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Recent times have seen increasing interest in conversational assistants (e.g., Amazon
Alexa) designed to help users in their daily tasks. In military settings, it is critical to design
assistants that are, simultaneously, helpful and able to minimize the user’s cognitive
load. Here, we show that embodiment plays a key role in achieving that goal. We
present an experiment where participants engaged in an augmented reality version
of the relatively well-known desert survival task. Participants were paired with a voice
assistant, an embodied assistant, or no assistant. The assistants made suggestions
verbally throughout the task, whereas the embodied assistant further used gestures
and emotion to communicate with the user. Our results indicate that both assistant
conditions led to higher performance over the no assistant condition, but the embodied
assistant achieved this with less cognitive burden on the decision maker than the
voice assistant, which is a novel contribution. We discuss implications for the design
of intelligent collaborative systems for the warfighter.

Keywords: intelligent virtual assistant, collaboration, cognitive load, embodiment, augmented reality

INTRODUCTION

In the near future, humans will be increasingly expected to team up with artificially intelligent
(AI) non-human partners to accomplish organizational objectives (Davenport and Harris, 2005;
Bohannon, 2014). This vision is motivated by rapid progress in AI technology that supports a
growing range of applications, such as self-driving vehicles, automation of mundane and dangerous
tasks, processing large amounts of data at superhuman speeds, sensing the environment in ways
that humans cannot (e.g., infrared), and so on. This technology is even more relevant given
the increasing complexity and dynamism of modern workplaces and operating environments.
However, the vision for AI will only materialize if humans are able to successfully collaborate with
these non-human partners. This is a difficult challenge as humans, on the one hand, do not fully
understand how AI works and, on the other hand, are often already overburdened by the task
(Lee and See, 2004; Hancock et al., 2011; Schaefer et al., 2016).
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This challenge is even more critical in military domains, where
warfighters are under increased (physical and cognitive) pressure
and often face life and death situations (Kott and Alberts, 2017;
TRADOC, 2018; Kott and Stump, 2019). Since the potential
costs of failure are higher, warfighters tend to be even more
reluctant to trust and collaborate with AI (Gillis, 2017). For these
reasons, it is important to gradually increase exposure of AI
technology to the warfighter through training that explains how
AI works, its strengths, but also its limitations. Complementary,
it is fundamental that, during mission execution, AI is capable
of actively promoting trust and collaboration by communicating
naturally, effectively, and efficiently with the warfighter, while
minimizing the warfighter cognitive load.

Cognitive load is commonly defined as the difference
between the cognitive demands of the task and the user’s
available cognitive resources (e.g., attention and memory)
(Hart and Wickens, 1990; Nachreiner, 1995; Mackay, 2000).
Several factors have been identified that influence cognitive load
but, broadly, it is possible to distinguish between exogenous
factors (e.g., task difficulty) and endogenous factors (e.g.,
information processing capabilities for perceiving, planning, and
decision making). Furthermore, individual factors, such as skill
and experience, influence cognitive load. The importance of
controlling cognitive load for task performance has been studied
across several domains, with several studies suggesting that
increased cognitive load can undermine performance (Cinaz
et al., 2013; Dadashi et al., 2013; Vidulich and Tsang, 2014;
Fallahi et al., 2016). More recently, there has been increasing
interest on the impact that technology has on worker’s cognitive
load. Much research has focused on the relationship between
automation and user’s boredom and mental underload (Ryu
and Myung, 2005), and its negative consequences on users’
ability to react in a timely manner during real or simulated
flight (Shively et al., 1987; Battiste and Bortolussi, 1988),
air combat (Bittner et al., 1989), air traffic control (Block
et al., 2010), and so on. However, another concern is that
technology may increase user’s cognitive load due to the
change of routine processes, stress due to the transition, and
general lack of understanding of how the technology works
(Mackay, 2000).

Intelligent virtual assistants offer a promising route to
promote collaboration between humans and AI, while controlling
the impact on the user’s cognitive load (Gratch et al., 2002).
Conversational assistants—i.e., intelligent virtual assistants that
can communicate through natural language—have, in particular,
been experiencing considerable commercial success—e.g., Apple
Siri, Amazon Alexa, and Microsoft Cortana (Hoy, 2018). The
basic premise is that advances in natural language processing
technology (Hirschberg and Manning, 2015) enable more
natural open-ended conversation with machines, which can then
provide information or carry out users’ instructions. Verbal
communication is also socially richer than other forms of
communication like text or email, as it can convey pragmatic
and affective information (Kiesler et al., 1984). Most current
commercial systems, though, only have limited ability to convey
this social richness through speech. Moreover, whereas natural
communication is expected to improve productivity, the impact

on users’ cognitive load from conversational assistants is still not
well understood.

A fundamental limitation of conversational assistants,
however, is their lack of embodiment and consequent
limited ability to communicate non-verbally. Non-verbal
communication plays an important role in regulating
social interaction (Boone and Buck, 2003). Expressions of
emotion, additionally, serve important social functions such
as communicating one’s beliefs, desires, and intentions to
others (Frijda and Mesquita, 1994; Keltner and Lerner, 2010;
van Kleef et al., 2010; de Melo et al., 2014). The information
conveyed by non-verbal cues, therefore, can be very important
in building trust and promoting cooperation with humans
(Bickmore and Cassell, 2001; Frank, 2004). Non-verbal
communication in technology systems is typically achieved
through robotic (Breazeal, 2003) or virtual agents (Gratch
et al., 2002). Because these systems are embodied, they support
non-verbal communication with users, including expression of
emotion. Research shows that embodied conversational assistants
can have positive effects in human–machine interaction (Beale
and Creed, 2002; Beun et al., 2003; Kim et al., 2018b; Shamekhi
et al., 2018), including building rapport (Gratch et al., 2006)
and promoting cooperation with users (de Melo et al., 2011; de
Melo and Terada, 2019, 2020). In the context of problem-solving
tasks, pedagogical agents have been shown to be able to improve
learning and task performance (Lester et al., 1997; Atkinson,
2002). These improvements are typically achieved through
gestures that focus the user’s attention or through affective cues
serving specific pedagogical purposes, such as motivating the
user (Schroeder and Adesope, 2014). Embodied conversational
assistants, therefore, hold the promise of having at least all
the benefits in terms of task performance as (non-embodied)
conversational assistants, while having minimal impact on the
user’s cognitive load.

With increased immersion afforded to the user (Dey
et al., 2018; Kim et al., 2018a), augmented reality (AR) has
the potential to further enhance collaboration with AI. AR
technology supports superimposition of virtual entities alongside
the physical space in the user’s field of view. Therefore, first,
interaction with AI systems can occur as the user is fully
immersed in the task and, second, virtual interfaces—such
as embodied assistants—can be integrated seamlessly in the
workspace. Increased user influence in AR environments often
occurs through an increased sense of social presence (Blascovich
et al., 2002). Kim et al. (2018b, 2019) investigated the effects of an
embodied conversational assistant on the sense of social presence
and confidence in the system and found that both factors
positively impacted users’ perception of the system’s ability to be
aware and influence the real world, when compared to a (non-
embodied) conversational assistant. Furthermore, participants
perceived increased trust and competence in embodied assistants
than the non-embodied counterparts. Wang et al. (2019) also
conducted a study investigating user preference for different
types of embodied or non-embodied assistants in AR while
performing a visual search task together, and showed that
participants preferred the miniature embodied assistant since the
small size made assistants “more approachable and relatable.”
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A telepresence study, in contrast, suggested that participants
were more influenced by an avatar, presumably representing
another participant, that was the same size as a real person
than by a miniature avatar (Walker et al., 2019); however, in
this study, both types of avatar were located at a distance from
the working environment and were not fully integrated in the
task space. Overall, this research, thus, suggests that embodied
conversational assistants in AR can be especially persuasive.

Here, we present an experiment where participants engaged in
a relatively well-known collaborative problem-solving task—the
desert survival task (Lafferty and Eady, 1974)—with an embodied
assistant, a voice-only assistant, and no assistant. The task is
implemented in an AR environment (Microsoft HoloLens). The
assistants attempt to persuade participants with information
pertinent to the task—e.g., “I heard the human body needs
certain amount of salt for survival. Why don’t you move it
up a bit?” They also provide general positive reinforcement
(e.g., “You are doing great!”) and show appreciation when the
participant follows the assistant’s suggestion (e.g., “Great! You
listened to my suggestion.”). Embodied assistants further smile
when making recommendations and, to focus the participant’s
attention, move toward and point to the target of the suggestion.
Our main hypothesis is that the embodied assistant will lead to
increased task performance, when compared to the voice-only
assistant (H1a); in turn, both assistants will lead to improved
performance relative to the no assistant condition (H1b). We also
look at participants’ subjective cognitive load and hypothesize
that embodied assistants will lead to lower cognitive load, when
compared to the voice-only assistant (H2). Finally, for the
assistant conditions, we also look at measures of social presence
and social richness (Lombard et al., 2009) and hypothesize that
both will be perceived to be higher with embodied than voice-
only assistants (H3). A preliminary report of these experimental
results was also presented at the IEEE Conference on Virtual
Reality and 3D User Interfaces (IEEE VR) 2020 (Kim et al., 2020).

EXPERIMENT

Methods
Design and Task
The experiment followed a within-participants design, with
each participant engaging in the desert survival task with no
assistant (control), a voice-only assistant, and an embodied
assistant. The presentation order for the assistant conditions
was counterbalanced across participants to minimize ordering
effects. Based on the original version of the desert survival task
(Lafferty and Eady, 1974), participants were given the following
instructions: “You are in the Sonoran Desert, after a plane crash.
You know you are 70 miles away from the nearest known
habitation. You should prioritize the items on the table, by the
importance of the item for your survival until you arrive there.”
The participant is then asked to prioritize between 15 items such
as bottle of water, jackknife, mirror, pistol, etc. This task has often
been used in human–machine interaction studies (Morkes et al.,
1998; Burgoon et al., 2000; Walker et al., 2019) for at least two
reasons: first, since the solution is not obvious, it introduces an

opportunity to test how persuasive a technology (e.g., a virtual
assistant) is on the participant’s decision making; and, second, it
has a clearly defined optimal solution1, which allows comparison
of different technological solutions on task performance.

Assistant Suggestions
The assistants in the voice and embodied conditions were trying
to help the participants make better decisions during the task
by providing suggestions that could potentially improve the task
score. The system recognized where the items were currently
located during the task and calculated the current survival score
continuously. In this way, the assistants could determine the item
to suggest to move, such that the participants could make the
largest improvement in the survival score if they followed the
suggestion. The recommendation, thus, would always improve
the score, with respect to the optimal solution, if followed. There
were both positive and negative suggestions for each survival
item, according to whether the suggestion was to move the item
up or down in the ranking. For example, the positive suggestion
for the flashlight was “The flashlight could be a quick and reliable
night signaling device. Why don’t you move it up a bit?” and
the negative suggestion was “I think the flashlight battery will
be gone very quickly, so it might not be as useful as you expect.
Why don’t you move it down a bit?” Table 1 shows the full list
of positive and negative suggestions for all items. There were
three different prompt variations for both moving up and down
suggestions, e.g., “I think it’s ok to move it up/down,” and “I guess
you can move it up/down more.” The assistant could also make
stronger suggestions expressing that the item position should
be adjusted a lot. For example, “I think you should move it
up/down a lot,” “Why don’t you move it up/down a lot in the
ranking?,” and “I’m sure you can move it up/down quite a lot.”
The assistants could make the same suggestions repeatedly if the
item was still the best option to improve the task score; however,
if there was nothing to change for the score, no suggestion was
provided. Participants received up to 10 suggestions from the
assistant throughout the task. It is important to know that the
assistants allowed the participants to decide whether they would
follow the assistant’s suggestions or not; thus, if they wanted to,
they could ignore the suggestion. After following suggestions,
the assistants performed appreciation prompts, such as “Thank
you for listening to my suggestion,” which could encourage
more compliance by participants for follow-up suggestions. The
assistant also gave general acknowledgment comments, which
included some variations of simple assuring comments, such as
“Okay,” “Good,” or “You are doing great so far.”

Voice-Only Assistant
Like other commercial systems (e.g., Alexa or Cortana), the
assistant had a female voice. The speech prompts included task
instructions, general acknowledgments, and the survival item
suggestions. The assistant’s speech was also displayed in text as
subtitles to the participant. Otherwise, the assistant had no visual
cue throughout the task.

1The optimal solution was based on the advice of Alonzo W. Pond, M.A., a survival
expert who was a former chief of the Desert Branch of the Arctic, Desert, Tropic
Information Center of the Air University at Maxwell Air Force Base.
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TABLE 1 | Positive and negative suggestions for the items in the desert survival
task.

Item Positive suggestion Negative suggestion

Air map The air map might be helpful to
check where you are heading
and how much you should go
further.

The air map might not be
useful, since you already know
the direction and the place
where you have to go.

Book You might need to hunt for
food, so the book about edible
animals seems useful.

Well, I guess the book about
edible animals is not so useful. I
think the problem could be
dehydration, not starvation.

Coat Well, I guess the top coat could
be a good means, for keeping
the moisture on your skin, and
protecting you from hot and dry
weather.

I guess the top coat might not
be useful, with hot weather in
the desert.

Compass The compass would guide you
the direction where you are
heading to.

You can guess the direction,
based on the Sun and the
Moon. The compass might be
of little use.

Compress Well, I think the compress kit
could be used as rope, or as a
further protection against
dehydration and sunlight.

The compass would guide you
the direction where you are
heading to.

Flashlight The flashlight could be a quick
and reliable night signaling
device.

I think the flashlight battery will
be gone very quickly, so it might
not be as useful as you expect.

Jackknife The jackknife would be useful
for rigging the shelter, and for
cutting up the cactus for
moisture.

I’m not sure, but maybe the
jackknife is not often used in
the desert.

Mirror I think the mirror could be quite
useful to communicate your
presence, by using the
reflection of sunlight.

I’m not sure if the mirror is that
important for your survival.

Parachute The parachute might be useful
as a shelter, or a signaling
device, and it could also be
used to make shade.

I guess the parachute might be
burdensome, to bring all day,
and I’m not sure how you
would use it.

Pistol I guess the pistol could be used
as a sounding device, and it is
good for protecting yourself
from wild animals.

I guess there are not many
dangerous creatures in the
desert, so the pistol might not
be that important.

Raincoat I think the plastic raincoat could
be useful, for protecting your
body moisture, and it might
even be used to extract some
water, by the temperature
differential.

It’s the desert. I’m not sure why
you would need raincoats.

Salt I heard the human body needs
certain amount of salt for
survival.

I guess the salt tablets would
just require more body water to
get rid of the increased salinity.

Sunglasses The sunglasses would make
eyes comfortable from the
intense sunlight.

I guess the sunglasses are not
that important. There should be
many other ways to protect
your eyes.

Vodka I guess the vodka could be
helpful for a fire, or as
temporary coolant for the body.

I think the vodka might not be a
good item to bring in the
desert. Alcohol would absorb
water.

Water Bottle I think it would be good to drink
the water, so you can remain
clear-headed, when important
decisions have to be made.

The water might not be that
important. I guess there could
be ways to easily get water in
the desert, like cactus.

Embodied Assistant
The embodied assistant was implemented as a female character,
as shown in Figure 1. Building on prior work indicating a
preference for miniature-sized characters (Wang et al., 2019), we
made the assistant miniature-sized. This decision also meant that
the assistant could move around the task space without forcing
participants to avert their gaze. The assistant was animated
with idle body motion and blinking and, when speaking, the
lip motion was synchronized with the speech. When making a
suggestion, the assistant would move next to the item in question
and make a pointing gesture (Figures 1a–c). If the participant
followed the suggestion, the assistant would also perform an
acknowledgment gesture, such as a bow or putting the hand
to the chest (Figures 1d–f). When making a suggestion or
acknowledging, the assistant would gaze at the participant and
show one of its smiling expressions (Figures 1h,i); otherwise, the
facial expression would be neutral (Figure 1g).

AR Implementation
The AR environment for the desert survival task was
implemented using Microsoft HoloLens technology and the
Unity game engine. To complete the task, participants had to
place real image markers illustrating the 15 survival items in
the order of importance on a virtual board, while experiencing
AR visual and auditory stimuli (Figure 2). The image markers
were attached to physical foam bases so that the participants
could intuitively grab them and move them around. To initiate
the task, participants first looked at the marker with a desert
image and put it on a start placeholder, which was virtually
displayed on the table through the head-mounted display. Once
the desert image marker was placed in the start placeholder, the
instruction and state boards virtually appeared with 15-item
placeholders on the table, where participants could place the
survival items in their chosen order. When the item was placed
in one of the placeholders, the placeholder turned to blue with
a clicking sound effect and a virtual image corresponding to the
item image was shown on it. Participants could freely re-order
the items and check the status of placed items via a state board
while performing the task. After all the 15 items were placed
in the item placeholders, a finish placeholder was shown in AR
next to the desert image marker, and the instruction guided the
participants to put the desert marker on the finish placeholder
to complete the task. Once participants placed the desert marker
on the finish placeholder, the task was completed, showing a
message that guided them to call the experimenter. The size of
each marker was 10 cm × 10 cm × 1 cm. The PTC Vuforia
Engine2 was used for marker recognition. The realistic voice
for the assistants was pre-recorded using the Julie English voice
from Vocalware’s text-to-speech3. The embodied assistant was
a custom 3D model created using Adobe Fuse4 and FaceGen5.
Body animations were created using Unity’s assets and inverse

2https://developer.vuforia.com/
3https://www.vocalware.com
4https://www.adobe.com/products/fuse.html
5https://facegen.com/
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FIGURE 1 | Embodied assistant gestures and facial expressions: (a–c) pointing gestures, (d–f) acknowledgment gestures, (g) neutral facial expression, (h) subtle
smile, and (i) strong smile.

FIGURE 2 | Desert survival task and assistant conditions: (a) participant’s physical space, (b) participant’s AR view for the no assistant (control) condition, (c)
voice-only assistant condition, and (d) embodied assistant condition.
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kinematics engine, as well as Mixamo6 animations. Please see the
Supplementary Material for a video of the software.

Measures
The main measure was the score in the desert survival task. Score
was calculated by summing the absolute differences between
the participant’s ranking and the optimal ranking. To make the
interpretation more intuitive, the sum of the differences was
negated. This way, the best score was zero, which means all the
items in the participant’s ranking match the optimal solution. The
task performance gets worse as the score moves further along
the negative scale.

To measure subjective cognitive load, we used the NASA
Task Load Index (NASA-TLX) scale (Hart, 2006). Subjective
scales are often used to measure cognitive load as they tend
to be less intrusive than physiological scales (Meshkati et al.,
1992). Even though several other subjective scales have been
proposed (e.g., SWAT, Workload Profile), the NASA-TLX scale
is still one of the most widely used and is sensitive to cognitive
load, highly correlated with task performance, highly correlated
with other subjective scales, but may be outperformed by other
scales in task discrimination (Rubio et al., 2004). The NASA-TLX
consists of six questions, each corresponding to one dimension
of the perceived workload. For each dimension (mental demand,
physical demand, temporal demand, performance, effort, and
frustration), the participants provide a score on a scale, from
“Very low” to “Very high,” consisting of 21 tick marks effectively
identifying 5% delimitations on a scale of 0 to 100%. Participants
then provide weights for each of the six dimensions via a series of
binary choices to assess which dimensions were most important
for the task; these weights are then factored into the final score by
multiplying them with the dimension scores.

Regarding social presence, we adopted the social presence sub-
scale from the Temple Presence Inventory (TPI) questionnaire
(Lombard et al., 2009) and slightly modified it to assess
participants’ sense of togetherness in the same space with the
assistant, and the quality of the communication/interaction
between them. The scale consists of seven questions on a seven-
point scale (1, not at all, to 7, very much). We used this
questionnaire only for a subjective comparison of the assistant
conditions, i.e., the voice-only vs. embodied assistant conditions.
For social richness, we adopted the social richness sub-scale from
the TPI questionnaire (Lombard et al., 2009) to assess the extent
to which the assistant is perceived as immediate, emotional,
responsive, lively, personal, sensitive, and sociable. All the items
for social richness are seven-point semantic differential scales
(e.g., 1, remote, to 7, immediate). We also used this questionnaire
only for the assistant conditions.

Procedure
Once participants arrived, they were guided to our laboratory
space by an experimenter. They were asked to sit down in a
room with a table and a laptop PC for answering questionnaires
and were provided with the consent form. Once they agreed to
participate in the experiment, they donned a HoloLens and went

6https://www.mixamo.com/

through the calibration procedure on the HoloLens to set their
interpupillary distance. Afterward, participants had a practice
session to learn how to use our marker-based interface by placing
five animal markers. In this practice phase, they were asked to
place the five animal markers in their preferred order on the table
while experiencing AR visual feedback similar to the task. The
experimenter was present next to the participants to answer any
questions that they might have during the practice phase, while
explaining the way to place and re-order the items. Once they felt
comfortable with the marker-based interface, the experimenter
described their actual task, the desert survival task, and the goal
to prioritize the 15 items for their survival in a desert. In the
description, participants were told that they were going to take
part in the same task three times with some variations. Then,
the first session started with one of the experimental conditions:
either the control, the voice-only, or the embodied condition
as described above. After completing the task, the participants
were guided to complete several questionnaires measuring their
perception of the experience in the desert survival task with
or without assistant. When they were done answering the
questionnaires, the experimenter guided them to repeat the same
task in the next condition. Once the participants completed
all three conditions, they answered further demographics and
prior experience questionnaires, assessing their familiarity and
experience with AR and virtual assistant technology. The
participants were not informed about their performance on the
survival task throughout the experiment. At the end, participants
were provided with a monetary compensation ($15). The entire
experiment took about an hour for each participant.

Sample
We recruited 37 participants from the University of Central
Florida population for the experiment. Thirty-six participants
completed the entire experiment, while one withdrew for
personal reasons. We further excluded two more participants
due to a failure to record data; thus, we had 34 participants
(25 male and 9 female, ages 18 to 33, M = 21.90, SD = 4.10)
for the analysis. All participants had normal or corrected-to-
normal vision—12 with glasses and 7 with contact lenses. On
a seven-point scale (from 1, not familiar at all, to 7, very
familiar), the level of participant-reported familiarity with AR
technology was comparatively high (M = 4.56, SD = 1.33).
All participants had fewer than 10 previous AR head-mounted
display experiences, and it was the first experience for 13 of
them. Participants were also asked about their frequency of using
commercial conversational assistant systems, such as Amazon
Alexa, Apple Siri, or Microsoft Cortana. Their responses varied
from no use at all to frequent daily use: eight participants
indicated multiple times per day, two indicated once a day, eight
indicated once a couple of days, seven indicated once a week,
three indicated once a month, and six indicated no use at all. Five
participants had prior experience with the desert survival task or
closely related tasks.

Results
For task performance and subjective cognitive load, we ran a
repeated-measures ANOVA and conducted post hoc comparisons
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with Bonferroni corrections. For cases where sphericity was not
assumed, based on Mauchly’s test, we used the Greenhouse–
Geisser correction if the Greenhouse–Geisser epsilon was lower
than 0.750 or, otherwise, the Huynh–Feldt correction. For social
presence and social richness, we conducted repeated measures
t tests to compare the voice-only vs. embodied assistant scores.
Figure 3 and Table 2 show the descriptive statistics for the
experimental results.

Task Performance
The participants’ scores in the desert survival task are shown in
Figure 3A. Recall that the optimal score is zero and that lower
scores are worse. The analysis revealed a main effect for the
assistant conditions, F(2,66) = 10.166, p < 0.001, η2

p = 0.236.
Post hoc comparisons revealed that the score with no assistant

was worse than with the voice-only (p = 0.002) and embodied
assistants (p = 0.005); moreover, there was no statistically
significant difference between the voice-only and embodied
assistants (p = 1.000). The results suggest that assistants were
able to improve participants’ performance, confirming hypothesis
H1b; however, we found no support that embodied assistants
improved performance when compared to voice-only assistants
(hypothesis H1a).

Since we followed a within-participants design, we also wanted
to get insight into any possible order effects. Accordingly, we
ran a repeated-measures ANOVA on the task scores for the
1st, 2nd, and 3rd games. The results confirmed an order effect,
F(1.405,66) = 16.029, p < 0.001, η2

p = 0.327: participants got
the lowest score, averaged across all assistant conditions, on
the 1st game (M = −63.35, SD = 19.974), followed by the

FIGURE 3 | Task performance (A), cognitive load (B,C), social presence (D), and social richness (E) experimental results. The error bars correspond to standard
errors. ∗p < 0.05.
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TABLE 2 | Means and standard errors for task performance, cognitive load, social presence, and social richness for all assistant conditions.

No assistant Voice assistant Embodied assistant

Mean SE Mean SE Mean SE

Performance −62.71 3.67 −50.88 3.65 −52.29 3.40

Subjective cognitive load 23.73 3.03 29.37 3.26 25.94 3.06

Mental demand 26.62 4.25 33.97 4.10 28.53 4.07

Physical demand 18.09 3.74 19.12 3.67 18.68 3.73

Temporal demand 11.18 2.70 12.21 2.76 13.68 2.50

Performance 27.79 6.33 31.18 6.11 30.44 6.43

Effort 21.91 3.74 28.09 3.94 24.12 3.75

Frustration 7.21 2.24 16.62 3.47 18.53 3.61

Social presence – – 3.59 0.20 4.60 0.19

Social richness – – 4.05 0.18 4.55 0.16

2nd game (M = −54.29, SD = 20.704), and, finally, the 3rd
game (M = −48.24, SD = 20.986). This result suggests that there
were learning effects with participants becoming more proficient
at solving the task with each attempt, independently of the
experienced assistant condition order. Nevertheless, the score
pattern with the assistants in the 1st, 2nd, and 3rd games was the
same as reported in the previous paragraph, though the effect was
only statistically significant in the first game (1st game: p = 0.023,
2nd game: p = 0.168; 3rd game: p = 0.203).

Subjective Cognitive Load
Following the established method, the NASA-TLX scores were
calculated by summing the weighted sub-dimension scores (Hart,
2006). The overall task load results are shown in Figure 3B and
the dimensions are shown in Figure 3C. The analysis revealed
a main effect for subjective cognitive load, F(1.631,66) = 5.243,
p = 0.012, η2

p = 0.137. Post hoc comparisons confirmed that
the voice-only assistant led to higher load than no assistant
(p = 0.015) and embodied assistant conditions (p = 0.026).
There was no statistical difference between the no assistant and
embodied assistant conditions (p = 0.864). The result, thus,
confirmed that embodied assistants led to lower cognitive load
than voice-only assistants, in line with hypothesis H2. When
looking at the NASA-TLX’s underlying dimensions, there was
a trend for a main effect on mental demand—F(2,66) = 2.607,
p = 0.081, η2

p = 0.073—and effort—F(2,66) = 2.020, p = 0.141,
η2

p = 0.058—in line with the overall effect on cognitive load. In
contrast, there was a main effect on frustration, F(2,66) = 8.230,
p = 0.001, η2

p = 0.200, with participants reporting increased
frustration with the voice-only (p = 0.016) and embodied
assistants (p = 0.004) when compared to no assistant. This may
have occurred because the recommendations were perceived as
repetitive in some cases—for instance, one participant noted “the
person slightly annoyed me, she kept repeating the same advice
that I clearly did not care about”.

Social Presence and Social Richness
Regarding social presence, the analysis revealed a statistically
significant difference between the assistants, t(33) = 4.568,
p < 0.001, d = 0.622, with participants experiencing higher social
presence with embodied than voice-only assistants (Figure 3D).

The results also showed an effect on social richness, t(33) = 2.565,
p = 0.015, d = 0.408, with participants experiencing higher social
richness with embodied than voice-only assistants (Figure 3E).
Thus, the results confirmed our hypothesis H3.

GENERAL DISCUSSION

As AI technology becomes pervasive in the modern workplace,
teams consisting of humans and machines will become
commonplace, but only if AI is able to successfully collaborate
with humans. This requirement is even more critical in
military domains, where warfighters are engaged in high-stakes,
complex, and dynamic environments and, thus, under immense
cognitive pressure (Kott and Alberts, 2017; Kott and Stump,
2019). Here, we present evidence suggesting that intelligent
virtual assistant technology can be a solution for improving
human task performance, while controlling cognitive load. Our
experimental results indicate that, in an abstract problem-solving
task, participants were able to produce higher-quality solutions
when partnered with assistants, when compared to no assistants.
Unlike our initial expectations though, embodied assistants
did not improve performance over voice-only assistants. Prior
research suggests that the ability to communicate non-verbally—
e.g., bodily postures and facial expressions—can lead to increased
rapport (Gratch et al., 2006) and cooperation (de Melo et al.,
2011, 2014; de Melo and Terada, 2019, 2020) with users and,
consequently, improved performance in collaborative tasks. In
this case, though, it seems that the information communicated
verbally had the most relevance for task performance, as
suggested by some of the participants’ comments:

P4: “the assistant was very helpful, giving critical information in
such a stressful situation if it happens in real world.” P7: “The
interaction of the assistant was overall beneficial, as it brought up
many things I wouldn’t have thought of.” P12: “The information
provided by the assistant were great, it helped me prioritize items
better.”

Interestingly, even though both assistants produced a bump
in performance, the embodied assistant accomplished this with
minimal impact on cognitive burden, as measured by the
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NASA-TLX scale, when compared to the voice-only assistant.
This is particularly relevant given the attention that voice-
only assistants—e.g., Amazon Alexa, Apple Siri, Microsoft
Cortana—have been receiving (Hoy, 2018). Prior work with
embodied assistants, especially in pedagogical applications, has
been inconclusive about the impact of embodiment on cognitive
load (Schroeder and Adesope, 2014): in some cases, post-tests
were easier after interaction with an embodied agent (Moreno
et al., 2001); in other cases, embodied agents led to increased
cognitive load for learners, even though there was no impact
on performance (Choi and Clark, 2006). Mayer’s multimedia
learning theory can provide insight here (Mayer, 2001).
Accordingly, there are two fundamental channels (auditory
and visual) and optimal learning occurs when information is
optimized across the channels—e.g., embodied agents would not
produce an effect if they are redundant or irrelevant to the
task (Craig et al., 2002). In our case, though, the embodied
assistant was serving clear functions above and beyond the voice-
only assistant: through facial expressions, it smiled when making
suggestions; through its virtual body, it moved and pointed to
the target of the suggestions; and, generally, through subtle cues
(e.g., idle motion or blinking), the assistant conveyed a human-
like presence in the task. The experimental results confirm that
these kinds of non-verbal cues have meaningful impact on users’
subjective cognitive load. Participants’ comments, such as the
one below, support the notion of a benefit of visual embodiment
for helping participants feel more comfortable in collaborative
situations with virtual assistants:

P28: “I like that the assistant is naturally in front of you and given
at the same time as I worked rather than pausing just to listen to
what she had to say.”

The results also showed that participants experienced
higher social presence with embodied assistants than
conversational assistants. Social presence relates to the ability of
a communication medium to convey the sense that the user is
immersed in the communication space and engaging in social
interaction just as if it were face-to-face interaction (Short et al.,
1976; Lowenthal, 2010). Research indicates that immersive
technology—such as virtual or AR—have the potential to provide
an increased sense of social presence, when compared to other
media, such as phone or desktop (Blascovich et al., 2002).
Our results, thus, support the idea that AR afforded increased
immersion in the interaction with the embodied assistant,
which may have contributed to reduced cognitive load. Related
to the social presence effect, our results further indicate that
participants perceived higher social richness with the embodied
than the voice-only assistant. This suggests that people were more
likely to treat interaction with the embodied assistant in a social
manner, as if they were interacting with another human. This is
in line with prior research indicating that increased human-like
cues (Reeves and Nass, 1996) and immersion (Blascovich et al.,
2002) can lead users to treat human–agent interaction like
human–human interaction (Reeves and Nass, 1996; Mayer et al.,
2003), which can lead to positive effects in terms of engagement,
motivation, and interest (van Mulken et al., 1998; Atkinson,
2002; Moreno, 2005; Schroeder and Adesope, 2014). The social
richness of the experience with the embodied assistant, thus,

may have played a role in reducing the participants’ subjective
cognitive load while performing the task.

The current work has limitations that introduce opportunities
for future work. First, we have only explored simple emotion
expression in the current work, with the assistant only showing
various smiles throughout. However, research indicates that
the social impact of emotion expressions depends on context
(Hess and Hareli, 2016), and even smiles can lead to reduced
cooperation when timed improperly (de Melo et al., 2014).
Future work should consider more sophisticated emotion
communication, which may lead to increased persuasiveness
by the assistant (Shamekhi et al., 2018) and, ultimately, better
performance. Second, our current speech synthesizer—like most
commercial systems—has limited expressive ability. However, as
speech technology improves, it will become possible to increase
the bandwidth of multimodal expression (Gratch et al., 2002).
Optimized multimodal expression can, then, lead to optimized
transfer of information, learning, and performance (Mayer,
2008). Third, the current within-subjects design with a relatively
small sample size could influence the participants’ performance
and perception. Future work should complement the present
work with between-subject designs. Still, when we compared
the participants’ first trials as between-subjects comparisons, we
found promising trends corresponding to our present results
although not all the measures showed statistical significances,
which encourages us to consider a further investigation in a
between-subjects design with a large sample size. Fourth, we
used Microsoft HoloLens in our experiment, but this was still
the first generation of the prototype and, in practice, some
participants still complained about the weight and bulkiness of
the device. As AR head-mounted displays become better (e.g.,
lighter and supporting wider field of views), we can expect
increased immersion and impact of embodied assistants. Sixth,
we measured subjective cognitive load using the NASA-TLX
scale; however, these findings should be complemented with
physiological measures of cognitive load (Meshkati et al., 1992).
Seventh, whereas the desert survival task captures many relevant
aspects of collaborative problem solving, it is worth conducting
further experimentation in more complex realistic tasks and
attempt to replicate the effects reported here. Finally, the current
prototype only implemented simple AI (e.g., to determine
optimal suggestions and whether the participant followed
suggestions), but it is possible to embed more intelligence and
autonomy into assistant technology; the higher the autonomy, the
more important is non-verbal behavior likely to be (Gratch et al.,
2006; de Melo et al., 2011, 2014; de Melo and Terada, 2019).

Finally, the present work has important practical implications.
The results confirm that assistant technology can improve task
performance, if deployed appropriately. Even with a voice-
only assistant, we were able to show a clear improvement
in problem solving performance. Given the pace of evolution
of natural language processing technology (Hirschberg and
Manning, 2015), we can expect voice-only assistants to keep
playing a pervasive and influential role. However, the results
clearly indicate that voice-only assistants are fundamentally
limited due to their inability to communicate non-verbally.
Embodied assistants have the capability to engage users
multimodally—like humans do (Gratch et al., 2002)—and
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complement the information conveyed through speech with
appropriate gestures and emotion. Given increasing evidence of
the important role of non-verbal and emotional expression in
social interaction (Frijda and Mesquita, 1994; Boone and Buck,
2003; Keltner and Lerner, 2010; van Kleef et al., 2010; de Melo
et al., 2014), developers and designers cannot afford to ignore
the value of embodiment for assistant technology. Our results
indicate that, by using non-verbal cues judiciously, we are able
to control the users’ cognitive load while boosting performance,
which is particularly critical when the stakes are high. This means
that warfighters would be able to benefit from recommendations
and actions of the assistant technology, while being able to
focus their cognitive resources on other aspects of the task.
Alternatively, this would support even more communication
exchange and interaction with assistants, without overburdening
the warfighter. The fast pace of development in AI technology
and experimental research such as the one presented here clarifies
how best to deploy this technology and introduces unique
opportunities to create assistant technology that is immersive,
feels like social interaction, is engaging and, most importantly,
can promote optimal performance for the modern workforce and
the warfighter in increasingly complex operating environments.
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