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An extension to a rating system for tracking the evolution of parameters over time using

continuous variables is introduced. The proposed rating system assumes a distribution

for the continuous responses, which is agnostic to the origin of the continuous scores

and thus can be used for applications as varied as continuous scores obtained from

language testing to scores derived from accuracy and response time from elementary

arithmetic learning systems. Large-scale, high-stakes, online, anywhere anytime learning

and testing inherently comes with a number of unique problems that require new

psychometric solutions. These include (1) the cold start problem, (2) problem of change,

and (3) the problem of personalization and adaptation. We outline how our proposed

method addresses each of these problems. Three simulations are carried out to

demonstrate the utility of the proposed rating system.

Keywords: Rasch model, longitudinal data analysis, rating system, item response theory (IRT), learning and

assessment system, continuous response measurement

1. INTRODUCTION

Large-scale, high-stakes, online, anywhere anytime learning and testing inherently comes with a
number of unique problems that require new psychometric solutions. First, there is the cold start
problem: the system needs to start without data. The traditional solution is to start with a large
item bank calibrated to an appropriate Item Response Theory (IRT) model, which is expensive and
challenging as it requires large numbers of representative test takers to respond to items under
realistic testing conditions. Second, there is the problem of change: learner and item properties
change as a cohort of learners progresses through its education. While such changes are intended,
they are not easily handled by traditional psychometrics developed to assess student’s ability at
a single time point. Finally, there is the problem of personalization and adaptation: to optimally
support learning, each learner follows her own path at her own pace. This will give rise to sparse,
incomplete data that are not easily analyzed using likelihood-based methods. Moreover, online
learning systems, such as Duolingo, for foreign languages, and Math Garden, for elementary
arithmetic, generate large data sets with large number of item responses per learner as learners
practice with many items over extended periods of time.

The urnings rating system was introduced by Bolsinova et al. (2020) to address these challenges,
but its usefulness is limited by the fact that it assumes a Rasch model (or its generalization for
polytomous data) and is tied to discrete item responses. In this paper, we extend the urnings
rating system to continuous responses and illustrate its relevance for online learning systems using
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simulated data. Throughout, the Duolingo English Test (DET;
Wagner and Kunnan, 2015; LaFlair and Settles, 2019; Maris,
2020), and Math Garden (Klinkenberg et al., 2011) will serve as
motivating examples.

2. THE CONTINUOUS RASCH MODEL

Continuous responses can be obtained from awide variety of data
and functions of data. In the DET, item responses are continuous
numbers between zero and one. In Math Garden, continuous
responses come from a combination of accuracy and time. Other
learning and assessment systems may ask users to provide their
perceived certainty that the chosen response is correct (Finetti,
1965; Dirkzwager, 2003). In this paragraph, we consider a general
measurement model for continuous responses. For expository
purposes, we consider the responses to be between zero and one.

The model we consider is the direct extension of the Rasch
model to continuous responses and we will refer it as the
continuous Rasch (CR) model. Suppressing the person index, the
CR model is defined by the following response probabilities:

f (x|θ) =
∏

i

f (xi|θ) (1)

=
∏

i

exp(xi(θ − δi))
∫ 1
0 exp(s(θ − δi))ds

(2)

=
∏

i

(θ − δi) exp(xi(θ − δi))

exp(θ − δi)− 1
, (3)

where θ represents learner ability and δi item difficulty. This is
an exponential family IRT model where the sum x+ =

∑

i xi
is the sufficient statistic for ability. Note that the CR model is
not new as it is equivalent1 to the Signed Residual Time (SRT)
model proposed by Maris and van der Maas (2012) and the
Rasch model for continuous responses found in Verhelst (2019).
The key insight is that the model can be used for any type of
continuous responses. For illustration, Figure 1 shows plots of
the probability density, cumulative distribution, and expectation
functions under the CR model.

For our present purpose, we will not analyze the continuous
responses directly but a limited number of binary responses
derived from them. We now explain how this works. If we define
two new variables as follows

yi1 = (xi > 0.5) (4)

xi1 =

{

xi − 0.5 if yi1 = 1

xi if yi1 = 0
(5)

we obtain conditionally independent sources of information on
ability fromwhich the original observations can be reconstructed;
that is, Yi1⊥⊥Xi1|θ . Moreover, it is readily found that the implied
measurement model for Yi1 is the Rasch model:

p(Yi1 = 1|θ) = p(Xi > 0.5|θ) =
exp(0.5(θ − δi))

1+ exp(0.5(θ − δi))
(6)

1After re-scaling, if X ∼ SRT(η) then Y = 1
2 (X − 1) ∼ CR(2η).

where the discrimination is equal to a half. The other variable,
Xi1, is continuous with the following distribution over the
interval 0 to 1/2:

f (xi1|θ) =
(θ − δi) exp(xi1(θ − δi))

exp(0.5(θ − δi))− 1
(7)

The distribution of Xi1 and Xi thus belong to the same family,
but with a different range for the values of the random variable.
We can now continue to split up Xi1 into two new variables
and recursively transform the continuous response to a set
of conditionally independent Rasch response variables with
discriminations that halve in every step of the recursion.

If we denote the binary response variable obtained in
the j-th step of the recursion by Yij, we obtain the (non-
terminating) dyadic expansion (see e.g., Billingsley, 2013) of the
continuous response variables into conditionally independent
binary response variables, as depicted in Figure 2. Since the
discriminations halve in every step, most of the statistical
information about ability contained in the continuous response
is recovered by a limited number of binary variables. If the CR
model fits, then at the point where θ = δi the information in the
continuous response is 4

3 times the information contained in Yi1

alone2.
Other models have been developed for continuous responses.

Notably the extensions by Samejima to the graded response
models (Samejima, 1973, 1974), Müller’s extension to Andrich’s
rating formulation (Müller, 1987), and more recently, a
generalization of the SRT model (van Rijn and Ali, 2017).
Estimation procedures developed for these models have all been
likelihood based and quite infeasible in a learning setting where
there are many people and items, and each person answers a
different subset of items. For the CRmodel, we will therefore turn
to estimation via the use of rating systems.

3. METHODS: THE URNINGS RATING
SYSTEM

3.1. Classic Urnings
Adaptive online tests produce data sets with both a large number
of test takers and a large number of items. Even when we analyze
binary response variables, direct likelihood-based inference will
not scale-up to handle these large amounts of data. We will
therefore use a rating system. A rating system is a method to
assess a player’s strength in games of skill and track its evolution
over time. Here, learners solving items are considered players
competing against each other and the ratings represent the skill
of the learner and the difficulty of the item.

Rating systems, such as the Elo rating system (Elo, 1978;
Klinkenberg et al., 2011), originally developed for tracking ability
in chess, are highly scalable but come with their own set of
problems. Elo ratings, in particular, are known to have an
inflated variance, and their statistical properties are not very well-
understood (e.g., Brinkhuis and Maris, 2009). The urnings rating
system overcomes both issues while it is still highly scalable with

2The infinite sum 1
4 + 1

16 + 1
64 + . . . is equal to 1

3 .
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FIGURE 1 | (Left) The probability density function, (middle) the cumulative distribution function, and (right) the expectation of the continuous Rasch model where

η = θ − δi .

FIGURE 2 | The first three steps of a dyadic expansion of continuous responses into conditionally independent binary response variables. Each follows a Rasch

model with a discrimination that halves at each subsequent step.

person and item ratings being updated after each response. In
equilibrium, when neither learners nor items change, urnings are
known to be binomially distributed variables, with the logits of
the probability being the ability/difficulty in a Rasch model.

Urnings is a rating system where discrete parameters up and
ui, the “urnings,” track the ability of a person and the difficulty
of an item. Urnings assumes that the observed binary responses
result from a game of chance played between persons and items
matched-up with to probability Mpi(up, ui). The game proceeds
with each player drawing a ball from an infinite urn containing
red and green balls, the proportion of green balls being πp in
the person urn and πi in the item urn. The game ends when the
balls drawn are of different color and the player with the green
ball wins. If the person wins, the item is solved and so the binary
response corresponds to

Xpi =

{

1 if y∗p = 1

0 if y∗i = 1

where y∗p and y
∗
i indicate whether the green ball was drawn by the

person or the item. An easy derivation shows that the observed
responses follow a Rasch model:

p(Xpi = 1) = p(y∗p = 1, y∗i = 0|θp, θi)

=
πp(1− πi)

πp(1− πi)+ (1− πp)πi
=

exp(θp − θi)

1+ exp (θp − θi)
(8)

where θp = ln(πp/(1− πp)) and similarly for θi.
The urnings rating system mimics this game using finite

sized urns. For each “real” game that is played, a corresponding
simulated game is played with finite urns containing, respectively
up and ui green balls out of n3. Let yp and yi denote the outcome
of the simulated game. If the result of the simulated game does
not match that of the real game, the balls drawn are replaced
with the outcome of the real game. If person p lost the simulated
game but solved item i, the proportion of green balls for p is thus
increased while the proportion of green balls for i is decreased.
This can be summarized with the updated equations

u∗p = up + y∗p − yp (9)

u∗i = ui + y∗i − yi (10)

3Note that in practice the number of balls in the person urns and item urns don’t

have to be equal, but for notations sake we will keep them the same.
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FIGURE 3 | Urnings rating system.

where u∗p and u∗i are the proposed new configurations for the
number of balls in each urn. This new configuration is then
accepted or rejected using a Metropolis-Hastings acceptance
probability to ensure that the ratings up/n and ui/n converge
to the proportions πp and πi when neither persons nor
items change.

Figure 3 gives an overview of the urnings updating scheme.
Bolsinova et al. (2020) prove that each of the urn proportions
forms a constructed Markov-chain such that the invariant
distribution of u = (up, ui)

⊺ is a binomial distribution with
parameters n and π = (πp,πi)

⊺. Note that the urn size n
functions as a design parameter similar to the K-factor in Elo
ratings. Larger urns mean that the system is more sensitive to
change and the system converges more rapidly when the urns
are smaller.

As the urnings rating system is designed to work with
dichotomous response variables it is not directly applicable to
the CR. However, through the use of the dyadic expansion,
the continuous responses are transformed into a series of
dichotomous responses. The urnings rating system can be
applied directly to these dichotomous response variables that
result from the dyadic expansion of the continuous responses.
For a dyadic expansion of order k, we will use k urns for each
person and k separate urns for each item. Due to the difference
in discrimination, each person urn will be tracking θp/2

j, where
j ∈ {1, . . . , k} corresponds to the step in the dyadic expansion.

Once the proportions in the urns are in equilibrium, one could
combine them to get an overall estimate of θp. This will be similar
for the item urns and item difficulty. In the simulation section
below, we show how this multi-urn solution can be used to
identify model misspecification.

In the next section we derive an extension to the classical
urnings rating system, which tracks the θp using a single urn.

3.2. Extension to Urnings
Recall that the jth item in the dyadic expansion corresponds
to the ability θp/2

j. We shall see that the differences in
discrimination that derive from the dyadic expansion of the
continuous response variables in the CR model translate into
differences in the stakes of the game. The stakes of the urnings
algorithm correspond to how much the number of green balls
can increase (or decrease). In the classic urnings algorithm, the
stakes are always equal to 1. In the extended urnings algorithm
we allow items with different discriminations to combine. For
a dyadic expansion of order k we let the item with the lowest
discrimination, the final expansion, have a stake of one. For each
previous item, we double the stakes such that the jth item in the
dyadic expansion has a stake of 2k−j.

How does this impact the urnings update? Figure 4 has a
summary of the extended urnings rating system. The observed
binary outcomes Xpi are now assumed to be generated by the
following game of chance. The game is same as above for classic

Frontiers in Psychology | www.frontiersin.org 4 December 2020 | Volume 11 | Article 500039

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Deonovic et al. Rating System for Continuous Responses

FIGURE 4 | Extended Urnings rating system.

urnings, except now the game has stakes s. For a game with stakes
s, the process to generate the observed outcome is to continue
drawing s balls from both urns (y∗p and y∗i ) until we get s green
ones from the one urn and s red ones from the other. Thus

Xpi =

{

1 if y∗p = s

0 if y∗i = s

Similarly, a simulated game is played where balls are drawn (yp
and yi) from finite urns until s have been drawn from one urn
and none from the other (without replacement). We once again
just replace these s balls by s of the color consistent with the real
item response. That is, a learner stands to lose or gain s balls
based on her response to this particular item. This is why we refer
to the discriminations as stakes in this context. Figure 4 has the
updated Metropolis-Hastings acceptance probability, which is
consistent with this extension. Theorem 1 provides the necessary
theoretical justification for this correction. For a proof of the
theorem see Appendix 1.

THEOREM 1. (Extension of Urnings Invariant Distribution) If
invariant distribution for the current configuration of balls is

p(up, ui) =

(

s!

n!/(n− s)!

)2
(up
s

)(n−ui
s

)

+
(n−up

s

)(ui
s

)

π s
p(1− πi)s + (1− πp)sπ

s
i

(

n

up

)

π
up
p (1− πp)

n−up

(

n

ui

)

π
ui
i (1− πi)

n−ui

then the invariant distribution for the updated configuration of
balls is the same, where s corresponds to the stakes.

4. SIMULATION STUDY

We provide three simulation studies to illustrate the benefits
of the proposed method. Simulation 1 shows how the urnings
algorithm can recover the true ability of the persons and is robust
to misspecification of the model generating the continuous
responses. Simulation 2 simulates a more realistic setting and
aims to show how our proposed approach handles the problems
inherent in learning and assessment specified in the introduction.
Simulation 3 highlights the problems inherent in any model
which tracks ability and difficulty: these quantities are not
separately identified, and it is easy to be misled when this is not
taken into account (Bechger and Maris, 2015).

4.1. Simulation 1
We simulate 1,000 persons with ability uniformly distributed
between -4 and 4, θp ∼ U(−4, 4) and 100 items with difficulty
distributed between −4 and 4, δi ∼ U(−4, 4). We simulate a
total of 100 million person-item interactions in order to create
a data set that is comparable to the large-scale learning system
data that the model is built for. At each interaction, a randomly
sampled person and item is picked. The person’s response is then
simulated from the CR model based on their ability and the
item’s difficulty. This continuous response is then expanded using
the dyadic expansion of order 3 to create three dichotomous
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responses. These dichotomous responses are then tracked by the
multi-urn system with learner urns having an urn size of 50 and
the item urns having urn sizes of 100.

4.1.1. Tracking With Multiple Urns

The results of tracking the responses using the three urn system
is in Figures 5, 6. The colored lines in Figure 5 correspond
to the probability contours for the probability an item is
answered correctly (from low probability given by purple to
high probability given by red) given the urns for the person
(horizontal axis) and the urns for the item (vertical axis). The
smooth colored lines correspond to the expected probabilities
while the noisier colored lines plotted on top correspond to the
observed proportion of correct responses for every combination
of Urnings from simulation 1. These plots show that there is good
model fit, especially in the first urn. Figure 6 shows the final urn
proportions in the three urns plotted against the simulated ability
values (on the inverse logit scale, which we call “expit”). In red is
the implied 95% confidence ellipse. The blue points are within
the 95% ellipse while the red ones are outside of it. Each plot in
Figure 6 also shows the correlation and the proportion of points
within the ellipse (the coverage) in the plot title.

4.1.2. Model Misspecification

How robust is this approach to deviations from the assumptions?
We investigate this through simulating from a different
underlying model. The learning and assessment system Math
Garden also has continuous responses and assumes the same
distribution for the scores as we have. The scores in Math Garden
are derived as a particular function of response accuracy, i.e., was
the response correct or incorrect, and response time to produce
the continuous item score in such a way that penalizes fast
incorrect responses. Specifically, Si = (2Yi − 1)(d − Ti) where
Yi indicates whether the response was correct or not and Ti is
time when the time-limit for responding is set to d. However, the
fact that time is, literally, monetized in Math Garden, may entice
learners to employ a different, more economic utility-based rule.
Students may value their time and thus the relationship between
their response scores, accuracy, and time may be Si = Yi − Ti

in which a slow incorrect response has a large negative score.
The question is can we detect that learners follow the alternative
scoring rule rather than the intended one? The answer is yes. We
will show this by means of a simulation.

We augment the first simulation. Rather than simulating from
the CR model we will simulate from the distribution implied by
the scoring rule Si = Yi − Ti. One can show that in order to
simulate from this distribution we can do the following. We first
simulate the response Yi from the CR model, but if the response
is<0.5, Yi < 0.5, then we set the score to be Yi = 0.5−Yi. One of
the benefits of using three separate urns to track the ability is that
model misfit can be detected by comparing the urns to each other.
The relationship between the true urn proportions is a known
function. Specifically, if θp are the true simulated abilities we can
plot the inverse logit of θp/2 against the inverse logit of θp/4. If
the observed own proportions don’t follow this relationship there
is model misfit.

Figure 7 shows the relationship between the urn proportions
in urns 1 and 2 using the true generating model and
the modified generating model. This figure shows that
when the generating model is the modified one the model
misspecification can be detected as the relationship between
the urn proportions follows a U-shaped curve rather than the
expected monotonic relationship.

4.2. Simulation 2
For Simulation 2 we consider a more realistic setting. Specifically,
we deal with two problems in learning and assessment systems:
the problem of change and the problem of personalization and
adaptation. We allow the ability of the persons to change over
time. Specifically, the ability changes as a function of time
according to a generalized logistic function

θp(t) = θp1 +
θp2 − θp1

1+ exp (−αpt)
(11)

where t is the simulation index (from 1 to 108) mapped to the
interval (−4,4), θp1 ∼ U(−4, 4), θp2 ∼ U(−4, 4), and αp ∼

Gamma(1, 1). The item difficulty is simulated from the uniform
again, δi ∼ U(−4, 4) and held constant. Once again, we simulate
108 responses from the continuous Rasch model where a person
is (uniformly) randomly selected but now a random item is
selected by choosing one with the following weights

Mpi(u) = exp(−2(ln (up + 1)/(np − up + 1))

− ln (ui + 1)/(ni − ui + 1))2 (12)

where up corresponds to the selected person’s urn proportion, ui
corresponds to item i’s urn proportion, and np and ni the person
and item urn sizes, respectively. This results in items whose
difficulty are closer to the selected person’s ability being more
likely selected. For this simulation we track the ability using a
single urn with urn sizes of 420 for both the person and item urns.

Figure 8 shows the results for one person and one item in
particular. In red is the true ability and difficulty of this person
and item and the blue trace line is the urn proportion. These show
that the extended Urnings rating system can track the change in
ability well. We can increase the urn size if we wish to decrease
the variance in the urn proportions. Another traceplot that can
be generated is Figure 9. The leftmost plot in this figure is the
probability that the response to the first dyadic expansion of a
particular item is 1, the middle one is the 2nd dyadic expansion
of the same person and item, and the rightmost plot is the third
expansion. This also shows good fit to the simulated data. Along
with increasing the urn size in order to decrease variance we can
also keep track of a running mean. In Figure 9 we also plot the
average of the previous 2,000 probabilities at each new interaction
which closely tracks the true probability.

4.3. Simulation 3
For the final simulation we explore the trouble with every
measurement model, which relates ability to difficulty as the
Rasch model does: the issue of unidentifiability of these
parameters. In most assessment frameworks this issue is often
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FIGURE 5 | Contours for the predicted and observed proportion of correct responses for every combination of Urnings from simulation 1. Plots from left to right

correspond to the urn associated with the respective step in the dyadic expansion.

FIGURE 6 | Urn proportions of the three urns plotted against the expit of the scaled ability, θp/2
k where k indexes the dyadic expansion. A 95% confidence interval is

included along with the correlation and coverage.

circumvented by several assumptions, such as the assumption
that the abilities of the persons and the difficulties of the items are
static and not changing. Additionally, some arbitrary zero point
must be decided on, which is typically that the average difficulty
of the population of items is equal to zero. In this final simulation,
we challenge some of these assumptions as typically happens in
real data, especially in learning systems.

As before, we allow the ability to change over time in the same
was as we did in simulation 2. However, we restrict the change
in ability to only be positive by sampling θp1 ∼ U(−4, 0) and
θp2 ∼ U(0, 4) so that each person’s ability increases. Furthermore,
we allow the difficulty of the items to change over time. The item
difficulties change in the same way as the person ability, but they
all decrease over time. Specifically, the difficulty is

δi(t) = δi1 +
δi2 − δi1

1+ exp (−2(t − t0))
(13)

where δi1 ∼ U(0, 4) and δi2 ∼ U(−4, 0). Additionally, we
split the items into four groups such that the point, t0 (at
which the difficulty is half way between its starting difficulty,
δ1, to its ending difficulty, δi2) varies between groups. In the
first group of items the mid-point is at the first quarter of
the number of simulated interactions, the second group is half
way through the simulated interactions (just like the person
ability), the third group is three quarters of the way through the
simulated interactions, and the last group does not change in
ability. Figure 10 plots the (true) change in item difficulty over
the simulated interactions. In this way we simulate an experience
that is close to a learning environment. Items whose relative
difficulty decreases early on represent items related to skills which
the persons learn early on in the learning environment. Just as
in simulation 2, at each interaction we randomly pick a person
and then select an item using the same weights as described in
simulation 2. The single urn scheme is used to track the abilities
and difficulties with urns of size 420 for both persons and items.
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FIGURE 7 | Urn proportions in urn 1 plotted against urn proportions in urn 2 using the true generating model and the alternative model.

FIGURE 8 | The true (solid red line) and estimated (blue line) change in ability (left) for 1 specific person and item difficulty (right) for 1 specific item in simulation 2.

Figure 11 shows the true and estimated ability and difficulty
for a particular person and a particular item. The true ability
change is in red on the left and the true difficulty is in red on
the right. In blue, the urn proportion for the ability on the left
and the difficulty on the right. What is happening here? Clearly
the urn proportions do not track the true values; this is most
evident with the ability on the left. As the number of balls in
the person and item urns is always fixed, if we allow the items to
become easier over time and the person abilities to increase over
time, the persons are literally stealing balls away from the items.

This results in under-estimation of the person abilities and over-
estimation of the item difficulties. In the previous simulation this
effect was circumvented by allowing the distribution of ability
(and difficulty) to be the same at the start of the simulation and at
the end, by allowing some people’s ability to increase and others
to decrease (and the item difficulty was kept constant). This is
not the case in this simulation. Only quantities that are properly
contextualized can be accurately tracked, such as the probability
that a person answers an item correctly. Consider Figure 12. As
in the previous simulation, this figure plots the probability that a
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FIGURE 9 | The probability that a specific person answers the dth item in the dyadic expansion of a specific item correctly in simulation 2.

FIGURE 10 | True item difficulties in simulation 3.

FIGURE 11 | The true (solid red line) and estimated (blue line) change in ability (left) for one specific person and item difficulty (right) for one specific item in simulation 3.
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FIGURE 12 | The probability that a specific person answers the dth item in the dyadic expansion of a specific item correctly in simulation 3.

particular person gets one of the dyadic expansion items correct
on a particular item.

5. DISCUSSION

In this article, we have proposed a new method to analyze
data generated by massive online learning systems, such as
DET or Math Garden, based on the CR model and the
Urnings ratings system. We have demonstrated its feasibility
using simulation.

The approach described here is new and based on three
ingredients. First, we found that the SRT model is a special case
of a Rasch model for continuous item responses. Second, we
established that, if the CR model holds, continuous responses
can be transformed to independent binary responses that
follow the Rasch model and contain most of the information
in the original responses. Of course, the Rasch model is
known to not always fit the data, as it assumes each
item discriminates equally well (Verhelst, 2019). We have
discussed the topic of model misspecification (with regard
to the misspecification of the scoring rule rather than the
true data-generating process), but the focus of this paper has
been on the use of the CR in the context of a learning
system. Third, the urnings rating system can be applied to
the binary responses to track both learners and items in
real time.

In the introduction, three unique problems with large-scale,
high-stakes, online, anywhere anytime learning and testing were
identified. Having dealt with the problem of change and of
personalization and adaptation we now briefly comment on the
cold start problem. Having introduced the notion of stakes, as a
way of dealing with differences in item discrimination, we can
reuse the same idea for addressing the cold start problem. When
a new person or item is added, we initially multiply their stakes
by some number. This has the effect, similar to decreasing the urn

size, of taking large(r) steps, and hence more rapidly converging
to the “correct” value, but with a larger standard error. After some
initial responses have been processed, the multiplier can decrease
to one. Note that, in principle, the same approach can be used
continuously to adjust the stakes depending on how fast or slow
a person or item parameter is changing.

An extension of the urnings system was introduced in
order to make use of the dichotomous responses with varying
discriminations. It will be clear that we have only begun to
explore the possibilities offered by the new method.
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