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The subject of mathematics is a national priority for most countries in the world. By
all account, mathematics is considered as being “pure theoretical” (Becher, 1987),
compared to other subjects that are “soft theoretical” or “hard applied.” As such, the
learning of mathematics may pose extreme difficulties for some students. Indeed, as
a pure theoretical subject, mathematics is not that enjoyable and for some students,
its learning can be somewhat arduous and challenging. One such example is the
topical theme of Trigonometry, which is relatively complex for comprehension and
understanding. This Trigonometry problem that involves algebraic transformation skills
is confounded, in particular, by the location of the pronumeral (e.g., x)—whether it
is a numerator sin30◦ = x/5 or a denominator sin30◦ = 5/x. More specifically, we
contend that some students may have difficulties when solving sin30◦ = x/5, say, despite
having learned how to solve a similar problem, such as x/4 = 3. For more challenging
Trigonometry problems, such as sin50◦ = 12/x where the pronumeral is a denominator,

students have been taught to “swap” the x with sin30◦ and then from this, solve for x.
Previous research has attempted to address this issue but was unsuccessful. Learning

by analogy relies on drawing a parallel between a learned problem and a new problem,

whereby both share a similar solution procedure. We juxtapose a linear equation

(e.g., x/4 = 3) and a Trigonometry problem (e.g., sin30◦ = x/5) to facilitate analogical

learning. Learning by comparison, in contrast, identifies similarities and differences

between two problems, thereby contributing to students’ understanding of the solution

procedures for both problems. We juxtapose the two types of Trigonometry problems
that differ in the location of the pronumeral (e.g., sin30◦ = x/5 vs. cos50◦ = 20/x) to
encourage active comparison. Therefore, drawing on the complementary strength of
learning by analogy and learning by comparison theories, we expect to counter the
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inherent difficulty of learning Trigonometry problems that involve algebraic transformation
skills. This conceptual analysis article, overall, makes attempts to elucidate and
seek clarity into the two comparative pedagogical approaches for effective learning
of Trigonometry.

Keywords: analogical learning, learning by comparison, linear equations, trigonometry problems, cognitive load

INTRODUCTION

The topic of Trigonometry is part of secondary mathematics
curriculum. Trigonometry is prerequisite knowledge for learning
Calculus in senior mathematics, and is essential for students
who wish to pursue Science, Technology, Engineering, and
Mathematics (STEM) courses. Learning Trigonometry problems
requires an understanding of multiple interrelated mathematical
concepts, such as algebraic transformation skills, geometry
knowledge, and reasoning of graphical representation of concepts.
Owing to the need to learn multiple interrelated concepts,
students experience great difficulty when learning Trigonometry
problems (Blackett and Tall, 1991; Kendal and Stacey, 1998).
Our objective in this conceptual analysis article is to highlight
the importance of scaffolding algebraic transformation skills to
facilitate the initial phase of learning Trigonometry problems.
The main focus here is to calculate the unknown side of a right-
angled triangle from a known side and an angle, which can pose
a challenge for many students. More specifically, we contend that
some students may have difficulties when solving sin30◦ = x/5,
say, despite having learned how to solve a similar problem, such
as x/4 = 3. For more challenging Trigonometry problems, such as
sin30◦ = 12/x where the pronumeral is a denominator, students
have been taught to “swap” the x with sin30◦ and then from this,
solve for x (Source: personal communication).

We argue that such teaching strategy, as detailed, for
Trigonometry problems falls short of addressing the algebraic
transformation skills, which are required to solve Trigonometry
problems. It does not, for example, attempt to relate a student’s
prior knowledge of solving linear equations with a fraction
to the solving of Trigonometry problems. Apart from this,
students may experience great difficulty when they attempt to
distinguish the difference between two types of Trigonometry
problems that look similar, but yet are conceptually different
from each other, consequently because of the relative position
of the pronumeral (i.e., a numerator vs. a denominator) (Kendal
and Stacey, 1998). On this basis, it is important for educators to
consider different theoretical approaches, pedagogical strategies,
and/or educational programs that could help students acquire
relevant skills to solve Trigonometry problems that differ in
terms of the location of the pronumeral (i.e., a numerator
vs. a denominator). One possibility, for example, is related
to the use of different, but comparable learning theories
that could facilitate effective learning and inform meaningful
understanding. The aim of this article then, situated within the
context of the topical theme of Trigonometry, is for us to examine
the effectiveness of two learning theories: learning by analogy
and learning by comparison. This analysis, we contend, could
form the basis for further research development, theoretically,

empirically, conceptually, and/or methodologically, into the
effective application of different learning theories.

THE CONCEPT OF LEARNING BY
ANALOGY

Learning by analogy, underpinned by structure mapping theory
(Gentner, 1983), has provided a theoretical framework for
research development into the study of word problems (Reed
et al., 1985, 2012; Reed, 1987; Ross and Kennedy, 1990;
Cummins, 1992). The structure mapping theory emphasizes the
construction of “relational commonalities” between a source
example (a learned problem) and a target problem (a new
problem) in terms of problem structure. Two-word problems
may have different problem contexts but share a similar problem
structure, for example: (i) “If 20% of my saving is $300, what
is my saving?” vs. (ii) “Joshua pays $260 a week for the rent
and this represents 25% of his weekly wages. How much does
Joshua earn a week?” Using the Algebra approach, we can set
up two equations, such as 20%x = $300 and 25%x = $260,
respectively, and solve for x. Because these two equations share
relational elements, they share the same solution procedure.
Analogical transfer is likely to occur if learners can successfully
map relational elements between a source example and a target
problem. Indeed, analogical reasoning of a learned problem and
a new problem enables learners to retrieve the schema for the
learned problem, which is applicable for solving the new problem.

Holyoak (1984) and Holyoak and Koh (1987) highlighted
four tasks to facilitate analogical learning: construct a mental
representation of the source example and the target problem
(Task 1), retrieve the source example as an analog to the
target problem (Task 2), map the relational elements of the
source example and the target problem (Task 3), and extend
the mapping to solve the target problem (Task 4). The authors
neither suggested a definite sequence to implement these four
tasks, nor indicated which task or tasks are critical for fostering
analogical learning.

Research has reported the benefit of including supportive
cues, such as a hint (Novick and Holyoak, 1991) or a
reminder (Ross, 1984) to access the source example. Thus, the
provision of a hint addresses Task 2. In a study conducted
by Cummins (1992), practice in extracting similar concepts
between the source example and the target problem resulted
in analogical transfer. We can attribute the extraction of
similar concepts to mapping activities, which addresses Task
3. Other researchers have also emphasized the mapping
process to achieve analogical transfer (Gentner et al., 2003).
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Participants who completed a diagram highlighting relational
elements between two negotiation scenarios outperformed
those participants who merely studied the two negotiation
scenarios. In contrast, however, Reed (1989) failed to find
evidence of analogical transfer for word problems despite
having addressed Tasks 2 and 3: (1) provided a hint for
students to access the source example, (2) required students to
construct concept-mapping tasks between the source example
and the target problem.

A study by one of us some years back (Ngu and Yeung,
2012) revealed that the presence of multiple components in
the source example (i.e., symbolic equations, categorization)
or the target problem (i.e., a hint, categorization), or both,
actually facilitated the mapping of symbolic equations in the
source example onto the target problem, resulting in the
effectiveness of analogical transfer. The findings, we contend,
have provided new theoretical insights into learning by analogy
by emphasizing the importance of having multiple components,
rather than a single component to foster analogical transfer
for word problems.

In light of prior studies on learning by analogy, the
use of hints to access the source example appears to be
a critical analogical task to facilitate transfer. Nonetheless,
using a hint to access the source will become redundant if
the source example is kept visible, while learners engage in
mapping the source example and the target problem (Richland
et al., 2007). A number of researchers (Gentner et al., 2003;
Rittle-Johnson and Star, 2007; Richland and McDonough,
2010) have noted the advantage of presenting two examples
simultaneously rather than sequentially. Presenting two examples
simultaneously, in this case, eliminates the need to provide
a hint for learners to access the source example. Presenting
examples in a sequential manner, in contrast, requires a
possible need to provide appropriate cues to remind learners of
the source example.

Indeed, the juxtaposition of two worked examples not
only renders the retrieval of source example unnecessary,
but it also provides opportunity for learners to engage in
effortful comparison. In their study, Kurtz et al. (2001)
advocated the implementation of mutual alignment
to foster the abstraction of the underlying common
structure across two partially understood scenarios.
Participants who jointly interpreted the two scenarios
in conjunction with listing specific correspondences
demonstrated greater mutual alignment than those
participants who either jointly or separately interpreted the
two scenarios. Furthermore, engaging in mutual alignment
between two partially understood text-based examples
promoted analogical transfer of a complex science concept
(Orton et al., 2012).

Clearly, from the preceding sections, research has supported
the use of the juxtaposition of two examples to promote
analogical learning. Nonetheless, the efficiency of performing
one-to-one mapping activities depends on the orientation of
the two images (Kurtz and Gentner, 2013), or the objects in
two examples (Matlen et al., 2020). Aligning two examples in
the same orientation instead of different orientations, in this

case, facilitates direct alignment of the mapping process, which
improves the efficiency of analogical reasoning.

THE CONCEPT OF LEARNING BY
COMPARISON

Building on the structure mapping theory (Gentner, 1983)
to foster analogical transfer, a number of studies recently
highlighted the positive effects of learning by comparison
(Alfieri et al., 2013; Ziegler and Stern, 2014; Rittle-Johnson
et al., 2017). For example, Durkin and Rittle-Johnson (2012)
investigated the effect of comparing correct and incorrect
examples for learning Decimal Numbers. Displaying correct
decimal and incorrect decimal concepts simultaneously helped
students rectify their misconceptions regarding the magnitude
of decimal numbers. A similar line of research involved asking
students to justify why a specific solution step was a good step
(e.g., 1 = 2x − 5, 6 = 2x), or a wrong step (e.g., 3 = 6x
− 2, 3 = 3x), helped students consolidate and refine their
understanding of conceptual knowledge, which was involved
in solving linear equations (Booth et al., 2013). Moreover,
Große and Renkl (2007) demonstrated the positive effect of
using correct and incorrect worked example in the domain of
Probability Problems. They argued that learning from correct
and incorrect examples offers learners with the opportunity to
distinguish similarities and differences between the two types of
worked examples.

Instead of comparing correct and incorrect worked
examples to facilitate mathematics learning, comparing
two contrasting Algebra expressions (e.g., y3

+ y3 = 2y3

vs. y3
× y3 = y6) side-by-side also helped students to

differentiate superficially similar (e.g., letter, number),
but conceptually different concepts (e.g., addition vs.
multiplication) within two contrasting worked examples
(Ziegler and Stern, 2014). Students who studied contrasting
Algebra expressions simultaneously outperformed those
students who studied algebra expressions sequentially.
Overall, then, research development to date has affirmed
the benefit of using learning by comparison to enhance effective
mathematics learning.

LEARNING BY ANALOGY AND
LEARNING BY COMPARISON IN
MATHEMATICS CLASSROOM

Apart from conducting laboratory testing, researchers have
also examined cross-national differences when using learning
by analogy in mathematics lessons for eight-grade students
(Richland et al., 2007). Teachers in high performing countries
in mathematics (e.g., Hong Kong, Japan), for example,
tend to use far more visual-spatial supports and linking
gestures to emphasize analogical comparisons than their
U.S. counterparts. Frequent use of visual-spatial supports
and linking gestures that direct students’ attention to the
source analog may help reduce cognitive processing demands,

Frontiers in Psychology | www.frontiersin.org 3 September 2020 | Volume 11 | Article 558773

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-558773 September 22, 2020 Time: 19:59 # 4

Ngu and Phan Trigonometry Learning

as it eliminates the need to search for the source analog
(Richland et al., 2017).

Instead of conducting learning by comparison in intact
classrooms that lasted a few days, Star et al. (2015),
in contrast, implemented a 1-year intervention between
“comparison” curriculum and “business as usual” curriculum.
The comparison curriculum was incorporated into regular
curriculum as supplementary materials. Greater use of
comparison materials correlated with higher gain in procedural
knowledge. Nonetheless, though, it was a challenge to
encourage teachers to use comparison materials consistently
throughout the year.

Indeed, from the above, analogical reasoning is facilitated
by the use of supporting cues (e.g., a hint) to draw learners’
attention to a relevant source example that shares a solution
procedure, which is similar to the target problem. Nevertheless,
we could exclude a hint to access the source example if we
place the source example and the target problem side-by-
side (e.g., Rittle-Johnson and Star, 2007). Mapping relational
commonalities between the source example and the target
problem is another critical analogical task that facilitates
analogical transfer. However, successful analogical transfer
depends on active comparison process (e.g., joint interpretation
plus list specific correspondences) (e.g., Kurtz et al., 2001) and
direct alignment of the examples (e.g., Matlen et al., 2020).
It is interesting to note though, from our examination of the
literature, that constructing a mental representation of the source
example in the initial phase of learning by analogy (Holyoak and
Koh, 1987) has received minimal attention in terms of research
and/or teaching development.

The salient point of learning by comparison, in contrast,
is the simultaneous display of two worked examples side-by-
side, which then allows learners to identify similarities and
differences between the two solution procedures of the two
worked examples (Rittle-Johnson et al., 2017). Consequently,
learning by comparison has the potential to strengthen a learner’s
understanding of mathematical concepts (or misconceptions), as
well as specific procedures that are relevant to the two worked
examples (e.g., Booth et al., 2013).

It is interesting to note that, methodologically, learning by
analogy and learning by comparison have consisted of the
use of different types of interventions. In relation to learning
by analogy, researchers have implemented interventions in
laboratory and classroom settings (Alfieri et al., 2013) and have,
likewise, included the use of visual-spatial supports and linking
gestures (Richland et al., 2007). In a similar vein, for learning
by comparison, researchers have conducted both short-duration
interventions (e.g., Rittle-Johnson and Star, 2007) and long time-
duration interventions (e.g., one calendar year) to enhance the
learning of Algebra (Star et al., 2015). Overall, then, we contend
that pedagogical practices that incorporate the use of both
learning by analogy and learning by comparison are effective,
helping to facilitate students’ learning of mathematics. Which
approach is more appropriate and/or effective? From our point
of view, we acknowledge that the two pedagogical approaches are
complementary with each other—the strength of one approach
may counter the weakness of the other approach and as such, this

“complementary balance” may reflect a holistic position when
one learns how to solve Trigonometry problems.

TRIGONOMETRY PROBLEMS

Our objective for discussion is to propose effective instruction
that could facilitate the learning of two different types of
Trigonometry problems, which differ because of the relative
position of the pronumeral—for example, cos60◦ = x/2, where
the pronumeral is a numerator, and sin30◦ = 8/x, where the
pronumeral is the denominator. As noted earlier, Trigonometry
problems are analogous to linear equations that have a fraction.
We have found from our research that it is more difficult to
solve linear equations that have a fraction, especially where the
pronumeral is a denominator instead of a numerator because the
former involves more solution steps (Ngu and Phan, 2016).

Despite the importance of Trigonometry problems in
secondary school mathematics curriculum, research pertaining to
effective teaching and learning of this problem type is relatively
scant (Kendal and Stacey, 1998; Weber, 2005; Weber et al.,
2008). Research has indicated that students experienced great
difficulty when they have to learn how to solve both types of
Trigonometry problems (e.g., sin30◦ = 8/x vs. cos60◦ = x/2)
(Kendal and Stacey, 1998). To address the issue, Kendal and
Stacey (1998) compared the unit circle method and the ratio
method with a particular focus to address students’ difficulty in
applying algebraic transformation skills to solve Trigonometry
problems with pronumerals as denominators. For the unit circle
method, the authors created a right-angled triangle that shared
similar properties to a given right-angled triangle. Several skills
were required to generate a scale factor, which would enable
the solving of Trigonometry problems with pronumerals as
denominators (e.g., aligned two right-angled triangles in terms
of similar properties). For the ratio method, in contrast, on the
basis of information provided in a right-angled triangle, students
were required to express the trigonometric ratio in an equation
(e.g., cos60◦ = x/2), and then solve for x. The post-test results
revealed that the unit circle method was inferior to the ratio
method, irrespective of the type of Trigonometry problems (i.e.,
sin30◦ = 8/x or cos60◦ = x/2).

It is well-known that learning how to solve Trigonometry
problems that involve algebraic transformation skills is a
pervasive issue, which continues to persist for many secondary
school students (Weber, 2005). This difficulty, perhaps, is
confounded by existing instructional materials that are described
and recommended in textbooks (e.g., Vincent et al., 2012). For
example, Vincent et al. (2012) detailed the solution procedure
for Trigonometry problems that have pronumerals as numerators
(e.g., cos50◦ = x/8): multiply both sides by 8, which involves
one operation. When the pronumeral is a denominator (e.g.,
sin30◦ = 12/x), in contrast, the authors recommended two
operations: (i) multiply both sides by x, and (ii) divide both
sides by sin30◦. We contend that the presentation of the
solution procedure for both types of Trigonometry problems is
logical. Having said this, however, we note that Vincent et al.
(2012) did not make an attempt to relate the two types of
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Trigonometry problems to students’ prior knowledge of linear
equations with a fraction.

We argue that it is important to consider the extent to
which learning by analogy, which may draw on a learner’s prior
knowledge of solving linear equations with a fraction, could
facilitate the effective solving of Trigonometry problems that
involve algebraic transformation skills. At the same time, we
also consider the potency of learning by comparison to discern
different solution procedures for Trigonometry problems that
have pronumerals as denominators (e.g., sin30◦ = 8/x) or as
numerators (e.g., cos60◦ = x/2). We will discuss the solution
procedure of linear equations with a fraction in the next section,
given that they are related to Trigonometry problems.

Solution Procedure of Linear Equations
In line with prior studies (e.g., Ngu et al., 2015; Ngu and Phan,
2016), we use relational and operational lines to describe the
solution procedure of a linear equation. A relational line refers
to the “quantitative relation where the left side of the equation is
equaled to the right side of the equation.” An operational line,
in contrast, refers to the use of an “operation that alters the
state of the equation and, hence, such a procedural step would
preserve the equality of the equation.” For example, referring to
Eq. 1 in Figure 1, Lines 1 and 3 are relational lines whereas, in
contrast, Line 2 is an operational line. Moreover, for this example,
we use the inverse method to illustrate the solution procedure of
equations that have a fraction (Figure 1). Our previous research
has affirmed the use of the inverse method rather than the
balance method for solving linear equations, especially those
equations that involve multiple solution steps (Ngu et al., 2015,
2018). The main difference between the inverse method and
the balance method, in this sense, lies in the operational line
(e.g., × 4 on both sides vs. ÷ 2 becomes × 2) (see Figure 1
for the inverse method). Central to the nature of the inverse
method is the inverse operation itself. The conceptualization
of the inverse operation of division, in this case, is that of
multiplication (i.e.,÷ 2 becomes× 2). According to Ding (2016),
interestingly, understanding inverse operation in the primary
school years is likely to assist with senior mathematics studies
(e.g., differentiation and integration in calculus). The inverse
method, as we have found from our existing research, is likely to
impose lower cognitive load than the balance method, especially
for linear equations that have multiple solution steps.

TRIGONOMETRY PROBLEMS WITH A
PRONUMERAL AS THE NUMERATOR

This section of the article details our fundamental premise, which
“equates” a Trigonometry problem that has a pronumeral as a
numerator (e.g., sin30◦ = x/6) with that of a linear equation
with a fraction (e.g., x/4 = 3). Capitalizing on existing research
investigations (Holyoak, 1984; Holyoak and Koh, 1987; Kurtz
et al., 2001; Ngu and Yeung, 2012; Alfieri et al., 2013; Rittle-
Johnson et al., 2017; Matlen et al., 2020), we propose two major
stages to facilitate analogical learning for Trigonometry problems
that involve algebraic transformation skills. We now discuss each
of the stages below in detail.

First Stage: Three Variants of Source
Examples
According to curriculum development and timetable scheduling,
we assume that students would have learned linear equations
with a fraction before they learn the topic of Trigonometry
(Vincent et al., 2012). This sequencing is advantageous as it
enables educators to draw parallel between a learned problem,
such as a linear equation with a fraction, x/4 = 3 (a source
example) and a new problem, such as a Trigonometry problem,
sin30◦ = x/6 (a target problem). Novice learners, however,
may not necessarily recognize the similarity between the source
example and the target problem without a teacher’s scaffolding.
To facilitate analogical learning, the first stage involves a mental
representation of three variants of source examples in terms of a
solution procedure (Figure 1). The aim, in this case, is to assist
learners to select a relevant source example from three different
variants of source examples, which then could serve as a guide to
solve the target problem.

All three variants of source examples are one-step equations
that have one operational line and two relational lines (Ngu and
Phan, 2016, 2017). We place the three equations side-by-side to
facilitate the mapping process (Kurtz et al., 2001; Rittle-Johnson
and Star, 2009; Matlen et al., 2020). Furthermore, we label the
solution steps—for example, Lines 1, 2, and 3 in Eq. 1 (Ngu and
Phan, 2016, 2017) in order to provide explicit cue (Richland et al.,
2017), which would encourage and facilitate active comparison.
In essence, Eq. 1 is the main source example, whereas Eqs. 2 and
3 are derivatives of Eq. 1. The difficulty level of the three variants
increases from Eqs 1–3. Eq. 1 differs from Eq. 2 in terms of the

FIGURE 1 | Three variants of source examples.
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relative position of the pronumeral (i.e., left side vs. right side).
Different orientation of the pronumeral would prevent direct
alignment of the relational elements (Kurtz and Gentner, 2013;
Matlen et al., 2020), and therefore this would adversely affect the
efficiency of the analogical comparison. In contrast, displaying
Eqs. 2 and 3 in the same orientation whereby the pronumeral
is located in the right side of the equation would enable direct
alignment of relational elements and, thus, this would facilitate
the mapping process (Kurtz and Gentner, 2013). It should be
noted that Eq. 2 (e.g., 2 = x/5) aligns with the target problem
(e.g., sin30◦ = x/6), given that both problems have pronumerals
that are located on the right side of the equation. Equation 3,
in contrast, differs from Equation 2 because the former has a
decimal number. The location of the pronumeral on the right
side of the equation and the presence of a decimal number are
considered as special features of one-step equations; these specific
features, we contend, pose serious challenges for many students
(Ngu and Phan, 2017).

In line with the recommendation by Kurtz et al. (2001) to
facilitate analogical reasoning, our conceptualization requires
that students complete three tasks (see Figure 1). Our aim is to
encourage students to engage in deep processing of the three
source examples. For the first task, students are required to
compare and describe the similarities and differences between
the three equations with respect to Line 1. The aim is to assist
students to engage in deep analogical reasoning, leading to the
identification of a common relational structure across the three
equations. Comparing Eqs. 1 and 2, for example, would uncover
the different location of the pronumeral (i.e., left side vs. right
side). Comparing Eqs. 2 and 3, in contrast, would reveal that these
equations do not exhibit a one-to-one correspondence in terms
of the attribute of elements due to the presence of the decimal
number in Eq. 3. It should be noted that Eq. 3 (1.2 = x/3) aligns
with the target problem (sin30◦ = x/6), given that both problems
have pronumerals located on the right side of the equation and
that sin30◦ can be expressed as a decimal. Furthermore, as we can
see, the mathematical operation for Line 1 (e.g.,÷ 2 becomes× 2
in Eq. 1) is the same across the three equations. Thus, having
compared Line 1 of the three equations, we expect students to
realize that these three equations belong to the same category of
linear equations, thus requiring the use of the same mathematical
operation to solve.

In relation to the second task, students are required to generate
parallel solution steps, such as Lines 2 and 3 of Eqs. 2 and 3, which
align with Lines 2 and 3 in Eq. 1 (Kurtz et al., 2001). Generating
parallel solution steps for Eqs. 2 and 3 would draw students’
attention to a one-to-one correspondence with reference to the
relational elements between the three equations. The third task,
in contrast, requires students to answer a prompting question,
for example: “Why might it be helpful to compare Eqs. 1–3?” We
anticipate that such task would reinforce students’ understanding
of the similarity between the three equations in terms of the
schema for the shared solution procedure. In short, having
completed the three tasks, we expect students to draw inference
and recognize that the three equations shared a similar solution
procedure, despite the relative position of the pronumeral (i.e.,
right side vs. left side) and the difference in the format of a
number (e.g., 2 vs. 1.2). Once students have mentally represented
the three variants of source examples and inferred a schema for
the shared solution procedure, we expect them to select a relevant
source example (1.2 = x/3) and subsequently to use this to solve
the target Trigonometry problem (sin30◦ = x/6). This would
constitute the second stage in the analogical learning process.

Second Stage: Map a Relevant Source
Example and the Target Problem
We envisage that students would have learned the definition
of trigonometric ratios prior to their learning of how to solve
Trigonometry problems that involve algebraic transformation
skills. Each trigonometric ratio represents a number (i.e., a
fraction or a decimal number), which is defined as one side over
another side in a right-angled triangle.

As shown in Figure 2, by placing a relevant source example
(1.2 = x/3) and a target problem (sin30◦ = x/6) side-by-side, it
is not necessary to provide a hint to access the relevant source
example (Rittle-Johnson and Star, 2009; Matlen et al., 2020).
Once again, we provide explicit cue (Richland et al., 2017) in
which we use Lines 1, 2, 3 and so on to denote the solution
procedure. For the first task, students are required to examine
the solution steps of Lines 1, 2, and 3 in the relevant source
example, and then generate parallel solution steps for the target
problem, which are denoted by Lines 2, 3, and 4. On examining
the target problem, we expect students to retrieve their prior

FIGURE 2 | Solution procedure of a relevant source example and a target problem.
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knowledge of expressing sin30◦ in a decimal number and then
complete Line 2 of the target problem. In doing so, the students
are likely to notice a similarity between Line 1 of a relevant
source example (1.2 = x/3) and the first solution step of the target
problem (0.5 = x/6). Consequently, through mapping activities,
we contend that this would guide the generation of solution steps
for Lines 3 and 4 of the target problems, which are similar to the
solution steps of Lines 2 and 3 of the relevant source example.
Accordingly, from our point of view, the best alignment between
the relevant source example and the first solution step of the
target problem would occur as both share similar objects and
relation (Richland et al., 2006).

Having generated the missing parallel solution steps for
the target problem, students then proceed onto the second
task. We recommend the use of open-ended questions as
additional supporting cues for reflection, consolidation, and
understanding—for example, “Why might it be helpful to
compare a relevant source example and a target problem?”
Reflection questions, we argue, may assist students to engage in
deep processing of the relevant source example and the target
problem (Rittle-Johnson and Star, 2007). Ultimately, having
completed both tasks in Figure 2, we expect students to draw
inference with reference to the schema for the shared solution
procedure of a linear equation with a fraction (e.g., 1.2 = x/3)
and the first solution step of Trigonometry problem (e.g.,
0.5 = x/6), whereby sin30◦ in the target has been replaced with
a decimal number.

Summary
We propose a mental representation of three variants of source
examples, leading to the selection of a relevant source example
for the target problem. Our proposition differs from prior
studies (Holyoak and Koh, 1987; Ngu and Yeung, 2012) that
suggest a mental representation of one source example only.
Existing recommendations highlight a one-to-one mapping
between cases or examples to facilitate analogical learning
(Alfieri et al., 2013; Goldwater and Schalk, 2016). Differing
from existing recommendations, however, we emphasize a shared
solution procedure between a relevant source example and the
first solution step of the target problem (i.e., a subset of the
target problem).

In line with the concept of learning by comparison (Rittle-
Johnson et al., 2017), we place the relevant source example
and the target problem side-by-side. We also label the solution
procedure of the relevant source example as well as the missing
parallel solution procedure for the target problem. Our aim here,
in this analysis, is to draw students’ attention to the critical feature
of the solution steps that constitutes a common structure between
the relevant source and the target problem. Active analogical
comparison would result when students generate the missing
parallel solution steps for the target problems. The provision of
a prompting question in conjunction with the generation of the
missing parallel solution steps for the target problem would, from
our point of view, assist students to deduce a schema of the shared
solution procedure between the relevant source example and the
first solution step of the target problem.

Overall, we contend that our proposed two major stages
provide important insights, which may promote analogical
learning: (i) a mental representation of three variants of source
examples and then select a relevant source example among them,
and (ii) perform mapping activities between a relevant source
example and a target problem. We argue that our proposition,
differing from existing research development, is informative for
its structured sequencing, enabling students to construct their
understanding into the solving of Trigonometry problems that
involve algebraic transformation skills via the use of both learning
by analogy and learning by comparison concepts.

Research on expertise reversal effect has placed emphasis on
the specific interaction between an instructional method and
a learner’s expertise in the relevant domain (Kalyuga et al.,
2003). In brief, with a focus on the expertise reversal effect,
it is noted that learners with varying levels of expertise would
require different types of instructional methods. Accordingly,
expert learners may not necessarily have to mentally represent
three variants of source examples and select a relevant
source example, and/or mentally represent the target problem
plus its first solution step. With in-depth knowledge and
understanding of linear equations and trigonometric ratios,
expert learners may realize that sin20◦ = x/6 is similar to
3 = x/8. Once they realize that sin20◦ is a decimal number,
they would have a solution for sin20◦ = x/6. Indeed, noticing
a similarity between sin20◦ = x/6 and 3 = x/8 would result
in expert learners retrieving a learned solution procedure for
the solving of 3 = x/8, which could then be used to solve
sin20◦ = x/6.

The theoretical rationale that explains the procedure
of solving Trigonometry problems with pronumerals as a
numerator could be applied to Trigonometry problems that
have pronumerals as a denominator, given that both types
of Trigonometry problems are related to linear equations
with a fraction. In the next section, we explore in detail the
solving of Trigonometry problems that have pronumerals
as a denominator.

TRIGONOMETRY PROBLEMS WITH A
PRONUMERAL AS THE DENOMINATOR

As noted earlier, the relative location of the pronumeral
(i.e., numerator vs. denominator) determines the complexity
of the Trigonometry problem. Differential solution steps
favor Trigonometry problems that have pronumerals as a
numerator. More specifically, Trigonometry problems that
have pronumerals as a denominator are more complex
than Trigonometry problems that have pronumerals
as a numerator. In this analysis, the former has more
operational lines (2 vs. 1) and relational lines (3 vs. 2)
when compared to the latter (see Figures 2, 4). The
rationale for promoting analogical learning for the two
types of Trigonometry problems that differ in the location
of pronumeral (i.e., numerator vs. denominator), likewise,
is the same. Therefore, similar to the case of learning
how to solve trigonometry problems with pronumerals
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as a numerator (e.g., sin30◦ = x/6), we argue that
learning to solve cos60◦ = 4/x would require learners
to engage in the following: (i) mentally represent three
variants of source examples, and then select a relevant
source example from these source examples (Figure 3),
(ii) mapping a relevant source example and a target
problem (Figure 4).

The three variants of source examples are one-step linear
equations that have two operational lines and three relational
lines (Figure 3). Equations 1, 2 are similar except the location of
the pronumeral (left side or right side). For Eq. 2, the location of
the pronumeral is on the right side of the equation (4 = 32/x),
which is similar to the location of the pronumeral for the target
problem (Cos60◦ = 4/x) (Kurtz and Gentner, 2013). Equations
2 and 3 are similar with the exception of a decimal number
for the latter. As noted earlier, the presence of special features
(e.g., a pronumeral located on the right side of the equation, a
decimal number, etc.) contributes to the complexity of one-step
equations. Accordingly, the three variants of the linear equations
increase in complexity from Eqs. 1–3. It should be noted that
the rationale of completing the tasks in Figures 3, 4 for learning
Trigonometry problems with a pronumeral as a denominator is
similar to the rationale of completing the tasks in Figures 1, 2
for learning Trigonometry problems with a pronumeral as a
numerator. Thus, we will not discuss the tasks in Figures 3, 4
separately here.

An inspection of the solution procedure for the two
Trigonometry problem types (i.e., pronumeral as a numerator
vs. pronumeral as a denominator) suggests that there are a few

notable differences. As noted earlier, for example, differential
number of relational (3 vs. 4) and operational (1 vs. 2) favors
Trigonometry problems that have pronumerals as a numerator
(Ngu and Phan, 2016). Hence from this disparity, we argue that
learning to solve Cos60◦ = 4/x would pose a greater challenge
than learning how to solve sin30◦ = x/6 (i.e., see Figure 2 vs.
Figure 4). However, having said this, we contend that prior
knowledge (e.g., algebraic transformation knowledge) would
help a learner to reduce the number of relational lines. For
example, referring to Figure 4, a learner may skip Line 2 of the
relevant source example (i.e., 2.4× x = 3) and the corresponding
Line 3 of the target problem (i.e., 0.5 × x = 4). It should be
noted that expert learners may also recognize and realize that
cos40◦ = 5/x and 3 = 12/x are similar to each other. Once they
realize that cos60◦ is a decimal number (i.e., 0.5), they would
have recognized that the same method could be used to solve
both problems.

How can we help learners to distinguish the two types of
trigonometry problems: a pronumeral as a numerator (e.g.,
sin30◦ = x/6) vs. a pronumeral as a denominator (e.g.,
cos60◦ = 4/x)? Previous research has indicated that secondary
school students performed better when the pronumeral is a
numerator rather than that of a denominator (Kendal and Stacey,
1998; Weber, 2005). The number of operational and relational
lines, as we have argued, reflects the complexity of the solution
procedure. As noted previously, the Trigonometry problems that
have pronumerals as a numerator have fewer operational (e.g., 1
vs. 2) and relational (3 vs. 4) lines than Trigonometry problems
that have pronumerals as a denominator.

FIGURE 3 | Three variants of source examples.

FIGURE 4 | Mapping a relevant source example and a target problem.
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DIFFERENTIATE THE TWO TYPES OF
TRIGONOMETRY PROBLEMS

The concept of learning by comparison, from our point of
view, may assist learners to distinguish the two types of
Trigonometry problems. We propose to place the two types
of Trigonometry problems side-by-side and instruct learners
to identify the similarities and differences between them
(Rittle-Johnson et al., 2017). For example, with reference to
Figure 5, we could ask learners to indicate major similarities
and/or differences. From our inspection, there are a number
of possibilities: (i) the location of the pronumeral (i.e., a
numerator vs. a denominator), (ii) sin30◦ is similar to cos50◦,
both of which are decimal numbers, (iii) once we replace
sin30◦ or cos50◦ with a decimal number, it becomes a linear
equation with a fraction (e.g., Figures 2, 4), (iv) differential
number of relational lines (i.e., 2 vs. 3) and operational lines
(i.e., 1 vs. 2) favors a Trigonometry problem that has a
pronumeral as a numerator, and (v) the inverse method is
used to solve both types of Trigonometry problems. Once
learners have compared and identified the similarities and
differences between the two types of Trigonometry problems,
we predict that they would have noticed differential algebraic
transformation skills involved in solving these two types of
Trigonometry problems.

For novice learners, in contrast, we argue that a basic
step for understanding, it would be ideal to compare linear
equations with a fraction side-by-side in order to identify
their similarities and/or differences (see Figure 6). One
notable characteristic for identification, in this case, relates to
the location of the pronumeral (i.e., as a numerator vs. a
denominator), which influences the algebraic transformation
skills involved in solving these two types of linear equations.
Learning and mastering this basic step, we contend, may

facilitate understanding of Trigonometry problems that have
pronumerals as both numerator and denominator. For example,
a comparison of cos60◦ = 2/x and cos60◦ = x/2 side-by-
side indicates that one main difference lies in the location
of the pronumeral—that is, 2/x vs. x/2. This identification
would, in turn, prepare novice learners to solve both types
of Trigonometry problems—in this case, sin30◦ = 8/x vs.
cos60◦ = x/2.

DISCUSSION

Trigonometry, indeed, is a difficult topic for many secondary
students, especially when we confound Trigonometry problems
with the location of the pronumeral (i.e., a numerator vs. a
denominator) (Kendal and Stacey, 1998). We argue that it is
possible to counter this pervasive issue by considering the use of
learning theories—in this case, learning by analogy and learning
by comparison concepts (Kurtz et al., 2001; Rittle-Johnson and
Star, 2007; Alfieri et al., 2013). Our conceptualization, as detailed
in the preceding sections, proposed a mental representation
of three variants of source examples. Of these three variants
of source examples, we select one relevant source example for
the target problem. We highlight the mapping of a relevant
source example and the first solution step of the target problem
in order to achieve optimal alignment between these two
problems. Our proposition, in its totality, has advanced the
study of learning by analogy for its deliberation on a relevant
source example from three variants of source examples. This
pedagogical contention is different from previous research (e.g.,
Holyoak and Koh, 1987), which places emphasis on the use
of one source example. Moreover, we emphasize a subset of
the target problem and not the whole target problem for the
purpose of implementing a one-to-one mapping task between

FIGURE 5 | A comparison between solution procedure of two types of trigonometry problems.

FIGURE 6 | A comparison between an equation with pronumeral as numerator and an equation with pronumeral as denominator.
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FIGURE 7 | Examples of mathematics learning via learning by analogy and learning by comparison.

the relevant source example and the first solution step of the
target problem. Therefore, we recommend a comparison between
a source example and a subset of a target problem to facilitate
analogical learning.

At the same time, capitalizing on the significance of learning
by comparison, we consider the use of comparison within the
context of Trigonometry problems for their similarities and
differences. Our conceptualization, which to date researchers
have not studied, is innovative for its emphasis on the
simultaneous comparison of different types of Trigonometry
problems. This comparison of two types of Trigonometry
problems side-by-side, in particular, seeks to overcome the
long-standing difficulty of learning Trigonometry problems that
differ because of the relative position of the pronumeral (i.e.,
numerator vs. denominator). With this in mind, we urge
educators to consider the use of the instructional practices
that help students to recognize and understand the two main
Trigonometry problem types.

How can the concepts of learning by analogy and learning
by comparison assist us in our pedagogical practices in other
areas of mathematics? Consider in this case the learning of
Algebra expression problems, which is presented in Figure 7. The
focus of understanding, in this case, is related to our previous
mentioning of comparison—that is, a parallel comparison is
made between “2(3 + 5)” and “a(2 + b).” Our postulation is that
alignment of relational elements may assist learners to understand
the logic of manipulating variables. For example, as shown, 2a
simply means that 2 is multiplied by a (a variable). From this
consideration, in a secondary school, a student may compare the
two equations side-by-side and deduce that 2 is equaled to a,
and 5 is equaled to b. In a similar vein, we contend that it is
of value to consider learning by comparison as an instructional
tool, which could facilitate the learning of linear equations. As
a point of comparison of linear equations that have a fraction
(e.g., Figure 7), for example, we note that having fewer solution

steps (Method 1) is more beneficial as this would impose lower
cognitive load (Ngu et al., 2018).

In conclusion, as educators, we recognize the important
topic of Trigonometry. Moreover, from our professional
experiences, we acknowledge that there is a pervasive issue when
Trigonometry problems have pronumerals that operate as both a
numerator and a denominator. This distinction (i.e., pronumeral
as a numerator vs. pronumeral as a denominator), we contend,
is relatively unique, confounding the difficulty of students’
understanding of how to solve different types of Trigonometry
problems that involve algebraic transformation skills. From our
existing empirical research and other researchers’ inquiries and
findings, we derived a pedagogical conceptualization that could
assist students to understand the complexity of Trigonometry
problems. In this analysis, considering the effectiveness of both
learning by analogy and learning by comparison, we proposed
an alternative sequence of steps for students to follow. We
recommend educators to implement and explore the potentiality
of our proposition when teaching two types of Trigonometry
problems that differ in terms of the relative location of the
pronumeral (i.e., numerator vs. denominator).
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