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While univariate functional magnetic resonance imaging (fMRI) data analysis methods
have been utilized successfully to map brain areas associated with cognitive and
emotional functions during viewing of naturalistic stimuli such as movies, multivariate
methods might provide the means to study how brain structures act in concert as
networks during free viewing of movie clips. Here, to achieve this, we generalized the
partial least squares (PLS) analysis, based on correlations between voxels, experimental
conditions, and behavioral measures, to identify large-scale neuronal networks activated
during the first time and repeated watching of three ∼5-min comedy clips. We
identified networks that were similarly activated across subjects during free viewing of
the movies, including the ones associated with self-rated experienced humorousness
that were composed of the frontal, parietal, and temporal areas acting in concert. In
conclusion, the PLS method seems to be well suited for the joint analysis of multi-subject
neuroimaging and behavioral data to quantify a functionally relevant brain network
activity without the need for explicit temporal models.

Keywords: functional connectivity, comedy, movie, networks, humor

INTRODUCTION

Converging evidence suggests that complex naturalistic scenes and stimuli elicit neuronal responses
more reliably than simplified stimuli in conventional laboratory experiments (Mechler et al., 1998;
Yao et al., 2007; Belitski et al., 2008). Accordingly, there is an emerging trend of using naturalistic
stimuli, including movies, TV shows, and musical pieces, to study human brain function (Hasson
et al., 2004; Jaaskelainen et al., 2008; Alluri et al., 2012; for review, see Hasson et al., 2010).
Such experimental techniques have been suggested to be more appropriate to probe the neuronal
responses related to complex cognitive processes common in our daily life, such as narrative
comprehension (Wilson et al., 2008; Regev et al., 2013) and movie watching (Hasson et al., 2004,
2008b; Jaaskelainen et al., 2008). Note that the sense of humor is a unique feature of human social
life and likely involves complex cognitive processes. Accordingly, the neural substrates responsible
for the sense of humor have been investigated using naturalistic stimuli, including cartoons (Moran
et al., 2004; Azim et al., 2005; Bartolo et al., 2006; Wild et al., 2006; Samson et al., 2008, 2009), short
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verbal passages (Ozawa et al., 2000; Goel and Dolan, 2001;
Uekermann et al., 2006; Watson et al., 2007; Bekinschtein et al.,
2011), and movie clips (Moran et al., 2004; Neely et al., 2012).

Typically, the waveforms from distributed brain areas
are found to be correlated during naturalistic stimulation,
corroborating the hypothesis that cognitive functions are mapped
at the level of multi-focal neural systems (Mesulam, 1990).
Distributed brain areas have been reported to be functionally
related to humor processing, including the inferior frontal gyrus
(Goel and Dolan, 2001; Mobbs et al., 2003; Azim et al., 2005;
Bartolo et al., 2006; Watson et al., 2007; Bekinschtein et al.,
2011), middle frontal gyrus (MFG) (Azim et al., 2005; Samson
et al., 2008), superior frontal gyrus (Bekinschtein et al., 2011),
middle temporal gyrus (MTG) (Moran et al., 2004; Bartolo et al.,
2006), temporal pole (Mobbs et al., 2003), supplementary motor
area (Mobbs et al., 2003), inferior parietal lobule (Ozawa et al.,
2000), and subcortical structures (Mobbs et al., 2003). From
this, it follows that the analysis of functional magnetic resonance
imaging (fMRI) data collected under naturalistic stimulation
would optimally consider the nature of diffusive functional areas
and their interactions.

Functional magnetic resonance imaging data obtained during
naturalistic stimuli are typically analyzed by calculating the
inter-subject correlation (ISC), which is done by first aligning
the brains of individual subjects and then calculating Pearson
correlations between the hemodynamic activity time courses
for each voxel (Hasson et al., 2004). This makes it possible
to inspect the degree of similarity in how the brains of
individual subjects respond to common naturalistic stimuli.
Such an analysis method does not require explicit temporal
model on the dynamics of the imaging data, which is often
difficult to describe when continuous naturalistic stimuli are
presented. Another analysis method is representational similarity
analysis (RSA) (Kriegeskorte et al., 2008), which explores the
correlation between brain responses and behavioral recordings
or stimulus features. However, both ISC and RSA as univariate
approaches have clearly one limitation: it ignores the potential
spatial correlation among brain areas, which is likely involved
in processing of naturalistic complex stimuli as argued above.
To circumvent this challenge, multivariate analysis methods,
such as the independent component analysis (ICA), have been
developed and applied to conventional fMRI experiments (for
review, see Calhoun et al., 2009). There have been pioneering
studies using ICA to disclose functional areas activated during
movie viewing (Zeki et al., 2003; Bartels and Zeki, 2004;
Jaaskelainen et al., 2008; Malinen and Hari, 2011; Calhoun
and Pearlson, 2012; Lahnakoski et al., 2012; Mantini et al.,
2012). These methods decomposed the gigantic four-dimensional
neuroimaging data directly. Physiologically sensible networks
were then identified when the time courses associated with
(spatial) independent components were significantly correlated
between subjects (Bartels and Zeki, 2004; Jaaskelainen et al., 2008)
and when the time course associated with the spatial independent
component and carefully annotated stimulus feature were
correlated (Lahnakoski et al., 2012). However, after multivariate
decomposition, the relative contributions of conditions and
interactions between conditions are typically unknown. This

poses the difficulty in providing explicit models to test hypotheses
using conventional approaches.

Instead of direct multivariate decomposition of the four-
dimensional neuroimaging data using either the principle
component analysis (PCA) or ICA (Erhardt et al., 2011;
Kauttonen et al., 2015), in the present study, we set forth to use
partial least squares (PLS), to analyze the correlation between
neuroimaging data, experimental conditions, and behavioral
measures (McIntosh et al., 1996; McIntosh and Lobaugh, 2004)
and to identify large-scale neuronal networks (for review and
tutorial, see Krishnan et al., 2011). To the best of our knowledge,
PLS has not been applied to reveal the neural underpinnings and
the behavioral correlates of the dynamic processing of complex
naturalistic stimuli.

In this study, we developed a PLS analysis method to reveal
the brain networks with synchronized neural or behavioral
dynamics when processing ecologically relevant stimuli. Then, we
used this method to discover the neurofunctional underpinnings
of the experienced humor during free viewing of comedy
clips. Specifically, the proposed PLS analysis decomposes an
effect space constructed by correlating either the experimental
contrasts of interest or a behavioral measurement of experienced
humorousness over time. Such decomposition discloses and
compares networks underpinning the cognitive processes.
Different from the direct decomposition of the neuroimaging
data, PLS analyzes the correlation between neuroimaging data
and hypotheses or behavioral measurements. This formulation
allows faster calculation and easier interpretation of the
decomposed spatial patterns in relation to experimental designs
and behavioral responses. Importantly, the estimated spatial
structure in each decomposed component naturally considers
the spatial correlation in the analysis. Based on the PLS
framework, we found spatial structures showing similar blood
oxygen level-dependent (BOLD) fMRI signal dynamics across
subjects during free viewing of humorous movie clips. We also
elucidated networks that had temporal waveforms closely related
to subjective rating of humorousness over time. PLS results were
compared with the conventional univariate analysis results to
show that the proposed multivariate analysis is more sensitive
in identifying neural correlates to the processing of complex
naturalistic stimuli. This multivariate network analysis approach
may be applied to analyze multi-subject neuroimaging data
without explicit temporal models.

MATERIALS AND METHODS

Subjects
Twenty healthy volunteers (age range 20–25; 12 females; normal
or corrected to normal vision) participated in the study.
A written informed consent was obtained from each subject
prior to participation. The study was run in accordance with the
guidelines of the Declaration of Helsinki, and ethics approval was
obtained from the Ethics Committee of the National Yang-Ming
University prior to commencing the research. Parts of data were
used in our recent univariate analysis on neural correlates to sense
of humor (Jaaskelainen et al., 2016).
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Stimuli and MRI Acquisition
The subjects were presented with three movie clips (4′33′′,
5′17′′, and 5′08′′ in duration) twice, in an order that was
randomized across subjects, during 3T (Tim Trio, Siemens,
Erlangen, Germany) fMRI [echo-planar imaging (EPI);
repetition time/echo time (TR/TE) = 2,000/30 ms, field
of view (FOV) = 220 × 220 mm, matrix = 64 × 64, slice
thickness = 4 mm, flip angle = 90◦]. The movie clips were
taken from comedy-genre movies “The Circus” and “City
Lights,” directed by Charles Chaplin and produced by Charles
Chaplin Productions in 1928 and 1931, respectively. There
were pauses of 2 min between the runs in order to wash
out the effects of the preceding clip. Prior to the fMRI, a
high-resolution T1-weighted anatomical (MPRAGE sequence,
TR/TI/TE/flip = 2,530 ms/1,100 ms/3.49 ms/7◦, partition
thickness = 1.33 mm, matrix = 256 × 256, 128 partitions,
FOV = 21 cm× 21 cm) scans were obtained from each subject.

Self-Reported Humor Ratings
Immediately after the fMRI session, the subjects were re-shown,
without advance warning, the three comedy movie clips and were
asked to rate, on a Likert scale running from 1 to 10, once every
15 s, the degree of amusement that they experienced in the first
viewing of the movies. A rating of 1 corresponded to lack of
experienced humor, and a rating of 10 corresponded to a high
degree of experienced humor. We asked participants to recall
the degree of humorousness in the first viewing outside the MRI
scanner in order to avoid the interruption of naturalistic viewing.
In our previous studies (Jaaskelainen et al., 2008; Nummenmaa
et al., 2012), it was shown that re-viewing the movie clip actually
serves as a robust cue for recall of experienced emotions. In fact,
in our previous analysis (Jaaskelainen et al., 2016), it was found
that ratings on the degree of humorousness in the first and second
viewings of movie clips were highly similar. These online ratings
also matched the recalled ratings in different participants, and the
ratings obtained with the instruction to recall the first viewing
correlated more closely with rating during the first vs. second
online viewing (Jaaskelainen et al., 2016). These subjective rating
waveforms were SINC interpolated to match the duration of the
fMRI measurements. Our previous analysis on these self-reported
humor ratings revealed no significant differences among three
movies (Jaaskelainen et al., 2016).

Functional Magnetic Resonance Imaging
Preprocessing
As described in our previous study (Jaaskelainen et al., 2016),
EPI data were first pre-processed by applying motion correction,
slice-timing correction, and spatial smoothing (3D isotropic
Gaussian kernel with the full width at half maximum = 10 mm).
Subsequently, individual-subject EPI data were first spatially
registered to individual anatomical data using the 12-parameter
affine transformation as implemented in FSL1 and then
transformed to cortical surfaces using a template (“fsaverage” in

1http://www.fmrib.ox.ac.uk/fsl/

FreeSurfer; version 5.1)2. Note that subsequent PLS analyzed EPI
data on the cortical surfaces.

Partial Least Squares Analyses
Here, we describe two versions of the PLS analysis to
disclose spatial structures showing correlated dynamics across
subjects (inter-subject PLS) and correlated temporal waveforms
in neuroimaging time series and behavioral measurement
(behavioral PLS). PLS is a multivariate analysis approach aimed
at revealing brain activation maps and the associated experiment
factors based on the partial correlation matrix between the
neuroimaging data and experimental designs or behavioral
measures (McIntosh et al., 1996).

Inter-Subject Partial Least Squares
To perform the PLS analysis, we first created a cross-correlation
matrix M. In inter-subject PLS, each entry M is the inner
product between the fMRI time series from two subjects at one
cortical location. Specifically, we first calculated the inner product
between a pair of subjects (mi and mj; i 6= j) at a specific brain
location s in an experimental condition with index c.

Mc
p,s =

〈
Dmi,c
:,S ,D

mj,c
:,S

〉
(1)

where p denotes the subject pair [p = 1, . . ., P;
P = 1/2(ns × (ns − 1)); ns is the total number of subject],
and Dmi,c

:,S denotes the time series of subject mi at brain location
s in condition c. In this study, the conditions of our interest
were: (1) three movies and (2) two repeated viewings of the
clips. Cross-correlation matrices of different conditions were
vertically concatenated.

M=

Mc1
•,•

...

Mcn
•,•

 , (2)

where ci’s were indices for conditions (i = 1, . . ., n). Mc1
•,• denotes

a sub-matrix M for condition c1 and cross-correlation for all
subject pairs and brain locations.

The next step of the PLS analysis is to construct a contrast
matrix, which quantitatively encodes the contrast of interest
by contrasting between conditions. In our study, we created a
contrast matrix C encoding both effects of watching individual
movies and distinguishing the effect between the first and second
viewings of a movie.

C =



1 0 1 0
0 1 1 0
1 0 0 1
0 1 0 1
1 0 0 0
0 1 0 0



←movie 1; 1st showing
←movie 1; 2nd showing
←movie 2; 1st showing
←movie 2; 2nd showing
←movie 3; 1st showing
←movie 3; 2nd showing

(3)

Note that the first two columns of C respectively explored
effects related to the first and second viewings of movies. The

2http://surfer.nmr.mgh.harvard.edu
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third and fourth columns of C respectively explored effects
related the first and second movies. No contrast was created to
specifically explore the effect related to the third movie, because
a linear combination of these four columns of C can create this
contrast. We cannot reduce the “viewing” contrasts from two to
one by ignoring one of the first two columns in C, because we also
want to reveal the grand average effect. It should also be pointed
out that each entry 1 and 0 here represents a column vector of
ones of length P, the total number of subject pairs. Subsequently,
we used singular value decomposition (SVD) to decompose the
effect space E as the product between M and C.

E = CTM

SVD(E) = USVT (4)

Functional networks related to all effects can be found in columns
of U, V, and diagonal entries of S. A combination of one column
of U, corresponding column of V and diagonal entry of S is
called one latent variable (LV). Specifically, the columns of V
are brain LV’s showing spatial distributions of the salience of
each network, whose correlates to experimental conditions can
be found in the corresponding columns of U (design LV’s),
denoting weightings in each contrast specified in columns of C.
Each diagonal entry of S denotes the relative contribution of
the corresponding network. More specifically, it is convenient
to calculate the product C × U to reveal the implication of
experimental conditions. Each column of C × U is called one
design score. The singular values in S quantified the amount of
variance by each network.

In this study, we created contrasts for individual movie clips
(Eq. 3). It may be speculated that other contrasts, such as a within-
task mean-centering one, may yield different results. However, if
the new set of contrasts has the same rank and spans as the old set
(contrasts of the new set are linear combinations of the old set),
the results will be identical. Let us use Cn to denote a new contrast
matrix, which is transformed from C by a unitary matrix T.

Cn = CTT

En = CT
nE = TE

SVD(En) = TUSVT
= UnSVT (5)

The design scores related to the new contrast matrix are identical
to those related to the old contrast matrix, because T is unitary.

CnUn = CTTTU = CU (6)

Brain LV’s were also identical using either C or Cn. Taken
together, transformation contrasts with a unitary matrix do not
change the PLS analysis.

The statistical significance of each LV was based on an
empirical null distribution estimated by permutation. This was
done by first randomly shuffling the time series of each subject
of each condition and each brain location. Specifically, we used

the adjusted amplitude Fourier transform (AAFT) algorithm
to ensure that the shuffled time series preserves the linear
correlation structure of the original time series (Theiler et al.,
1992). Accordingly, the correlation matrix based on shuffled time
series was constructed. The same contrast matrix was used to
build the effect space, which was then decomposed by SVD
to obtain LVs. This procedure was repeated 10,000 times. The
significance of an LV was then calculated by the proportion of
the singular value in this empirical null distribution exceeding
the singular value in the PLS analysis. The statistical significance
of each brain LV and design LV was assessed by a bootstrap
procedure, where Mc

p,s was created from randomly selected
subjects with replacement. The bootstrap was repeated 10,000
times, and a pseudo-Z score was calculated as the ratio between
the original brain LV and the standard deviation of bootstrap
samples. To control for multiple comparisons, we used the false
discovery rate (FDR) approach (Genovese et al., 2002). The
active brain areas estimated in each brain LV were automatically
clustered and identified using FreeSurfer with a 400-mm2

threshold. We summarized these brain areas by reporting local
maximal statistics of each cluster, Talairach coordinates of these
maximal statistics, the size of the clustered active area, and the
anatomical labels for each cluster.

Behavioral Partial Least Squares
To more directly disclose the network associated with behavioral
measurement, we modify the construction the correlation matrix
M. Specifically, with synchronous behavior waveforms during the
course of neuroimaging data acquisition, we can calculate the
correlation between these two measurements:

Mc
i,s =

〈
Dmi,c
:,S , Bmi,c

:

〉
, (7)

where i denotes the subject (i = 1, . . ., ns), Bmi,c
: denotes the

behavior waveform for subject mi in condition c, and Dmi,c
:,S

denotes the time series of the imaging data for subject mi in
condition c at brain location s. In this study, we recorded the
degree of “funniness” using Likert scale (1: the least funny; 10:
the most funny) for each movie clip from each subject after the
experiment. Importantly, the subjects were asked to recall the
degree of funniness of the first viewing of the movie.

After the calculation of the correlation matrix M, and effect
space E was constructed as described in the inter-subject PLS
by E = CTM, where C is the design matrix of our interest.
SVD was applied to decompose the effect space to disclose the
spatial structure of networks and relative loadings of contrasts
encoded in C.

The outcomes of SVD over E consist of left (U) and right
(V) orthonormal matrices and a diagonal matrix (S, Eq. 4).
Again, the columns of V are brain LV’s representing spatial
distributions of the salience of each network. The interpretation
of each network can be derived from linear combinations of
comparisons of experimental conditions in columns of U (design
LV’s). Each diagonal entry S denotes the relative contribution
of the corresponding network. The significances of LVs were
similarly evaluated by permutation (with shuffled behavioral
measurements), and the significances of the salience of brain
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LVs were quantified by the bootstrap procedure described above.
Brain LV’s in the behavioral PLS analysis were also automatically
clustered, summarized, and labeled using the same procedure
described in inter-subject PLS.

Figure 1 illustrates the processing flow for both inter-subject
PLS and behavioral PLS analyses. All calculations were performed
using MATLAB (MathWorks, Natick, MA, United States) on
a computational server (Intel Xeon CPU @ 2.2 GHz clock; 64
Gbytes memory; Ubuntu 12.04 release).

Comparison With Univariate Analysis
To compare results of PLS analysis with those of conventional
univariate analysis, we calculated the correlation (ISC) (Hasson
et al., 2004) and general linear model (GLM) of the fMRI
signals with the subjective rating of the degree of humorousness
to compare with inter-subject PLS and behavioral PLS results,
respectively. In both univariate analyses, two contrasts were
specifically examined: the effect related to viewing all movie clips
and the effect related to the difference between the first and
second viewings. The statistical significance of ISC was evaluated
by a subject-wise permutation test to control the false-positive
rate uniformly (Chen et al., 2016). The significance of maps in the
GLM of the fMRI signals with the subjective rating of the degree
of humorousness was quantified by shuffling the time series of
each subject of each condition and each brain location using the
AAFT algorithm (Theiler et al., 1992). These permutation tests
were performed 10,000 times. The p-values were taken as the
fraction of the occurrence of the results from the permuted data
exceeding those from the unshuffled data. The significance of
statistics due to multiple comparisons was adjusted by controlling
the FDR (Genovese et al., 2002).

RESULTS

Inter-Subject Partial Least Squares
The calculation of one inter-subject PLS analysis took about 1 s.
The first three LV’s were found to be statistically significant in
the permutation test with 100 iterations (p < 0.05). These three
LV’s accounted for 98.0, 1.0, and 0.8% of the variance in the effect
space. Each SVD decomposition took less than 1 s to complete.
The bootstrap procedure with 100 iterations took about 2 min to
complete. Figure 2 shows the design scores of the inter-subject
PLS. Specifically, the first LV can be considered as an average
effect of ISC across three movies and two repetitive viewings.
Note that the second viewing in all three movies accounted for
less variance of the effect space than the first viewing. This was
indicated by the relative strength in the design score of the first LV
(Figure 2). The second LV was interpreted as a contrast showing
the effect relative among movie clips, because movie 1 had large
positive values while movie 2 (and the second viewing of movie
3) had large negative values. The third LV indicated differential
sensitivity between the first and second viewings: it described an
effect of relatively increased ISC in the second viewing of movies
and relatively decreased ISC in the first viewing of movies.

Figure 3 shows the spatial distributions (brain LV’s) of the
inter-subject PLS analysis. A significant bi-hemispheric activity

in the visual cortex, planum temporale (PT), temporal–parietal
junction (TPJ), and lateral frontal lobe (particularly at the right
hemisphere) was observed in the first LV. This is consistent with
the previous univariate ISC analysis (Tohka et al., 2014). The
second LV depicted more clustered areas in the bi-hemispheric
TPJ, MFG, and right MTG. Note that the frontal activations in
both hemispheres and right supplementary motor areas were
found with significant but negative contribution in the second LV,
suggesting a stronger effect in movie 2 than in movie 1 in terms
of ISC. The third LV delineated areas explaining more ISC in the
first viewing than the second viewing (areas with negative values:
bi-hemispheric TPJ; more posterior than the TPJ areas in LVs 1
and 2) and the dorsolateral prefrontal cortex (DLPFC) as well as
more ISC in the second viewing than the first viewing [areas with
positive values: visual areas and lateral occipital lobes (LOLs)].
Table 1 lists the brain areas with significant clusters of activities
in the three LVs.

To validate the inter-subject PLS analysis, we analyzed the
fMRI data by calculating the inter-subject correlated fMRI signal.
These correlation maps were compared with the first and third
LV’s, representing the overall viewing effect and the difference
between the first and second viewings. The whole-brain fMRI
signals were significantly synchronized across participants in
viewing movies, except part of the left frontal lobe. We found
a good match between ISC and inter-subject PLS analyses
(Figure 4). Significant areas in the first LV include the visual
cortex, PT, TPJ, and lateral frontal lobes. In the third LV, inter-
subject PLS revealed that the fMRI time series at bilateral TPJ and
right DLPFC were significantly more synchronized in the first
viewing than in the second viewing. These areas were also found
close to areas identified by the ISC analysis. Note that the contrast
was coded in different-polarity PLS (PLS values were different
between the second and first viewings, while ISC values were the
difference between the first and second viewings).

Behavioral Partial Least Squares
The first three LV’s in the behavior-PLS analysis were found
significant in the permutation test (p < 0.01). These three LV’s
accounted for 80.6, 17.3, and 1.6% of the total variance in
the effect space. The computational time for each behavior-PLS
analysis was similar to that of the inter-subject PLS analysis,
because the size of the effect space was the same (about 2 min
for 100 bootstraps). Figure 5 shows the first three design scores.
From the design score, the first LV represented the average effect
on correlating the BOLD signal and subjective rating of the
humorousness. Therefore, the corresponding brain LV can be
interpreted as brain areas generally sensitive to the humorous
content in the movies. The second design score represented
a mixture effect of individual movie and repeated showing.
Specifically, it represented the relative weighting between the
first viewing of movie 1 and the average of two viewings of
movie 2 and the second viewing of movie 3, rendering this LV
the most difficult to interpret. The third design score indicated
the differential effect between the first viewing and the second
viewing of the same movie. The polarity of the third design
score suggested that the positive values in the third brain LV
represented brain areas more sensitive in the second viewing than
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FIGURE 1 | The workflow of inter-subject partial least squares (PLS) and behavioral PLS analyses, including the construction of an cross-correlation matrix M,
design matrix C, the effect space E, and the decomposition of the effect space, using singular value decomposition to reveal weightings of different contrasts and
the associated spatial distribution of the blood oxygen level-dependent (BOLD) signal.

FIGURE 2 | The first three significant design scores of the inter-subject partial
least squares (PLS) analysis. The error bars represent the standard deviation
estimated from 100 bootstrap steps.

the first viewing, and brain areas with negative values were more
active in the first viewing than the second viewing.

Figure 6 shows the three brain LV’s in the behavioral PLS
on inflated cortical surfaces. Significantly activated areas in the
first LV included the bi-hemispheric TPJ and right MFG. The
second brain LV included mostly the left and right frontal areas in
both medial and lateral aspects. The third brain LV included both
areas with positive and negative values. The areas with positive
values were clustered in the superior temporal sulcus (STS) in
both hemispheres and left frontal pole (FP), showing a positive
correlation between the BOLD signal and subjective rating of
humorousness in the second viewing and a negative correlation
in the first viewing of movies. Areas with negative values included
the superior, middle, and inferior frontal areas; right fusiform

FIGURE 3 | The first three significant brain latent variables of the inter-subject
partial least squares (PLS) analysis.

gyrus (FG); and right LOL. These areas had a positive correlation
between the BOLD signal and subjective rating of humorousness
in the first viewing of movies and a negative correlation in the
second viewing of the movie clips. Table 2 lists these significant
brain area clusters in three LVs.

We also analyzed the fMRI data using GLM to contrast the
behavioral PLS analysis (Figure 7). In particular, we examined
two contrasts: (1) the grand average of the correlation between
movie viewing and the experienced degree of humorousness and
(2) the difference in the correlation between movie viewing and
the experienced degree of humorousness in the first vs. second
viewing. No significant correlations were found by setting the
threshold to control the inflation of Type 1 error due to multiple
comparisons by controlling the FDR at 0.05. With the use of a
lower threshold (uncorrected p-value = 0.05), the GLM analysis
revealed that the fMRI signal fluctuations at bi-hemispheric
visual cortices were negatively correlated with the degree of
humorousness, while the fMRI signal fluctuations at the left TPJ,
right TPJ, left frontal lobe, left parietal lobe, and right parietal
lobe were positively correlated with the degree of humorousness.
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TABLE 1 | Effects and the related clustered activated brain loci, Talairach coordinates, brain area size, and anatomical labels in ISC-PLS analysis.

Latent variable Effect interpretation Hemisphere Max. value Area (mm2) x (mm) y (mm) z (mm) Anatomical label

1 Common inter-subject
correlation in movie
watching

Left 35.0 9,339 −33.6 −41.7 52.2 Superior parietal

35.0 3,271 −46.7 −49.2 44.5 Supramarginal

35.0 2,188 −52.4 14.7 15.2 Pars opercularis

35.0 1,638 −6.1 1.9 55.0 Superior frontal

35.0 503 −47.5 −53.8 11.0 Bank of the superior temporal
sulcus

34.0 1,767 −23.1 50.4 21.0 Superior frontal

Right 35.0 3,599 8.4 −58.7 37.7 Precuneus

35.0 10,057 44.8 1.5 35.8 Precentral

35.0 5,150 52.5 −33.1 −4.4 Bank of the superior temporal
sulcus

35.0 5,757 21.1 −78.7 −6.4 Lingual

2 Higher inter-subject
correlation in movie 1
watching than in movie
2 watching

Left 5.0 1,164 −63.6 −36.9 9.0 Superior temporal

5.0 860 −45.0 −4.7 45.1 Precentral

Right 5.0 2,011 59.2 −42.2 22.7 Supramarginal

5.0 1,288 65.3 −32.9 −4.7 Middle temporal

5.0 2,309 40.4 3.1 37.0 Caudal middle frontal

Higher inter-subject
correlation in movie 2
watching than in movie
1 watching

Left −5.0 926 −8.9 44.5 3.3 Rostral anterior cingulate

−4.7 798 −25.0 43.2 29.4 Superior frontal

−4.5 1,152 −31.7 32.2 −7.3 Lateral orbitofrontal

Right −5.0 1,287 27.2 −28.1 59.6 Postcentral

−5.0 1,001 7.8 42.6 −9.0 Medial orbitofrontal

−5.0 994 29.8 −92.1 0.8 Lateral occipital

−4.8 489 14.5 −36.9 58.7 Paracentral

3 Higher inter-subject
correlation at the
second view than at the
first view

Left 5.0 1,536 −46.6 −75.7 13.6 Lateral occipital

Right 5.0 1,302 47.6 −75.5 10.6 Lateral occipital

5.0 2,214 29.2 −53.6 −9.2 Fusiform

Higher
BOLD–humorousness
correlation at the first
view than at the second
view

Left −5.0 1,023 −44.7 −62.3 43.1 Inferior parietal

−4.7 1,080 −42.8 23.5 36.0 Caudal middle frontal

Right −5.0 816 53.2 −43.8 36.6 Inferior parietal

−5.0 1,358 39.0 33.0 28.9 Rostral middle frontal

−4.9 428 31.9 54.6 −9.6 Pars orbitalis

ISC, inter-subject correlation; PLS, partial least squares; BOLD, blood oxygen level dependent.

The left and right TPJs matched between GLM and the first LV
in the behavioral PLS analyses. Using FDR to control the error
in multiple comparisons, we found that the correlation between
fMRI time series and degree of humorousness in the first viewing
was not significantly different from that in the second viewing.
At a lower threshold (uncorrected p-value = 0.05), we found
that the correlation between fMRI time series and degree of
humorousness in the first viewing was larger at the bi-hemisphere
TPJ than that in the second viewing, while the third LV in the
behavioral PLS analysis suggested that bi-hemispheric STS and
DLPFC show the difference in the behavior–brain correlation
between repeated viewings.

DISCUSSION

In this study, we developed a computationally efficient method
to disclose spatial patterns of fMRI dynamics that are

similar across subjects during free viewing of movie clips
as well as jointly correlated patterns of the brain activity
and experienced humorousness. To our knowledge, this is
the first PLS-based multivariate analysis method to disclose
neural and behavioral correlates to complex naturalistic stimuli
processing. This is also the first functional connectivity analysis
to reveal networks showing a synchronous activity across
subjects and between individual’s brain activity and experienced
humorousness. Therefore, the findings of this study hold novelty
in both methodological development and cognitive neuroscience.
Specifically, inter-subject PLS revealed the visual cortex, TPJ, and
right frontal lobes showing strong synchronous BOLD signal
time courses across subjects during free viewing of the movie
clips (Figure 3). To further pinpoint networks related to humor
processing, behavioral PLS suggested that BOLD signals at bi-
hemispheric TPJ and dorsal lateral frontal lobes are closely related
to the subjective experience of humorousness during free viewing
of the comedy clips (Figure 6). Part of these areas matched the
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FIGURE 4 | Inter-subject correlation analysis discloses brain areas with fMRI
signals synchronized across participants during two repeated movie clip
viewings (top row) and the difference between the first and second viewings
(bottom row).

FIGURE 5 | The first three significant design scores of the behavioral partial
least squares (PLS) analysis. The error bars represent the standard deviation
estimated from 100 bootstrap steps.

results from the univariate ISC analysis (Figure 4) and GLM
of fMRI time series and subjective ratings of the degree of
humorousness (Figure 7). However, PLS detected more spatially
extensive and significantly activated brain areas, such as the
contrast between the first and second viewings (Figures 4, 7; the
third LVs in both inter-subject PLS and behavioral PLS). Taken
together, the proposed PLS method can be a tool to identify
brain networks supporting the processing of ecologically relevant
stimuli without the need of an explicit temporal model.

Our results corroborated with those of previous studies
on movie watching and humor processing. In particular,
the first brain LV in inter-subject PLS involving the visual
cortex, bi-hemispheric temporal parietal lobes, and right frontal
lobe matched the findings from previous studies on movie
watching (Hasson et al., 2004, 2008a, 2010; Kauppi et al.,
2010; Nummenmaa et al., 2012; Cantlon and Li, 2013). The
synchronous activity in these sensory, integrative, and high-
order areas across subjects suggested that movie information
was perceived in a similar manner. The first brain LV in
behavioral PLS revealed a set of brain areas showing correlated

FIGURE 6 | The first three significant brain latent variables of the behavioral
partial least squares (PLS) analysis.

dynamics of subjectively experienced humorousness and BOLD
signal, including the bi-hemispheric TPJs and right ventral lateral
prefrontal cortex. These temporal lobe areas have been previously
found to be active when subjects are watching cartoons (Moran
et al., 2004; Bartolo et al., 2006).

We included contrasts for individual movies (Eq. 3) in
order to provide more degrees of freedom in modeling the
correlation between neural activities or between a neural
activity and behaviors during viewing different movies. These
contrasts increased the dimension of the effect space. Some
LVs contrasting between movie clips, such as the second
LV in both inter-subject PLS and behavioral PLS, should
be interpreted as the stronger/weaker activity when viewing
different movies, instead of the neurofunctional representation
for a specific movie.

In this study, two movie clips were extracted from the same
movie. However, their scenes were quite different. Except for the
main character, no character was repeatedly shown in different
clips. In examining the design scores in both inter-subject-PLS
and behavioral PLS (Figures 2, 5), there was no effect clearly
related to two clips except for the same movie. Consequently, we
considered this concern to be relatively minor.

One essential aspect of the PLS analysis is that it is a data-
driven method capable of quantitatively disclosing interactions
between multiple contrasts of interests. In this study, we
investigated the selective and common aspects of humor
processing between different movie clips and how novelty affects
the feelings of mirthfulness when repeatedly showing the same
movie clips. While it is possible to encode these contrasts
using an explicit model, as in our preliminary findings (Tohka
et al., 2014), potential interactions among these effects are,
in fact, unknown. On the other hand, we first created an
effect space summarizing all effects of our interest. Then the
relative weightings of different contrasts were automatically
estimated in PLS via a multivariate decomposition (SVD in
our case). Accordingly, we found three separate networks
accounting for BOLD signal that correlated across subjects:
these respectively accounted for different effects: common to
three movies (the first), selective to one movie in relation to
the other two (the second LV), and the difference between the
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TABLE 2 | Effects and the related clustered activated brain loci, Talairach coordinates, brain area size, and anatomical labels in behavior–PLS analysis.

Latent variable Effect interpretation Hemisphere Max. value Area (mm2) x (mm) y (mm) z (mm) Anatomical label

1 Correlation between BOLD
signal and humorousness

Left 9.3 1,115.6 −52.1 −59.7 8.1 Middle temporal

9.0 374.6 −57.4 −40.9 36.7 Supramarginal

8.5 444.3 −56.9 −45.6 20.0 Superior temporal

Right 10.0 584.4 49.0 1.4 34.6 Precentral

10.0 3,138.4 57.8 −45.3 5.2 Bank of the superior
temporal sulcus

2 Higher BOLD–humorousness
correlation in movie 1 watching
than in movie 2 watching

Left 5.0 10,910.4 −6.6 42.3 −12.8 Medial orbitofrontal

5.0 681.9 −3.3 −87.8 −3.2 lingual

Right 5.0 9,891.2 6.6 37.0 13.2 Rostral anterior cingulate

3.9 465.2 36.4 −40.6 −5.5 Fusiform

3 Higher BOLD–humorousness
correlation at the second view
than at the first view

Left 4.9 1,024.5 −13.5 34.6 −19.9 Lateral orbitofrontal

Higher BOLD–humorousness
correlation at the first view than
at the second view

Left −3.8 409.4 −21.2 10.9 45.6 Superior frontal

−4.7 883.4 27.0 −81.3 −3.8 Fusiform

PLS, partial least squares; BOLD, blood oxygen level dependent.

FIGURE 7 | General linear modeling discloses brain areas with fMRI signals
correlating to the degree of humorousness in two repeated viewings (top row)
and the difference between the first and second viewings (bottom row). Color
codes for the p-values uncorrected for multiple comparisons.

first and second showing of three movies (the third LV). The
behavioral PLS similarly disclosed three networks accounting
for the correlation between BOLD signal and subjective rating
of humorousness. The capability of decomposing the collection
of neuroimaging data across experimental conditions and
hypotheses into separate spatially distributed patterns and
relative condition/hypothesis weightings exemplified the values
of the multivariate analysis.

Partial least squares is computationally efficient due to
the fact that multivariate decomposition, PCA in this study,
operated on the effect space with much reduced dimensionality
via the direct incorporation of hypotheses to neuroimaging
data in the construction of the PLS effect space. In this
study, if an effect space was not first constructed, one would
have had to decompose the fMRI data with up to 150 time
points per subjects. In the group PCA/ICA analysis using
temporally concatenated data, the temporal dimension can be
as large as 3,000 when 20 subjects were recruited. On the
contrary, PLS dramatically decreased this dimension to four
in both inter-subject PLS and behavioral PLS (the dimension

of the effect space). The reduced dimensionality in the PLS
improves not only the computational efficiency but also the
interpretation of LVs, because they were linear combination of
the proposed hypotheses.

Our proposed PLS analysis can be taken as a natural extension
of the original PLS method (McIntosh et al., 1996) and a later
application of PLS to event-related fMRI data (McIntosh et al.,
2004). Earlier versions of PLS need to obtain the event-related
responses, which are typically extracted from explicitly given
temporal markers corresponding to the onsets of specific stimuli.
On the contrary, experiments using complex and naturalistic
stimuli typically do not have any temporal markers to extract
neural responses time locked to specific events. In this study, we
demonstrated how to extend the PLS framework to reveal the
brain spatial features that account for the inter-subject correlated
brain activity across first and repeated viewing of different movie
clips. Our analysis considered the fMRI dynamics over the whole
interval of movie viewing without the need to extract any event-
related responses.

Inter-subject correlation or fMRI–behavior correlations are
required be calculated first in inter-subject PLS or behavioral PLS,
respectively. Then, SVD was used to decompose the effect space
to reveal related brain and design LVs. This is different from the
direct multivariate decomposition of neuroimaging data (Erhardt
et al., 2011; Kauttonen et al., 2015). When using ICA, such direct
decomposition is computationally intensive. On the contrary,
inter-subject PLS and behavioral PLS only need to decompose
an effect space of much smaller dimension, because the fMRI
time series dimension has been already compressed in ISC or
fMRI–behavior correlation calculation. Previously, we have also
proposed using ICA to decompose the effect space in PLS analysis
(Lin et al., 2003). There was no significant difference between
SVD and ICA decomposition in PLS using event-related fMRI
data; this question is yet to be answered in experiments using
naturalistic stimuli.
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The proposed PLS methods had the similarity and difference
to inter-subject RSA (IS-RSA) methods (Nummenmaa et al.,
2012; Nguyen et al., 2019; van Baar et al., 2019; Chen et al., 2020).
Like IS-RSA, the ISC-PLS approach used the fMRI waveforms
from pairs of participants to calculate an imaging correlation
matrix at each brain location (Eq. 1). Then, IS-RSA evaluates
the correspondence between the imaging correlation matrix and
behavioral response similarity matrix at each brain location
separately. Different from IS-RSA, ISC-PLS does not correlate
the imaging coefficient matrix with behaviors. ISC-PLS also
differs from IS-RSA by using SVD on the cross-correlation
between the imaging correlation matrices and comparisons of
experimental conditions across the whole brain to reveal sets
of brain areas corresponding to these cross-correlations (Eq. 4).
The spatial correlation between brain areas is naturally taken
into consideration by the SVD. To reveal the correspondence
between behaviors and brain signals, at each brain location,
we directly calculated behavior–imaging correlation matrices by
cross-correlating between the subjective rating and fMRI signal
dynamics (Eq. 7) without calculating their correlation matrices
separately as IS-RSA. Then, SVD was applied to the cross-
correlation between the behavior–imaging correlation matrices
and comparisons of experimental conditions across the whole
brain to reveal sets of brain areas corresponding to these
behavior–imaging cross-correlations.

In this study, we pre-processed data by spatial smoothing with
a kernel of 10-mm width. As various degrees of spatial smoothing
affect functional mapping and functional connectivity analysis
results, the optimal spatial smoothing remains to be studied
systematically in the near future.

In conclusion, PLS, a computationally efficient multivariate
analysis method, was adapted to reveal across-subjects consistent
networks during free viewing of humorous movie clips as well
as across-subjects consistent networks sensitive to subjective
ratings of humorousness. This method automatically identified
relative weightings of different contrasts and related neuronal
networks. Specifically, brain areas sharing common BOLD signal
dynamics across subjects when watching movies, selectively in
one particular movie related to others, and with differential
sensitivity to the first and second viewings of the same movies,
were identified. The PLS method also suggested three sets

of brain areas showing a close correlation between subject
ratings of humorousness and BOLD signal with differential
experimental condition sensitivities. Taken together, we believe
that PLS is a viable tool in functional network analysis when
continuous, complex, and naturalistic stimuli are used in
neuroimaging experiments.
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