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Artificial Neural Networks have reached “grandmaster” and even “super-human”

performance across a variety of games, from those involving perfect information, such

as Go, to those involving imperfect information, such as “Starcraft”. Such technological

developments from artificial intelligence (AI) labs have ushered concomitant applications

across the world of business, where an “AI” brand-tag is quickly becoming ubiquitous. A

corollary of such widespread commercial deployment is that when AI gets things wrong—

an autonomous vehicle crashes, a chatbot exhibits “racist” behavior, automated credit-

scoring processes “discriminate” on gender, etc.—there are often significant financial,

legal, and brand consequences, and the incident becomes major news. As Judea Pearl

sees it, the underlying reason for suchmistakes is that “... all the impressive achievements

of deep learning amount to just curve fitting.” The key, as Pearl suggests, is to replace

“reasoning by association” with “causal reasoning” —the ability to infer causes from

observed phenomena. It is a point that was echoed by Gary Marcus and Ernest Davis in

a recent piece for the New York Times: “we need to stop building computer systems that

merely get better and better at detecting statistical patterns in data sets—often using

an approach known as ‘Deep Learning’—and start building computer systems that from

the moment of their assembly innately grasp three basic concepts: time, space, and

causality.” In this paper, foregrounding what in 1949 Gilbert Ryle termed “a category

mistake”, I will offer an alternative explanation for AI errors; it is not so much that AI

machinery cannot “grasp” causality, but that AI machinery (qua computation) cannot

understand anything at all.

Keywords: dancing with pixies, Penrose-Lucas argument, causal cognition, artificial neural networks, artificial

intelligence, cognitive science, Chinese room argument

1. MAKING A MIND

For much of the twentieth century, the dominant cognitive paradigm identified the mind with the
brain; as the Nobel laureate Francis Crick eloquently summarized:

“You, your joys and your sorrows, your memories and your ambitions, your sense of personal identity

and free will, are in fact no more than the behavior of a vast assembly of nerve cells and their associated

molecules. As Lewis Carroll’s Alice might have phrased, ‘You’re nothing but a pack of neurons’.

This hypothesis is so alien to the ideas of most people today that it can truly be called astonishing”

(Crick, 1994).

Motivation for the belief that a computational simulation of the mind is possible stemmed
initially from the work of Turing (1937) and Church (1936) and the “Church-Turing
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hypothesis”; in Turing’s formulation, every “function which
would naturally be regarded as computable” can be computed
by the “Universal Turing Machine.” If computers can adequately
model the brain, then, theory goes, it ought to be possible to
program them to act like minds. As a consequence, in the latter
part of the twentieth century, Crick’s “Astonishing Hypothesis”
helped fuel an explosion of interest in connectionism: both high-
fidelity simulations of the brain (computational neuroscience;
theoretical neurobiology) and looser—merely “neural inspired”
—analoges (cf. Artificial Neural Networks, Multi-Layer
Perceptrons, and “Deep Learning” systems).

But the fundamental question that Crick’s hypothesis raises
is, of course, that if we ever succeed in fully instantiating a
sufficiently accurate simulation of the brain on a digital computer,
will we also have fully instantiated a digital [computational]
mind, with all the human mind’s causal power of teleology,
understanding, and reasoning, and will artificial intelligence (AI)
finally have succeeded in delivering “Strong AI”1.

Of course, if strong AI is possible, accelerating progress in
its underpinning technologies2–entailed both by the use of AI
systems to design ever more sophisticated AIs and the continued
doubling of raw computational power every 2 years3—will
eventually cause a runaway effect whereby the AI will inexorably
come to exceed human performance on all tasks4; the so-called
point of [technological] “singularity” ([in]famously predicted by
Ray Kurzweil to occur as soon as 20455). And, at the point
this “singularity” occurs, so commentators like Kevin Warwick6

and Stephen Hawking7 suggest, humanity will, effectively, have

1Strong AI, a term coined by Searle (1980) in the “Chinese room argument” (CRA),

entails that, “... the computer is not merely a tool in the study of the mind; rather, the

appropriately programmed computer really is a mind, in the sense that computers

given the right programs can be literally said to understand and have other cognitive

states,” which Searle contrasted with “Weak AI” wherein “... the principal value of

the computer in the study of the mind is that it gives us a very powerful tool.” Weak

AI focuses on epistemic issues relating to engineering a simulation of [human]

intelligent behavior, whereas strong AI, in seeking to engineer a computational

system with all the causal power of a mind, focuses on the ontological.
2See “[A]mplifiers for intelligence—devices that supplied with a little intelligence

will emit a lot” (Ashby, 1956).
3See Moore’s law: the observation that the number of transistors in a dense

integrated circuit approximately doubles every 2 years.
4Conversely, as Francois Chollet, a senior engineer at Google and well-known

scptic of the “Intelligence Explosion” scenario; trenchantly observed in 2017: “The

thing with recursive self-improvement in AI, is that if it were going to happen, it

would already be happening. Auto-Machine Learning systems would come up with

increasingly better Auto-Machine Learning systems, Genetic Programming would

discover increasingly refined GP algorithms” and yet, as Chollet insists, “no human,

nor any intelligent entity that we know of, has ever designed anything smarter than

itself.”
5Kurzweil (2005) “set the date for the Singularity—representing a profound and

disruptive transformation in human capability—as 2045.”
6In his 1997 book “March of the Machines”, Warwick (1997) observed that there

were already robots with the “brain power of an insect”; soon, or so he predicted,

there would be robots with the “brain power of a cat,” and soon after that there

would be “machines as intelligent as humans.” When this happens, Warwick

darkly forewarned, the science-fiction nightmare of a “Terminator” machine could

quickly become reality because such robots will rapidly, and inevitably, become

more intelligent and superior in their practical skills than the humans who

designed and constructed them.
7In a television interview with Professor Stephen Hawking on December 2nd

2014, Rory Cellan-Jones asked how far engineers had come along the path toward

been “superseded” on the evolutionary ladder and be obliged
to eke out its autumn days listening to “Industrial Metal”
music and gardening; or, in some of Hollywood’s even more
dystopian dreams, cruelly subjugated (and/or exterminated) by
“Terminator” machines.

In this paper, however, I will offer a few “critical reflections”
on one of the central, albeit awkward, questions of AI: why is it
that, seven decades since Alan Turing first deployed an “effective
method” to play chess in 1948, we have seen enormous strides
in engineering particular machines to do clever things—from
driving a car to beating the best at Go—but almost no progress
in getting machines to genuinely understand; to seamlessly
apply knowledge from one domain into another—the so-called
problem of “Artificial General Intelligence” (AGI); the skills that
both Hollywood and the wider media really think of, and depict,
as AI?

2. NEURAL COMPUTING

The earliest cybernetic work in the burgeoning field of “neural
computing” lay in various attempts to understand, model,
and emulate neurological function and learning in animal
brains, the foundations of which were laid in 1943 by the
neurophysiologist Warren McCulloch and the mathematician
Walter Pitts (McCulloch and Pitts, 1943).

Neural Computing defines a mode of problem solving
based on “learning from experience” as opposed to classical,
syntactically specified, “algorithmic” methods; at its core is “the
study of networks of ’adaptable nodes’ which, through a process
of learning from task examples, store experiential knowledge and
make it available for use” (Aleksander and Morton, 1995). So
construed, an “Artificial Neural Network” (ANN) is constructed
merely by appropriately connecting a group of adaptable nodes
(“artificial neurons”).

• A single layer neural network only has one layer of adaptable
nodes between the input vector, X and the output vector O,
such that the output of each of the adaptable nodes defines one
element of the network output vector O.

• A multi-layer neural network has one or more “hidden layers”
of adaptable nodes between the input vector and the network
output; in each of the network hidden layers, the outputs of
the adaptable nodes connect to one or more inputs of the
nodes in subsequent layers and in the network output layer,
the output of each of the adaptable nodes defines one element
of the network output vector O.

• A recurrent neural network is a network where the output of
one or more nodes is fed-back to the input of other nodes
in the architecture, such that the connections between nodes
form a “directed graph along a temporal sequence,” so enabling
a recurrent network to exhibit “temporal dynamics,” enabling
a recurrent network to be sensitive to particular sequences of
input vectors.

creating Artificial Intelligence, to which Professor Hawking alarmingly replied,

“Once humans develop artificial intelligence it would take off on its own and

redesign itself at an ever increasing rate. Humans, who are limited by slow biological

evolution, couldn’t compete, and would be superseded.”
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FIGURE 1 | The McCulloch–Pitts neuron model.

Since 1943 a variety of frameworks for the adaptable nodes
have been proposed8; however, the most common, as deployed
in many “deep” neural networks, remains grounded on the
McCulloch/Pitts model.

2.1. The McCulloch/Pitts (MCP) Model
In order to describe how the basic processing elements
of the brain might function, McCulloch and Pitts showed
how simple electrical circuits, connecting groups of “linear
threshold functions,” could compute a variety of logical functions
(McCulloch and Pitts, 1943). In their model, McCulloch and Pitts
provided a first (albeit very simplified) mathematical account of
the chemical processes that define neuronal operation and in so
doing realized that the mathematics that describe the neuron
operation exhibited exactly the same type of logic that Shannon
deployed in describing the behavior of switching circuits: namely,
the calculus of propositions.

8 These include “spiking neurons” as widely used in computational neuroscience

(Hodgkin and Huxley, 1952); “kernel functions” as deployed in “Radial Basis

Function” networks (Broomhead and Lowe, 1988) and “Support VectorMachines”

(Boser et al., 1992); “GatedMCPCells,” as deployed in LSTMnetworks (Hochreiter

and Schmidhuber, 1997); “n-tuple” or “RAM” neurons, as used in “Weightless”

neural network architectures (Bledsoe and Browning, 1959; Aleksander and

Stonham, 1979), and “Stochastic Diffusion Processes” (Bishop, 1989) as deployed

in the NESTOR multi-variate connectionist framework (Nasuto et al., 2009).

McCulloch and Pitts (1943) realized (a) that neurons
can receive positive or negative encouragement to fire,
contingent upon the type of their “synaptic connections”
(excitatory or inhibitory) and (b) that in firing the neuron
has effectively performed a “computation”; once the effect of
the excitatory/inhibitory synapses are taken into account, it is
possible to arithmetically determine the net effect of incoming
patterns of “signals” innervating each neuron.

In a simple McCulloch/Pitts (MCP) threshold model,
adaptability comes from representing each synaptic junction by
a variable (usually rational) valued weight Wi, indicating the
degree to which the neuron should react to the ith particular
input (see Figure 1). By convention, positive weights represent
excitatory synapses and negative, inhibitory synapses; the neuron
firing threshold being represented by a variable T. In modern use,
T is usually clamped to zero and a threshold implemented using a
variable “bias” weight, b; typically, a neuron firing9 is represented
by the value+1 and not firing by 0.

Activity at the ith input to an n input neuron is represented by
the symbol Xi and the effect of the ith synapse by a weight Wi,
hence the net effect of the ith input on the ith synapse on the MCP

9“In psychology.. the fundamental relations are those of two valued logic” and

McCulloch and Pitts recognized neuronal firing as equivalent to “representing” a

proposition as TRUE or FALSE (McCulloch and Pitts, 1943).
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cell is thus Xi ×Wi. Thus, the MCP cell is denoted as firing if:

n∑

i

Xi ×Wi + b ≥ 0 (1)

In a subsequent generalization of the basic MCP neuron, cell
output is defined by a further (typically non-linear) function of
the weighted sum of its input, the neuron’s activation function.

McCulloch and Pitts (1943) proved that if “synapse polarity”
is chosen appropriately, any single pattern of input can be
“recognized” by a suitable network of MCP neurons (i.e., any
finite logical expression can be realized by a suitable network of
McCulloch–Pitts neurons). In other words, the McCulloch–Pitts’
result demonstrated that networks of artificial neurons could be
mathematically specified, which would perform “computations”
of immense complexity and power and in so doing, opened
the door to a form of problem solving based on the design
of appropriate neural network architectures and automatic
(machine) “learning” of appropriate network parameters.

3. EMBEDDINGS IN EUCLIDEAN SPACE

The most commonly used framework for information
representation and processing in artificial neural networks
(via generalized McCulloch/Pitts neurons) is a subspace of
Euclidean space. Supervised learning in this framework is
equivalent to deriving appropriate transformations (learning
appropriate mappings) from training data (problem exemplars;
pairs of Input + “Target Output′′ vectors). The majority of
learning algorithms adjust neuron interconnection weights
according to a specified “learning rule,” the adjustment in a given
time step being a function of a particular training example.

Weight updates are successively aggregated in this manner
until the network reaches an equilibrium, at which point no
further adjustments are made or, alternatively, learning stops
before equilibrium to avoid “overfitting” the training data. On
completion of these computations, knowledge about the training
set is represented across a distribution of final weight values; thus,
a trained network does not possess any internal representation
of the (potentially complex) relationships between particular
training exemplars.

Classical multi-layer neural networks are capable of
discovering non-linear, continuous transformations between
objects or events, but nevertheless they are restricted by
operating on representations embedded in the linear, continuous
structure of Euclidean space. It is, however, doubtful whether
regression constitutes a satisfactory (or the most general) model
of information processing in natural systems.

As Nasuto et al. (1998) observed, the world, and relationships
between objects in it, is fundamentally non-linear; relationships
between real-world objects (or events) are typically far too
messy and complex for representations in Euclidean spaces—
and smooth mappings between them—to be appropriate
embeddings (e.g., entities and objects in the real-world are often
fundamentally discrete or qualitatively vague in nature, in which
case Euclidean space does not offer an appropriate embedding for
their representation).

Furthermore, representing objects in a Euclidean space
imposes a serious additional effect, because Euclidean vectors can
be compared to each other by means of metrics; enabling data to
be compared in spite of any real-life constraints (sensu stricto,
metric rankings may be undefined for objects and relations of the
real world). As Nasuto et al. (1998) highlight, it is not usually
the case that all objects in the world can be equipped with a
“natural ordering relation”; after all, what is the natural ordering
of “banana” and “door”?

It thus follows that classical neural networks are best equipped
only for tasks in which they process numerical data whose
relationships can be reflected by Euclidean distance. In other
words, classical connectionism can be reasonably well-applied
to the same category of problems, which could be dealt with
by various regression methods from statistics; as Francois
Chollet10, in reflecting on the limitations of deep learning,
recently remarked:

“[a] deep learning model is ‘just’ a chain of simple, continuous

geometric transformations mapping one vector space into

another. All it can do is map one data manifold X into another

manifold Y, assuming the existence of a learnable continuous

transform from X to Y, and the availability of a dense sampling

of X: Y to use as training data. So even though a deep learning

model can be interpreted as a kind of program, inversely most

programs cannot be expressed as deep learning models-for most

tasks, either there exists no corresponding practically-sized deep

neural network that solves the task, or even if there exists one, it

may not be learnable . . . most of the programs that one may wish

to learn cannot be expressed as a continuous geometric morphing

of a data manifold” (Chollet, 2018).

Over the last decade, however, ANN technology has developed
beyond performing “simple function approximation” (cf. Multi-
Layer Perceptrons) and deep [discriminative11] classification
(cf. Deep Convolutional Networks), to include new, Generative
architectures12 where—because they can learn to generate any
distribution of data—the variety of potential use cases is huge
(e.g., generative networks can be taught to create novel outputs
similar to real-world exemplars across any modality: images,
music, speech, prose, etc.).

3.1. Autoencoders, Variational
Autoencoders, and Generative Adversarial
Networks
On the right hand side of Figure 2, we see the output of a
neural system, engineered by Terence Broad while studying for
an MSc at Goldsmiths. Broad used a “complex, deep auto-
encoder neural network” to process Blade Runner—a well-
known sci-fi film that riffs on the notion of what is human and

10Chollet is a senior software engineer at Google, who—as the primary author and

maintainer of Keras, the Python open source neural network interface designed

to facilitate fast experimentation with Deep Neural Networks—is familiar with the

problem-solving capabilities of deep learning systems.
11A discriminative architecture—or discriminative classifier without a model—can

be used to “discriminate” the value of the target variable Y , given an observation x.
12A generative architecture can be used to “generate” random instances, either of

an observation and target (x, y), or of an observation x given a target value y.
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FIGURE 2 | Terrence Broad’s Auto-encoding network “dreams” of Bladerunner (from Broad, 2016).

what is machine—building up its own “internal representations”
of that film and then re-rendering these to produce an
output movie that is surprisingly similar to the original
(shown on the left).

In Broad’s dissertation (Broad, 2016), a “Generative
Autoencoder Network” reduced each frame of Ridley Scott’s
Blade Runner to 200 “latent variables” (hidden representations),
then invoked a “decoder network” to reconstruct each frame
just using those numbers. The result is eerily suggestive
of an Android’s dream; the network, working without
human instruction, was able to capture the most important
elements of each frame so well that when its reconstruction
of a clip from the Blade Runner movie was posted to
Vimeo, it triggered a “Copyright Takedown Notice” from
Warner Brothers.

To understand if Generative Architectures are subject to
the Euclidean constraints identified above for classical neural
paradigms, it is necessary to trace their evolution from the
basic Autoencoder Network, through Variational Autoencoders
to Generative Adversarial Networks.

3.1.1. Autoencoder Networks
“Autoencoder Networks” (Kramer, 1991) create a latent (or
hidden), typically much compressed, representation of their
input data. When Autoencoders are paired with a decoder
network, the system can reverse this process and reconstruct
the input data that generates a particular latent representation.
In operation, the Autoencoder Network is given a data input
x, which it maps to a latent representation z, from which
the decoder network reconstructs the data input x′ (typically,
the cost function used to train the network is defined as the
mean squared error between the input x and the reconstruction
x′). Historically, Autoencoders have been used for “feature
learning” and “reducing the dimensionality of data” (Hinton and
Salakhutdinov, 2006), but more recent variants (described below)
have been powerfully deployed to learn “Generative Models”
of data.

3.1.2. Variational Autoencoder Networks
In taking a “variational Bayesian” approach to learning the
hidden representation, “Variational Autoencoder Networks”
(Kingma and Welling, 2013) add an additional constraint,
placing a strict assumption on the distribution of the latent
variables. Variational Autoencoder Networks are capable of both
compressing data instances (like an Autoencoder) and generating
new data instances.

3.1.3. Generative Adversarial Networks
Generative Adversarial Networks (Goodfellow et al.,
2014) deploy two “adversary” neural networks: one, the
Generator, synthesizes new data instances, while the other, the
Discriminator, rates each instance as how likely it is to belong to
the training dataset. Colloquially, the Generator takes the role of
a “counterfeiter” and the Discriminator the role of “the police,”
in a complex and evolving game of cat and mouse, wherein the
counterfeiter is evolving to produce better and better counterfeit
money while the police are getting better and better at detecting
it. This game goes on until, at convergence, both networks have
become very good at their tasks; Yann LeCun, Facebook’s AI
Director of Research, recently claimed them to be “the most
interesting idea in the last ten years in Machine Learning”13.

Nonetheless, as Goodfellow emphasizes (Goodfellow
et al., 2014), the generative modeling framework is most
straightforwardly realized using “multilayer perceptron
models.” Hence, although the functionally of generative
architectures moves beyond the simple function-approximation
and discriminative-classification abilities of classical multi-layer
perceptrons, at heart, in common with all neural networks that
learn, and operate on, functions embedded in Euclidean space14,
they remain subject to the constraints of Euclidean embeddings
highlighted above.

13Quora July 28, 2016 (https://www.quora.com/session/Yann-LeCun/1).
14Including neural networks constructed using alternative “adaptable node”

frameworks (e.g., those highlighted in footnote [8]), where these operate on data

embeddings in Euclidean space.
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FIGURE 3 | The tasks ANNs and ML can perform.

4. PROBLEM SOLVING USING ARTIFICIAL
NEURAL NETWORKS

In analyzing what problems neural networks and machine
learning can solve, Andrew Ng15 suggested that if a task only
takes a few seconds of human judgment and, at its core, merely
involves an association of A with B, then it may well be ripe for
imminent AI automation (see Figure 3).

However, although we can see how we might deploy a
trained neural network in the engineering of solutions to specific,
well-defined problems, such as “Does a given image contain a
representation of a human face?,” it remains unproven if (a) every
human intellectual skill is computable in this way and, if so, (b)
is it possible to engineer an Artificial General Intelligence that
would negate the need to engineer bespoke solutions for each and
every problem.

For example, to master image recognition, an ANN might be
taught using images from ImageNet (a database of more than 14
million photographs of objects that have been categorized and
labeled by humans), but is this how humans learn? In Savage
(2019), Tomaso Poggio, a computational neuroscientist at the
Massachusetts Institute of Technology, observes that, although
a baby may see around a billion images in the first 2 years of life,
only a tiny proportion of objects in the images will be actively
pointed out, named, and labeled.

4.1. On Cats, Classifiers, and
Grandmothers
In 2012, organizers of “The Singularity Summit,” an event
that foregrounds predictions from the like of Kurzweil and

15Adjunct professor at Stanford University and formerly associate professor and

Director of its AI Lab.

Warwick (vis a vis “the forthcoming Technological Singularity”
[sic]), invited Peter Norvig16 to discuss a surprising result from
a Google team that appeared to indicate significant progress
toward the goal of unsupervised category learning in machine
vision; instead of having to engineer a system to recognize
each and every category of interest (e.g., to detect if an image
depicts a human face, a horse, a car, etc.) by training it with
explicitly labeled examples of each class (so-called “supervised
learning”), Le et al. conjectured that it might be possible to
build high-level image classifiers using only un-labeled images,
”... we would like to understand if it is possible to build a face
detector from only un-labeled images. This approach is inspired by
the neuro-scientific conjecture that there exist highly class-specific
neurons in the human brain, generally and informally known as
“grandmother neurons.”

In his address, Norvig (2012) described what happened when
Google’s “Deep Brain” systemwas “let loose” on unlabeled images
obtained from the Internet:

“.. and so this is what we did. We said we’re going to train this,

we’re going to give our system tenmillion YouTube videos, but for

the first experiment, we’ll just pick out one frame from each video.

And, you sorta know what YouTube looks like.. We’re going to

feed in all those images and then we’re going to ask it to represent

the world. So what happened? Well, this is YouTube, so there will

be cats.

And what I have here is a representation of two of the top

level features (see Figures 4, 5). So the images come in, they’re

compressed there, we build up representations of what’s in all

16Peter is Director of Research at Google and, even though also serving an adviser

to “The Singularity University,” clearly has reservations about the notion: “.. this

idea, that intelligence is the one thing that amplifies itself indefinitely, I guess, is what

I’m resistant to ..” [Guardian 23/11/12].
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FIGURE 4 | Reconstructed archetypal cat (extracted from YouTube video of

Peter Norvig’s address to the 2012 Singularity summit).

FIGURE 5 | Reconstructed archetypal face (extracted from YouTube video of

Peter Norvig’s address to the 2012 Singularity summit).

the images. And then at the top level, some representations come

out. These are basis functions—features that are representing the

world—and the one on the left here is sensitive to cats. So these

are the images that most excited that this node in the network;

that ‘best matches’ to that node in the network. And the other one

is a bunch of faces, on the right. And then there’s, you know, tens

of thousands of these nodes and each one picks out a different

subset of the images that it matches best.

So, one way to represent “what is this feature?” is to say this one is

“cats” and this one is "people,” although we never gave it the words

“cats” and “people,” it’s able to pick those out. We can also ask this

feature, this neuron or node in the network, “What would be the

best possible picture that you would be most excited about?” And,

by process of mathematical optimization, we can come up with

that picture (Figure 4). And here they are and maybe it’s a little

bit hard to see here, but, uh, that looks like a cat pretty much.

And Figure 5 definitely looks like a face. So the system, just by

observing the world, without being told anything, has invented

these concepts” (Norvig, 2012).

At first sight, the results from Le et al. appear to confirm this
conjecture. Yet, within a year of publication, another Google
team—this time led by Szegedy et al. (2013)—showed how,
in all the Deep Learning networks they studied, apparently
successfully trained neural network classifiers could be confused
into misclassifying by “adversarial examples17” (see Figure 6).
Even worse, the experiments suggested that the “adversarial
examples are ‘somewhat universal’ and not just the results of
overfitting to a particular model or to the specific selection of the
training set” (Szegedy et al., 2013).

Subsequently, in 2018 Athalye et al. demonstrated randomly
sampled poses of a 3D-printed turtle, adversarially perturbed,
being misclassified as a rifle at every viewpoint; an unperturbed
turtle being classified correctly as a turtle almost 100% of the time
(Athalye et al., 2018) (Figure 7). Most recently, Su et al. (2019)
proved the existence of yet more extreme, “one-pixel” forced
classification errors.

When, in these examples, a neural network incorrectly
categorizes an adversarial example (e.g., a slightly modified toy
turtle, as a rifle; a slightly modified image of a van, as an ostrich),
a human still sees the “turtle as a turtle” and the “van as a
van,” because we understand what turtles and vans are and what
semantic features typically constitute them; this understanding
allows us to “abstract away” from low-level arbitrary or incidental
details. As Yoshua Bengio observed (in Heaven, 2019), “We
know from prior experience which features are the salient ones

. . . And that comes from a deep understanding of the structure
of the world.”

Clearly, whatever engineering feat Le’s neural networks
had achieved in 2013, they had not proved the existence
of “Grandmother cells,” or that Deep Neural Networks
understood—in any human-like way—the images they appeared
to classify.

5. AI DOES NOT UNDERSTAND

Figure 8 shows a screen-shot from an iPhone after Siri, Apple’s AI
“chat-bot,” was asked to add a “liter of books” to a shopping list;
Siri’s response clearly demonstrates that it does not understand
language, and specifically the ontology of books and liquids, in
anything like the same way that my 5-year-old daughter does.
Furthermore, AI agents catastrophically failing to understand
the nuances of everyday language is not a problem restricted
to Apple.

5.1. Microsoft’s XiaoIce Chatbot
With over 660 million active users since 2014, each spending an
average 23 conversation turns per engagement,Microsoft XiaoIce
is the most popular social chatbot in the world (Zhou et al., 2018).

17Mathematically constructed image that appeared [to human eyes] “identical” to

those it correctly classified.
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FIGURE 6 | From Szegedy et al. (2013): Adversarial examples generated for AlexNet. Left: A correctly predicted sample; center: difference between correct image,

and image predicted incorrectly; right: an adversarial example. All images in the right column are predicted to be an ostrich [Struthio Camelus].

FIGURE 7 | From Athalye et al. (2018): A 3D printed toy-turtle, originally classified correctly as a turtle, was “adversarially perturbed” and subsequently misclassified as

a rifle at every viewpoint tested.

In this role, XiaoIce serves as an 18-year old, female-gendered
AI “companion”—always reliable, sympathetic, affectionate,
knowledgeable but self-effacing, with a lively sense of humor—
endeavoring to form “meaningful” emotional connections with
her human “users,” the depth of these connections being revealed
in the conversations between XiaoIce and the users. Indeed,
the ability to establish “long-term” engagement with human
users distinguishes XiaoIce from other, recently developed,
AI-controlled Personal Assistants (AI-PAs), such as Apple Siri,
Amazon Alexa, Google Assistant, and Microsoft Cortana.

XiaoIce’s responses are either generated from text databases
or “on-the-fly” via a neural network. Aware of the potential for
machine learning in XiaoIce to go awry, the designers of XiaoIce
note that they:

“... carefully introduce safeguards along with the machine

learning technology to minimize its potential bad uses and

maximize its good for XiaoIce. Take XiaoIce’s Core Chat as an

example. The databases used by the retrieval-based candidate

generators and for training the neural response generator have

Frontiers in Psychology | www.frontiersin.org 8 January 2021 | Volume 11 | Article 513474

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Bishop On “Artificial Stupidity”

FIGURE 8 | Siri: On “buying” books.

been carefully cleaned, and a hand-crafted editorial response

is used to avoid any improper or offensive responses. For the

majority of task-specific dialogue skills, we use hand-crafted

policies and response generators to make the system’s behavior

predictable” (Zhou et al., 2018).

XiaoIce was launched on May 29, 2014 and by August 2015 had
successfully engaged in more than 10 billion conversations with
humans across five countries.

5.2. We Need to Talk About Tay
Following the success of XiaoIce in China, Peter Lee (Corporate
Vice President, Microsoft Healthcare) wondered if “an AI
like this be just as captivating in a radically different cultural
environment?” and the company set about re-engineering XiaoIce
into a new chatbot, specifically created for 18- to 24- year-olds in
the U.S. market.

As the product was developed, Microsoft planned and
implemented additional “cautionary” filters and conducted
extensive user studies with diverse user groups: “stress-testing”

the new system under a variety of conditions, specifically
to make interacting with it a positive experience. Then, on
March 23, 2016, the company released “Tay”—“an experiment
in conversational understanding”—onto Twitter, where it needed
less than 24 h exposure to the “twitterverse,” to fundamentally
corrupt their “newborn AI child.” As TOMO news reported18:

“REDMOND, WASHINGTON: Microsoft’s new artificial

intelligence chatbot had an interesting first day of class after

Twitter’s users taught it to say a bunch of racist things. The

verified Twitter account called Tay was launched on Wednesday.

The bot was meant to respond to users’ questions and emulate

casual, comedic speech patterns of a typical millennial. According

to Microsoft, Tay was ‘designed to engage and entertain people

where they connect with each other online through casual and

playful conversation. The more you chat with Tay the smarter

she gets, so the experience can be more personalized for you’.

Tay uses AI to learn from interactions with users, and then

uses text input by a team of staff including comedians. Enter

trolls and Tay quickly turned into a racist dropping n-bombs,

supporting white-supremacists and calling for genocide. After

the enormous backfire, Microsoft took Tay offline for upgrades

and is deleting some of the more offensive tweets. Tay hopped off

Twitter with the message, ‘c u soon humans need sleep now so

many conversations today thx”’ (TOMO News: March 25, 2016).

One week later, on March 30, 2016, the company released a
“patched” version, only to see the same recalcitrant behaviors
surface again; causing TAY to be taken permanently off-line and
resulting in significant reputational damage to Microsoft. How
did the engineers get things so badly wrong19?

The reason, as Liu (2017) suggests, is that Tay is fundamentally
unable to truly understand either the meaning of the words
she processes or the context of the conversation. AI and neural
networks enabled Tay to recognize and associate patterns, but the
algorithms she deployed could not give Tay “an epistemology.”
Tay was able to identify nouns, verbs, adverbs, and adjectives,
but had no idea “who Hitler was” or what “genocide” actually
means (Liu, 2017).

In contrast to Tay, and moving far beyond the reasoning
power of her architecture, Judea Pearl, who pioneered the
application of Bayesian Networks (Pearl, 1985) and who once
believed “they held the key to unlocking AI” (Pearl, 2018, p.
18), now offers causal reasoning as the missing mathematical
mechanism to computationally unlock meaning-grounding, the
Turing test and eventually “human level [Strong] AI” (Pearl,
2018, p. 11).

5.3. Causal Cognition and “Strong AI”
Judea Pearl believes that we will not succeed in realizing strong
AI until we can create an intelligence like that deployed by a

18See https://www.youtube.com/watch?v=IeF5E56lmk0.
19As Leigh Alexander pithily observed, “How could anyone think that creating a

young woman and inviting strangers to interact with her on social media wouldmake

Tay ’smarter’? How can the story of Tay be met with such corporate bafflement, such

late apology? Why did no one at Microsoft know right from the start that this would

happen, when all of us—female journalists, activists, game developers and engineers

who live online every day and—are talking about it all the time?” (Guardian, March

28, 2016).
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3-year-old child and to do this we will need to equip systems
with a “mastery of causation.” As Judea Pearl sees it, AI needs
to move away from neural networks and mere “probabilistic
associations,” such that machines can reason [using appropriate
causal structure modeling] how the world works20, e.g., the
world contains discrete objects and they are related to one
another in various ways on a “ladder of causation” corresponding
to three distinct levels of cognitive ability—seeing, doing, and
imagining (Pearl and Mackenzie, 2018):

• Level one seeing: Association: The first step on the
ladder invokes purely statistical relationships. Relationships
fully encapsulated by raw data (e.g., a customer who
buys toothpaste is more likely to buy floss); for Pearl
“machine learning programs (including those with deep neural
networks) operate almost entirely in an associational mode.”

• Level two doing: Intervention: Questions on level two are not
answered by “passively collected” data alone, as they invoke an
imposed change in customer behavior (e.g., What will happen
to my headache if I take an aspirin?), and hence additionally
require an appropriate “causal model”: if our belief (our
“causal model”) about aspirin is correct, then the “outcome”
will change from “headache” to “no headache.”

• Level three imagining: Counterfactuals: These are at the
top of the ladder because they subsume interventional
and associational questions, necessitating “retrospective
reasoning” (e.g., “My headache is gone now, but why? Was
it the aspirin I took? The coffee I drank? The music being
silenced? . . . ”).

Pearl firmly positions most animals [and machine learning
systems] on the first rung of the ladder, effectivelymerely learning
from association. Assuming they act by planning (and not mere
imitation) more advanced animals (“tool users” that learn the
effect of “interventions”) are found on the second rung. However,
the top rung is reserved for those systems that can reason
with counterfactuals to “imagine” worlds that do not exist and
establish theory for observed phenomena (Pearl and Mackenzie,
2018, p. 31).

Over a number of years Pearl’s causal inference methods have
found ever wider applicability and hence questions of cause-
and-effect have gained concomitant importance in computing.
In 2018, Microsoft Research, as a result of both their “in-
house” experience of causal methods21 and the desire to better
facilitate their more widespread use22, released “DoWhy”—a
Python library implementing Judea Pearl’s “Do calculus for
causal inference23.”

20“Deep learning has instead given us machines with truly impressive abilities but no

intelligence. The difference is profound and lies in the absence of a model of reality”

(Pearl and Mackenzie, 2018, p. 30).
21Cf. Olteanu et al. (2017) and Sharma et al. (2018).
22As Pearl (2018) highlighted, “the major impediment to achieving accelerated

learning speeds as well as human level performance should be overcome by removing

these barriers and equipping learning machines with causal reasoning tools. This

postulate would have been speculative 20 years ago, prior to the mathematization of

counterfactuals. Not so today.”
23https://www.microsoft.com/en-us/research/blog/dowhy-a-library-for-causal-

inference/

5.3.1. A “Mini” Turing Test
All his life Judea Pearl has been centrally concerned with
answering a question he terms the “Mini Turing Test” (MTT):
“How can machines (and people) represent causal knowledge in
a way that would enable them to access the necessary information
swiftly, answer questions correctly, and do it with ease, as a
3-year-old child can?” (Pearl and Mackenzie, 2018, p. 37).

In the MTT, Pearl imagines a machine presented with a
[suitably encoded] story and subsequently being asked questions
about the story pertaining to causal reasoning. In contrast
to Stefan Harnad’s “Total Turing Test” (Harnad, 1991), it
stands as a “mini test” because the domain of questioning is
restricted (i.e., specifically ruling out questions engaging aspects
of cognition such as perception, language, etc.) and because
suitable representations are presumed given (i.e., the machine
does not need to acquire the story from its own experience).

Pearl subsequently considers if the MTT could be trivially
defeated by a large lookup table storing all possible questions and
answers24—there being no way to distinguish such a machine
from one that generates answers in a more “human-like” way—
albeit in the process misrepresenting the American philosopher
John Searle, by claiming that Searle introduced this “cheating
possibility” in the CRA. As will be demonstrated in the following
section, in explicitly targeting any possible AI program25, Searle’s
argument is a good deal more general.

In any event, Pearl discounts the “lookup table” argument—
asserting it to be fundamentally flawed as it “would need
more entries than the number of atoms in the universe”
to implement26—instead suggesting that, to pass the MTT
an efficient representation and answer-extraction algorithm is
required, before concluding “such a representation not only exists
but has childlike simplicity: a causal diagram . . . these models pass
the mini-Turing test; no other model is known to do so” (Pearl and
Mackenzie, 2018, p. 43).

Then in 2019, even though discovering and exploiting “causal
structure” from data had long been a landmark challenge for AI
labs, a team at DeepMind successfully demonstrated “a recurrent
network with model-free reinforcement learning to solve a range
of problems that each contain causal structure” (Dasgupta et al.,
2019).

But do computational “causal cognition” systems really deliver
machines that genuinely understand and able to seamlessly
transfer knowledge from one domain to another? In the
following, I briefly review three a priori arguments that purport
to demonstrate that “computation” alone can never realize

24Cf. Block (1981).
25Many commentators still egregiously assume that, in the CRA, Searle wasmerely

targeting Schank and Abelson’s approach, etc., but Searle (1980) carefully specifies

that “The same arguments would apply to . . . any Turing machine simulation

of human mental phenomena” . . . concluding that “.... whatever purely formal

principles you put into the computer, they will not be sufficient for understanding,

since a human will be able to follow the formal principles without understanding

anything.”
26Albeit partial input-response lookup tables have been successfully embedded [as

large databases] in several conversational “chatbot” systems (e.g., Mitsuku, XiaoIce,

Tay, etc.).
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human-like understanding, and, a fortiori, no computational AI
system will ever fully “grasp” human meaning.

6. THE CHINESE ROOM

In the late 1970s, the AI lab at Yale secured funding for visiting
speakers from the Sloan foundation and invited the American
philosopher John Searle to speak on Cognitive Science. Before the
visit, Searle read Schank and Abelson’s “Scripts, Plans, Goals, and
Understanding: An Inquiry into Human Knowledge Structures”
and, on visiting the lab, met a group of researchers designing AI
systems which, they claimed, actually understood stories on the
basis of this theory. Not such complex works of literature as “War
and Peace,” but slightly simpler tales of the form:

Jack and Jill went up the hill to fetch a pail of water. Jack fell down

and broke his crown and Jill came tumbling after.

And in the AI lab their computer systems were able to respond
appropriately to questions about such stories. Not complex social
questions of “gender studies,” such as:

Q. Why did Jill come “tumbling” after?

but slightly more modest enquiries, along the lines of:

Q. Who went up the hill?

A. Jack went up the hill.

Q. Why did Jack go up the hill?

A. To fetch a pail of water.

Searle was so astonished that anyone might seriously entertain
the idea that computational systems, purely on the basis of the
execution of appropriate software (however complex), might
actually understand the stories that, even prior to arriving at
Yale, he had formulated an ingenious “thought experiment”
which, if correct, fatally undermines the claim that machines can
understand anything, qua computation.

Formally, the thought experiment— subsequently to gain
renown as “The Chinese Room Argument” (CRA), Searle (1980)—
purports to show the truth of the premise “syntax is not sufficient
for semantics,” and forms the foundation to his well-known
argument against computationalism27:

1. Syntax is not sufficient for semantics.
2. Programs are formal.
3. Minds have content.
4. Therefore, programs are not minds and computationalism

must be false.

To demonstrate that “syntax is not sufficient for semantics,”
Searle describes a situation where he is locked in a room in
which there are three stacks of papers covered with “squiggles and
squoggles” (Chinese ideographs) that he does not understand.
Indeed, Searle does not even recognize the marks as being
Chinese ideographs, as distinct from say Japanese or simply
meaningless patterns. In the room, there is also a large book of

27That the essence of “[conscious] thinking” lies in computational processes.

rules (written in English) that describe an effective method (an
“algorithm”) for correlating the symbols in the first pile with
those in the second (e.g., by their form); other rules instruct
him how to correlate the symbols in the third pile with those in
the first two, also specifying how to return symbols of particular
shapes, in response to patterns in the third pile.

Unknown to Searle, people outside the room call the first pile
of Chinese symbols, “the script”; the second pile “the story,” the
third “questions about the story,” and the symbols he returns they
call “answers to the questions about the story.” The set of rules he
is obeying, they call “the program.”

To complicate matters further, the people outside the room
also give Searle stories in English and ask him questions about
these stories in English, to which he can reply in English.

After a while Searle gets so good at following the instructions,
and the AI scientists get so good at engineering the rules that
the responses Searle delivers to the questions in Chinese symbols
become indistinguishable from those a native Chinese speaker
might give. From an external point of view, the answers to the
two sets of questions, one in English and the other in Chinese, are
equally good (effectively Searle, in his Chinese room, has “passed
the [unconstrained] Turing test”). Yet in the Chinese language
case, Searle behaves “like a computer” and does not understand
either the questions he is given or the answers he returns, whereas
in the English case, ex hypothesi, he does.

Searle trenchantly contrasts the claim posed by members of
the AI community—that any machine capable of following such
instructions can genuinely understand the story, the questions,
and answers—with his own continuing inability to understand a
word of Chinese.

In the 39 years since Searle published “Minds, Brains, and
Programs,” a huge volume of literature has developed around the
Chinese room argument (for an introduction, see Preston and
Bishop, 2002); with comment ranging from Selmer Bringsjord,
who asserts the CRA to be “arguably the 20th century’s greatest
philosophical polarizer,” to Georges Rey, who claims that in his
definition of Strong AI, Searle, “burdens the [Computational
Representational Theory of Thought (Strong AI)] project with
extraneous claims which any serious defender of it should reject.”
Although it is beyond the scope of this article to review the merit
of CRA, it has, unquestionably, generated much controversy.

Searle, however, continues to insist that the root of confusion
around the CRA (e.g., as demonstrated in the “systems reply”
from Berkeley28) is simply a fundamental confusion between
epistemic (e.g., how wemight establish the presence of a cognitive
state in a human) and ontological concerns (how we might seek
to actually instantiate that state by machine).

An insight that lends support to Searle’s contention comes
from the putative phenomenology of Berkeley’s Chinese room
systems. Consider the responses of two such systems—
(i) Searle-in-the-room interacting in written Chinese (via the
rule-book/program), and (ii) Searle interacting naturally in written
English—in the context where (a) a joke is made in Chinese, and
(b) the same joke is told in English.

28The systems reply: “While it is true that the individual person who is locked in

the room does not understand the story, the fact is that he is merely part of a whole

system, and the system does understand the story” (Searle, 1980).
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In the former case, although Searle may make appropriate
responses in Chinese (assuming he executes the rule-book
processes correctly), he will never “get the joke” nor “feel the
laughter” because he, John Searle, still does not understand
a single word of Chinese. However, in the latter case,
ceteris paribus, he will “get the joke,” find it funny and
respond appropriately, because he, John Searle, genuinely does
understand English.

There is a clear “ontological distinction” between these
two situations: lacking an essential phenomenal component of
understanding, Searle in the Chinese-room-system can never
“grasp” the meaning of the symbols he responds to, but merely
act out an “as-if ” understanding29 of the stories; as Stefan Harnad
echoes in “Lunch Uncertain”30, [phenomenal] consciousness
must have something very fundamental to do with meaning
and knowing:

“[I]t feels like something to know (ormean, or believe, or perceive,

or do, or choose) something. Without feeling, we would just be

grounded Turing robots, merely acting as if we believed, meant,

knew, perceived, did or chose” (Harnad, 2011).

7. GÖDELIAN ARGUMENTS ON
COMPUTATION AND UNDERSTANDING

Although “understanding” is disguised by its appearance as a
“simple and common-sense quality”, if it is, so the Oxford
polymath Sir Roger Penrose suggests, it has to be something non-
computational; otherwise, it must fall prey to a bare form of the
“Gödelian argument” (Penrose, 1994, p. 150).

Gödel’s first incompleteness theorem famously states that “. . .
any effectively generated theory capable of expressing elementary
arithmetic cannot be both consistent and complete. In particular,
for any consistent, effectively generated formal theory F that proves
certain basic arithmetic truths, there is an arithmetical statement
that is true, but not provable in the theory.” The resulting true,
but unprovable, statement G(ǧ) is often referred to as “the Gödel
sentence” for the theory31.

Arguments foregrounding limitations of mechanism (qua
computation) based on Gödel’s theorem typically endeavor to
show that, for any such formal system F, humans can find the
Gödel sentence G(ǧ), while the computation/machine (being
itself bound by F) cannot.

The Oxford philosopher John Lucas primarily used Gödel’s
theorem to argue that an automaton cannot replicate the
behavior of a human mathematician (Lucas, 1961, 1968), as there

29Well-engineered computational systems exhibit “as-if ” understanding because

they have been designed by humans to be understanding systems. Cf. The “as-

if-ness” of thermostats, carburettors, and computers to “perceive,” “know” [when

to enrich the fuel/air mixture], and “memorize” stems from the fact they were

designed by humans to perceive, know, and memorize; the qualities are merely “as-

if perception,” “as-if knowledge,” “as-if memory” because they are dependent on

human perception, human knowledge, and human memory.
30Cf. Harnad’s review of Luciano Floridi’s “Philosophy of Information” (TLS:

21/10/2011).
31NB. It must be noted that there are infinitely many other statements in the theory

that share with the Gödel sentence the property of being true, but not provable,

from the formal theory.

would be some mathematical formula which it could not prove,
but which the human mathematician could both see, and show,
to be true; essentially refuting computationalism. Subsequently,
Lucas’ argument was critiqued (Benacerraf, 1967), before being
further developed, and popularized, in a series of books and
articles by Penrose (1989, 1994, 1996, 1997, 2002), and gaining
wider renown as “The Penrose–Lucas argument.”

In 1989, and in a strange irony given that he was once a
teacher and then a colleague of Stephen Hawking, Penrose (1989)
published “The Emperor’s New Mind,” in which he argued that
certain cognitive abilities cannot be computational; specifically,
“the mental procedures whereby mathematicians arrive at their
judgments of truth are not simply rooted in the procedures of some
specific formal system” (Penrose, 1989, p. 144); in the follow-up
volume, “Shadows of the Mind” (Penrose, 1994), fundamentally
concluding: “G:Humanmathematicians are not using a knowably
sound argument to ascertain mathematical truth” (Penrose, 1989,
p. 76).

In “Shadows of the Mind” Penrose puts forward two distinct
lines of argument; a broad argument and a more nuanced one:

• The “broad” argument is essentially the “core” Penrose–
Lucas position (in the context of mathematicians’ belief that
they really are “doing what they think they are doing,”
contra blindly following the rules of an unfathomably
complex algorithm), such that “the procedures available to
the mathematicians ought all to be knowable.” This argument
leads Penrose to conclusion G (above).

• More nuanced lines of argument, addressed at those who take
the view that mathematicians are not “really doing what they
think they are doing,” but are merely acting like Searle in the
Chinese room and blindly following the rules of a complex,
unfathomable rule book. In this case, as there is no way to
know what the algorithm is, Penrose instead examines how
it might conceivably have come about, considering (a) the
role of natural selection and (b) some form of engineered
construction (e.g., neural network, evolutionary computing,
machine learning, etc.); a discussion of these lines of argument
is outside the scope of this paper.

7.1. The Basic Penrose’ Argument
(“Shadows of the Mind,” p. 72–77)
Consider a to be a “knowably sound” sound set of rules (an
effective procedure) to determine if C(n)—the computation C on
the natural number n (e.g., “Find an odd number that is the sum of
n even numbers”)—does not stop. Let A be a formalization of all
such effective procedures known to human mathematicians. By
definition, the application of A terminates iff C(n) does not stop.
Now, consider a human mathematician continuously analyzing
C(n) using the effective procedures, A, and only halting analysis
if it is established that C(n) does not stop.

NB: A must be “knowably sound” and cannot be wrong if it
decides that C(n) does not stop because, Penrose claims, if A was
“knowably sound” and if any of the procedures in A were wrong,
the error would eventually be discovered.

Computations of one parameter, n, can be enumerated
(listed): C0(n),C1(n),C2(n) . . .Cp(n), where Cp(n) is the pth
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computation on n (i.e., it defines the pth computation of one
parameter n). Hence A(p, n) is the effective procedure that, when
presented with p and n, attempts to discover if Cp(n) will not halt.
If A(p, n) ever halts, then we know that Cp(n) does not halt.

Given the above, Penrose’ simple Gödelian argument can be
summarized as follows:

1. If A(p, n) halts, then Cp(n) does not halt.
2. Now consider the “Self-Applicability Problem” (SAP), by

letting p = n in statement (7.1) above; thus:
3. If A(n, n) halts, then Cn(n) does not halt.
4. But A(n, n) is a function of one natural number, n and hence

must be found in the enumeration of C. Let us assume it
is found at position k [i.e., it is the kth computation of one
parameter Ck(n)]; thus:

5. A(n, n) = Ck(n).
6. Now, consider the particular computation where n = k, i.e.,

substituting n = k into statement (7.1) above; thus:
7. A(k, k) = Ck(k).
8. And rewriting (7.1) with n = k; thus:
9. If A(k, k) halts, then Ck(k) does not halt.
10. But substituting from (7.1) into (7.1), we get the following;

thus:
11. If Ck(k) halts, then Ck(k) does not halt, which clearly leads to

contradiction if Ck(k) halts.
12. Hence from Equation (7.1) we know that if A is sound (and

there is no contradiction), then Ck(k) cannot halt.
13. However, A cannot itself signal (7.1) [by halting] because

(7.1): A(k, k) = Ck(k). If Ck(k) cannot halt, then A(k, k)
cannot either.

14. Furthermore, if A exists and is sound, then we know Ck(k)
cannot halt; however, A is provably incapable of ascertaining
this, because we also know [from statement (7.1)] that A
halting [to signal that Ck(k) cannot halt] would lead to
contradiction.

15. So, if A exists and is sound, we know [from statement (7.1)]
that Ck(k) cannot halt, and hence we know something [via
statement (7.1)] that A is provably unable to ascertain (7.1).

16. Hence A— the formalization of all procedures known to
mathematicians—cannot encapsulate human mathematical
understanding.

In other words, the human mathematician can “see” that the
Gödel Sentence is true for consistent F, even though the
consistent F cannot prove G(ǧ).

Arguments targeting computationalism on the basis of
Gödelian theory have been vociferously critiqued ever since
they were first made32, however discussion—both negative and
positive—still continues to surface in the literature33 and detailed
review of their absolute merit falls outside the scope of this work.
In this context, it is sufficient simply to note, as the philosopher
John Burgess wryly observed, that the Penrose–Lucas thesis may
be fallacious but “logicians are not unanimously agreed as to
where precisely the fallacy in their argument lies” (Burgess, 2000).

32Lucas maintains a web page http://users.ox.ac.uk/~jrlucas/Godel/referenc.html

listing over 50 such criticisms; see also Psyche (1995) for extended peer

commentary specific to the Penrose version.
33Cf. Bringsjord and Xiao (2000) and Tassinari and D’Ottaviano (2007).

Indeed, Penrose, in response to a volume of peer commentary on
his argument (Psyche, 1995), “was struck by the fact that none of
the present commentators has chosen to dispute my conclusion G:”
Penrose (1996).

Perhaps reflecting this, after a decade of robust international
debate on these ideas, in 2006 Penrose was honored with an
invitation to present the opening public address at “Horizons
of truth,” the Gödel centenary conference at the University of
Vienna; for Penrose, Gödelian arguments continue to suggest
human consciousness cannot be realized by algorithm; there
must be a “noncomputational ingredient in human conscious
thinking” (Penrose, 1996).

8. CONSCIOUSNESS, COMPUTATION,
AND PANPSYCHISM

Figure 9 shows Professor Kevin Warwick’s “Seven Dwarves”
cybernetic learning robots in the act of moving around a small
coral, “learning” not to bump into each other. Given that (i)
in “learning,” the robots developed individual behaviors and (ii)
their neural network controllers used approximately the same
number of “neurons” as found in the brain of a slug, Warwick
has regularly delighted in controversially asserting that the robots
were “as conscious as a slug” and that it is only “human bias”
(human chauvinism) that has stopped people from realizing
and accepting this Warwick (2002). Conversely, even as a
fellow cybernetician and computer scientist, I have always found
such remarks—that the mechanical execution of appropriate
computation [by a robot] will realize consciousness—a little
bizarre, and eventually derived the following, a priori, argument
to highlight the implicit absurdness of such claims.

The Dancing with Pixies (DwP) reductio ad absurdum
(Bishop, 2002b) is my attempt to target any claim that machines
(qua computation) can give rise to raw sensation (phenomenal
experience), unless we buy into a very strange form of panpsychic
mysterianism. Slightly more formally, DwP is a simple reductio
ad absurdum argument to demonstrate that if [(appropriate)
computations realize phenomenal sensation in machine], then
(panpsychism holds). If the DwP is correct, then we must either
accept a vicious form of panpsychism (wherein every open
physical system is phenomenally conscious) or reject the assumed
claim (computational accounts of phenomenal consciousness).
Hence, because panpsychism has come to seem an implausible
world view34, we are obliged to reject any computational account
of phenomenal consciousness.

At its foundation, the core DwP reductio (Bishop, 2002b)
derives from an argument by Hilary Putnam, first presented
in the Appendix to “Representation and Reality” (Putnam,
1988); however, it is also informed by Maudlin (1989) (on
computational counterfactuals), Searle (1990) (on software
isomorphisms) and subsequent criticism from Chrisley (1995),
Chalmers (1996) and Klein (2018)35. Subsequently, the core DwP

34Framed by the context of our immense scientific knowledge of the closed

physical world, and the corresponding widespread desire to explain everything

ultimately in physical terms.
35For early discussion on these themes, see “Minds and Machines,” 4: 4, “What is

Computation?,” November 1994.
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FIGURE 9 | Kevin Warwick’s “Seven Dwarves”: neural network controlled robots.

argument has been refined, and responses to various criticisms
of it presented, across a series of papers (Bishop, 2002a,b, 2009,
2014). For the purpose of this review, however, I merely present
the heart of the reductio.

In the following discussion, instead of seeking to justify the
claim from Putnam (1988) that “every ordinary open system is a
realization of every abstract finite automaton” (and hence that,
“psychological states of the brain cannot be functional states of a
computer”), I will show that, over any finite time period, every
open physical system implements the particular execution trace
[of state transitions] of a computational system Q, operating on
known input I. This result leads to panpsychism that is clear
as equating Q(I) to a specific computational system (that is
claimed to instantiate phenomenal experience as it executes),
and following Putnam’s state-mapping procedure, an identical
execution trace of state transitions (and ex hypothesi phenomenal
experience) can be realized in any open physical system.

8.1. The Dancing With Pixies (DwP)
Reductio ad Absurdum
Perhaps you have seen an automaton at a museum or on
television. “The Writer” is one of three surviving automata from
the 18th century built by Jaquet Droz and was the inspiration for
the movie Hugo; it still writes today (see Figure 10). The complex
clockwork mechanism seemingly brings the automaton to life as
it pens short (“pre-programmed”) phrases. Such machines were
engineered to follow through a complex sequence of operations—
in this case, to write a particular phrase—and to early-eyes
at least, and even though they are insensitive to real-time
interactions, appeared almost sentient; uncannily36 life-like in
their movements.

36Sigmund Freud first introduced the concept of “the uncanny” in his 1919

essay “Das Unheimliche” (Freud, 1919), which explores the eeriness of dolls and

waxworks; subsequently, in aesthetics, “the uncanny” highlights a hypothesized

relationship between the degree of an object’s resemblance to a human being and

the human emotional response to such an object. The notion of the “uncanny”

predicts humanoid objects that imperfectly resemble real humans, may provoke

eery feelings of revulsion, and dread in observers (MacDorman and Ishiguro,

2006). Mori (2012) subsequently explored this concept in robotics through the

notion of “the uncanny valley.” Recently, the notion of the uncanny has been

critically explored through the lens of feminist theory and contemporary art

practice, for example by Alexandra Kokoli who, in focusing on Lorraine O’Grady

In his 1950 paper Computing Machinery and Intelligence,
Turing (1950) described the behavior of a simple physical
automaton—his “Discrete State Machine.” This was a simple
device with one moving arm, like the hour hand of a
clock; with each tick of the clock Turing conceived the
machine cycling through the 12 o’clock, 8 o’clock, and 4
o’clock positions. Turing (1950) showed how we can describe
the state evolution of his machine as a simple Finite State
Automaton (FSA).

Turing assigned the 12 o’clock (noon/midnight) arm position
to FSA state (machine-state) Q1; the 4 o’clock arm position
to FSA state Q2 and the 8 o’clock arm position to FSA state
Q3. Turing’s mapping of the machine’s physical arm position
to a logical FSA (computational) state is arbitrary (e.g., Turing
could have chosen to assign the 4 o’clock arm position to
FSA state Q1)

37. The machine’s behavior can now be described
by a simple state-transition table: if the FSA is in state Q1,
then it goes to FSA state Q2; if in FSA state Q2, then it
goes to Q3; if in FSA state, then Q3 goes to Q1. Hence,
with each clock tick the machine will cycle through FSA
states Q1,Q2,Q3,Q1,Q2,Q3,Q1,Q2,Q3, . . . etc. (as shown in
Figure 11).

To see how Turing’s machine could control Jaquet Droz’
Writer automaton, we simply need to ensure that when the FSA
is in a particular machine state, a given action is caused to occur.
For example, if the FSA is in FSA state Q1 then, say, a light might
be made to come on, or The Writer’s pen be moved. In this way,
complex sequences of actions can be “programmed.”

Now, what is perhaps not so obvious is that, over any given
time-period, we can fully emulate Turing’s machine with a simple
digital counter (e.g., a digital milometer); all we need to do is to
map the digital counter state C to the appropriate FSA state Q. If
the counter is in state C0 = {000000}, then we map to FSA state
Q1; if it is C1 = {000001}, then we map to FSA state Q2, {000002}
→ Q3, {000003}→ Q1, {000004}→ Q2, {000005}→ Q3, etc.

performances as a “black feminist killjoy,” stridently calls out “the whiteness and

sexism of the artworld” (Kokoli, 2016).
37In any electronic digital circuit, it is an engineering decision, contingent on the

type of logic used—TTL, ECL, CMOS, etc.—what voltage range corresponds to a

logical TRUE value and what range to a logical FALSE.
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FIGURE 10 | Photograph of Jaquet Droz’ The Writer [image screenshot from BBC4 Mechanical Marvels Clockwork Dreams: The Writer (2013)].

FIGURE 11 | Turing’s discrete state machine.

Thus, if the counter is initially in state C0 = {000000}, then,
over the time interval [t = 0 . . . t = 5], it will reliably transit
states {000000 → 000001 → 000002 → 000003 → 000004 →

000005} which, by applying the Putnam mapping defined above,

generates the Turing FSA state sequence: {Q1 → Q2 → Q3 →

Q1 → Q2 → Q3} over the interval [t = 0 . . . t = 5]. In this
manner, any input-less FSA can be realized by a [suitably large]
digital counter.
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Furthermore, sensu stricto, all real computers (machines with
finite storage) are Finite StateMachines38 and so a similar process
can be applied to any computation realized by a PC. However,
before looking to replace your desktop machine with a simple
digital counter, keep in mind that a FSA without input is an
extremely trivial device (as is evidenced by the ease in which
it can be emulated by a simple digital counter), merely capable
of generating a single unbranching sequence of states ending in
a cycle, or at best in a finite number of such sequences (e.g.,
{Q1 → Q2 → Q3 → Q1 → Q2 → Q3}, etc.).

However, Turing also described the operation of a discrete
state machine with input in the form of a simple lever-brake
mechanism, which could be made to either lock-on (or lock-
off) at each clock-tick. Now, if the machine is in computational
state {Q1} and the brake is on, then the machine stays in {Q1},
otherwise it moves to computational state {Q2}. If machine is in
{Q2} and brake is on, it stays in {Q2}, otherwise it goes to {Q3}. If
machine is in state {Q3} and brake is on, it stays in {Q3}, otherwise
it cycles back to state {Q1}. In this manner, the addition of input
has transformed the machine from a simple device that could
merely cycle through a simple unchanging list of states to one
that is sensitive to input; as a result, the number of possible state
sequences that it may enter grows combinatorially with time,
rapidly becoming larger than the number of atoms in the known
universe. It is due to this exponential growth in potential state
transition sequences that we cannot, so easily, realize a FSA with
input (or a PC) using a simple digital counter.

Nonetheless, if we have knowledge of the input over a given
time period (say, we know that the brake is initially ON for
the first clock tick and OFF thereafter), then the combinatorial
contingent state structure of an FSA with input, simply collapses
into a simple linear list of state transitions (e.g., {Q1 → Q2 →

Q3 → Q1 → Q2 → Q3}, etc.), and so once again can be simply
realized by a suitably large digital counter using the appropriate
Putnam mapping.

Thus, to realize Turing’s machine, say, with the brake ON for
the first clock tick and OFF thereafter, we simply need to specify
that the initial counter in state {000000} maps to the first FSA
state Q1; state {000001} maps to FSA state Q1; {000002} maps to
Q2; {000003} to Q3; {000004} to Q1; {000005} to Q2, etc.

In this manner, considering the execution of any putative
machine consciousness software that is claimed to be conscious
(e.g., the control program of Kevin Warwick’s robots) if, over
a finite time period, we know the input39, we can generate
precisely the same state transition trace with any (suitably large)
digital counter. Furthermore, as Hilary Putnam demonstrated, in
place of using a digital counter to generate the state sequence
{C}, we could deploy any “open physical system” (such as
a rock40) to generate a suitable non-repeating state sequence

38Even if we usually think about computation in terms of the [more powerful]

Turing Machine model.
39For example, we can obtain the input to a robot (that is claimed to experience

phenomenal consciousness as it interacts with the world) by deploying a “data-

logger” to record the data obtained from all its various sensors, etc.
40The “Principle of Noncyclical Behavior,” Putnam (1988), asserts: a system S is in

different “maximal states” {S1, S2, Sn} at different times. This principle will hold

true of all systems that can “see” (are not shielded from electromagnetic and

gravitational signals from) a clock. Since there are natural clocks from which no

{S1, S2, S3, S4, . . . }, and map FSA states to these (non-repeating)
“rock” states {S} instead of the counter states. Following this
procedure, a rock, alongside a suitable Putnam mapping, can be
made to realize any finite series of state transitions.

Thus, if any AI system is phenomenally conscious41 as it
executes a specific set of state transitions over a finite time
period, then a vicious form of panpsychism must hold, because
the same raw sensation, phenomenal consciousness, could be
realized with a simple digital counter (a rock, or any open physical
system) and the appropriate Putnam mapping. In other words,
unless we are content to “bite the bullet” of panpsychism, then
no machine, however complex, can ever realize phenomenal
consciousness purely in virtue of the execution of a particular
computer program.42

9. CONCLUSION

It is my contention that at the heart of classical cognitive
science—artificial neural networks, causal cognition, and
artificial intelligence—lies a ubiquitous computational
metaphor:

• Explicit computation: Cognition as “computations on
symbols”; GOFAI; [physical] symbol systems; functionalism
(philosophy of mind); cognitivism (psychology); language of
thought (philosophy; linguistics).

• Implicit computation: Cognition as “computations on sub-
symbols”; connectionism (sub-symbolic AI; psychology;
linguistics); the digital connectionist theory of mind
(philosophy of mind).

• Descriptive computation: Neuroscience as “computational
simulation”; Hodgkin–Huxley mathematical models of
neuron action potentials (computational neuroscience;
computational psychology).

In contrast, the three arguments outlined in this paper purport to
demonstrate (i) that computation cannot realize understanding,
(ii) that computation cannot realize mathematical insight, and
(iii) that computation cannot realize raw sensation, and hence
that computational syntax will never fully encapsulate human
semantics. Furthermore, these a priori arguments pertain to
all possible computational systems, whether they be driven
by “Neural Networks43,” “Bayesian Networks,” or a “Causal
Reasoning” approach.

Of course, “deep understanding” is not always required to
engineer a device to do x, but when we do attribute agency to
machines, or engage in unconstrained, unfolding interactions

ordinary open system is shielded, all such systems satisfy this principle. (N.B.: It is

not assumed that this principle has the status of a physical law; it is simply assumed

that it is in fact true of all ordinary macroscopic open systems).
41For example, perhaps it “sees” the ineffable red of a rose; smells its bouquet, etc.
42In Bishop (2017), I consider the further implications of the DwP reductio for

“digital ontology” and the Sci-Fi notion, pace Bostrom (2003), that we are “most

likely” living in a digitally simulated universe.
43Including “Whole Brain Emulation” and, a fortiori, Henry Markram’s “Whole

Brain Simulation,” as underpins both the “Blue Brain Project”—a Swiss research

initiative that aimed to create a digital reconstruction of rodent and eventually

human brains by reverse-engineering mammalian brain circuitry—and the

concomitant, controversial, EUR 1.019 billion flagship European “Human Brain

Project” (Fan and Markram, 2019).
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with them, “deep [human-level] understanding” matters. In this
context, it is perhaps telling that after initial quick gains in
the average length of interactions with her users, XiaoIce has
been consistently performing no better than, on average, 23
conversational turns for a number of years now44. Although
chatbots like XiaoIce and Tay will continue to improve, lacking
genuine understanding of the bits they so adroitly manipulate,
they will ever remain prey to egregious behavior of the sort
that finally brought Tay offline in March 2016, with potentially
disastrous brand consequences45.

Techniques such as “causal cognition”—which focuses on
mapping and understanding the cognitive processes that
are involved in perceiving and reasoning about cause–effect
relations—while undoubtedly constituting a huge advance in the
mathematization of causation will, on its own, move us no nearer
to solving foundational issues in AI pertaining to teleology and
meaning. While causal cognition will undoubtedly be helpful in
engineering specific solutions to particular human specified tasks,
lacking human understanding, the dream of creating an AGI
remains as far away as ever. Without genuine understanding,
the ability to seamlessly transfer relevant knowledge from one
domain to another will remain allusive. Furthermore, lacking
phenomenal sensation (in which to both ground meaning and

44Although it is true to say than many human–human conversations do not even

last this long—a brief exchange with the person at the till in a supermarket—in

principle, with sufficient desire and shared interests, human conversations can be

delightfully open ended.
45Cf. Tay’s association with “racist” tweets or Apple’s association with “allegations

of gender bias” in assessing applications for its credit card, https://www.bbc.co.uk/

news/business-50432634.

desire), even a system with a “complete explanatory model”
(allowing it to accurately predict future states) would still lack
intentional pull, with which to drive genuinely autonomous
teleological behavior46.

No matter how sophisticated the computation is, how fast the
CPU is, or how great the storage of the computing machine is,
there remains an unbridgeable gap (a “humanity gap”) between
the engineered problem solving ability of machine and the
general problem solving ability of man47. As a source close to the
autonomous driving company, Waymo48 recently observed (in
the context of autonomous vehicles):

“There are times when it seems autonomy is around the corner

and the vehicle can go for a day without a human driver

intervening . . . other days reality sets in because the edge cases

are endless . . . ” (The Information: August 28, 2018).
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46Cf. Raymond Tallis,How On Earth CanWe Be Free? https://philosophynow.org/

issues/110/How_On_Earth_Can_We_Be_Free.
47Within cognitive science there is an exciting new direction broadly defined by

the so-called 4Es: the Embodied, Enactive, Ecological, and Embedded approaches

to cognition (cf. Thompson, 2007); together, these offer an alternative approach to

meaning, grounded in the body and environment, but at the cost of fundamentally

moving away from the computationalist’s vision of the multiple realizability

[in silico] of cognitive states.
48An American autonomous driving technology development company; a

subsidiary of Alphabet Inc., the parent company of Google.
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