, little is known on how theories of
learning from feedback (e.g., reinforcement learning) would account for human decisions
in the ILS tool. The primary goal of this paper is to account for human decisions
in the ILS tool via computational models based upon reinforcement learning and to
explore the model mechanisms involved when people make decisions in the ILS tool.
Four different reinforcement-learning models were developed and evaluated in their
ability to capture human decisions in an experiment involving two conditions in the
ILS tool. The parameters of an Expectancy-Valence (EV) model, two Prospect-Valence-
Learning models (PVL and PVL-2), a combination EV-PU model, and a random model
were calibrated to human decisions in the ILS tool across the two conditions. Later,
different models with their calibrated parameters were generalized to data collected in
an experiment involving a new condition in ILS. When generalized to this new condition,
the PVL-2 model’s parameters of both damage-feedback conditions outperformed all
other RL models (including the random model). We highlight the implications of our
results for decision making against landslide risks.

Keywords: decision-making, damage-feedback, interactive landslide simulator, reinforcement learning,
expectancy-valence model, prospect-valence-learning model

INTRODUCTION

Worldwide, landslides cause huge losses in terms of fatalities and injuries and infrastructure damage
(Margottini et al., 2011). In fact, landslides and associated debris flows are a major concern for
disaster-prevention groups in regions with steep terrains, such as in the Himalayan Mountains
(Chaturvedi et al., 2014). Due to the destruction caused by landslides to life and infrastructure,
it is essential for people to understand the causes and consequences of landslide disasters as this
understanding would likely help people make informed decisions against these disasters. However,
prior research suggests that people residing in landslide-prone areas show misconceptions about
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landslide risks (Oven, 2009; Wanasolo, 2012; Chaturvedi and
Dutt, 2015). For example, Chaturvedi and Dutt (2015) evaluated
people’s mental models in Mandi, India, a township in the
Himalayan Mountains, and one that is frequented by landslides.
It was found that residents of Mandi town had a poor
understanding of hazard zonation maps of their region. This
result is alarming because hazard zonation maps are a common
medium for communicating the susceptibility of a region to
landslides (Chaturvedi and Dutt, 2015).

Prior research across a number of applied domains shows
that interactive simulation tools have been effective in providing
the experience of adverse events and also in influencing the
understanding and decision making of people living in affected
areas (Gonzalez et al., 2005; Knutti et al., 2005; Wagner,
2007; Dutt and Gonzalez, 2011, 2012a; Gonzalez and Dutt,
2011; Sterman et al., 2013; Chaturvedi et al., 2017, 2018).
For example, Gonzalez and Dutt (2011) proposed a generic
dynamic control task, which was used for investigating people’s
decisions in environmental problems. Furthermore, Dutt and
Gonzalez (2012a) used this generic control task (called the
Dynamic Climate Change Simulator; DCCS) for investigating
people’s decisions on climate problems. The DCCS tool provided
feedback to people about their decisions and enabled them to
reduce their misconceptions about climate change. Similarly,
Sterman et al. (2013) have developed a climate change simulation,
Climate Rapid Overview and Decision Support (C-ROADS),
which can help policymakers and researchers to explore different
consequences of carbon emissions policies.

In the area of landslide disasters, Chaturvedi et al. (2017, 2018)
have proposed a simulation tool called the Interactive Landslide
Simulator (ILS). The ILS tool enables people to make investments
against simulated landslides. The probability of occurrence of
landslides in ILS is both a function of one’s investment against
these disasters as well as other environmental factors (e.g., rain
and susceptibility of an area to landslides). Chaturvedi et al.
(2017, 2018) used the ILS tool in a laboratory experiment to
evaluate how the variations in probability of landslide damages
in the ILS influenced people’s understanding of these disasters. It
was found that the high probability of damages led to significantly
higher investments and understanding compared to the low
probability of damages. Chaturvedi et al. (2017, 2018) explained
their results based upon the positive and negative experiences
gained by people in the ILS tool.

Although the conclusions drawn by Chaturvedi et al.
(2017, 2018) are meaningful, these authors did not evaluate
their participants’ experiential decisions in ILS by developing
models based upon theories of learning from feedback (e.g.,
reinforcement learning). Such computational models may enable
researchers to evaluate the role that certain cognitive mechanisms
play in influencing human decisions (Busemeyer and Wang,
2000; Lewandowsky and Farrell, 2011).

In this paper, using the ILS tool, we evaluate human
decision making in ILS via cognitive models based upon the
theory of reinforcement learning (Sutton and Barto, 1998).
Reinforcement learning (referred to as “RL” hereafter) considers
people’s decisions to be a function of the positive and negative
experiences gained by them in the decision environment

(Sutton and Barto, 1998). Thus, RL models seem to be well suited
to the ILS tool as people learn from repeated feedback about
landslides in this tool. Specifically, we develop computational
models relying on RL that attempt to mimic people’s decisions
in the ILS tool and, in turn, help us understand the model
mechanisms involved in people’s decision making against
landslide risks. These model mechanisms may enable researchers
to develop preliminary insights into the cognitive processes
involved in people’s decision making against landslide risks.

Several RL models have been proposed in the literature to
account for human decisions in a few decision environments
(Busemeyer and Stout, 2002; Yechiam et al., 2005; Kudryavtsev
and Pavlodsky, 2012; Steingroever et al., 2013; Lejarraga
and Hertwig, 2016). For example, Steingroever et al. (2013)
compared Expectancy Valence (EV), Prospect Valence (PVL),
and Expectancy Valence Prospect Utility (EV-PU) models to
explain human performance in the Iowa Gambling Task (IGT),
where people repeatedly chose between two advantageous and
two disadvantageous decks (unknown to people) to maximize
payoffs. Kudryavtsev and Pavlodsky (2012) tested three variations
of two models, Prospect theory (PT) (Kahneman and Tversky,
1979) and EV (Busemeyer and Stout, 2002), by calibrating model
parameters to each participant’s choice. Yechiam et al. (2005)
have used the EV model in their study to model brain-damaged
subjects, drug-abusers, a special clinical sample (Asperger), and
an older-aged sample on the IGT. Furthermore, Lejarraga and
Hertwig (2016) have used several RL models to understand the
impact of losses on exploratory search in a situation in which
exploration was costly. In prior research, mostly RL models have
been applied to IGT-like tasks, which are canonical in their make-
up. Also, these tasks have involved discrete choice decisions
rather than continuous judgments. Overall, the application of RL
models to more real-world tasks involving continuous judgments
(e.g., monetary investments against landslide disasters) has yet
to be fully explored. In this research, we address this gap by
evaluating how different RL models account for people’s decision
making in the ILS tool, where people make investment decisions
against landslides.

The primary objective of this research is to investigate
whether mathematical models based upon RL theory and
their mechanisms could provide preliminary insights into the
cognitive processes that drive participants’ decision making
against simulated landslide risks in the ILS tool. For our
investigation, we evaluate four RL models namely, the EV model
(Busemeyer and Stout, 2002), the PVL model (Ahn et al.,
2008), the EV-PU model (Steingroever et al., 2013), and the
PVL-2 model (Dai et al., 2015). All of these models work by
maximizing the utilities produced by choice on each round.
Different from prior research, we develop these models for
continuous investment decisions in the ILS tool and evaluate
these models’ performance against human data collected with
the tool. This paper’s primary objective is to evaluate the ability
of EV, EV-PU, PVL, and PVL-2 models and their parameters
to account for continuous human decisions in the ILS tool.
Furthermore, we interpret the value of calibrated parameters in
the best performing RL models to understand human decisions
against simulated landsides.
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In what follows, first, we provide a brief description of different
RL models. Next, we discuss the ILS tool and further detail an
experiment in which human participants performed in this tool.
Then, we provide a brief explanation of different RL models
that we used to evaluate human decision making in the ILS
tool. Finally, we fit and generalize different RL models to human
decisions in the ILS tool and discuss the role of different RL
mechanisms for modeling human decisions in applied domains.

Reinforcement Learning (RL) Models
The parameters of a cognitive model may provide some insights
into the cognitive processes involved when humans make
decisions in a task (Daw et al., 2006). For example, Daw
et al. (2006) developed different RL models and correlated
the mechanisms of these models with findings from functional
magnetic resonance imaging for human exploration in a
choice task. The prediction error in RL models was correlated
significantly with activity in both the ventral and dorsal
striatum (Daw et al., 2006). In addition, it has been revealed
that the exploration and exploitation processes in RL models
are correlated with activity in the dopaminergic, striatal, and
medial prefrontal network in the brain (O’Doherty et al., 2004;
Bayer and Glimcher, 2005).

The first assumption in RL models is that after each choice
in a task, the agent evaluates the rewards and losses associated
with the recent choice by means of a utility function. The utility
function is then used to calculate the expectancies for the next
choice. The option with the highest expectancy value is the most
preferred choice. A popular RL model is the Expectancy-Valence
Learning model (EV; Busemeyer and Stout, 2002). A modified
version of the EV model called the Prospect-Valence Learning
(PVL) model (Ahn et al., 2008), accounts separately for losses and
gains according to a value function suggested by Prospect Theory
(Kahneman and Tversky, 1979; Tversky and Kahneman, 1992).
Literature also indicates the use of RL models that combine the
EV and PVL models into an Expectancy-Valence with Prospect
Utility (EV-PU) model (Ahn et al., 2008). In addition, an
alternative version of the PVL model (the PVL-2 model) has been
proposed in the literature (Dai et al., 2015). The PVL-2 model is
like the PVL model; however, it uses a different utility function.
The details of different RL models are discussed next.

Expectancy-Valence (EV) Model
The EV model was developed by Busemeyer and Stout (2002),
and it explains the choice behavior of participants in a task in
terms of three psychological processes. The first assumption of
the model is that the utility (Vk(t)) of an option k in round t is as
per the following equation:

Vk(t) = (1− w) ∗W(t)+ w ∗ L(t) (1)

where W(t) and L(t) are the rewards and losses, respectively,
on round t. The w (∈ [0, 1]) is the loss-aversion parameter
that considers the weight to losses relative to rewards. A value
of w greater than 0.5 indicates more weight to losses and loss-
averse behavior. A value of w less than 0.5 indicates more weight
to rewards and reward-seeking behavior. Next, using the utility

(Vk(t)), the participant forms an expectation, EVk, as per the
following equation:

EVk(t + 1) = (1− a) ∗ EVk(t)+ a ∗ Vk(t) (2)

where EVk(t) and Vk(t) are the expectation and utility of option
k on round t, EVk (0) = 0. The a (∈ [0, 1]) is the recency
parameter, and it determines the impact of recently experienced
utilities or outcomes. A value of a greater than 0.5 means that
the participants rely on recency, i.e., participants quickly adjust
their decisions in response to recent experiences. The EV model
assumes that participants use the utility of option k on round t,
i.e., Vk(t), to update only the expected utility of chosen option
k, i.e., EVk(t + 1). The expected utilities of all the other options
remain unchanged. Thus, when an option is not chosen in the
preceding round, then the option’s EV does not change. Thus, an
option’s EV only changes when it is chosen in the last round.

The option with the highest expectancy value is the most
preferred one. According to the model, the probability of
choosing an option Gk is determined by the strength (EVk(t)) of
that option relative to the sum of the strengths of all options as
per the following choice rule:

Pr [Gk (t)] =
e{θ(t)∗EVk(t)}∑
k
{
e{θ(t)∗EVk(t)}

} (3)

where Pr[Gk(t)] is defined as the probability that an option k will
be selected in round t by the model. The term θ(t), also known
as the sensitivity, controls the consistency of choices and depends
upon the consistency parameter. The θ(t) is defined as:

θ (t) =
(

t
10

)c
(4)

where c (∈ [−5, 5]) is the choice consistency parameter, which
determines the extent to which round-by-round choices match
the expected utilities of the options. A value of c between −5
and 0 indicates strong exploration behavior, whereas a value of
c between 0 and 5 indicates a strong exploitation behavior. The
optimal performance of human-like agents depends on a trade-
off between exploration and exploitation. To find the best option,
the agent may first explore the choices available in the task.
However, if the agent is left with a limited number of rounds,
it may be optimal to exploit the option that has produced a
maximum profit in the past (Wetzels et al., 2010). Thus, the c
parameter causes a shift from the exploration behavior to the
exploitation behavior over rounds.

Prospect Value Learning (PVL) Model
The PVL model assumes that humans process the net outcome
after a choice, i.e.,

x (t) = W (t)− |L (t)| (5)

where W(t) and L(t) are win and loss functions, respectively. The
PVL model builds on the EV model, and it uses the prospect-
utility function, which is a non-linear utility function from
Prospect theory proposed by Tversky and Kahneman (1992).
Unlike the EV model, the expectancies of unchosen options are
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also discounted in the PVL model. The PVL model has four
free parameters: shape parameter α, loss aversion parameter (λ),
recency parameter (A) , and consistency parameter (c). The
α parameter determines the shape of the utility function. The
λ parameter determines the attention weight toward losses or
rewards. The A parameter indicates the effect of recency of
outcomes. The c parameter determines the amount of exploration
vs. exploitation in decision making.

The PVL model has three components. First, the outcome
evaluation follows the Prospect utility function, which has
diminishing sensitivity to increases in magnitude and different
sensitivity to losses vs. gains (i.e., loss aversion). The utility
u (t) on round t for each net outcome x(t) is expressed as:

u (t) =

{
−λ|x (t)|α, ifx (t) < 0

x(t)α, ifx (t)≥ 0
(6)

where 0 ≤ α ≤ 1 governs the shape of the utility function, and
0 ≤ λ ≤ 5 determines the sensitivity to losses compared to gains.
A value of λ ≥ 1 indicates that the individual is more sensitive
to losses compared to gains. A value of λ < 1 indicates that the
individual is more sensitive to gains compared to losses.

Based on the outcome of the chosen option, the expectancies
of options are computed using a decay-reinforcement learning
rule (Erev and Roth, 1998). In the decay-reinforcement learning
rule, the expectancies of all options are discounted with each
round, and then the current outcome utility is added to the
expectancy of the chosen option,

EVk (t + 1)= A ∗ EVk (t)+ δk (t) ∗ uk(t) (7)

The recency parameter 0 ≤ A ≤ 1 determines how much the past
expectancy is discounted. Here, δk (t) is a dummy variable, which
is 1 if option k is chosen and 0 otherwise. The softmax choice rule
(Luce, 1959) is then used to compute the probability of choosing
an option j:

Pr [Gk (t)] =
e{θ(t)∗EVk(t)}∑
k
{
e{θ(t)∗EVk(t)}

} (8)

The θ(t) is assumed to be round-independent, and it is set to
3c − 1 (Ahn et al., 2008; Yechiam and Ert, 2007). The c parameter
(choice sensitivity) varies in the range [0, 5].

Expectancy-Valence Model With
Prospect Utility Function (EV-PU)
This model is a combination of the EV and PVL models. It uses
the utility function of the PVL model, but all other processes,
such as learning rule, choice rule, and sensitivity function, follow
the same equations as that of the EV model (Ahn et al., 2008).
This construction results in a model with four parameters: (1)
The shape parameter (α), (2) the loss-aversion parameter (λ),
(3) the recency parameter (A), and (4) the response-consistency
parameter (c).

Prospect Value Learning-2
The Prospect Value Learning-2 model was proposed by Dai
et al. (2015). They compared different combinations of utility

functions, learning rules, and choice rules, and the best
combination was coined as the PVL-2 model. Dai et al. (2015)
proposed a new utility function (PU-2) combining the existing
utility function and two learning rules of EV and PVL models,
respectively. The alternative prospect utility function challenges
the assumption of the prospect utility function of the PVL model.
It suggests that when selecting an action that leads to both
rewards and losses of the same magnitude, the overall feeling
of a participant may not be neutral. For example, the sadness
associated with the loss may not be completely offset by the gain.
The alternative prospect utility function overcomes this problem
by combining features of both the EV and PVL models and is
given as follows:

u (t) = win(t)α − λ∗|loss (t) |α (9)

where win(t) and loss(t) are the amounts of rewards and losses,
and α and λ parameters are the same as those in the PVL
model. The learning rule and the choice rule remain unchanged
from the PVL model in the PVL-2 model. In summary, the
PVL-2 model also has four parameters: shape parameter α, loss-
aversion parameter λ, recency parameter A, and consistency
parameter c. Their interpretations and ranges remain unchanged
from the PVL model.

Random Model
To compare the performance of RL models, a baseline
random model having no learning was created. In this model,
the expectancies associated with all choices were computed
independently and randomly in a range [0, 1]. The decision
choice corresponding to the highest expectancy was executed in
a round. This model assumes no parameters.

Dai et al. (2015) compared 18 models on a population of 26
opiate users and found two key results: first, the learning rule
of the EV model was always inferior to that of the PVL model;
and, second, the prospect utility function of PVL-2 performed
better than the utility functions of both EV and PVL models.
While these RL models have been helpful in understanding
neuropsychological aspects of clinical populations in IGT and
SGT, these tasks are simple, involve discrete choices, and are
mostly disconnected from real-world situations. Overall, there
is a need for evaluating RL models in real-world tasks, and this
evaluation will help us understand the potential of different RL
models in applied real-world domains.

The primary objective of this paper is to evaluate the ability
of EV, EV-PU, PVL, PVL-2, and random models, and their
parameters to account for human decisions in a complex
interactive landslide simulator tool. Furthermore, we generalize
the calibrated RL models to understand their ability to account
for human decisions against simulated landsides in a novel
dataset. Also, the calibrated RL models are compared to a baseline
random model with no learning.

The Interactive Landslide Simulator (ILS)
Tool
Recent research has proposed the use of an ILS tool to test how
people make decisions against landslide risks when people are
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provided with different amounts of damage feedback (Chaturvedi
et al., 2017, 2018). In the ILS tool, people are asked to make
monetary investment decisions (see Figure 1), where people’s
monetary contributions would be used for mitigating landslides
(e.g., by building a retaining wall, planning road construction, or
provisioning proper drainage).

The goal of the ILS tool is to maximize one’s total wealth, where
this wealth is influenced by one’s income, property wealth, and
losses experienced due to landslides. The ILS tool considers both
environmental factors (spatial geology and rainfall) and human
factors (people’s investments against landslides) for calculating
the probability of landslide occurrence. Once people make
monetary decisions in the ILS tool, the tool provides feedback on
whether a landslide occurred and whether there was a reduction
in income (due to injury or fatality) or a reduction in property
wealth (due to property damage). As shown in Figure 1, people
are also shown different variables on the graphical user interface
as well as plots of the total probability of landslides, income
not invested in landslides, and property wealth. As described by
Chaturvedi et al. (2017, 2018), the total probability of landslides
in the ILS tool is a function of landslide probabilities due to
human factors and physical factors. This total probability of
landslides can be represented as the following:

P (T) = (We ∗ P (I)+ (1−We) ∗ P (E)) (10)

where We is a free weight parameter in [0, 1]. The total
probability of landslides involves the calculation of two
probabilities, probability of landslide due to human investments
(P(I)) and the probability of landslide due to physical factors
(P(E)).

Probability of Landslide Due to Human
Investments
As suggested by Chaturvedi et al. (2017, 2018), the probability
P (I) is calculated using the probability model suggested
by Hasson et al. (2010). In this model, P (I) is directly
proportional to the amount of money invested by participants for
landslide mitigation. The probability of landslide due to human
investments is:

P (I) = 1−
M ∗

∑n
i=1 xi

n ∗ B
(11)

where B is the income available for mitigating landslides in a
round, n is the number of rounds (days, months, or years as set
in the simulation), xi is the investments made by a person for
mitigating landslides in the round i (xi ≤ B), and M (0 ≤ M ≤
1) is the return to mitigation parameter, which is a free parameter
that accounts for the lower bound probability of P(I), i.e., P (I)
= 1 – M when a person puts his entire budget B into landslide
mitigation (

∑n
i=1 xi = n ∗ B). People’s monetary investments (xi)

FIGURE 1 | The Investment Screen in ILS tool. (A) The text box where participants made investments against landslides. (B) The tool’s different parameters and their
values. (C) Line graphs showing the total probability of landslide, the total income not invested in landslides, and the property wealth over days. Horizontal axes in
these graphs represents number of days. The goal was to maximize the Total Wealth across a number of rounds of performance in the ILS tool. This figure is
adapted from Chaturvedi et al. (2017).
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against landslides are for promoting mitigation measures like
building retaining walls or planting long root plants. The ILS
model currently assumes that human investments may still not
suffice to reduce the P (I) to 0 (because 1−M > 0). That is
because human interventions against landslides may not be fool
proof. In contrast, if a participant does not invest in landslide
mitigation, then the P (I) would increase rapidly.

Probability of Landslide due to Physical
Factors
Some of the physical factors impacting landslides include rainfall,
soil types, and slope profiles (Chaturvedi et al., 2017, 2018). These
factors can be categorized into two parts:

1. Probability of landslide due to rainfall [P(R)]
2. Probability of landslide due to soil types and slope profiles

[spatial probability, P(S)]

The P(R) is determined based upon the daily rainfall profile
of the study area, and P(S) is determined by the susceptibility of
the study area to experience landslides due to soil types and slope
profiles (Chaturvedi et al., 2017, 2018).

In the ILS tool, if a uniformly distributed random number
[∼U(0, 1)] is less than or equal to P(T) (Eq. 10) in a certain
round, then a landslide occurs in that round. When a landslide
occurs, it may be benign or damaging. A landslide is damaging if
it causes injury, fatality, or property damage, where each of these
causes is independent of each other, and they can get triggered
independently by pre-defined point probabilities. If none of these
damages occurs when a landslide occurs in a round, then the
landslide is termed as benign.

Calibration Dataset and ILS Parameters
by Chaturvedi et al. (2017, 2018)
Chaturvedi et al. (2017, 2018) defined two between-subjects
damage-feedback conditions in the ILS tool: low damage
(N = 20) and high damage (N = 23). Participants were
randomly assigned to these two conditions, and all participants
in the study were from Science, Technology, Engineering, and
Mathematics (STEM) backgrounds. Ages ranged between 21
and 28 years (Mean = 22 years; Standard Deviation = 2.19
years). All participants received a base payment of INR 50
(∼USD 1) after completing their study. In addition, there was
a performance incentive-based upon a lucky draw. Based upon
total wealth remaining at the end of the study, top-10 performing
participants were put in a lucky draw, and one of the participants
was randomly selected and awarded a cash prize of INR 500.
Participants were told about this performance incentive before
they started their experiment. Each condition was 30 rounds long,
where, in each round, participants made monetary investment
decisions to mitigate landslides and observe the consequences of
their decisions (Chaturvedi et al., 2017, 2018).

Table 1 shows the values of different parameters in the two
conditions. As shown in Table 1, in the high damage-feedback
condition, the probabilities of property damage, fatality, and
injury on any round were set at 30, 9, and 90%, respectively. In
the low damage-feedback condition, the probabilities of property

TABLE 1 | Parameters across different conditions of Chaturvedi et al. (2017,
2018).

Parameters Low condition
(calibration
condition)

High condition
(calibration
condition)

Initial income 292 ECa 292 EC

Initial property wealth 20 million EC 20 million EC

We parameter 0.7 0.7

Probability of property damage 03% 30%

Probability of injury damage 10% 90%

Probability of fatal damage 01% 9%

A loss to property wealth due to
property damage

50% of available
property wealth

50% of available
property wealth

A loss to income due to injury 10% of available
income

10% of available
income

A loss to income due to fatality 20% of available
income

20% of available
income

aChaturvedi et al. (2017, 2018) used a fictitious currency called “EC.”

damage, fatality, and injury on any round were set at 3, 1, and
10%, respectively (i.e., about 1/10th of its values in the high
condition). The proportion of damage (in terms of daily income
and property wealth) that occurred in the event of fatality, injury,
or property damage was kept constant across 30 rounds. The
property wealth decreased to half of its value every time property
damage occurred in the event of a landslide. The daily income
was reduced by 10% of its latest value due to a landslide-induced
injury and 20% of its latest value due to a landslide-induced
fatality. The initial property wealth was fixed to 20 million EC,
which was the expected property wealth in the study area. To
avoid the effects of currency units on people’s decisions, we
converted Indian National Rupees (INR) to a fictitious currency
called “Electronic Currency (EC),” where 1 EC = 1 INR. The
initial per-round income was kept at 292 EC (taking into account
the GDP and per-capita income of the Himachal state where the
study area was located). The weight (We) parameter in Eq. 10 was
fixed at 0.7 across all conditions.

Data collected in the two conditions were analyzed in terms of
the average investment ratio. The investment ratio was defined
as the ratio of total investments made by participants up to a
round divided by the total investments that could have been
made up to the round. The investment ratio was averaged over all
participants for a round as well as averaged over all participants
and rounds. Given the effectiveness of feedback in simulation
tools (Gonzalez et al., 2005; Sterman, 2011; Dutt and Gonzalez,
2012a; Chaturvedi et al., 2017, 2018) expected participant
investments to be greater in the high condition compared to the
low condition. According to Chaturvedi et al. (2018), the average
investment ratio was significantly higher in the high condition
(0.67) compared to that in the low condition (0.38) [F (1, 41) =
17.16, p < 0.001, η2

= 0.29]. Furthermore, the investment
ratio in the high condition increased rapidly compared to
that in the low condition across rounds [F(6.25, 256.4) =
7.53, p < 0.001, η2

= 0.16]. Overall, the high damage-
feedback in ILS helped participants to increase their investments
for landslide mitigation (Chaturvedi et al., 2018).
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The data collected in the two conditions by Chaturvedi et al.
(2018) was used to calibrate different RL models in this paper. For
more details on experimental design, participant, procedure, and
behavioral results, please refer to Chaturvedi et al. (2018).

Generalization Dataset and ILS
Parameters
For this paper, a new study was performed involving the ILS
tool to test the generalizability of the calibrated RL models. In
the new study, participants could voluntarily participate in the
ILS tool in a “medium” damage-feedback condition, where the
ILS parameters were defined to be in between those in the low
and high damage-feedback conditions. Table 2 shows the ILS
parameters used in the medium condition in the new experiment.
As shown in Table 2, in the medium condition, the probabilities
of property damage, fatality, and injury in any round were set at
16.5, 5, and 50%, respectively (i.e., in between their values in the
high and low feedback-damage conditions). The other parameter
values were the same as those in the study by Chaturvedi et al.
(2017, 2018).

The data collected in the medium condition in Table 2 was
used to generalize different models in this paper.

Participants and Procedure
The study was approved by the Ethics Committee at the Indian
Institute of Technology (IIT) Mandi. Thirty participants were
recruited at IIT Mandi via an online advertisement. Informed
consent was obtained from each participant before the beginning
of the study, and participation was completely voluntary.
Participants were from STEM backgrounds, and their ages
ranged between 23 and 45 years (Mean = 28.67 years; Standard
Deviation = 5.95 years). There were 56.67% males, and the rest
were females. All participants received a base payment of INR
50 (∼USD 1). In addition, there was a performance incentive-
based upon a lucky draw. Top-10 performing participants based
upon total wealth remaining at the end of the study were put in
a lucky draw, and one of the participants was randomly selected
and awarded a cash prize of INR 500. Participants were told about
this performance incentive before they started their experiment.
The medium condition was 30 rounds long, where, in each round,

TABLE 2 | Parameters across the medium condition in the interactive landslide
simulator (ILS) tool.

Parameters Medium condition
(generalization condition)

Initial income 292 EC

Initial property wealth 20 million EC

Probability weight (We) 0.7

Probability of property damage 16.5%

Probability of injury damage 50%

Probability of fatal damage 5%

A loss to property wealth due to
property loss

50% of available property wealth

A loss to income due to injury loss 10% of available daily income

A loss to income due to a fatal loss 20% of available daily income

participants made monetary investment decisions to mitigate
landslides and observe the consequences of their decisions. At
the start of the experiment, participants read instructions, and
once ready, started their study. Upon completing the study,
participants were thanked and paid for their participation.

Distribution of Investment Ratios and
Parameter Calibration
In ILS, human and model participants were evaluated based upon
their investment ratios. To make the discrete RL models generate
continuous investment ratios, we made each model to choose
between 10 decision options, where each option was mapped to
a bin of 10% investment-ratio width. Thus, for each model, 10
decision options were defined at each round (k = 1, 2, 3, , 10)
to choose between and each decision option mapped to a 10%
investment ratio bin. So, if a model chose the first decision option
(k = 1), then the model suggested an investment ratio in the
range [0, 10%]. Similarly, if the model chose the second decision
option (k = 2), then the model suggested an investment ratio
in the range (10, 20%) and so on. Once the bin was chosen
based upon the decision option, a random number in the bin
range was chosen as the model’s investment ratio decision. For
example, if a model participant chose the first decision option
at a round t, then a random number in the range (0, 10%)
was selected as the investment ratio decision in that round.
Similarly, if a model participant chose the sixth decision option
in a round t, then a random number in the range (50, 60%)
was selected as the investment ratio decision in that round.
While considering the bin of 10% investment-ratio width, we
considered a number of other ways to choose between different
decision options. For example, one way may be to consider the
investment ratio as the maximizing probability value in a round
for a decision option. However, if one equated this maximizing
probability value as the investment ratio, then doing so may yield
unrealistically high values of the investment ratios across rounds.
These investment ratios would be unlike the investment ratios
exhibited by participants in the ILS tool. Overall, the 10% binning
method suggested above would allow investment ratios to vary
over a large range, and thus this method was adopted to calibrate
models to human data.

Reward Functions in RL Models
In each model, the W(t) (win) function and L(t) (loss) function
were defined in the following manner:

W (t) = incomet − investt (12)

L (t) = PDt + (incomet−1 − incomet) (13)

where incomet was the income obtained by the player in each
round (in the human experiment, each round earned an income
amount). The investt was the investment made by the model
in the round t. The PDt is the property damage due to a
landslide and (incomet−1 − incomet) is the decrease in income
from the last round to the current round due to an injury or
fatality in a landslide. The W(t) and L(t) defined in Eqs 12 and
13 were used in different RL models as the reward and loss
functions, respectively.
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Model Execution and Evaluation
All RL models were created in Excel R©, and these models
possessed different free parameters as discussed above. The
model parameters were calibrated using the same number of
simulated participants as the number of human participants
that participated in the experiment. The initial expectations
[EVk (0)] across all choices (investment bins) were assumed to
be equal to 50 units in each model. As the value of expectations
was equal ( =50), the first decision choice for a bin was made
randomly in each RL model. As the same value of 50 units was
assumed across all models for the initial expectations, these initial
expectations were not considered as free parameters in model
calibrations. Two separate calibrations were performed, one to
each of the two damage-feedback conditions, where the models
were evaluated on the sum of squared deviation (SSD1) and R2

(both computed over rounds). The SSD1 accounted for the error
between the model’s investment ratio and human’s investment
ratio over 30-rounds, and it was calculated as:

SSD1 =
1

30

30∑
t=1

(Mt −Ht)
2 (14)

where Mt and Ht refer to the average investment ratio from the
model and human data in round t, respectively (the average was
taken across all models and human participants for each round).
A smaller value of SSD1 was desirable as it meant a smaller error
between model and human investment ratios.

The square of the Pearson’s correlation coefficient ( R2)
indicated the model’s ability to account for the trend in human
data. The higher the value of R2 (closer to 1.0), the better was the
model’s ability to account for the trend in human data compared
to an average model. The R2 was defined over 30-rounds as:

R2
=

30
∑30

t=1 (Mt ∗Ht)−
∑30

t=1 Mt∗
∑30

t=1 Ht√√√√ [30 ∗
∑30

t=1 M
2
t−(

∑30
t=1 Mt)

2
]

∗[30 ∗
∑30

t=1 H
2
t−(

∑30
t=1 Ht)

2
]

(15)

Since SSD1 was to be minimized and R2 was to be maximized,
the sum of SSD1 and 1− R2 was minimized as the objective
function for parameter calibration across different models. The
genetic algorithm (Konak et al., 2006) was used for minimizing
the sum of SSD1 and 1− R2. The multi-objective genetic
algorithm varied the values of parameters for the simulated
model in the ILS task to minimize the objective function. The
parameters were adjusted over their defined range to ensure that
the optimization was able to capture the optimal parameter values
in their respective ranges with high confidence. The genetic
algorithm had a population size of 20, a crossover rate of 80%,
and a mutation rate of 1%. The algorithm stopped when any
of the following constraints were met: stall generations = 50,
function tolerance= 1× 10−8, and the average relative change in
the fitness function value over 50 stall generations was less than
function tolerance (1 × 10−8). These assumptions are similar
to other studies in literature where models have been fitted to
human data using the genetic algorithm (Gonzalez and Dutt,
2011; Sharma and Dutt, 2017).

As different RL models possessed different parameters,
the ordinary least squares (OLS) formulation of the Akaike
Information Criterion (AIC) was used to evaluate the
performance of different RL models (Dutt and Gonzalez,
2011; Derryberry, 2014; Banks and Joyner, 2017). The AIC
incorporated both a model’s ability to predict human data
(error) and the model’s complexity (number of free parameters).
Different AICs were defined by the following formulae:

AIC1 = 30 ∗ ln (SSD1)+ 2 ∗ p (16)

SSD2 = (Xmodel − Xhuman)
2 (17)

AIC2 = ln (SSD2)+ 2 ∗ p (18)

where AIC1 was computed using the investment ratio that was
averaged over human or model participants in each round. AIC2
was computed using the investment ratio that was averaged over
both human or model participants and rounds. The p is the
number of free parameters in a model. The Xmodel and Xhuman
refer to the average investment ratio of the model and human
participants, respectively, where the average was taken over all
participants and rounds. The smaller or more negative the value
of AICs, the better the respective model.

Expectations From Models
As discussed above, prior research has relied upon RL theories
for understanding and accounting for the decisions made by
people in dynamic tasks (Arora and Dutt, 2013; Dutt and
Kaur, 2013; Dutt et al., 2013). According to these theories,
human players would tend to rely upon recency of outcomes,
and players would choose those actions that maximize their
utility (Steingroever et al., 2013; Gonzalez et al., 2015). For
example, in ILS, participants may experience deaths, injuries,
and property damages due to landslides across both the
high and low conditions. When the damage is low in ILS,
participants, relying upon the recency of experienced outcomes,
may choose to conservatively invest their income in landslide
mitigation. That is because by investing smaller incomes, they
may maximize their total earnings. However, when the damage
is high in ILS, participants, again relying upon the recency of
experienced outcomes, may likely increase their investments to
fight landslides. Overall, participants are likely to be influenced
by the recency of experienced outcomes.

We expected different RL models to perform better in
accounting for human participants’ decisions in ILS than the
baseline random model with no learning. Also, we expected the
PVL models to perform better compared to other RL models.
One likely reason for this expectation is due to the nature of the
prospect utility function in the PVL model, where this function
accounts for both losses and rewards non-linearly. Another likely
reason for this expectation is because the PVL models incorporate
two parameters (α, λ) that collectively describe sensitivity to
rewards and losses; whereas, the EV model computes outcome
utilities based upon a single parameter (w). Next, we test these
expectations by calibrating and generalizing all RL models to
human data in the ILS tool.
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Model Calibration Results
Table 3 shows the performance in terms of SSD1, R2, AIC1,
and AIC2 values across different RL and random models in the
calibration conditions in the ILS tool. As shown in Table 3, based
on the R2, the PVL model performed the best in the low and high
conditions. Based upon R2, the PVL model was followed by the
PVL-2 model (low damage-feedback) and EV-PU model (high
damage-feedback). The PVL model also possessed the third most
negative and the most negative AIC1 in low and high conditions,
respectively. Table 3 also shows that when performance was
compared between models and human data by averaging over
participants and rounds, the AIC2 values were the best (lowest)
for the following models: random and EV-PU models in low
condition and random and EV models in the high condition.

Figures 2A,B show the predicted average investment ratios
(averaged over participants and rounds) from different RL
models, random model, and human data in the low and
high conditions, respectively. Overall, a high-level aggregation
across participants and rounds seemed to make even the poor
performing models (e.g., random and EV models) look good.

Next, we analyzed the predictions from different RL models’
over 30 rounds in the two calibration conditions. To reduce the
degree of freedom across rounds, we converted the rounds into
blocks such that there were six blocks of five rounds each (i.e.,
the value of five rounds was averaged in each block). Figures 3, 4
show the comparison of human data with data from different
RL models across the six blocks in low and high conditions,
respectively. Based on R2 and AIC1 values, the PVL and PVL-2
models (low damage-feedback) and the PVL and EV-PU (high
damage-feedback) were the best performing models over blocks.

Model Generalization Results
The RL models with their calibrated parameters in the low and
high conditions were generalized to human data collected in
the medium condition. Table 4 shows the performance of RL
models with calibrated parameters of the high condition and
low condition when generalized to the medium condition. Based
upon the R2, AIC1, and AIC2 values, the PVL-2 model performed
the best in predicting the human investment ratios in the medium
condition across both its parameters from the low and high
conditions. Also, all RL models performed better compared to
the baseline random model in the generalization. Only the AIC1
value of the EV-PU model was worse compared to the random
model when the EV-PU model’s parameters were calibrated in

FIGURE 2 | The average investment ratio (averaged over participants and
rounds) in human data, reinforcement learning (RL) models, and the baseline
random model in low condition (A) and high condition (B). The error bars
show the 95% confidence interval around the point estimate.

low damage-feedback condition. Overall, these results are as per
our expectations.

Based on R2 and AIC1 values in Table 4, the PVL-2
performed the best among all models during generalization.
Figures 5, 6 show the predicted average investment ratios from
different RL models (calibrated in low and high conditions,
respectively), random model, and human data in the medium
condition across blocks.

Calibrated Parameters
Table 5 shows the calibrated values of parameters across the
EV, EV-PU, PVL, PVL-2, and random models in the low

TABLE 3 | Performance of expectancy-valence (EV), expectancy valence-prospect utility (EV-PU), prospect-valence learning (PVL), PVL-2, and random models in the
high and low conditions in the ILS tool.

Model Low High

SSD1 R2 AIC1 AIC2 SSD1 R2 AIC1 AIC2

EV 0.02 0.003 −113.52 1.77 0.05 0.11 −79.97 2.45

EV-PU 0.05 0.005 −80.73 0.87 0.06 0.68 −73.87 5.03

PVL 0.02 0.17 −110.64 2.03 0.02 0.81 −109.03 2.85

PVL-2 0.10 0.15 −60.18 5.48 0.05 0.58 −78.46 4.67

Random 0.01 0.021 −126.50 −4.33 0.06 0.02 −84.29 −3.53
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FIGURE 3 | Investment ratio from different RL models, random model, and
human data across 6 blocks of 5 rounds in the low condition. Error bars show
a 95% confidence interval around the point estimate.

FIGURE 4 | Investment ratio from different RL models, random model, and
human data across six blocks of five rounds in the high condition. Error bars
show a 95% confidence interval around the point estimate.

and high conditions of ILS, respectively. The best set of
parameters (corresponding to the PVL-2 model) have been
italicized.

As shown in Table 5, in the PVL-2 model, the α parameter
was closer to one in both damage-feedback conditions (more in
the high damage compared to low damage), and this parameter
indicated that the shape of the participant’s utility function
was curved with diminishing marginal utility and the utility
increased proportionally to the net outcome x(t) in the ILS
tool. Second, the value of λ parameter (i.e., sensitivity to losses
compared to rewards) was higher in the high damage-feedback
condition compared to the low damage-feedback condition, and
this meant that people gave more weight to losses in the high
damage-feedback condition compared to low damage-feedback
condition (in fact, losses were higher in the high damage-
feedback condition). Overall, participants acted loss-averse as
the median value of the λ parameter was 3.50 (average of 2.204
and 4.797), i.e., more than 1. Third, the PVL model showed a
strong influence of recency among participants’ decisions in the
high damage-feedback condition (the A parameter closer to 0)
compared to those in the low damage-feedback condition (the A
parameter closer to 1). This result is as per our expectation, where
the high damage-feedback condition was expected to create more
recency effects compared to the low damage-feedback condition.
Finally, the consistency parameter (c) value was higher in the
high damage-feedback condition compared to that in the low
damage-feedback condition, showing more exploitation in the
high damage-feedback condition compared to the low damage-
feedback condition. However, the c parameter’s value was closer
to 0 across both conditions, and thus mostly participants’
investment decisions were explorative in the ILS tool.

DISCUSSION

Due to landslide risks in hilly areas the world over, it is
important to evaluate people’s mitigation decisions against these
disasters. In the absence of participant interviews, computational
models that rely upon theories of cognition (e.g., reinforcement
learning or RL) may help predict people’s mitigation decisions
in situations involving landslide risks. The primary goal of this
research was to meet this objective and compare the ability of a
number of RL models to account for people’s mitigation decisions
against landslides in an interactive landslide simulator (ILS) task
involving continuous investment decisions. The parameters of
the best fitting PVL-2 model would help to infer the cognitive

TABLE 4 | A comparison of EV, EV-PU, PVL, PVL-2, and random models’ performance in the medium condition with calibrated parameters of low and high
conditions in ILS.

Model Parameters calibrated in low Parameters calibrated in high

SSD1 R2 AIC1 AIC2 SSD1 R2 AIC1 AIC2

EV 0.006 0.58 −153.50 −5.81 0.007 0.74 −146.56 −5.12

EV-PU 0.015 0.31 −125.49 −4.54 0.005 0.75 −154.82 −5.62

PVL 0.002 0.72 −179.25 −7.13 0.003 0.70 −169.43 −6.45

PVL-2 0.002 0.73 −184.89 −7.67 0.002 0.70 −181.87 −7.83

Random 0.010 0.001 −136.67 −5.50 0.010 0.001 −136.67 −5.51

The number of free parameters was taken to be 0 in the Akaide Information Criterion (AIC) values for all models as the free parameters were fixed to their calibrated values
in the generalization.
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FIGURE 5 | Investment ratio from different RL models calibrated in the low
condition, random model, and human data across six blocks of five rounds in
the medium condition. Error bars show a 95% confidence interval around the
point estimate.

FIGURE 6 | Investment ratio from different RL models calibrated in high
condition, random model, and human data across six blocks of five rounds in
the medium condition. Error bars show a 95% confidence interval around the
point estimate.

states of participants in the ILS tool. An experiment involving
the ILS tool was reported that investigated participants’ decision
making in two different damage-feedback conditions: the high
and the low damage-feedback (Chaturvedi et al., 2017, 2018).
The two conditions produced different learning curves: The high
damage-feedback condition showed much greater learning and
a different direction of learning compared to the low damage-
feedback condition. These empirical results provided the data sets
for calibrating RL models. Furthermore, a new experiment was
conducted with ILS in a medium damage-feedback condition for
generalization of calibrated RL models. In this paper, we built on
ILS’s experimental work and developed computational RL models
that could account for people’s decision making in conditions
involving different damage feedback in ILS.

First, our results showed the superiority of the PVL-2
model over other RL models and a random model about these

TABLE 5 | Calibrated model parameters of EV, EV-PU, PVL, PVL-2, and random
models in the high and low damage conditions in ILS.

Model Low damage High damage

EV a = 0.771, w = 0.079,
c = 0.282

a = 0.115, w = 0.728,
c = 0.819

EV-PU α = 0.931, λ = 1.000,
c = 1.000, A = 1.0

α = 0.880, λ = 0.129,
c = −0.836, A = 0.954

PVL α = 0.557, λ = 2.204,
c = 0.311, A = 0.748

α = 0.851, λ = 4.797,
c = 0.789, A = 0.099

PVL-2 α = 0.557, λ = 2.204,
c = 0.311, A = 0.748

α = 0.851, λ = 4.797,
c = 0.789, A = 0.099

Random No parameters No parameters

The best-fitting PVL-2 model parameters based upon the generalization have been
italicized.

models’ ability to explain the actual choice behavior in the
ILS tool accurately. In fact, the PVL-2 model also performed
well in its generalization to the medium damage-feedback
condition collected in the ILS tool. Overall, our results agree
with those of Ahn et al. (2008) and Dai et al. (2015), who
showed that the prospect utility function had better accuracy
and generalizability than the expectancy utility function when
accounting for participants’ choices in simple decision making
tasks (e.g., IGT).

Second, our results suggested that the loss-aversion (λ)
parameter is much higher in the high damage-feedback condition
compared to the low damage-feedback condition. This meant
that people tended to give more weight to losses compared to
rewards, especially when losses occurred a greater number of
times. The PVL-2 model’s parameters also showed a greater
reliance on recency of outcomes for participants in the high
damage-feedback condition compared to those in the low
damage-feedback condition. A likely reason for this observation
could be that the participants acted risk-averse and invested
more when recent damages in ILS were high compared to
low. In the high damage-feedback condition, losses occurred
frequently, and that is perhaps why people start paying attention
to these losses. The consistency parameter’s value was also larger
in the high damage-feedback condition compared to that in
the low damage-feedback condition. One likely reason for this
parameter value could be that people in the high damage-
feedback condition were more exploitative in their choices
compared to those in the low damage-feedback condition. In
contrast, in the low damage-feedback condition, the value of the
consistency parameter was low, and participants showed more
explorative behavior. Group differences on this parameter may
reflect a tendency to seek out and engage in risky experiences
in the low damage-feedback condition compared to those in the
high damage-feedback condition. Furthermore, we found that
participants’ utilities were influenced by net outcomes in the
high damage-feedback condition compared to the low damage-
feedback condition. One likely reason for this finding could be
that participants in the low damage-feedback condition suffered
fewer losses due to landslides compared to the participants in the
high damage-feedback condition. It could be that the perception
of smaller losses among participants in the low damage-feedback
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condition made the PVL-2 model disregard the net outcome
in the experiment.

Although we trained and tested RL-based mathematical
models on datasets collected in lab-based experiments, the
proposed RL models could help create computer agents
that perform like human participants in real-world landslide
scenarios. Here, these model agents could help predict the
decision making of human participants in some of the landslide
scenarios.

There are a number of things to explore as a part of future
research. First, we assumed a constant explore/exploit parameter
that did not change over rounds. In the future, it may be
worthwhile to vary this parameter to obtain more realistic results.
Furthermore, there are likely to be individual differences among
participants in the ILS tool. Thus, in the future, it would be
interesting to model individual human performance compared
to aggregate human performance. The analyses at the individual
level could result in different investment ratio trajectories than
the almost flat line obtained currently in the low condition. As the
RL models did not perform well in some of the landslide scenarios
in this paper, it may also be worthwhile to evaluate how models
built using other advanced cognitive theories (e.g., Instance-
based Learning; Dutt and Gonzalez, 2012b) would perform in
these scenarios. Also, it may be worthwhile to calibrate RL models
to data in the ILS tool involving the presence of social norms
and differing amounts, availability, format, and speed of feedback.
Some of these ideas form the immediate next steps that we plan
to undertake in our research program in the understanding of
human decision making against landslide risks.

CONCLUSION

The ILS tool incorporates cognitive and motivational processes
(responses to rewards and losses) associated with the anticipation
of outcomes following investment decisions over time. To
perform well in the ILS tool, participants need to learn on the
basis of rewards and losses experienced in the task. Consistent
with prior literature (O’Doherty et al., 2004; Bayer and Glimcher,
2005; Daw et al., 2006), computational cognitive models and
their mechanisms may allow us to get preliminary insights
about the cognitive processes contributing to ILS performance.
Our analyses revealed that the PVL-2 model accounted for
participants’ behavior in the ILS tool more accurately compared
to other RL models. This result may be due to the PVL-2
model’s use of a prospect utility function, which can account

for the subjective evaluation of rewards/losses, recency effects,
and decreasing sensitivity to larger vs. smaller rewards (Ahn
et al., 2008). Overall, based upon cognitive modeling, we found
that human decisions in the ILS tool to be driven by outcomes,
loss-aversion, reliance upon recent outcomes, and exploratory
behavior. Future investigations may focus on finding similarities
and differences with reported results across diverse populations.
Collectively, this knowledge may contribute to the development
of preventive approaches for landslide risk reduction that are
sensitive to individual differences due to specific processes
underlying decision making.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to
the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the Ethics Committee at the Indian Institute of
Technology Mandi. The patients/participants provided their
written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

PC developed the ILS tool and RL models under the guidance of
VD. PC and VD collected the data in the study and calibrated
the model parameters, analyzed the data, and prepared the
manuscript. Both authors contributed to the article and approved
the submitted version.

FUNDING

This research was partially supported by the following grants to
VD: IITM/NDMA/VD/184 and IITM/DRDO-DTRL/VD/179.

ACKNOWLEDGMENTS

We thank Akshit Arora, Thapar University, Patiala, India, for
providing preliminary support for data collection in this project.

REFERENCES
Ahn, W.-Y., Busemeyer, J. R., Wagenmakers, E.-J., and Stout, J. C. (2008).

Comparison ofdecision learning models using the generalization criterion
method. Cogn. Sci. 32, 1376–1402. doi: 10.1080/03640210802352992

Arora, A., and Dutt, V. (2013). “Cyber security: evaluating the effects of attack
strategy and base rate through instance-based learning,” in Proceedings of the
12th International Conference on Cognitive Modeling, Ottawa.

Banks, H. T., and Joyner, M. L. (2017). AIC under the framework of least
squares estimation. Appl. Math. Lett. 74, 33–45. doi: 10.1016/j.aml.2017.
05.005

Bayer, H. M., and Glimcher, P. W. (2005). Midbrain dopamine neurons encode a
quantitative rewardprediction error signal. Neuron 47, 129–141. doi: 10.1016/j.
neuron.2005.05.020

Busemeyer, J. R., and Stout, J. C. (2002). A contribution of cognitive decision
models to clinical assessment: decomposing performance on the Bechara
gambling task. Psychol. Assess. 14, 253–262. doi: 10.1037/1040-3590.14.3.253

Busemeyer, J. R., and Wang, Y. M. (2000). Model comparisons and model
selections based on generalization criterion methodology. J. Math. Psychol. 44,
171–189. doi: 10.1006/jmps.1999.1282

Chaturvedi, P., Arora, A., and Dutt, V. (2018). Learning in an interactive
simulation tool against landslide risks: the role of strength and availability

Frontiers in Psychology | www.frontiersin.org 12 February 2021 | Volume 11 | Article 499422

https://doi.org/10.1080/03640210802352992
https://doi.org/10.1016/j.aml.2017.05.005
https://doi.org/10.1016/j.aml.2017.05.005
https://doi.org/10.1016/j.neuron.2005.05.020
https://doi.org/10.1016/j.neuron.2005.05.020
https://doi.org/10.1037/1040-3590.14.3.253
https://doi.org/10.1006/jmps.1999.1282
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-499422 February 4, 2021 Time: 15:24 # 13

Chaturvedi and Dutt Understanding Decision-Making in Landslide Simulations

of experiential feedback. Nat. Hazards Earth Syst. Sci. 18, 1599–1616. doi:
10.5194/nhess-18-1599-2018

Chaturvedi, P., and Dutt, V. (2015). “Evaluating the public perceptions of
landslide risks in the Himalayan Mandi Town,” in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting, Vol. 59, Thousand
Oaks, CA: SAGE Publications, 1491–1495. doi: 10.1177/154193121559
1323

Chaturvedi, P., Dutt, V., Jaiswal, B., Tyagi, N., Sharma, S., Mishra, S. P., et al. (2014).
Remote sensing based regional landslide risk assessment. Int. J. Emerg. Trends
Electr. 10, 135–140.

Chaturvedi, P., Arora, A., and Dutt, V. (2017). “Interactive landslide simulator: a
tool for landslide risk assessment and communication,” in Advances in Applied
Digital Human Modeling and Simulation, ed. C. V. Duffy (Cham: Springer),
231–243. doi: 10.1007/978-3-319-41627-4_21

Dai, J., Kerestes, R., Upton, D. J., Busemeyer, J. R., and Stout, J. C. (2015). An
improved cognitive model of the Iowa and soochow gambling tasks with regard
to model fitting performance and tests of parameter consistency. Front. Psychol.
6:229. doi: 10.3389/fpsyg.2015.00229

Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., and Dolan, R. J. (2006).
Cortical substrates for exploratory decisions in humans. Nature 441, 876–879.
doi: 10.1038/nature04766

Derryberry, D. R. (2014). Basic Data Analysis for Time Series With R. Hoboken, NJ:
Wiley. doi: 10.1002/9781118593233

Dutt, V., Ahn, Y. S., and Gonzalez, C. (2013). Cyber situation awareness
modeling detection of cyber-attacks with instance-based learning theory. Hum.
Fact. J. Hum. Fact, Ergon. Soc. 55, 605–618. doi: 10.1177/00187208124
64045

Dutt, V., and Gonzalez, C. (2011). A Generic Dynamic Control Task for
Behavioral Research and Education. Avaliable at: http://repository.cmu.edu/sds/
118/ (accessed June 12, 2020).

Dutt, V., and Gonzalez, C. (2012a). Decisions from experience reduce
misconceptions about climate change. J. Environ. Psychol. 32, 19–29. doi: 10.
1016/j.jenvp.2011.10.003

Dutt, V., and Gonzalez, C. (2012b). The role of inertia in modeling decisions from
experience with instance-based learning. Front. Psychol. 3:177. doi: 10.3389/
fpsyg.2012.00177

Dutt, V., and Kaur, A. (2013). Cyber security: testing the effects of attack
strategy, similarity, and experience on cyber-attack detection. Int. J. Trust
Manag. Comput. Commun. 1, 261–273. doi: 10.1504/ijtmcc.2013.0564
28

Erev, I., and Roth, A. E. (1998). Predicting how people play games: Reinforcement
learning in experimental games with unique, mixed strategy equilibria. Am.
Econ. Rev. 88, 848–881.

Gonzalez, C., Ben-Asher, N., Martin, J. M., and Dutt, V. (2015). A cognitive model
of dynamic cooperation with varied interdependency information. Cogn. Sci.
39, 457–495. doi: 10.1111/cogs.12170

Gonzalez, C., and Dutt, V. (2011). Instance-based learning: integrating sampling
and repeated decisions from experience. Psychol. Rev. 118, 523–551. doi: 10.
1037/a0024558

Gonzalez, C., Vanyukov, P., and Martin, M. K. (2005). The use of microworlds
to study dynamic decision making. Comput. Hum. Behav. 21, 273–286. doi:
10.1016/j.chb.2004.02.014

Hasson, R., Löfgren, Å., and Visser, M. (2010). Climate change in a public goods
game: investment decision in mitigation versus adaptation. Ecol. Econ. 70,
331–338. doi: 10.1016/j.ecolecon.2010.09.004

Kahneman, D., and Tversky, A. (1979). Prospect theory: an analysis of decision
under risk. Econometrica 47, 263–291. doi: 10.2307/1914185

Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-objective optimization
using genetic algorithms: A tutorial. Reliab. Eng. Syst. Saf. 91, 992–1007. doi:
10.1016/j.ress.2005.11.018

Knutti, R., Joos, F., Müller, S. A., Plattner, G. K., and Stocker, T. F. (2005).
Probabilistic climate change projections for CO2 stabilization profiles. Geophys.
Res. Lett. 32:L20707.

Kudryavtsev, A., and Pavlodsky, J. (2012). Description-based and experience-based
decisions: individual analysis. Judgm. Decis. Mak. 7, 316–331.

Lejarraga, T., and Hertwig, R. (2016). How the threat of losses makes people
explore more than the promise of gains. Psychon. Bull. Rev. 24, 1–13. doi:
10.3758/s13423-016-1158-7

Lewandowsky, S., and Farrell, S. (2011). Computational Modelling in Cognition:
Principles and Practice. Thousand Oaks, CA: Sage, doi: 10.4135/9781483349428

Luce, R. D. (1959). Individual Choice Behaviour: A Theoretical Analysis. New York,
NY: Wiley.

Margottini, C., Canuti, P., and Sassa, K. (2011). “Landslide science and practice,” in
Proceedings of the Second World Landslide Forum, Rome, 2.

O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., and Dolan,
R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental
conditioning. Science 304, 452–454. doi: 10.1126/science.1094285

Oven, K. (2009). Landscape, Livelihoods and Risk: Community Vulnerability to
Landslides in Nepal. Doctoral dissertation, Durham University, Stockton-on-
Tees.

Sharma, N., and Dutt, V. (2017). Modeling decisions from experience: how models
with a set of parameters for aggregate choices explain individual choices. J. Dyn.
Decis. Mak. 3, 1–20.

Steingroever, H., Wetzels, R., and Wagenmakers, E. J. (2013). A comparison of
reinforcement learning models for the Iowa Gambling Task using parameter
space partitioning. J. Probl. Solving 5:2.

Sterman, J. D. (2011). Communicating climate change risks in a skeptical world.
Clim. Change, 108, 811.

Sterman, J. D., Fiddaman, T., Franck, T., Jones, A., McCauley, S., Rice, P., et al.
(2013). Management flight simulators to support climate negotiations. Environ.
Model. Softw. 44, 122–135. doi: 10.1016/j.envsoft.2012.06.004

Sutton, R. S., and Barto, A. G. (1998). Introduction to Reinforcement Learning, Vol.
2. Cambridge: MIT Press.

Tversky, A., and Kahneman, D. (1992). Advances in prospect theory: cumulative
representation of uncertainty. J. Risk Uncertainty 5, 297–323. doi: 10.1007/
bf00122574

Wagner, K. (2007). Mental models of flash floods and landslides. Risk Anal. 27,
671–682. doi: 10.1111/j.1539-6924.2007.00916.x

Wanasolo, I. (2012). Assessing and Mapping People’s Perceptions of Vulnerability to
Landslides in Bududa, Uganda. Trondheim: NYNU Open.

Wetzels, R., Vandekerckhove, J., Tuerlinckx, F., and Wagenmakers, E. J. (2010).
Bayesian parameter estimation in the expectancy valence model of the Iowa
gambling task. J. Math. Psychol. 54, 14–27. doi: 10.1016/j.jmp.2008.12.001

Yechiam, E., Busemeyer, J. R., Stout, J. C., and Bechara, A. (2005). Using cognitive
models tomap relations between neuropsychological disorders and human
decision-makingdeficits. Psychol. Sci. 16, 973–978. doi: 10.1111/j.1467-9280.
2005.01646.x

Yechiam, E., and Ert, E. (2007). Evaluating the reliance on past choices in adaptive
learning models. J. Math. Psychol. 51, 75–84. doi: 10.1016/j.jmp.2006.11.002

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Chaturvedi and Dutt. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 13 February 2021 | Volume 11 | Article 499422

https://doi.org/10.5194/nhess-18-1599-2018
https://doi.org/10.5194/nhess-18-1599-2018
https://doi.org/10.1177/1541931215591323
https://doi.org/10.1177/1541931215591323
https://doi.org/10.1007/978-3-319-41627-4_21
https://doi.org/10.3389/fpsyg.2015.00229
https://doi.org/10.1038/nature04766
https://doi.org/10.1002/9781118593233
https://doi.org/10.1177/0018720812464045
https://doi.org/10.1177/0018720812464045
http://repository.cmu.edu/sds/118/
http://repository.cmu.edu/sds/118/
https://doi.org/10.1016/j.jenvp.2011.10.003
https://doi.org/10.1016/j.jenvp.2011.10.003
https://doi.org/10.3389/fpsyg.2012.00177
https://doi.org/10.3389/fpsyg.2012.00177
https://doi.org/10.1504/ijtmcc.2013.056428
https://doi.org/10.1504/ijtmcc.2013.056428
https://doi.org/10.1111/cogs.12170
https://doi.org/10.1037/a0024558
https://doi.org/10.1037/a0024558
https://doi.org/10.1016/j.chb.2004.02.014
https://doi.org/10.1016/j.chb.2004.02.014
https://doi.org/10.1016/j.ecolecon.2010.09.004
https://doi.org/10.2307/1914185
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.1016/j.ress.2005.11.018
https://doi.org/10.3758/s13423-016-1158-7
https://doi.org/10.3758/s13423-016-1158-7
https://doi.org/10.4135/9781483349428
https://doi.org/10.1126/science.1094285
https://doi.org/10.1016/j.envsoft.2012.06.004
https://doi.org/10.1007/bf00122574
https://doi.org/10.1007/bf00122574
https://doi.org/10.1111/j.1539-6924.2007.00916.x
https://doi.org/10.1016/j.jmp.2008.12.001
https://doi.org/10.1111/j.1467-9280.2005.01646.x
https://doi.org/10.1111/j.1467-9280.2005.01646.x
https://doi.org/10.1016/j.jmp.2006.11.002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Understanding Human Decision Making in an Interactive Landslide Simulator Tool via Reinforcement Learning
	Introduction
	Reinforcement Learning (RL) Models
	Expectancy-Valence (EV) Model
	Prospect Value Learning (PVL) Model
	Expectancy-Valence Model With Prospect Utility Function (EV-PU)
	Prospect Value Learning-2
	Random Model
	The Interactive Landslide Simulator (ILS) Tool
	Probability of Landslide Due to Human Investments
	Probability of Landslide due to Physical Factors
	Calibration Dataset and ILS Parameters by BR10,BR7
	Generalization Dataset and ILS Parameters
	Participants and Procedure
	Distribution of Investment Ratios and Parameter Calibration
	Reward Functions in RL Models
	Model Execution and Evaluation
	Expectations From Models
	Model Calibration Results
	Model Generalization Results
	Calibrated Parameters

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	References


