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Melody prediction is an important aspect of music listening. The success of prediction,

i.e., whether the next note played in a song is the same as the one predicted by

the listener, depends on various factors. In the paper, we present two studies, where

we assess how music familiarity and music expertise influence melody prediction in

human listeners, and, expressed in appropriate data/algorithmic ways, computational

models. To gather data on human listeners, we designed a melody prediction user

study, where familiarity was controlled by two different music collections, while expertise

was assessed by adapting the Music Sophistication Index instrument to Slovenian

language. In the second study, we evaluated the melody prediction accuracy of

computational melody prediction models. We evaluated two models, the SymCHM and

the Implication-Realization model, which differ substantially in how they approachmelody

prediction. Our results show that both music familiarity and expertise affect the prediction

accuracy of human listeners, as well as of computational models.

Keywords: music similarity, music perception, music information retrieval, implication-realization model,

compositional hierarchical model, melody prediction

1. INTRODUCTION

One of the main aspects of listening to music is the tendency of the brain to constantly predict
the upcoming melodic events. How human listeners perform the ongoing prediction of music
is influenced by (i) their general music expertise and by (ii) their familiarity with the type of
music they are listening to. These two concepts are two facets of the knowledge that listeners
possess. Music knowledge, in the widest sense, is acquired in various ways, either through formal
music training or just by listening to music regularly. The research topic of melody prediction
has been extensively studied from the perspective of psychology (e.g., Rohrmeier and Koelsch,
2012; Egermann et al., 2013) and neuroscience (e.g., Zatorre et al., 1994; Thiessen and Saffran,
2009; Lappe et al., 2013). In recent years, research on understanding human melody prediction has
crossed over to the development of computational models that perform melody prediction. The
knowledge that such models use, typically stems from a dataset that the researchers develop or
train their models on. The question is how do models, trained on a dataset, and humans, trained
through years of listening to music, compare in terms of melody prediction. We conjecture that
the algorithms, just like humans, perform better at melody prediction on familiar music, i.e., on
music that resembles the music they have been trained on. We also conjecture that algorithms that
are agnostic of music culture perform equally well on music from different cultures. We compare
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melody prediction performance of the algorithms to that of
humans and shed light on how much expertise and familiarity
is required to train an algorithm to perform comparably well
to humans.

1.1. Problem Formulation
The problem of melody prediction can be posed and evaluated
in two ways. In a strict way, the predictor (human or algorithm)
needs to predict the exact note that follows an initial set of
notes of a song. In this case, there is only one possible correct
prediction: i.e., the next note in that particular song. However,
we can relax the requirements for prediction and treat as correct
each prediction that makes sense from a musical perspective. For
example, the songs If You Don’t Know Me By Now by Harold
Melvin and the Bluenotes and Take it to the Limit by The Eagles
start with an identical sequence of notes but at some point begin
to diverge1. If a predictor was asked to predict the first note
that diverges, the correctness of the prediction would depend on
whether the ground truth was the first or the second song. In this
work we use both strict and relaxed evaluation—for the latter, we
devise a methodology for evaluating melody prediction based

on music theory.
Before proceeding to the next research question, we need

to define the terms familiarity and expertise. They are both
related to knowing music, but in ways that make them two
separate concepts. The term expertise is related either to a more
formal way of obtaining broad musical knowledge or intense
engagement with music, whereas familiarity is related to the
informal acquisition of musical knowledge. One could argue
that being an expert in music makes one also familiar with (a
specific type of) music. However, with different music cultures,
we may encounter different expertise-familiarity scenarios. If we
consider European and Chinese listeners and Chinese music,
four scenarios are possible: (i) low general music expertise and
low familiarity with Chinese music (e.g., a European listener
with low music education), (ii) low general music expertise and
high familiarity with Chinese music (e.g., a Chinese listener with
low music education), (iii) high general music expertise and low
familiarity with Chinese music (e.g., a European listener with
high musical knowledge), and (iv) high general music expertise
and high familiarity with Chinese music (e.g., a Chinese listener
with high music education). While the cases (i) and (iv) are
intuitive, (ii) and (iii) require more attention. In the case of
(ii), the listener has not received formal music education but
has been exposed to Chinese music throughout her life. The
assumption is that this exposure has given the listener implicit
music knowledge. This knowledge could allow her to continue
correctly a melody, if it is similar to the melodic patterns (i.e.,
sequences of notes with similar characteristics) that she has been
exposed to although she might not be able to describe why. In
the case of (iii), the listener has high general musical knowledge
but has not been exposed to Chinese music. In the melody
continuation scenario, the listener could likely choose a tone that

1The reader may find a lot of similar sets of songs, for example The Kinks: All Day
And All Of The Night vs. The Doors: Hello, I Love You or the triple Mike Oldfield:
Tubular Bells vs. Death Angel: The Ultra-Violence vs. Possessed: The Exorcist

is correct from themusical theory perspective, but happens rarely
in Chinese music. Hence, expertise and familiarity, although
correlated, should be treated as two separate variables.

The examples in the previous paragraph are illustrative only
and do not reflect our experimental design. In section 3, we
describe in detail which familiarity categories (with European or
Chinese music) and which expertise categories the subjects fall
into. Furthermore, we must distinguish between the concepts of
expertise and familiarity on one hand and how we operationalize
them for the purpose of our study on the other hand. As described
in section 3, we operationalize the expertise using the Musical
Sophistication Index instrument (Müllensiefen et al., 2014). In
order to operationalize the familiarity we used the cultural
background, e.g., we assume Europeans are not familiar with
Chinese music but are familiar with European music.

In addition to the question about the melody prediction,
we also address the following question: Do expertise and

familiarity influence the melody prediction of humans? In
order to answer this question we devised an experiment where
we asked subjects from a homogeneous cultural background
(Slovenians with different levels of musical expertise) to predict
the melody ofWestern (i.e., familiar) and non-Western (Chinese,
i.e., non-familiar) songs. In order to measure their expertise,
we adapted the Music Sophistication Index (MSI) instrument

(Müllensiefen et al., 2014) to the Slovenian language, which is
an additional contribution of this paper.

Finally, we evaluate how algorithms perform in melody

prediction. We evaluated the performance of two algorithms,
(i) the Implication-Realization (I-R) model developed by
Narmour (1990), which is agnostic of musical culture, and
(ii) the Compositional Hierarchical Model for symbolic music
representations (SymCHM) developed by Pesek et al. (2017b),
which is trained on a dataset of songs and hence biased toward
familiar songs.

2. RELATED WORK

In this section, we first survey work on human music prediction
from psychology and neuroscience, which demonstrates that
familiarity and expertise influencemelody prediction, supporting
our rationale for the work presented. We then proceed on
surveying algorithms for melody prediction, in particular how
they use existing knowledge and what methodologies have been
proposed for melody prediction. Lastly, we survey work on tonal
hierarchies that will be used as the theoretical background for
constructing the relaxed evaluation criterion.

2.1. Culturally-Dependent Human Melody
Prediction
Music from different cultures activates similar brain areas, as
shown by Morrison and others in their functional magnetic
resonance imaging experiment (Morrison et al., 2003), but there
are differences in brain activity between the situations in which
one listens to the music of their own cultural background vs.
that of a foreign culture. The cultural influence has also been
demonstrated for genre preference (Soley and Hannon, 2010),
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perceived mood estimation (Balkwill and Thompson, 1999), and
musical memory (Demorest et al., 2008), among other aspects.
Children already show preferences for music similar to their
cultural and musical tradition (Demorest et al., 2008; Soley and
Hannon, 2010). The preference also affects musical memory,
which is better for culturally similar music in comparison to
unknown music (Demorest et al., 2008). Also the recognition
of rhythm is influenced by culture, which is why foreign
rhythms seem more complex and are more difficult to recognize
(Cross, 2001).

The cognitive processes which occur in music perception are
also employed in language perception, which is supported by the
research performed by Nan et al. (2006) and Maess et al. (2001).
In the latter, magnetoencephalography was used to analyze the
Broca’s area in the human brain, which plays an important role
in syntactic analysis during auditory language comprehension.
The authors showed it also analyzes the incoming harmonic
sequences. Nan et al. (2006) further explored the shared
functionality of this area and analyzed the structure of a musical
phrase. They discovered that the brain response produced by
musical phrase inconsistencies are similar to those produced
when observing syntactic inconsistencies. Specifically, the closure
positive shift (CPS), which is a universal phrase perception
mechanism and occurs in both music and language domains,
was observed. In music, the CPS occurred between 100 and 450
ms after the phrase end. The CPS occurred earlier when the
participants listened to music of their culture and later when
listening to music of a foreign culture (Nan et al., 2006).

Mood and emotion recognition in music depend on culture-
specific and universal structural characteristics of the music
played. Balkwill and Thompson (1999) explored whether
Western listeners recognize the intended emotions in music in
the Hindi tonal system, which was unknown to the listeners.
The results showed that the listeners are able to recognize basic
emotions, e.g., joy, sadness, and anger, however, they are unable
to identify more complex emotions which may be different
from culture to culture, e.g., “peace” (Balkwill and Thompson,
1999). Fritz et al. (2009) also carried out a survey in the reverse
direction and reached a similar conclusion: inWesternmusic, the
expression of basic emotions is universally recognizable, as well.

Several studies analyze the cultural influence on rhythmic
and melodic complexity (Eerola et al., 2006; de Fleurian et al.,
2017). Groups of participants with different cultural backgrounds
(African, Western) perceived music of their own culture as less
complex. Interestingly, African participants perceived Western
music as less complex, compared to the perception of African
music by European participants. The perception of Western
music as less complex is most likely the consequence of the
prevalence of Western culture. People are acquainted with
Western music, regardless of their culture. This influence of
Western music also results in the disappearance of less robust
cultures or, in less radical cases, the infiltration of Western
musical foundations into other musical cultures (Huron, 2008).

The topic of musical expectation is also important in both
perceptual and cultural contexts. One of the biggest factors
accrediting to the differences in music expectations is the
culture (Castellano et al., 1984; Krumhansl, 1999; Krumhansl

et al., 2000). The studies performed by Castellano et al. (1984)
and Krumhansl (1999), Krumhansl et al. (2000) took into
consideration two groups of participants—one from a Western
culture (European or American) and one from a non-Western
culture (African or Asian). The task in these experiments
was to predict the continuation of musical excerpts (i.e., a
subsequence of notes from a longer sequence). Most commonly,
the participants from different cultures have decided very
similarly with regard to the continuation of their own and
foreign cultures. In one of the studies by Krumhansl (1999),
the non-European participants achieved higher accuracy for
European music, for the previously known European classical
works. Consequently, their responses were more in line with the
music theory, compared to the European group, who supposedly
possessed more general knowledge of Western music.

Listeners also provide diverse responses to music structure of
unknown music styles. They can quickly adapt to a different style
and are able to adjust their expectations after a short exposure to
an unknown style. There are currently two different prevailing
explanations for such behavior: (1) when listening to music,
we continuously learn the characteristics of the style as we pay
attention to the stylistic tendencies in music and (2) there are
basic psychological principles or universal qualities of music that
can be applied to various music styles (Krumhansl et al., 2000;
Huron, 2008).

The aforementioned research shows the interconnection
between music perception and culture, focusing on comparing
the perception of different music features: from “low-level”
rhythmic and melodic complexity, to “high-level” features, such
as mood and emotion. Through exploration of perception
between different cultures, users’ familiarity with culture-
influenced music style was evaluated and analyzed. However,
the users’ expertise, which could affect perception, was seldom
explored in these studies. In this paper, we explore both the
effect of expertise and familiarity, and their influence on human
perception of music by observing user responses in a melody
prediction task.

2.2. Computational Melody Prediction
In music theory and information retrieval, music patterns and
their repetitions have been studied by a number of groups, both
in theory (e.g., Lerdahl and Jackendoff, 1983; Margulis, 2013) and
computational approaches (e.g., Marsden, 2010; Ren, 2016; Pesek
et al., 2017b). Several tasks emerged throughout the years in
the Music Information Retrieval Evaluation eXchange (MIREX),
which is a community-based framework for formal evaluation of
algorithms and techniques related to music information retrieval
(MIR) (Downie, 2008). Among a variety of available MIREX
tasks, the Discovery of repeated themes & sections (Collins et al.,
2014) and Patterns for prediction became popular in the last
decade. The aim of the Discovery of repeated themes & sections
task is to find repetitions, which represent one of the more
significant aspects of a music piece (Meredith et al., 2002). The
MIREX task definition states “the algorithms take a piece of
music as input, and output a list of patterns repeated within
that piece” (Collins, 2016). Based on this discovery task, the
Patterns for prediction task was created as an offshoot of the
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pattern discovery task (Janssen et al., 2019). The goal of this
task is to predict a continuation of a given excerpt. There are
two subtasks defined within the Patterns for prediction task: in
the explicit task, the algorithm is given an excerpt and should
generate a continuation; in the implicit task, the algorithm is
given an excerpt and a candidate continuation, and should
return the probability that this is the true continuation of the
provided prime.

Several authors tacked the Pattern for prediction subtasks in
recent years. de Reuse (2019) proposed a CopyForward algorithm
for the explicit task, inspired by the Cosiatec approach by
Meredith (2013). The CopyForward algorithm selects a section
of the excerpt, and translates and copies it as a continuation.
Colombo (2018) also proposed an approach named BachProp
for the explicit task, which uses a recurrent neural network
to determine note probabilities for the continuation. Ycart and
Benetos (2019) proposed an LSTM model for the implicit task,
which discriminates the real and fake continuations, while Ens
and Pasquier (2019) proposed the GenDetect algorithm, which
generates a collection of categorical distributions for each music
excerpt and the uses a Gradient Boosting Classifier, to predict
whether a continuation is real or fake.

We proceed by describing two computational models for
modeling musical expectations that we used in our study:
the Implication-Realization (I-R) model by Narmour (1990)
and the Compositional Hierarchical Model for symbolic music
representations (SymCHM) by Pesek et al. (2017b). The I-
R model represents one of the most well known models of
melodic expectation. It is based on musicological rules, so we
deem it has high expertise and is culturally agnostic. As an
alternative, we chose the SymCHM model, which is based on
compositional modeling through unsupervised learning. It thus
deduces the underlying rules from the music itself and does not
incorporate any direct musicological knowledge in its structure.
The two models represent two opposite poles and well-fit our
goal of exploring the differences between expertise and familiarity
in prediction.

2.2.1. Implication-Realization (I-R) Model
Eugene Narmour studied Leonard Meyer’s theory of musical
expectation, based on the understanding of musical
structure and the perception of musical emotions and
meaning. He then developed a complex theory of melodic
perception, which he called the Implication-Realization Model
(Narmour, 1990).

Themodel considers implicative intervals, by which one forms
an expectation about the continuation of the melody, and the
realized intervals, which (presumably) fulfill these expectations
(Toiviainen and Eerola, 2016). The model therefore observes
the perceptive systems which process information in a top-
down manner, as well as those which process information
in a bottom-up manner. While the latter approach represents
the expectations, the former mimics the realization of the
representations, which are learned and depend on the musical
knowledge and culture of an individual (Pearce, 2003).

The I-R model contains five criteria on the basis of which the
suitability of the realized interval is estimated:

• registral direction: implicit intervals larger than 8 semitones
imply a change in the direction of the melody, and those
smaller imply preservation of the direction,

• registral return: it prefers returns to the first tone of the
implicit interval or a deviation from the latter by a maximum
of 2 semitones in any direction,

• intervallic difference: Implicit intervals of 5 or more semitones
imply similarly large realized intervals (with a deviation
of up to 2 semitones in any direction when changing the
direction of the melody, or three semitones in the direction
of conservation); while the implicit intervals which are >5
semitones imply smaller realized intervals,

• proximity: this criterion prefers the realized intervals of five
semitones or smaller,

• closure: implies a change in the direction of the melody or a
smaller realized interval than the implicit interval, if the latter
was large (at least 3 semitones larger than the former).

The model prefers small realized intervals and preserves the
direction of the melody or stays on the same tone, and in the
case of larger realized intervals, a change in the direction of
the melody.

2.2.2. Updated I-R Model
The five basic criteria of Narmour’s model were later updated
by additional criteria by different researchers, most notably
Schellenberg (1997), who reduced the number of factors. These
criteria are not all based on the realization of implicit intervals.
The added criteria are:

• consonance: the preferred realized intervals are the consonant
intervals: unison, perfect forth, perfect fifth, and octave
(Krumhansl, 1995),

• tonality: tonally more stable tones are preferred (Krumhansl,
1999),

• melodic attraction: the tonal ratio of tonality of both tones in
the realized interval (Lerdahl, 1996),

• tessitura: predictions of tones that are close to themedian pitch
of the melody (Hippel, 2000),

• mobility: on the basis of the auto-correlation between
consecutive tones, this criterion estimates how predictive the
individual tone is in terms of previous tones and the median
position (Hippel, 2000).

In the experiment, we used the bottom-up I-R model’s
implementation provided by Toiviainen and Eerola (2016) to
compute the values for the selected criteria.

2.2.3. Compositional Hierarchical Model for Symbolic

Music Representations (SymCHM)
In recent years, deep architectures based on neural networks
have become prominent in the field of machine learning and
pattern recognition. Such architectures have the ability to learn
and model characteristics of the underlying data on multiple
levels of abstraction, with simple structures beingmodeled on low
levels and more complex concepts on higher layers.

The current implementations of neural network-based deep
architectures need large amounts of data for training, and are
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thus less usable in cases where the amount of data is limited.
Moreover, these approaches operate as black boxes, as insight
into the learned structures is difficult and the ability to use these
models for observation and analysis is therefore limited.

The Compositional Hierarchical Model for music information
retrieval was first introduced by Pesek et al. (2014) as a deep
architecture that can learn to model the input data on multiple
layers with increasing levels of complexity, but also has the
ability to learn from small datasets, and enables insight into the
learned structures, including automated chord estimation and
multiple fundamental frequency estimation (Pesek et al., 2017a).
The model was built on a time-frequency-magnitude input and
produced frequently co-occurring compositions of harmonic
structures in the input signal. The symbolic version of the model
SymCHM (Pesek et al., 2017b) has been applied to the task of
finding repeated melodic patterns and sections by learning for
compositions of symbolic events in the time-pitch-onset domain.
The model has also recently been applied to the extraction of
rhythmic patterns (Pesek et al., 2020). The SymCHM learns a
hierarchical representation of patterns occurring in the input,
where patterns encoded by the parts on higher layers are
compositions of the patterns on lower layers. “Part activations”
expose the learned patterns (and their variations) in the input
data. Shorter and more trivial patterns naturally occur more
frequently, longer patterns less frequently. On the other hand,
longer patterns may entirely subsume shorter patterns.

The motivation for such model originates in the idea of
decomposition of complex signals into simpler parts of the signal.
These parts possess various levels of granularity and can be
distributed across several layers, depending on their complexity.
Starting from the first layer, which contains parts representing
individual events (such as a frequency presence, or a note event
in symbolic representation), new consecutive layers of frequently
co-occurring compositions are created. The consecutive layers
thus contain compositions of parts on previous layers. Since
statistics is employed as the driving force behind the training
procedure of such model, the structure can be learned in an
unsupervised manner.

The learned hierarchy is also transparent. By observing
the learned concepts encoded in individual compositions, the
structure can be transparently observed without a specialized
process, which is needed in black-box architectures. The learned
concepts in the compositional hierarchy are encoded relatively.
Again, originating from the idea of signal decomposition, parts
with the same structure occur in different signals, as well as at
multiple time- and pitch/frequency-shifted locations in a single
signal. By relatively encoding the structures, a single composition
is activated at multiple locations of the learned concept occurring
in the input signal. The activations therefore represent the
instantiations of the relatively encoded concepts.

2.2.3.1. Training and using the SymCHM
Starting at its input, the model observes the event co-occurrence
frequencies and relatively models the relations between them. In
terms of melodic sequences, if two or more events co-occur on
a specific interval in several locations, both events can be joined
into a composition. The latter represents a newly composed part

on a consecutive layer. The composition is relatively encoded,
meaning that should two events co-occur at one pitch location
and again at a different one, the same composition is formed. This
procedure is repeated layer-by-layer until the desired complexity
of the learned parts is achieved. In contrast to the first layer
where the model observes individual events in the input, co-
occurrences of compositions are observed on higher layers. These
then form new relatively encoded compositions on a consecutive
layer, based on the previous layer.

Each part may occur at several locations in the input. Since
the part is relatively encoded, the occurrences are defined by
temporal placement and pitch attributes. The occurrence of a
part in the input is denoted “activation,” which contains the
information about the time and pitch of the occurrence. The parts
learned by the model can be observed as melodic patterns and
their activations as pattern occurrences.

Once the model is built, it can be inferred over another
(or over the original input). The inference may be exact
or approximate, where in the latter case biologically-inspired
hallucination and inhibition mechanisms enable the model to
find variants of part occurrences with deletions, changes, or
insertions, thus increasing its predictive power and robustness.
The hallucination mechanism provides means to activate a
part even when the input is incomplete or changed. In
symbolic music representations, such changes often occur in
melodic variations and ornamentation. The hallucination enables
the model to robustly identify patterns with variations. The
inhibition mechanism is also essential in SymCHM for the
removal of redundant co-occurrences. As the model does not rely
on any musicological rules, parts may produce a large number
of competing patterns. Inhibition may be used to reduce the
number of activations and find the patterns that best correspond
to the learned hierarchy.

SymCHM therefore learns a hierarchical representation of
patterns occurring in the input, where patterns encoded by
the parts on higher layers are compositions of the patterns on
lower layers. The inference produces “part activations” which
expose the learned patterns (and their variations) in the input
data. Shorter and more trivial patterns naturally occur more
frequently, longer patterns less frequently. On the other hand,
longer patterns may entirely subsume shorter patterns.

2.3. Tonal Hierarchies
The theory of tonal hierarchies by Krumhansl and Cuddy
(2010) is based on the assumption that statistically frequent
musical patterns (in most cases) provide reliable guidelines for
the listener’s abstraction of the tone hierarchy. The listeners
should therefore successfully orient themselves to the actual
tonal hierarchy. Their perception should also coincide with the
frequencies of the occurrence of tones and their combinations.

Musical context establishes the tonal hierarchy. Certain tones
are more specific, more stable and more important to the
structure than others. In classical Western tonal-harmonic music
of the eighteenth and nineteenth centuries, tonic is the main
tone in the tonal hierarchy, followed by the dominant, dominant
parallels, the remaining tones of the scale, and lastly the tones that
are not part of the scale. This hierarchy reflects the influence of a
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TABLE 1 | The major and minor tonal hierarchies, obtained by the probe tone method.

Note C C# D D# E F F# G G# A A# B

C-major 6.35 2.23 3.48 2.33 4.38 4.09 2.52 5.19 2.39 3.66 2.29 2.88

C-minor 6.33 2.68 3.52 5.38 2.60 3.53 2.54 4.78 3.98 2.69 3.34 3.17

triadic (acordic) structure in which consonant chords dominate.
Krumhansl and Cuddy (2010) used the probe tone method to
quantify tone hierarchies. The participants were asked to listen
to incomplete scales and evaluated how well the individual tones
completed the scale. The results are shown in Table 1.

Tones higher in the tonal hierarchy appear more often and
last longer and in the stressed metric positions (Krumhansl,
1999). Moreover, the higher their position in the hierarchy, the
more quickly these tones are recognized as part of the scale
(Janata and Reisberg, 1988).

In addition to the musical reference points that lead the
musical perception, musical memory and understanding, the
listeners are also sensitive to frequently occurring sound
sequences (Saffran et al., 1999; Saffran and Griepentrog, 2001). By
repeated implicit listening, they develop mental representations
that reflect musical consistency, through which they then encrypt
and memorize musical patterns, and generate expectations.
Sensitivity to these consistencies allows for a relatively quick
adaptation to new musical styles. The concept that one central
tone is a reference point for a multitude of hierarchically
connected tones is not limited to the Western tonic-harmonic
style, but also to other styles and cultures. Unique hierarchies can
even be found within individual songs.

Western listeners quickly adapted to the tonal hierarchies
of an unknown (Indian) style in an experiment performed by
Castellano et al. (1984). It turned out that the more important
tones were played many times, which allows the listeners who
are not familiar with the style to find the appropriate tonal
hierarchy. Even the inexperienced listeners are flexible and adapt
quickly to tone sequences in unknown musical contexts, while
for the musically educated participants, the statistical processing
of music becomes even more evident (Oram and Cuddy, 1995).

3. METHODOLOGY

In this paper, we present two studies on how melody prediction
is affected by music familiarity and expertise in (1) human
listeners and (2) computational approaches. In this section, we
first describe two datasets of music excerpts we collected and used
in both studies. We also describe the evaluation metrics used to
assess prediction accuracy, and the translation and validation of
the Music Sophistication Index, used as an instrument to assess
human music expertise. Finally, we describe how we used the
SymCHM by adjusting it for the melody prediction task.

3.1. Datasets
To control for music familiarity, we collected two datasets of
folk songs to be used in our studies: Chinese and European. The
Chinese music excerpts (used with permission of the authors) are

part of the music database used in the study of the perception
of musical phrases by Nan et al. (2006). The European sections
were taken from the freely available online collection Robokopp2,
which contains folk and war songs and anthems from German
and English speaking environments. Since we conducted the
first study on Slovenian participants, we limited the selection to
German songs, due theGerman influence on Slovenian folk songs
and the Slovenian musical heritage (Vodušek, 1959; Vidakovič
and Delo, 2003).

3.1.1. Generating the Excerpts
We initially randomly selected 30 non-polyphonic musical
fragments in each of the datasets. We converted the MIDI
song representations into audio using the Midi Sheet Music
and MuseScore 2 programs. We re-synthesized all of the MIDI
excerpts in order to avoid variations in sound and timbre quality
between both collections.

As the average length of the songs was 18.7 s (about 8 bars),
we created shorter song excerpts, representing individual phrases
within the songs, to make the music prediction task more user-
friendly. An example of a full song is shown in Figure 1A, while
its shortened excerpt is depicted in Figure 1B.

We shortened the songs in two different ways: some of
the songs were cut after the penultimate tone in the phrase
(complete-phrase excerpts—the participants had to predict the
last tone in the phrase), while others were cut at random
(incomplete-phrase excerpts). The dataset contained 75% of
the complete-phrase excerpts and 25% of the incomplete-
phrase excerpts.

From the initial 30, we chose 20 excerpts per dataset based on
the following criteria: (1) the number of tones in the excerpt, (2)
the maximum interval occurring in the excerpt, and (3) the tonal
range of the excerpt.

In order to ensure a homogeneous structure of musical events,
we selected fragments that were within two standard deviations
of each criterion across the dataset. The values for the four
excerpts described in Figure 1 are given in Table 2.

3.1.2. Analysis of the Generated Datasets
We used one-way ANOVA to compare the chosen criteria of
the musical excerpts between the two datasets. The differences
between the datasets were not statistically significant (Table 3).

The musical excerpts contained 15 events on average
(Chinese: µ = 15.6, σ = 3.3, German: µ = 13.9, σ = 4.3).
The lowest number of events in the Chinese dataset was 10, while
the highest was 22. In the German dataset, the lowest number of
the events was 7, while the highest was 24.

2http://www.musicanet.org/robokopp/Volksong.html (accessed February 15,
2018)
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FIGURE 1 | (A) A full Chinese folk song; (B) A Chinese song excerpt; complete (excerpt 1); (C) A Chinese song excerpt, incomplete (excerpt 2); (D) A European song

excerpt, complete (excerpt 3); (E) A European song excerpt, incomplete (excerpt 4).

TABLE 2 | Values of the three criteria for the music excerpts b–e, depicted in

Figure 1.

Excerpt Number Largest Range in

of events interval semitones

b 13 VIII (octave) 12

c 17 VI (sixth) 17

d 15 VI (sixth) 12

e 12 IV (fourth) 11

TABLE 3 | ANOVA comparison of the German and Chinese datasets.

Criterion MS F(1,38) p ω
2

Number of events 28.9 1.88 0.179 0.021

Largest interval 0.1 0.04 0.845 −0.025

Tonal range 6.4 0.54 0.469 −0.012

Duration in seconds 4.2 1.04 0.315 0.001

1− β = 0.11 at α = 0.05.

The largest interval in the majority of songs was the major
sixth. Across the Chinese dataset, the largest intervals ranged
from a minor third to the octave. On the European dataset, the
songs’ largest interval ranged from fourth to the tenth (decima).
The datasets differed only slightly in the tonal range. The average
range of the songs was 12 semitones (Chinese:µ = 12.4, σ = 3.8;
German: µ = 11.6, σ = 2.8). In the Chinese dataset, the smallest
range was five semitones and the largest range was 20 semitones.
In the German dataset, and the smallest range was 7 semitones
and the largest 17.

3.2. Evaluation Metrics
As mentioned earlier in the problem formulation, a sequence
of melodic events can have different continuations that make
sense from a music theory perspective. This is demonstrated in
different songs that share a part of the melody, which at some
point diverge. Hence, a predicted tone, which makes musical
sense, but is not the exactly the same as in the original melody,
should be considered as correctly predicted.

In our experiment, we devised two evaluation metrics: strict
evaluation, which considers only the correct note, and relaxed
evaluation, where a prediction, which is part of the tonal
hierarchy (scale) of the music excerpt, is taken as correct. Thus,
for excerpts in the European dataset in a major scale, seven tones
are correct (see Figure 2), while for those in a minor scale, nine
tones are correct (including the augmented sixth and seventh
scale degrees appearing in the harmonic and melodic scales). For
the excerpts in the Chinese dataset, the five suitable continuation
notes are based on the pentatonic scale (Figure 3).

3.3. Slovenian Translation of the Music
Sophistication Index
In order to measure the music expertise of the subjects, we
used the Goldsmiths Music Sophistication Index (Gold-MSI)
instrument (Müllensiefen et al., 2014). The Gold-MSI is a
questionnaire with 38 items that measure various aspects of
music sophistication. It was developed for English speaking
subjects. Because the subjects in our study were Slovenian-
speaking and the instrument was not available in Slovenian, we
needed to adapt it.

When a questionnaire is adapted to another cultural
environment it has to be validated (Sousa and Rojjanasrirat,
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FIGURE 2 | A list of suitable octave-invariant responses for the selected excerpt from the European dataset in C-major.

FIGURE 3 | A list of suitable octave-invariant responses for the selected excerpt from the Chinese dataset in the pentatonic scale starting in B♭.

2010). The intercultural differences can affect the validity of the
participant’s responses in a questionnaire in a situation where
non-native speakers are asked to respond, even if they possessed
good knowledge of the language (Blažica and Lewis, 2015).
Moreover, the differences in the participants’ responses can occur
even when using the same questionnaire in two cultures with
a single language, but with completely different cultures (e.g.,
the USA and New Zealand) (Brown et al., 2017). Therefore, in
addition to translation, adaptation and the assessment of validity
and reliability (test–retest reliability and internal consistency) are
obligatory for the adaptation of an instrument for a new cultural
environment (Arafat et al., 2016).

3.3.1. Translation and Implementation
The Gold-MSI questionnaire contains 38 self-report items about
musical engagement and education. The first 31 items contain
statements and the individuals assess on a 7-point Likert-type
scale how much they agree with each of the statements, while the
last seven items ask about their music education, the number of
instruments played by the individual and similar.

The questionnaire was translated into Slovenian with multiple
quality checks, as suggested by Sousa and Rojjanasrirat (2010).
Two translators independently translated the questionnaire and
the third translator reviewed the translation. We combined
both translations into the first Slovenian version. This version
was back-translated by the fourth (independent) translator
into English. Finally, we compared back-translation with the
original English text and implemented minor changes to the first
version. The final Slovenian translation was implemented as an
online questionnaire, using the PHP framework CodeIgniter. In
addition to the Gold-MSI questionnaire, four short demographic
questions (gender, age, education, status) were asked. The data
were processed using the statistical analysis tool R.

3.3.2. Participants
The questionnaire was completed by 231 people (79 men,
152 women). The participants were mostly students (136) and
employees (75), aged between 16 and 58 (µ = 26.7, σ =

7.3). Almost all participants (96.5%) had education higher
than secondary school: 83 had undergraduate degree (3-year
programme equivalent to the first Bologna cycle), 86 completed

the graduate programme (second Bologna cycle), and 54 the
postgraduate programme (third bologna cycle).

The vast majority of the participants had at least a few years
of music education. Only 66 participants never attended a music
school (28.6%). The majority (f = 139, 60.2%) were enrolled in
some formal type of education for at least three years, of which
44 participants had 10 or more years of music education. One
third of the participants (f = 75) never learned about music
theory, whereas 128 participants (55.4%) were trained in this
field for three years or more (of which 41 participants had more
than six years of experience). In Slovenian music-school system,
the elementary music education most commonly takes 6 years
and involves both learning a music instrument and music theory
courses. Only 38 participants (16%) had no music experience at
all—they never attended a music school, nor did they learn to
play any instruments by themselves.

Most of the participants answered that they a attended music
school for singing (f = 47), followed by piano (f = 43), guitar (f
= 33), flute (f = 15), and violin (f = 11). The other instruments
had a frequency of 3 or less, and 65 participants (28.1%) did not
play any instrument.

3.3.3. Confirmatory Factor Analysis
First, we compared the characteristics of the translated and
original version of Gold-MSI.We checked the gathered responses
in terms of seven parameters—average values, dispersion
(minimal and maximal values, standard deviations), Cronbach’s
α, McDonald’s ω, and Guttman’s λ6 for five different categories
reported by Müllensiefen et al. (2014):

• active engagement—A,
• perceptual abilities—P,
• musical training—M,
• singing abilities—S,
• emotions—E.

Each of the 31 questions in the questionnaire belongs to one
of these five categories: A and P contain 9 questions each, M
and S contain 7, and E contains 6. We also considered the
general sophistication factor (GEN), which includes 18 of the
31 questions.
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TABLE 4 | Comparison of average values, dispersion, and reliability measures between the research performed by Müllensiefen et al. (2014) (EN; n = 147.633) and our

research (SL; n = 231) for five specific factors and the general factor of musical sophistication.

Active Perceptual Musical Singing Emotions General

engagement abilities training abilities (E) sophistication

(A) (P) (M) (S) (GEN)

EN SL EN SL EN SL EN SL EN SL EN SL

M 41.52 37.67 50.20 50.85 26.52 28.65 31.67 32.22 34.66 34.77 81.58 82.16

SD 10.36 11.69 7.86 9.67 11.44 12.20 8.72 10.18 5.04 5.83 20.62 23.93

Max 63 62 63 63 49 48 49 49 42 42 126 124

Min 9 9 9 22 7 7 7 8 6 14 18 22

α 0.87 0.87 0.87 0.88 0.90 0.92 0.87 0.88 0.79 0.76 0.93 0.94

ω 0.87 0.88 0.87 0.89 0.90 0.92 0.87 0.88 0.79 0.77 0.93 0.94

G6 0.86 0.87 0.87 0.88 0.91 0.93 0.87 0.88 0.77 0.74 0.94 0.96

TABLE 5 | Results of one-way t-test for average values of individual factors.

Factor t(230) p d

Active engagement −5.01 < 0.001 −0.661

Perceptual abilities 1.02 0.309 0.135

Musical training 2.65 0.009 0.349

Singing abilities 0.82 0.415 0.108

Emotions 0.29 0.774 0.038

General sophistication 0.37 0.713 0.049

We cross-examined the values reported in the initial research
and compared them to the results we had obtained. The
cross-examination is shown in Table 4. The reliability measures
indicate good internal consistency in all factors, both for the
English and the Slovenian versions.

A one-way t-test was used to compare the results of
the Slovenian sample on all five specific factors of musical
sophistication and the general factor with the average for
each factor obtained in the original survey. The values were
statistically significant (p < 0.05) for the active engagement
factor and the musical training factor (Table 5), indicating the
presence of the differences between the Slovenian and original
sample in these types of musical sophistication, measurement
non-invariance (e.g., differences in interpretation of values on the
Likert scale) and similar.

We also performed a confirmatory analysis of the Slovenian
questionnaire, as the authors of the initial research report a
poor fit to the one-factor model (Müllensiefen et al., 2014).
Confirmatory factor analysis of the one-factor model of the
Slovenian questionnaire has shown that the data did not fit well,
χ2(665)=2901, p < 0.001; CFI = 1.00; TLI = 1.00; RMSEA =

0.150, 90% CI = [0.146, 0.154]; SRMR = 0.128. The fit was even
worse with the 5-factor model (the same factors were used as in
the original survey), χ2(655)=9690, p < 0.001; CFI = 0.328; TLI
= 0.278; RMSEA = 0.244, 90% CI = [0.240, 0.249]; SRMR =

0.085, which was one of the reasons why we had to re-construct
the questionnaire.

3.3.4. Exploratory Factor Analysis
The aim of the exploratory analysis was to reduce the number of
items that would still give sufficient information about the music
sophistication of the participants. Since the experimental task in
our research was quite long, we intended to shorten theGold-MSI
questionnaire significantly.

We extracted one general factor with the eigenvalue of 13.1.
We then selected the items with absolute factor loading greater
than 0.70; the questionnaire was thus reduced to eight items (its
length was reduced by 79%).

Based on these eight items, we created a new index of musical
sophistication (Table 6), which coincides well with the general
sophistication index of Gold-MSI (r = 0.95). The correlation
was calculated on the basis of the score obtained by adding the
weighted values of individual items (the number of points for
the individual index of musical sophistication was the sum of the
items no. 5, 7, 10, 12, 19, 22, 27, and 32, weighted by their loading
on the extracted factor; Gold-MSI was also calculated using the
same procedure). The final version of the short Slovenian Gold-
MSI contained items on the ability to make judgments about
good singing, abilities to play music/sing by heart, sing proper
notes, compare two versions of the same song, recognize specifics
of the music piece and detect wrong notes, as well as items on
identifying with being a musician and the amount of practicing
an instrument.

3.4. Adapting the SymCHM for Melody
Prediction
The SymCHMmodel was initially designed for pattern discovery
in symbolic music data, so we adapted it for the melody
prediction task. In the following subsection we describe the
adaptation of the model used in the experiment.

The implementation of SymCHM works with a comma-
separated-values (.csv) input, commonly used in the MIREX
pattern discovery task. We therefore transformed the MIDI
files from the dataset to the desired CSV files as follows. A
song is represented by a single CSV file. Each line in the CSV
file contains the following three elements {To, P1,D}, where
individual variables represent the following features:
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TABLE 6 | Selected items with the highest loading.

Factor

No. Item loading

5 Dobro znam presoditi, ali je nekdo dober ali slab pevec. (I am able to judge whether someone is a good singer or not) 0.734

7 Na pamet lahko pojem ali igram skladbe. (I can sing or play music from memory) 0.753

10 Ob spremljavi glasbenega posnetka sem sposoben zapeti prave note. (I am able to hit the right notes when I sing along with a recording) 0.794

12 Zmožen sem primerjati in razpravljati o razlikah med dvema izvedbama ali različicama iste pesmi. (I can compare and discuss differences
between two performances or versions of the same piece of music)

0.795

19 Zmožen sem prepoznati posebnosti poslušane skladbe. (I am able to identify what is special about a given musical piece) 0.802

22 Opazim, kadar nekdo poje ali igra napačne tone. (I can tell when people sing or play out of tune) 0.724

27 Ne bi rekel, da sem glasbenik. (I would not consider myself a musician) 0.746

32 Koliko časa ste redno, dnevno vadili glasbeni inštrument? (I engaged in regular, daily practice of a musical instrument (including voice) for X
years)

The first column corresponds to the item number in the original Gold-MSI questionnaire. The second column describes the individual items in Slovenian.

TABLE 7 | The procedure of pattern matching and weight calculation.

Position 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MIDI Pitch 64 62 64 62 64 62 71 71 71 72 71 69 74 74 72 ?

Segment 0 b 0 b 0 b G G G H G E J J H *

Pattern 1 0 0 0 D

Segment 0 0 0 A 0 b C C A *

Pattern 2 0 0 0 0 b C C A

Segment 0 E E C *

Pattern 3 0 E E L

Letters represent relatively encoded pitch values.

• To: onset time
• P1: pitch
• D: duration time.

As SymCHM performs pattern matching, we needed to convert
the discovered patterns, represented by the part structures in
SymCHM, into melody predictions. We thus perform prediction
by searching for occurrences of the patterns, which the model
learned during training. We search for individual learned
patterns in a given excerpt, and find the continuation of the
melody from the best fitting patterns.

To perform this search, we converted the found patterns
into regular expressions of relatively encoded patterns with gaps.
These gaps represent differences between the learned pattern
and the identified pattern. For example, a relatively encoded
pattern {0, 5,−3, 0} was transformed into the following regular
expression: → {0[0a − zA − Z] ∗ E[0a − zA − Z] ∗ c[0a −

zA − Z] ∗ 0}. The pattern represented a melodic structure in
which the second event occurs five semitones above the first,
third event occurs three semitones below the first event, and the
fourth event occurs at the same position as the first event. The
positive semitone offsets were encoded into upper-case letters
(e.g., 5 → E), and the negative offsets into lower-case letters
(e.g., −3 → c). The [0a − zA − Z]∗ segments (i.e., sequences of
notes) represented gaps of indefinite length. These gaps allowed
the discovered patterns to match with potential variations in
the patterns.

For each excerpt, we searched for the learned patterns of the
SymCHM model, encoded as regular expressions. By excluding
the last event and matching all the remaining events in the
pattern, we were able to obtain the “predicted” pitch. The
procedure is shown in Table 7, where the midi pitch represents
the MIDI sequence of melodic events. Since there were a
number of gaps in the regular expressions, we assigned weights
to the predictions using the following criteria, increasing their
prediction probability:

• the length of a pattern,
• the proximity of the beginning of the pattern toward the end

of the excerpt,
• the total length of matched gaps.

Using the criteria, the following formula was established to
calculate the weight (relevance) of the individual predictions

w =
Neventsinpattern

Nsegmentlength − Nbeginningofthematch + 1
(1)

For a pattern with 32 events which would completely match
the last 32 events in the segment, the calculated weight is w =
32
33 = 0.97. For a 4-event pattern, matching the last 4 events in
a segment, the weight would be smaller—w = 4

5 = 0.60). A 4-
event pattern which would match the first event in the 20-event
segment, the weight is considerably lower—w = 4

21 = 0.19.
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FIGURE 4 | The user interface developed for the prediction part of the questionnaire. When the play button was depressed, the excerpt was played. By dragging the

vertical scroll-bar, a pitch in between ±12 semitones was played. By clicking on the note button on the right side, the chosen pitch was added to the end of the

excerpt. When added, the excerpt with the added pitch could be played back by clicking on the play button on the left.

Pattern 1 in Table 7 contains an example with a low weight:
w1 = 4

17 = 0.24. None of the shown patterns matched
completely, with patterns 2 and 3 matching better than pattern
1—w2 =

8
11 = 0.73 and w3 =

4
6 = 0.67.

4. STUDIES

In this section, we present the two studies, where we assess
how music familiarity and music expertise influence melody
prediction in human listeners, and, expressed in appropriate
data/algorithmic ways, computational models. The datasets of
music excerpts presented in the Methodology section were
used in both studies. The Slovenian translation of the Music
Sophistication index was used in Study 1. In both studies we used
both the strict and relaxed evaluation measures.

4.1. Study 1: Human Melody Prediction
In this study, we researched the influence of the participants’
expertise on their predictions. We first collected their responses
and, based on their music sophistication, split them into
two groups of musicians and non-musicians. We explore the
differences in their prediction through several types of prediction
evaluation. Based on their self-report on familiarity with Chinese
music, we also compare their responses to assess the impact
of familiarity.

4.1.1. Data Acquisition
To acquire the data, we created a web interface that consisted of
two parts: in the first part we gathered demographic information,
musical expertise (using the shortened Gold-MSI questionnaire),
music preferences and the frequency of listening to Chinese
music. In the second part we asked the participants to perform
the melody prediction task.

During the first part the participants were asked about their
age, gender and level of education, followed by eight questions
from the short Gold-MSI questionnaire, as described in Table 6.
The participants were also asked to choose up to three preferred
genres from a list of 20 genre labels. Additionally, they reported
on the amount of time (daily, a few times a month, a few times a
year, never) they listened to Chinese music.

In the second part, the participants’ task was to predict the
continuation of melodic sequences from the database using an
interface shown in Figure 4. The task of the participants was
to listen to a short music excerpt, and then select the pitch
they believed best continued the excerpt. The participants could
choose a pitch between ± 12 semitones of the last pitch in the
excerpt. If necessary, the participants could listen to the excerpt
and their selected continuation combined. There were no time
limit or number of replays imposed on the participants. In the
end, they had to indicate whether or not they had recognized
the song. By asking this question, we wanted to avoid the noise
induced by responses of participants who knew the songs in
the dataset. In case of known songs, the participants would
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most likely correctly predict the continuation of the excerpt.
In this experiment, we evaluated how shared melodic patterns
of European folk songs contribute to the familiarity, and avoid
known prediction of known songs.

The participants first learned how to use the interface with
three trial music excerpts. We added this step to give the
participants the time to familiarize themselves with the interface,
in order to minimize the influence of the interface on the
responses. The chosen songs were a well-known children’s
song (Kuža pazi), the national anthem (Zdravljica) and the
international version of “Happy Birthday.” Because these songs
are well known in their environment, the participants were able
to focus on the interface during the trial usage.

After the initial interaction, the participants proceeded to the
experimental part, during which they listened to the excerpts
from the Chinese and the German song datasets. The order of
the datasets and the excerpts within was randomized to exclude
the bias of the dataset order. The questionnaire was distributed
via email and social networks.

4.1.2. Participants
Fifty-seven participants, 26 male and 31 female, completed the
questionnaire. The participants were between 16 and 54 years old
(µ = 26.7, σ = 7.5). Themajority of the participants (59.6%) had
the education level higher than a high-school diploma, of which
14 obtained a bachelor’s degree, 16 had a master’s degree and 10
had a PhD degree. All participants were Slovenian.

A large majority of the participants frequently practiced a
musical instrument in the past. Only 17.5% never practiced an
instrument. The average practice span was 6.8 years (σ = 6.5). A
third of the participants (33.3%) practiced for more than 10 years
(the maximum was 25 years), and about three quarters (73.7%)
practiced at least for three years. The most popular music genres
chosen by the participants were classical music—13 participants
chose this genre as their favorite, 5 participants chose it as second
favorite and 15 as their third favorite genre. Other most popular
genres were rock (in order of top three favorite genres: 16, 6, and
4), and pop (6, 9, 5).

The participants mostly did not listen to Chinese music: 39
participants (68%) never and 13 rarely listened to it. Only two
participants listened to Chinese music regularly (a few times a
month) and three participants listened to it almost daily.

4.1.3. Participant Groups
To distinguish between familiarity and expertise, we split
the participants into two groups. The first group contained
participants with high music sophistication (we refer to them
as musicians), based on the music sophistication index and
their performance in the trial attempts of the melody prediction
questionnaire. The participants in the second group (the non-
musicians) scored lower on the MSI questionnaire (below 39
points, the average MSI score was 42.2 out of 56) or missed the
prediction for either of the three commonly-known songs in the
trial attempts of the second part of the questionnaire. There were
36 participants assigned into the first group (17 male, 19 female,
MSI: µ = 46.8, σ = 3.3; years of music education: µ = 9.6,
σ = 6.3), while the second group contained 21 participants

(9 male, 12 female, MSI: µ = 34.4, σ = 6.8; years of music
education: µ = 1.8, σ = 2.2).

4.1.4. Influence of Expertise on Predictions
On average, the participants correctly predicted 58% of European
and 34% of Chinese continuations. For the European excerpts,
they were statistically significantly better (V = 135, p <

0.01) at predicting the complete sections (Table 8, European
complete excerpts) in comparison to the incomplete sections,
while for the Chinese dataset they were better at solving the
incomplete excerpts, but the difference was not significant
(V = 571, p = 0.523).

The musicians performed much better than the non-
musicians, for both the European (68 vs. 41%) and the Chinese
dataset (39 vs. 25%). The differences between both groups were
statistically significant for music of both datasets and both
excerpt types. The greatest difference between musicians and
non-musicians occurred between the prediction of the European
complete excerpts (Wilcoxon test—European dataset: complete
excerpts,W = 613.5, p < 0.01; incompleteW = 536.5, p= 0.01)
and the Chinese incomplete excerpts (Wilcoxon test—Chinese
dataset: complete excerpts, W = 537.5, p = 0.01; incomplete
excerpts,W = 609.5, p < 0.01).

4.1.5. Relaxed Evaluation
We also analyzed the responses through relaxed evaluation. The
participants were better at correctly predicting both the European
and the Chinese excerpts, with 94.5% success for European
dataset, and 89.7% for Chinese dataset. For the subgroups on the
European dataset, the results were in favor of musicians (97.9%)
vs. non-musicians (88.6%); both groups were slightly more
successful when predicting the continuations of the complete
musical excerpts (98.3 and 89.5% for the musicians and non-
musicians, respectively) than the incomplete ones (96.7 and
85.7%). On the Chinese dataset the musicians achieved 95.6%
(with 95.7% of the complete excerpts and 95.0% of the incomplete
excerpts continued correctly according to the relaxed evaluation),
while the non-musicians achieved 79.7% (80.9% for complete and
76.2% success rate for incomplete excerpts).

4.1.6. Assessing Familiarity With Music of Foreign

Culture
One of the questions on the demographic part of the
questionnaire was how often the participants listened to Chinese
music. Three responded that they listen to it practically every day,
two responded a few times a month, and 13 occasionally (a few
times a year). Therefore, 18 participants reported that they listen
(at least occasionally) to Chinese music, and 39 reported that they
never listen to it.

To analyze the differences between familiarity and expertise,
we split the participants into two subgroups, depending on their
self-report about the familiarity with Chinese music. Considering
their sophistication, there was a similar ratio (2:1) of musicians
vs. non-musicians in both groups (Table 9).

Differences between the musicians and the non-musicians of
Chinese music were not statistically significant. This indifference
can imply that we chose a prevalent culture with a very specific
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TABLE 8 | The performance of the participants and the computational models in melody prediction task, using strict evaluation.

European excerpts Chinese excerpts

All (%) Complete (%) Incomplete (%) All (%) Complete (%) Incomplete (%)

All participants 58 63 42 34 34 35

Musicians 68 74 47 39 37 44

Non-musicians 41 43 33 25 27 21

baseline (all notes) 4 4 4 4 4 4

baseline (scale notes) 6.7 6.7 6.7 9.1 9.1 9.1

SymCHM–eu 60 73 20 30 33 20

SymCHM–cn 45 53 20 30 40 0

Adjusted I-R model 50 60 20 35 25 40

The table also includes a baseline, taking into account all possible 25 semitons, which could be picked from the interface, and a scale notes baseline, which includes 15 semitones for
major/minor scales (European excerpts), and 11 semitones for pentatonic scale (Chinese excerpts), both within ± one octave.

musical style, which the participants have heard before at least a
few times (for example, in Chinese restaurants, popular movies,
etc.), and that, with minimum exposure, the participants were
able to memorize the characteristics of the style well-enough to
perform this task.

4.2. Study 2: Computational Melody
Prediction
In this subsection, we analyze the performance of the two selected
computational models: the SymCHM and the I-R model. We
also compare their melody prediction performance with the
participants’ results from study 1.

The SymCHMmodel needs to be trained before it can be used
for prediction, and we decided to train two different models,
each on a separate folk song dataset: one only on European
folk songs (SymCHM–eu) and one only on Chinese folk songs
(SymCHM–cn). In this way, we can estimate how (un)familiarity
with a certain culture influences the model. The training sets
contained approximately 14,000 events (tones) from the Essen
folk song collection3 and did not contain the songs from the
generated excerpts used for the melody prediction task. In the
study, we additionally evaluate the influence of the training set’s
size on prediction, thus controlling for the different amounts of
“familiarity” with a music culture.

The SymCHM model extracts all knowledge from its training
set. In contrast, the I-R model needs no training, as it contains
universal music-theoretical rules, derived from human expertise.
The I-R model therefore represents an expert system without any
culture-specific familiarity.

4.2.1. Comparison of Expertise and Familiarity in

Computational Models

4.2.1.1. SymCHM
The SymCHM, trained on the set of European songs (SymCHM–
eu), correctly predicted 60% of the European excerpts and 30% of
the Chinese excerpts. It also correctly predicted 73% of complete
excerpts in the European dataset and 20% of the incomplete

3http://kern.ccarh.org/browse (accessed June 22, 2018)

excerpts. For the Chinese dataset, the distribution was more
uniform: the SymCHM correctly predicted 33% of the complete
and 20% of the incomplete excerpts.

The SymCHM trained on the set of Chinese songs
(SymCHM–cn), was less successful than the SymCHM–eu. It is
interesting that SymCHM–cn performed better on the European
dataset than the Chinese dataset, correctly predicting 45% of the
European excerpts and, the same as SymCHM–eu, only 30% of
the Chinese excerpts.

Considering the complete and incomplete excerpts, the
SymCHM–eu performed better on the complete excerpts: 73%
complete and only 20% incomplete excerpts were correctly
predicted on the European dataset; and 33 % complete and
20% incomplete excerpts were correctly predicted on the
Chinese dataset.

4.2.1.2. Influence of the Learning Dataset Size on SymCHM’s

Results
All the reported results of the SymCHM–eu and SymCHM–cn
models were obtained using models trained on approximately
15,000 events (300 short European songs for SymCHM–eu,
and 189 longer Chinese songs for SymCHM–cn). Considering
the learned familiarity, we evaluated the SymCHM model’s
performance using different smaller dataset sizes. Initially, we
trained the SymCHM–eumodel with only 50 songs. To assess the
model’s performance with respect to the dataset size, we trained
the model using larger datasets, thus increasing its musical
knowledge. The results are shown in Table 10.

By increasing the training dataset from 50 to 100 songs,
SymCHM’s performance was not significantly improved.
Moreover, the incomplete sequences were less likely predicted
correctly. With the further enlargement of the training set, the
model’s performance increases faster in the “all” and “complete
excerpts,” while it the “incomplete excerpts” increased with the
300-song training set. The performance of the SymCHM is
therefore impacted by the training set. The model’s performance
does gradually increase for all subtypes of exerpts. However, due
to the small size of the incomplete excerpts subset, the results
vary between training set.
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TABLE 9 | Comparing the performance of the participants who listen to Chinese music to those who do not listen to Chinese music.

Musicians Non-musicians

Listens to Chinese All (%) Complete (%) Incomplete (%) All (%) Complete (%) Incomplete (%)

Yes (12 musicians, 6 non-musicians) 38 37 40 24 26 20

No (24 musicians, 15 non-musicians) 40 37 49 25 26 21

TABLE 10 | The impact of the SymCHM–eu’s training dataset size, repeated 5 times (for training sizes 50–200).

No. of songs 50 100 200 300*

Avg. no. of events 2k 4.5k 9.5k 15k

Avg. – all excerpts 37% σ = 6.8 39% σ = 11.0 42% σ = 9.7 53% σ = 9.4

Avg. – complete excerpts 45% σ = 7.8 45% σ = 4.9 55% σ = 10.9 64% σ = 12.3

Avg. – incomplete excerpts 12% σ = 9.8 4% σ = 10.0 8% σ = 9.8 20% σ = 0

The training was repeated only 3 times for the training set of 300 songs (marked with *).

TABLE 11 | Average values for the mean reciprocal ranks (MRR) for all three

models on each of the two datasets.

Dataset

Model European Chinese

SymCHM–eu 0.720 0.491

SymCHM–cn 0.635 0.520

Adjusted I-R model 0.648 0.490

4.2.2. Narmour’s Implication-Realization Model
We first evaluated the I-R model. The model’s predictions
showed, the rules of the initial (non-extended) I-R model are too
restrictive and, consequently resulted in poor performance on the
melody prediction task. The model it did not correctly predict
any continuation on the European dataset, and only three in the
Chinese dataset.

We analyzed the ground-truth continuations of the excerpts
in the European dataset. These can be summarized three rules
regarding the predicted events:

• they are high on the tonal hierarchy,
• if they are on the top or the bottom limit of the excerpt’s range,

they change direction,
• the distance between the predicted events and the starting

point is 7 or less semitones.

These rules are also included in the extended Implication-
Realization Model. The initial model listed the 0 (repeating the
last event) as the best answer, which is in most cases an acceptable
answer from the point of view of conformity with the tonic
hierarchy in the song, but it is mostly incorrect. In addition, the
I-R model puts too much weight to the answers in the immediate
vicinity of the starting point (± a few semitones).

For the purposes of the task, we fine-tuned the model, using a
subset of the criteria from the extended Implication-Realization
Model, since the initial model emphasized very small intervals

and preferred predicting the same tone too often. We retained
the registral return, proximity, tonality, melodic attraction, and
tessitura criteria. We obtained the score of each possible outcome
by averaging the normalized values of the five criteria.

Using this adjustment of the extended Implication-Realization
model, the evaluation yielded significantly better results. The
adjusted Implication-Realization Model correctly predicted 50%
of European and 35% of Chinese excerpts (Table 8).

4.2.3. Relaxed Evaluation
Taking into account the correct responses in relaxed evaluation,
both SymCHM–eu and SymCHM–cn models correctly classified
all excerpts in the European dataset. The models therefore
achieved better results than the participants. For the Chinese
dataset, SymCHM–cn also achieved 100%, while SymCHM–eu
achieved only 80%.

4.2.4. Comparison Between the SymCHM and the

Adjusted I-R Model
The adjusted I-R model, which was implemented for this
experiment using aforementioned libraries, returns a probability
score for each of the possible continuations across five different
criteria: registral return, proximity, tonality, melodic attraction,
and tessitura. All criteria are equally represented and a
combined probability is provided for each continuation, given
the normalized sum of probabilities across all five criteria. The
SymCHM’s responses can also be ranked using the weights of
the individual responses. We therefore compared both models
by observing the ranks that the true continuations receive, with
regard to all possibilities. We used the mean reciprocal rank to
compare both models.

The mean reciprocal rank (MRR) is a statistical measure for
evaluating the accuracy of the order of elements in a list sorted by
a criterion (in our case, this is the weight for each possible answer
for each song), using the following formula:

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
, (2)
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where Q represents the list of all possible responses, and ranki
represents the position of the first relevant response. Given the
rank of the correct response is 1 (i.e., the first response is the
relevant response), its reciprocal rank (RR) equals 1. If the rank
of the relevant response is n, the RR equals 1

n .
We calculated the average values for the RR across all three

models SymCHM–eu, SymCHM–cn and the I-R model, for the
European and the Chinese datasets individually. The results are
shown in Table 11.

The SymCHM–eu obtained the highest MRR, meaning that
among the selected models, it was the most successful in
providing the responses. For the European dataset, it received an
average rank of 0.72, while for the Chinese dataset it received the
rank of 0.491. The adjusted I-R model received the RR of 0.648
on the European dataset and 0.49 on the Chinese dataset.

The performance of the adjusted I-R model was more
similar across both datasets, compared to the SymCHM’s
results. Since it contains rules, which are culture agnostic, this
behavior was somewhat expected. Nevertheless, the results on the
European dataset were still higher. However, the best-performing
SymCHM–cn’s results were also lower on the Chinese dataset.
The performance of the adjusted I-R model and the SymCHM–
cn was therefore more consistent across both datasets, compared
to the SymCHM–eu model.

5. DISCUSSION

During this research, two datasets were collected, each containing
20 music excerpts. The European dataset contained excerpts
from the European folk song collection, while the Chinese
dataset contained Chinese folk songs. Both the Chinese and the
European datasets contained 75% of complete excerpts, in which
the final note in the melody or phrase was predicted, and 25%
of incomplete excerpts, where the phrase ended at a random
location and the following note was to be predicted.

In study 1, we first analyzed the collected participants’ melody
predictions. We further split them in two groups: musicians
and non-musicians, based on their MSI score, to analyze the
differences between the participants. The MSI questionnaire was
translated to Slovenian language and validated (section 3.3).

On average, the European participants correctly predicted
58% of European and 34% of Chinese continuations. For the
European excerpts, they were statistically significantly better
(V = 135, p < 0.01) at predicting the complete (Table 8) than
the incomplete sections, while for the Chinese dataset they were
better at solving the incomplete excerpts but the difference was
not significant (V = 571, p = 0.523).

The participants in the musician group performed much
better than the non-musicians, for both the European and the
Chinese dataset. The differences between the groups of musicians
and non-musicians were statistically significant in the music
of both datasets and both complete and incomplete excerpt
types. The greatest difference between the musicians and non-
musicians occurred between the prediction of the European
complete excerpts and the Chinese incomplete excerpts (Table 8).
The results confirm the MSI as a credible instrument for music

TABLE 12 | Results of the Wilcoxon signed-rank test (comparing European and

Chinese datasets; W) and Wilcoxon rank sum test (comparing musicians and

non-musicians; V).

Participants Dataset W V p

Musicians European : Chinese 0 < 0.01

Non-musicians European : Chinese 32 < 0.01

Musicians : non-musicians European 370 0.90

Musicians : non-musicians Chinese 152 < 0.01

sophistication validation. Since the end of a phrase within an
excerpt is more predictable due to the musicological rules of
the melodic form, we hypothesized the participants, as well as
the models would be more successful in correctly predicting the
complete than the incomplete excerpts. The results concur with
our hypothesis.

In comparing the responses between the European and
Chinese datasets, there were statistically important differences
in both groups of participants (musicians and non-musicians).
There were also statistical differences in the participants’
performance between the musicians and non-musicians within
the Chinese, but not European, dataset. The results of significance
tests between different groups are shown in Table 12. The better
performance of musicians in both datasets was expected in this
experiment. We attribute the significance of the difference on
the Chinese dataset to the musicians’ expertise, whereas the
familiarity of the European dataset influenced the relatively better
performance of the non-musicians on the European dataset. In
this aspect, the comparison of the non-musicians performance
on both datasets also unveiled the underlying difference between
the listeners’ expertise vs. familiarity.

Regardless of the poorer performance of the participants in
both groups on the Chinese dataset (compared to the European
dataset), their performance was quite high—the participants
predicted a suitable response in almost 90% of cases, while the
musicians achieved an almost perfect score.

In study 2, we performed an evaluation of the prediction
of the two computational models, and compared them to the
participants’ prediction performance. In general, the participants
performed better in the prediction task than the compared
models on both datasets. It is evident that SymCHM, especially
SymCHM–eu, came very close to the performance of the
participants. We can conclude that the SymCHM model’s
performance lays between non-musicians’ and musicians’
performance in this prediction task. The extended I-R model first
needed fine-tuning to perform in this task. After the adjustment,
the model performed significantly better. However, it seems the
expertise implemented in this model does not outperform the
participants, nor the SymCHM, which was trained and thus
familiar with the background.

In the relaxed evaluation of the predictions, both the
SymCHM–eu and SymCHM–cn models correctly classified
all excerpts in the European dataset, and therefore achieved
better results than the participants. This can be attributed
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to the learning process in which the SymCHM extracts the
common patterns from the training dataset. If the dataset only
contains a major/minor or pentatonic scales, the model will
output only predictions matching the scales. In this aspect,
these results should not be generalized. In a similar manner,
the relative simplicity of the pentatonic scale (compared to
the major/minor scales) influenced the SymCHM–cn model’s
results. The SymCHM–cn achieved a 100% success in the
relaxed evaluation on the European dataset and the SymCHM–
eu achieved lower results on the Chinese dataset. We attribute
these results to in the structure of the scales—the tones of the
pentatonic scale are a subset of the diatonic scale. In the relaxed
evaluation, both the adjusted I-Rmodel and the SymCHMmodel
performed worse on the Chinese dataset than on the European
dataset. We did not expect this difference in performance,
since the SymCHM model learns the patterns from the training
set, while the adjusted I-R model employs rules, which are
universal tomusic. In this sense, we could attribute this difference
to potential Western-music bias, although further research is
needed to confirm this assumption.

We also compared the predictions using the mean reciprocal
rank. On the European dataset, the SymCHM–eu performed
significantly better than the adjusted I-R model (second best)
and the SymCHM–cn. On the contrary, the SymCHM–cn
received the best score on the Chinese dataset, whereas the
SymCHM–eu and the adjusted I-R model performed similarly
worse. The results for the difference between the SymCHM–eu
and the SymCHM–cn models were expected: the models were
trained, and therefore familiarized, with each music type, and
were therefore expected to perform better when applied to the
music of the same cultural background. On the other hand,
the adjusted I-R model performed similarly on both datasets,
proving the I-R model is agnostic of music culture. Therefore,
the difference between the experience and the familiarity in
computational approaches is clearly visible in their performance
across different datasets.

Additionally, the SymCHM models were also evaluated by
training on different dataset sizes. It is evident, that the model
performs better, when trained on a larger dataset, thus increasing
its “familiarity” with the underlying patterns, which are shared
among the songs with similar cultural background.

The role of familiarity due to cultural background has been
discussed in related work. Although some works support the
assumption that cultural background plays a role in experiencing
music (Balkwill and Thompson, 1999; Cross, 2001; Morrison
et al., 2003; Demorest et al., 2008; Soley and Hannon, 2010)
recent work has shown that within-culture variance of music
is higher than between-culture variance (Mehr et al., 2019).
This would indicate that the specific choice of music from a
culture may influence howmuch variance the familiarity variable
accounts for.

6. CONCLUSION

In this paper, we explored the influence of the listeners’
cultural background and their music sophistication on melody

prediction. This was done on two datasets consisting of
musical excerpts of European and Chinese folk songs. The
melody prediction data was gathered on 57 participants.
The participants were asked to predict the possible melody
continuation of each music excerpt from the two datasets.
The responses were split into two groups: (i) musicians
(high music sophistication), and (ii) non-musicians (low music
sophistication). The music sophistication was acquired using
the MSI instrument, which was adapted to Slovenian-speaking
participants. We compared the participants’ responses of the
two groups. Musicians performed better than non-musicians
on both the familiar (European) dataset, and the less familiar
(Chinese) dataset.

In addition, we compared the melody prediction performance
of two computational models: (i) the adjusted I-R model and
(ii) the symbolic compositional hierarchical model (SymCHM).
The SymCHM was trained twice, once for each melody
prediction task (on a set of Chinese songs and European
songs, separately). The SymCHM outperformed the adjusted I-
R model in the strict melody prediction task. We also compared
the predictions of the SymCHM and the adjusted I-R models
with the melody prediction performances of human listeners.
Musicians outperformed both the SymCHM and the adjusted
I-R model.

In both studies, the experiment results showed that the
music excerpts which ended at the end of a phrase (complete
excerpts) were more predictable than those which ended
in the middle of a phrase (incomplete excerpts). Both the
participants and the computational models correctly predicted
less than half of the incomplete excerpts; they were both more
successful in predicting complete excerpts. As the product of
this research, we also developed the Slovenian version of the
Musical sophistication index questionnaire, evaluated on 230
participants. Additionally, we collected the responses of 57
participants in the prediction task. Both the dataset and the
translated MSI questionnaire are made publicly available.

Based on the described work, we are planning on extending
this experiment with participants from different cultural
backgrounds and with datasets of less-known folk music.
We also plan on performing an inverted experiment to
further assess the computational models, by using the models’
predicted responses and having the participants evaluating
their subjective correctness of the responses. Another planned
extension of the current research will be exploring the
participants’ latent factors which influence their implicit
expertise in predicting. Furthermore, we plan on further
exploring the error patterns of human listeners and evaluate
the underlying decision process in comparison to their
music sophistication.
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