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Structural equation model (SEM) trees are data-driven tools for finding variables that
predict group differences in SEM parameters. SEM trees build upon the decision tree
paradigm by growing tree structures that divide a data set recursively into homogeneous
subsets. In past research, SEM trees have been estimated predominantly with the
R package semtree. The original algorithm in the semtree package selects split
variables among covariates by calculating a likelihood ratio for each possible split of
each covariate. Obtaining these likelihood ratios is computationally demanding. As a
remedy, we propose to guide the construction of SEM trees by a family of score-based
tests that have recently been popularized in psychometrics (Merkle and Zeileis, 2013;
Merkle et al., 2014). These score-based tests monitor fluctuations in case-wise
derivatives of the likelihood function to detect parameter differences between groups.
Compared to the likelihood-ratio approach, score-based tests are computationally
efficient because they do not require refitting the model for every possible split. In
this paper, we introduce score-guided SEM trees, implement them in semtree, and
evaluate their performance by means of a Monte Carlo simulation.

Keywords: exploratory data analysis, heterogeneity, model-based recursive partitioning, parameter stability,
structural change tests, structural equation modeling

INTRODUCTION

Structural equation models (SEMs; Bollen, 1989; Kline, 2016) are a widely applied technique in
social and psychological research to model the relationships between multiple variables. SEMs are
especially useful when some of the variables under investigation are latent (not directly observable)
or contain measurement errors. Various statistical procedures such as factor analysis, ANOVA,
linear regression, mediation models, growth curve models, and dynamic panel models can be
specified within the SEM framework.

A major challenge that complicates the specification and interpretation of SEMs are potential
differences between subgroups of the sample. Group differences can pertain to various aspects of a
SEM. For instance, in a latent growth curve model, we may find differences in how people change
over time, or in a factor analysis model, the factor structure may vary across groups. By neglecting
such instances of sample heterogeneity, SEM parameter estimates may not represent any individual
in the sample, and researchers risk drawing incorrect conclusions from their data (e.g., Kievit et al.,
2013). This makes identifying group differences in SEM parameters an important task.

One popular strategy is to detect heterogeneity in SEMs with the help of covariates. Multi-group
structural equation models (MGSEMs; Sörbom, 1974) allow estimating different parameter values
for the levels of a grouping variable, such as males and females or treated versus non-treated.
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By comparing the fit of a single-group SEM to the fit of a
MGSEM, equality constraints on parameters across groups can
be tested with the likelihood-ratio test. Multi-group structural
equation modeling excels as a confirmatory tool to test a limited
number of hypotheses about group differences. As part of
exploratory data analysis, however, the method can often become
tedious in large data sets. With many potentially important
grouping variables, many MGSEMs need to be specified and
estimated. Moreover, since MGSEMs require discrete grouping
variables, numeric and ordinal covariates such as age or
socioeconomic status need to be discretized, which often leads to
a loss of information (but see Hildebrandt et al., 2016).

SEM trees, as first presented by Brandmaier et al. (2013b),
can be seen as an extension of MGSEMs for exploring parameter
heterogeneity in SEMs. SEM trees are a data-driven approach
that automatically searches through all available covariates to
identify partitions of the full sample that differ with respect to
SEM parameter estimates. SEM trees build upon the model-based
recursive partitioning paradigm (for an overview, see Zeileis et al.,
2008; Strobl et al., 2009). One key feature of SEM trees is their
interpretability: SEM trees provide a graphical representation
of how covariates and covariate interactions predict non-linear
differences in SEM parameters. The building blocks of SEM
trees are called nodes, each containing a SEM fitted to a distinct
subsample. The SEM tree algorithm forms a binary tree structure
by hierarchically splitting these nodes. Each node of the SEM
tree has either two successors (daughter nodes) and is called an
inner node or no successors and is called a leaf (or terminal
node). The first node of the tree is called the root and has
no parent nodes. The inner nodes of the tree represent split
decisions. Each split decision involves a covariate (e.g., age
of the observed individuals) and a cut point in the covariate
(e.g., divide the sample into individuals younger and older than
45 years). A leaf of a tree contains a partition of the sample
that is best described with a set of SEM parameters. All leaves
taken together exhaustively partition the original sample and
can be thought of as a MGSEM with potentially many groups.
An important difference to conventional multi-group structural
equation modeling is that the group membership in a SEM tree is
not pre-specified but learned from the data.

There are currently two software packages for the statistical
programming language R that allow fitting SEM trees. One
is the semtree package (Brandmaier et al., 2013b) that
has been widely applied in the literature (Brandmaier et al.,
2013a, 2016, 2017, 2018; Jacobucci et al., 2017; Usami et al.,
2017, 2019; de Mooij et al., 2018; Ammerman et al., 2019;
Serang et al., 2020; Simpson-Kent et al., 2020). The other
software implementation is the partykit package (Hothorn
and Zeileis, 2015). Unlike semtree, partykit is not limited
to a specific model class such as SEMs but provides the
infrastructure for general recursive partitioning across various
model classes. Among other features, partykit provides the
generic MOB algorithm for model-based recursive partitioning
that has been used to study heterogeneity in M-estimators
(Zeileis et al., 2008), Bradley-Terry models (Strobl et al., 2011),
Rasch models (Strobl et al., 2015; Komboz et al., 2018),
multinomial processing trees (Wickelmaier and Zeileis, 2018),

generalized linear mixed-effects models (Fokkema et al., 2018),
network models (Jones et al., 2020), and circular regression
models (Lang et al., 2020). Moreover, MOB is also used
in more specialized recursive partitioning packages such as
psychotree (Zeileis et al., 2020). Recently, Zeileis (2020)
demonstrated on his blog how MOB can be coupled with the
SEM software lavaan (Rosseel, 2012) to estimate SEM trees.
Outside of the R ecosystem, SEM trees have also been fitted in
Mplus (Serang et al., 2020).

SEM trees are estimated by recursively selecting the covariate
that best partitions the sample into different subgroups. Thus,
the evaluation of potential splits is the central aspect of
the algorithm. The semtree package uses a procedure that
transforms all non-dichotomous covariates (that is, covariates
with more than two values) into a set of dichotomous split
candidates. Then, the tree growing algorithm computes the
likelihood ratio between a single SEM (fitted on the complete
sample of the current node) and MGSEMs (representing the
model after the split) for every split candidate and selects
the candidate associated with the largest likelihood ratio. The
number of MGSEMs needed to calculate these likelihood ratios
is directly related to the number of possible splits of the
covariate. For instance, evaluating a numeric covariate such
as age with many different values will require more MGSEMs
to be estimated than evaluating a discrete covariate such as
handedness. The reliance of the semtree package on likelihood
ratios has the apparent drawback that the computational burden
becomes large to excessive if there are many covariates and
the covariates have many unique values. Another problem of
the current semtree package is that the standard approach to
split evaluation (called naïve selection approach in semtree) is
biased by favoring the selection of covariates with many unique
values over covariates with few unique values (Brandmaier
et al., 2013b). The semtree package offers a correction
procedure (fair selection approach) for this selection bias (also
known as attribute selection error; Jensen and Cohen, 2000).
However, this correction procedure is heuristic and comes
at the price of decreased statistical power to detect group
differences. To solve this problem, we suggest to use a well-
known method for likelihood-ratio-guided covariate selection
that does not suffer from a selection bias while retaining
full statistical power. We implemented this method into the
semtree package.

In contrast to the semtree package, model-based recursive
partitioning in the partykit package uses so-called score-
based or structural change tests (e.g., Zeileis and Hornik, 2007)
for assessing whether the values of one or more parameters
depend on a covariate. Score-based tests are obtained by
cumulating the case-wise gradients of the log-likelihood function
evaluated at the parameter estimates. Unlike the likelihood-
ratio test, score-based tests do not require the estimation of
group-specific models for the evaluation of each split. This
property leads to two advantages that make score-based tests
highly attractive for model-based recursive partitioning. First,
they are computationally efficient, as only the pre-split model
needs to be estimated once. Second, when subgroups become
small, fitting multi-group models to obtain likelihood ratios
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may become unstable. We propose using the advantages of
score-based tests and added SEM trees guided by score-based
tests to the semtree package. Our implementation of score-
guided trees differs in some points from the generic MOB
algorithm from the partykit package. MOB uses score-based
tests to select a covariate, and it locates the optimal cut point
in this covariate by comparing likelihood ratios. In contrast,
our semtree implementation uses a score-based cut point
localization, which is computationally more efficient. Moreover,
MOB is currently limited to a single score-based test statistic,
whereas semtree offers a broader selection of different test
statistics that recently became popular in the exploration of
measurement invariance in SEMs (Merkle and Zeileis, 2013;
Merkle et al., 2014; Wang et al., 2014, 2018).

The present study assesses a wide range of variable selection
techniques in a Monte Carlo simulation study using the
semtree package. We implemented an optimal likelihood-
ratio-based method to improve the statistical properties of the
likelihood-ratio-based split selection in semtree and added
a family of score-based tests as a computationally efficient
alternative. We evaluated the performance of these new methods
next to the classical naïve and fair methods. Moreover, we
explored two techniques offered by semtree that allow testing
specific hypotheses and incorporating a priori knowledge about
group differences. The remainder of this manuscript is organized
as follows: first, we reiterate the basic principles of SEM
trees. Second, the existing likelihood-ratio-based implementation
is outlined in detail and complemented with an unbiased
method for selecting covariates. Third, we recapitulate a family
of score-based tests and show how they can be used to
guide the split decision of SEM trees. Fourth, the simulation
setup and results are shown. The study concludes with a
discussion of the simulation results and recommendations for
future research.

INTRODUCTORY EXAMPLE

In the following, we illustrate the rationale behind SEM trees
with an instructive example. Readers familiar with SEM trees may
skip this section.

Let us assume a researcher estimated a confirmatory factor
analysis (CFA; Brown, 2015) model that explains the scores of
three ability tests of 600 male and female test takers of different
ages with a single common latent factor and test-specific error
terms. The data were collected at two different testing facilities.
The researcher wonders if the parameter values of her CFA model
differ with respect to the sites, the test takers’ age, and gender. She
investigates this question with the help of a SEM tree.

The data for this fictional example were simulated such that
the factor loading of the first ability test for individuals older
than 45 years was smaller (0.6) than for younger individuals
(0.8). This represents a violation of measurement invariance; that
is, differences among individuals’ responses to an item are not
only due to differences in the latent factor but also due to the
item functioning differently across groups and being measured
with different precision. Further, we lowered all factor loadings

of older individuals tested at the second site by 0.1, imposing
another form of violation of metric invariance. The covariate
gender had no impact on the parameters of the CFA model and
served as a noise variable.

Figure 1 shows the resulting SEM tree for the simulated data
set. The SEM tree consists of 5 nodes depicted as ovals, each of
them containing a CFA model. Node 1 is the root node of the
SEM tree and contains the CFA model fitted on the full data set
with N = 600 individuals. In this illustrative example, the SEM
tree algorithm concluded that the fit of the model in the root node
could be improved most by splitting the data into a group of 300
individuals younger than 45 years (Node 2) and a group of 300
individuals older than 45 years (Node 3). Node 2 and 3 are said to
be the daughters of Node 1. After splitting the sample associated
with Node 1, the algorithm proceeds recursively with Node 2 and
3. Whereas the fit of the model for younger individuals (Node
2) could not be improved any further, the SEM tree algorithm
split the group of older individuals (Node 3) into two subgroups
with 150 older individuals tested at site 1 (Node 4) and 150 older
individuals tested at site 2 (Node 5). After this split, the SEM
tree algorithm terminated as no further split would significantly
improve any of the submodels’ fit. Nodes 2, 4, and 5 are the leaves
of the SEM tree, and individuals within these nodes were found
to be homogeneous with respect to the covariates. As expected,
the SEM tree algorithm did not select the covariate gender for
splitting because this covariate was not associated with any group
differences in the simulated data set.

It is important to note that the structure of the SEM tree
shown in Figure 1 is not specified a priori but learned top-
down in an exploratory way. The algorithm only requires a
pre-specified template SEM (in the example, the CFA model) and
a data set including covariates that serve as split candidates to
identify homogeneous groups. The selection of covariates and
the identification of optimal cut points are then learned from
the data. Throughout the tree, the structure of the template SEM
remains the same, and only the values of the parameter estimates
change as the model is fitted recursively on different subsamples.

STRUCTURAL EQUATION MODEL
TREES

The generical SEM tree algorithm can be described in four steps:

1. Specify a template SEM.
2. Fit the template SEM to all observations in

the current node.
3. Assess whether the SEM parameter estimates are constant

or vary with respect to the covariate.
4. Choose the covariate that is associated with the largest

group differences. If the group difference exceeds a
threshold, split the node into two daughter nodes, and
repeat the procedure with Step 2 for both daughter nodes.
Otherwise terminate.

Likelihood-ratio-guided and score-guided SEM trees differ in
how Step 3 of the general SEM tree algorithm is implemented.
In other words, the procedures use different approaches to
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FIGURE 1 | Illustrative example of a SEM tree. The SEM tree recursively partitioned a CFA model with respect to individuals’ age and study site.

evaluate heterogeneity and to search for optimal split points
in covariates. The following section outlines Steps 1–4 for
likelihood-ratio-guided SEM trees before introducing score-
guided SEM trees afterward.

Step 1: Specification of the Template
Model
The starting point for growing a SEM tree is the specification
of a template SEM. A template model reflects hypotheses about
the data by specifying relations among observed variables and
latent constructs and is determined by the research question. The
template model is fitted on all subsamples associated with the
nodes of the SEM tree. It is important to note that the structure
of the template model stays the same in the entire SEM tree
(but see Brandmaier et al., 2013a for trees with multiple models).
Hence, parameters fixed to a constant (e.g., zero or one) in the
template model are fixed to the same constant in all submodels
of the tree. Only parameters freely estimated in the template
model are allowed to differ across groups and contribute to the
assessments of splits.

Fixing many parameters of the template model to constants
can hinder the SEM tree algorithm from identifying group
differences. Usually, some parameters are fixed to ensure the

identification of the SEM. In some model classes, additional
constraints are specified to model specific relationships or
trajectories. For instance, in latent growth curve models (see
McArdle, 2012 for an overview), the factor loadings of a latent
random slope variable are often fixed to model a specific growth
pattern such as linear or quadratic growth. By fixing these
loadings, a SEM tree will not be able to estimate different
growth patterns between groups and, as a result, may overlook
heterogeneity. In this case, estimating the factor loadings as free
parameters may improve the SEM tree’s flexibility to adapt to
subgroup-specific trajectories.

By default, SEM trees estimate all non-fixed parameters
freely in each submodel, and every parameter contributes to
the evaluation of split candidates. This behavior is suboptimal
if there is a clear set of target parameters that are of interest
to investigate a given theory. As a solution, the semtree
package offers the option to specify a set of so-called focus
parameters. By declaring focus parameters, the SEM tree will
only consider heterogeneity in these parameters when assessing
split candidates. Thus, focus parameters are useful for testing
parameter-specific hypotheses about group differences. For
instance, if one wants to test measurement invariance, one could
specify the measurement model’s parameters as focus parameters
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and disregard heterogeneity in the structural model. Besides
focus parameters, the semtree package allows constraining
specific parameters to be equal across all submodels of the
tree. This is done by estimating these parameters in the full
sample once and using the resulting values throughout the tree.
Such equality constraints allow incorporating prior knowledge
about homogeneous parameters and can increase the power to
detect heterogeneity in the remaining parameters. We will later
demonstrate the use of focus parameters and equality constraints
in two short simulation studies.

Step 2: Model Estimation
Various estimation techniques for SEMs have been discussed. In
principle, SEM trees can operate with any estimation method
that provides a fit statistic and are not necessarily limited to
a multivariate normal distribution. At present, however, only
maximum likelihood estimation for multivariate normal data is
implemented in the semtree package. Therefore, semtree
is currently less suited for investigating models fitted on non-
normal data such as SEMs with categorical outcomes. In the
following, we will focus on maximum likelihood estimation for
multivariate normal data.

SEMs are usually specified by expressing the structure of
a mean vector and a covariance matrix as a function of a
q-variate vector θ with model parameters. These parameters
are estimated by minimizing a fitting function F that measures
the discrepancy between the observed means ȳ and the model-
implied means µ(θ) as well as the discrepancy between
the observed covariance matrix S and the model-implied
covariance matrix Σ(θ). Several fitting functions have been
proposed. The following maximum likelihood fitting function
is widely used as it yields efficient parameter estimates
under the assumption of multivariate normally distributed
data:

FML
[
ȳ, S,µ(θ),Σ(θ)

]
=
[
ȳ− µ(θ)

]T
Σ(θ)−1 [ȳ− µ(θ)

]
+tr

[
SΣ(θ)−1]

− ln
{

det
[
SΣ(θ)−1]}

− p (1)

In the equation above, p denotes the number of observed
variables in the SEM. A fitting function also provides
a test of overall model fit. Evaluated at the parameter
estimates θ̂ , (N−1)F asymptotically follows a χ2 distribution
with q degrees of freedom under the null hypothesis
of a correctly specified model, where N refers to the
sample size. A detailed account of SEM estimation
can be found in the textbooks by Bollen (1989) and
Kline (2016).

Step 3: Split Evaluation
The original SEM tree algorithm suggested by Brandmaier et al.
(2013b) compares the fit of a single-group model to the fit of a
MGSEM, which consists of all submodels in the current leaves, to
decide whether to split a node according to a covariate. For the
sake of simplicity, we assume that all covariates are dichotomous
and discuss non-dichotomous covariates afterward.

Let MF represent the model associated with the root node (that
contains the full data set) and let θ̂F denote the corresponding
parameter estimates. Further, we mark the observed mean vector

of the full data set as ȳF and the observed covariance matrix
as SF . To evaluate a candidate covariate for a specific node,
we split the node into two daughter nodes according to the
covariate. Then, group-specific SEM parameters θ j, j = 1, . . . , J,
are estimated for all subsamples associated with the J current leaf
nodes. Since the subsamples associated with the current leaves are
non-overlapping, the submodels can be joined into a MGSEM,
which we from now on refer to as MSUB. As MF is nested within
MSUB, we can test the following null hypothesis of parameter
homogeneity with respect to the covariate under evaluation:

H0 : θ j = θ0, ∀j = 1, . . . , J (2)

Rejecting Equation 2 implies that the model parameters vary
with respect to the covariate. Brandmaier et al. (2013b) suggested
using the following log-likelihood ratio between MF and MSUB as
a test statistic for Equation 2:

LR = (N − 1)

FML

[
ȳF, SF,µ(θ̂F),Σ(θ̂F)

]

−

J∑
j=1

nj

N
FML

[
ȳj, Sj,µ(θ̂ j),Σ(θ̂ j)

] (3)

Under the null hypothesis that there is no influence of
the covariate under scrutiny, LR asymptotically follows a χ2

distribution with (J−1)q degrees of freedom.
This testing procedure provides a powerful and efficient

solution for dichotomous covariates. However, evaluating a
categorical, an ordinal, or a continuous covariate that has
more than two unique values requires an additional step of
locating the optimal cut point. Brandmaier et al. (2013b)
suggested to compute the likelihood ratio in Equation 3 for
every meaningful partition of the covariate and then to select
the cut point associated with the maximum likelihood ratio. For
categorical covariates, the best partition is found by splitting
them into a set of dichotomous variables applying a one-against-
the-rest scheme for all possible combinations of categories.
For ordinal and continuous covariates, the ordering inherent
to these covariates allows applying a procedure known as
exhaustive split search (Quinlan, 1993) to find the optimal cut
point. Given a covariate with m unique values, this procedure
tests m−1 potential partitions to locate the maximum of the
likelihood ratios. For continuous covariates, it is also necessary
to omit a certain fraction of the data associated with the
smallest and largest values of the covariate in order to obtain
a sufficiently large sample to estimate the SEMs in both
partitions. From the above, it is clear that the computational
demand of SEM trees grows with the number of covariates with
many unique values as every potential cut point requires the
estimation of SEMs.

Locating the optimal cut point in categorical, ordinal, and
continuous covariates with the maximum of the likelihood
ratios has important implications for the test statistic shown
in Equation 3. By choosing the maximum of a set of statistics
(one for each possible partition), the resulting distribution is no
longer the same as the distribution of the individual statistics.
Thus, a maximally selected likelihood-ratio test statistic does not
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follow a χ2 distribution under the null hypothesis of parameter
homogeneity. The deviation from the χ2 distribution is directly
related to the number of potential cut points. With a growing
number of possible cut points, the maximum of the likelihood-
ratio values will be increased purely by random fluctuations.
Consequently, using the χ2 test for the evaluation of covariates
will artificially inflate the probability of type I errors and favors
the selection of covariates with many potential cut points over
the selection of covariates with few.

Brandmaier et al. (2013b) discuss different correction
procedures for this selection bias that are used in the semtree
package. The default method, labeled naïve in semtree, uses the
χ2 distribution for evaluating covariates and simply ignores the
resulting selection bias. To reduce this bias, semtree offers the
option to use the naïve method in combination with a Bonferroni
correction for multiple testing within the same covariate by
dividing the p-value obtained from the likelihood-ratio test in
Equation 3 by the number of potential cut points. However, this
Bonferroni adjustment can lead to overcorrection and decreases
the probability of selecting covariates with many possible cut
points, as demonstrated by Brandmaier et al. (2013b). We will
refer to this Bonferroni adjusted naïve method simply as the
naïve method from now on. Besides the Bonferroni correction,
different cross-validation methods are implemented in the
semtree package. Cross-validation separates the estimation of
SEMs from the testing of a potential cut point (e.g., Jensen
and Cohen, 2000). SEM trees can be grown with a two-stage
approach (Loh and Shih, 1997; Shih, 2004; Brandmaier et al.,
2013b) that splits the sample associated with a node in half.
One half of the sample is used to find the optimal cut point
for every covariate. The other half is used to evaluate only the
best cut points via the likelihood-ratio test. This method is called
fair in the semtree package. Since the fair method uses only
half of the sample for split selection, its power for detecting
heterogeneity can be expected to be considerably lower than
the power of methods that employ the whole sample. A much
simpler and more elegant way of avoiding the selection bias and
correction procedures altogether is to use the correct distribution
of the maximally selected likelihood-ratio test statistic (maxLR).
Andrews (1993) showed that the asymptotic distribution of
maxLR is the supremum of a certain tied-down Bessel process
from which p-values can be obtained (see Zeileis et al., 2008;
Merkle and Zeileis, 2013). We now implemented the maxLR
statistic into the semtree package to provide a more efficient
and robust likelihood-ratio-based covariate selection.

Step 4: Covariate Selection
To select a single covariate from a set of candidate covariates,
the likelihood ratio for the optimal cut point is computed for
every covariate, and the covariate associated with the smallest
p-value is chosen. If the p-value is smaller than a pre-specified
threshold, determined by the desired probability of a type I error,
splitting is continued recursively. One should keep in mind that
testing several covariates will artificially inflate the type I error
probability. One of several solutions to this problem is the use of
Bonferroni adjusted p-values. Given a large number of covariates,

however, the Bonferroni correction will reduce the power of
the SEM tree drastically and will produce sparse trees. In such
cases, one may resort to unadjusted p-values for the selection
of covariates and, if needed, can limit the size of the SEM tree
with additional stopping criteria like a minimum number of
individuals per node.

SCORE-GUIDED SEM TREES

Using likelihood-ratio tests to grow SEM trees can become
computationally burdensome if not infeasible as the evaluation
of a covariate requires the estimation of MGSEMs for every
potential cut point. Furthermore, when subgroups become small,
fitting MGSEMs may become unstable. Alternatively, SEM trees
can be guided by score-based tests that do not require the
estimation of MGSEMs to evaluate a split at all. This makes score-
based tests computationally efficient and often more stable as
compared to likelihood-ratio tests. In the following, we will first
introduce the general notion behind score-based tests and then
introduce a family of score-based test statistics for covariates with
different levels of measurement.

Score-Based Tests
Score-based tests originated in econometrics, where they are
primarily employed to detect parameter instability in time
series models (e.g., Hansen, 1992; Andrews, 1993). Score-based
tests can be summarized in three steps: first, the case-wise
derivatives of the log-likelihood function with respect to the
model parameters are computed. These case-wise derivatives,
also called scores, indicate how well the model parameters
represent an individual. The larger the score, the larger the misfit
of a given model parameter for a given individual. Second, the
scores are sorted with respect to a covariate for which we want
to test parameter homogeneity. Third, the scores are aggregated
into a test statistic that allows testing of the null hypothesis of
homogeneous parameters (see Equation 2).

Score-based tests have been derived for general M-estimators
that encompass popular estimation techniques such as least-
squares methods and maximum likelihood as special cases
(Zeileis and Hornik, 2007). For the sake of simplicity, we limit
ourselves to maximum likelihood estimation for multivariate
normally distributed data. The associated log-likelihood function
for a single individual i is given by

ln L(θ; yi) =
1
2

{ [
yi − µ(θ)

]T
Σ(θ)−1 [yi − µ(θ)

]
+ ln

[
det(Σ(θ))

]
+ p ln(2π)

}
. (4)

Equation 4 is the normal theory log-likelihood function for a
single individual i and yields identical parameter estimates to FML
shown in Equation 1 if summed over individuals and maximized.

The individual scores are calculated by taking the partial
derivative of the log-likelihood function with respect to the
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parameters and evaluating the expression at the estimates:

S(θ̂; yi) =

[
∂ ln L(θ; yi)

∂θ1

∣∣
θ=θ̂
· · ·

∂ ln L(θ; yi)

∂θq

∣∣
θ=θ̂

]T

(5)

The scores assess the extent to which an individual’s log-
likelihood is maximized by one of the q parameters. Values close
to zero indicate a good fit between model and individual, whereas
large scores point toward a strong misfit. Note that by definition,
the scores evaluated at the maximum likelihood estimates θ̂ sum

up to zero; that is,
N∑

i=1
S(θ̂; yi) = 0.

For the construction of a test statistic, the scores are cumulated
according to the order induced by a covariate under scrutiny. For
instance, if parameter homogeneity is assessed with respect to
age, the first row consists of scores from the youngest individual.
For the second row, scores of the youngest and second youngest
individuals are summed up, and so forth. More formally, the
cumulative score process is defined as

CSP(θ̂; s) =
1
√

N
I(θ̂)−1/2

s∑
h=1

S(θ̂; yh), (6)

where the index s denotes the number of sorted individuals
entering the equation, and the index h selects the sorted

individuals until h = s. Furthermore, I(θ̂)−
1/2 is the estimated

half-squared inverse of the Fisher information matrix. Pre-

multiplying with I(θ̂)−
1/2 decorrelates the scores so that the q

cumulative score processes are unrelated to each other. In the
following, we place the values of the cumulative score process
row-wise into an N × q matrix that we denote with CSP and
refer to the cumulative sum from the first s-th individuals of the
k-th parameter as CSPs,k. The plots in Panel (A–C) in Figure 2
illustrate how sorting and cumulating scores make parameter
heterogeneity visible.

Hjort and Koning (2002) show that under mild conditions
and constant parameters, each column of the cumulative
score process matrix CSP converges in distribution to a
univariate Brownian bridge. A Brownian bridge is a stochastic
process that is pinned to zero at the start and end and
exhibits the most variability in the middle. Thus, the null
hypothesis of parameter homogeneity in Equation 2 can be
tested by comparing the observed cumulative score process
to the analogous statistic of a Brownian bridge. Panel (C)
and (D) in Figure 2 illustrate the difference between the
cumulative score process of a heterogeneous parameter and the
Brownian bridge.

Test statistics can be obtained by aggregating the cumulative
score process matrix into a single scalar. Critical values and
p-values for these test statistics can be found by applying the
same aggregation to the asymptotic Brownian bridge (Zeileis
and Hornik, 2007). Different ways of aggregating the cumulative

FIGURE 2 | Artificial example to visualize the effect of sorting and cumulating. 100 observations were sampled from two Poisson distributions with different rate
parameters. 50 observations were generated with a rate parameter of 2 and 50 observations with a rate parameter of 5. Panel (A) shows the scores of the 100
observations in random order. Panel (B) displays the 50 scores of observations generated with a rate parameter of 2 first, followed by the 50 scores sampled with a
rate parameter of 5. After sorting the scores according to the two groups, a clear pattern emerges as the first 50 scores are mostly negative, and the remaining
scores are mostly positive. Panel (C) shows the cumulative score process. The negative and positive scores are cumulated, and the change point is noticeable from
the negative peak in the cumulative score process. Panel (D) depicts five randomly generated Brownian bridges. Under the null hypothesis of a constant rate
parameter, the cumulative score process would have behaved similarly to the 5 Brownian bridges in Panel (D).
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scores will produce test statistics that will be sensitive to
different patterns of parameter heterogeneity. The choice of
a test statistic also depends on the level of measurement
of the covariate.

Merkle and Zeileis (2013) proposed three different test
statistics for continuous covariates:

DM = max
s=1,...,N

[
max

k=1,...q

(∣∣CSPs,k
∣∣)] (7)

CvM =
1
N

N∑
s=1

q∑
k=1

CSP2
s,k (8)

maxLM = max
s=s,...,s̄

{[ s
N

(
1−

s
N

)]−1
q∑

k=1

CSP2
s,k

}
(9)

Equations 7–9 show the double maximum (DM), Cramér-von-
Mises (CvM), and maximum Lagrange multiplier (maxLM) test
statistics. DM is the simplest test statistic and rejects the null
hypothesis if, at any point, the maximum of any of the q processes
strays too far away from zero. However, Merkle and Zeileis (2013)
note that considering only the maximum of the q processes wastes
power because the DM statistic ignores heterogeneity in other
parameters. Furthermore, even for the same parameter, smaller
peaks before and after the maximum are not considered, which
may lead to a loss of power if the parameter changes its values
across more than two groups. Using sums instead of maxima
solves these problems. The CvM statistic sums the squared values
over all parameters and individuals and is therefore well suited
for detecting multiple group differences in several parameters. If
one suspects that a single change point will manifest in several
parameters, the maxLM statistic that considers the maximum
values of all parameters at a single point is more appropriate.
Unlike the other test statistics for continuous covariates, the
maxLM statistic contains a scaling term s

N
(
1− s

N
)
, which

increases sensitivity for peaks before and after the middle of
the processes. A disadvantage of this scaling is that individuals
with very small and very large values of the covariate need to be
omitted to stabilize the test statistic. Therefore, one has to specify
an interval

[
s, . . . , s̄

]
with a lower and upper threshold of the

covariate. Parameter shifts outside of these boundaries are not
considered. The maxLM statistic is asymptotically equivalent to
the maxLR statistic from the previous section (Andrews, 1993).

For ordinal and categorical covariates, Merkle et al. (2014)
suggested test statistics that focus on bins of individuals at each
level of the covariates:

WDM = max
l=1, ...,m−1

{[nl

N

(
1−

nl

N

)]−1/2

max
k=1,...q

∣∣CBSPl,k
∣∣} (10)

maxLMO = max
l=1, ...,m−1

{[nl

N

(
1−

nl

N

)]−1
q∑

k=1

CBSP2
l,k

}
(11)

Equations 10 and 11 present the weighted double maximum
(WDM) and the maximum Lagrange multiplier statistics for
ordinal covariates (maxLMO). For both test statistics, we first
group the individuals into m−1 bins associated with the first
m−1 levels of the covariate. Then, we sum the scores in each
bin and cumulate the sums, yielding a (m−1) × q matrix CBSP

of cumulative bins of scores. In the equations above, we denote
the cumulative bin of scores associated with the l-th level of the
covariate and the k-th parameter with CBSPl,k. Both statistics are
scaled by nl

N
(
1− nl

N
)
, where nl represents the cumulative number

of individuals per bin. The main difference is that the maxLMO
statistic considers heterogeneity in all parameters, whereas the
WDM only considers the most heterogeneous parameter.

Categorical covariates do not possess a natural ordering that
can be used to construct a test statistic. Alternatively, a test
statistic can be obtained by summing the squared differences in
the sum of scores across bins of individuals associated with a
different level of the covariate (Hjort and Koning, 2002). In the
following Lagrange multiplier (LM) statistic

LM =
m∑

l=1

q∑
k=1

(
BSPl,k − BSPl−1,k

)2
, (12)

BSPl,k denotes the sum of the scores of the k-th parameter from
individuals associated with the l-th level of the covariate. B0,k,
k = 1, . . . , q, is not associated with any of the 1, . . . , m levels of
the covariate and is set to zero.

To apply the test statistics outlined above in practice, critical
values and p-values are needed in order to compare split points
across covariates. Analytic solutions are available for the DM,
maxLR, WDM, and LM statistic. For the remaining test statistics,
critical values and p-values can be obtained through repeated
simulation of Brownian bridges. Different strategies for obtaining
critical values and p-values for the DM, maxLR, and CvM
statistics are discussed by Merkle and Zeileis (2013) and for the
WDM, maxLMO, and LM statistics by Merkle et al. (2014).

SEM Trees Guided by Score-Based Tests
Score-guided SEM trees can be obtained by replacing the
evaluation of covariates in Step 3 of the general SEM tree
algorithm with score-based tests instead of the likelihood-ratio
test. Because score-based tests operate like an omnibus test
for all possible cut points in a covariate, a single best cut
point needs to be located after the selection of a covariate.
Cut points can be obtained by identifying which of the unique
values of the covariate maximizes the respective score-based
test statistic. Omitting the outer sums or maxima in the
Equations 7–11 pairs every unique value of the covariate with
a specific value of the partially summed test statistic. Then,
a cut point can be determined by splitting the sample after
the observation associated with the maximum of these partially
summed test statistics. Due to its scaling term, the respective
maxLM statistic for ordinal and continuous covariates appears to
be particularly well suited for identifying the optimal cut points.
We implemented this fully score-based cut point localization
procedure in the semtree package. Alternatively, the optimal
cut point can be determined by maximizing the partitioned
log-likelihood (that is, the sum of the log-likelihood for all
observations to the left and the sum for all observations to the
right of the cut point) over all conceivable values of the covariate.
Since this approach requires the estimation of a sequence of
SEMs, it will be slower than a purely score-based cut point
identification. However, it will still be faster than a SEM tree
purely guided by likelihood ratios because only the localization
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of a cut point but not the selection of the covariate requires the
estimation of additional SEMs. This hybrid strategy is currently
applied by the generic MOB algorithm from the partykit
package, which uses the maxLM statistic for selecting covariates
and the maxLR statistic for locating cut points.

SIMULATION STUDY

We conducted four Monte Carlo simulations to evaluate
SEM trees in different settings. The first two simulations
compare the original SEM tree split selection methods with
the newly proposed SEM trees guided by the maxLR statistic
and score-based tests. The first simulation aims at illustrating
the performance of the different SEM trees under the null
hypothesis of parameter homogeneity. The second simulation
investigates power, the precision of cut point estimation, and
group recovery for a heterogeneous population consisting of two
groups. The third and fourth simulations demonstrate the use
and common pitfalls of SEM trees with focus parameters and
equality constraints.

All simulations were carried out with the statistical
programming language R. SEM trees were fitted with the
semtree package. semtree interfaces the OpenMx package
(Neale et al., 2016) for the estimation of SEMs. To grow score-
guided SEM trees, we linked semtree to the strucchange
package (Zeileis et al., 2002). strucchange offers a unified
framework for implementing score-based tests for a wide
range of models. All features used in this simulation are
available in the semtree package. Our simulations were
performed using R 4.0.2, OpenMx 2.18.1, strucchange
1.5–2, and a developmental snapshot of the semtree package1.
The simulation scripts and results are provided as Online
Supplemental Material2.

In all simulations, we aimed at ensuring an optimal type I error
rate; that is, we tried limiting the proportions of false-positive
splits to the significance level of 5%. To achieve this, we adjusted
the p-values of the likelihood-ratio and score-based tests with the
Bonferroni procedure to correct for the multiple testing of several
covariates. Besides the Bonferroni correction, we used the default
settings of the semtree package throughout our simulation
studies. The score-based tests were performed by applying the
default settings of the strucchange package. The data used to
fit the SEMs were drawn from a multivariate normal distribution.
All experimental conditions were replicated 10,000 times.

Simulation I: Type I Error Rate and
Runtime
Simulation I assessed the type I error rate under the null
hypothesis of constant parameters and the runtime for a different
number of noise variables and sample sizes. The simulated data
was homogeneous without any group differences.

Figure 3 shows the linear latent growth curve model used in
Simulation I and II. Model specification and parameter values

1https://github.com/brandmaier/semtree/commit/
30ca7500e43ca99975dfe6b8917ef8f293beaeb3
2https://osf.io/k82y3/

 1

FIGURE 3 | Path diagram of the linear latent growth curve model used for
data generation in Simulation I and II. The parameter values were obtained by
fitting the model on scores from the longitudinal Wechsler Intelligence Scale
for Children data set.

were taken from McArdle and Epstein (1987), who modeled the
scores of 204 young children from the Wechsler Intelligence Scale
for Children over four repeated occasions of measurement at 6, 7,
9, and 11 years of age (see Brandmaier et al., 2013b for a SEM tree
analysis of these data). In both simulation studies, we generated
multivariate normal data, using the mean vector and covariance
matrix implied by the model presented in Figure 3.

After generating the data, the linear latent growth curve model
presented in Figure 3 was estimated, serving as a template model
for the SEM trees. The model was defined by six free parameters:
the mean and the variance of the random intercept fI , the mean
and the variance of the random slope fS, the covariance between
the random intercept and the random slope, and the residual
error variance that was constrained to be equal for all four
measurements of the observed variable y.

The following experimental factors were varied:

• Level of measurement of the noise variables: We provided
the SEM trees with randomly generated noise variables. The
noise variables were either continuous (standard normal),
ordinal with 6 levels (with an equal number of observations
per level), or dichotomous (with an equal number of
observations in both classes). For a given condition, all
noise variables had the same level of measurement.
• Number of noise variables: Either 1, 3, or 5 noise

variables were generated.
• Sample size (N): The simulated samples contained either

504 or 1,008 observations. The odd numbers resulted from
the necessity to be divisible by 6 to allow for an equal
number of observations per level of the ordinal noise
variables.

First, we will inspect the type I error rates of the different SEM
tree approaches and compare their computation time afterward.
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Percentage of Type I Errors
Every tree consisting of more than one node was counted as
a type I error. Ideally, the proportion of type I errors should
approach 5%. Table 1 shows the empirical type I error rates of
the different SEM tree approaches. The results are sorted with
respect to the level of measurement of the noise variables. To get
a better understanding of the simulated error rates, we printed
results for methods that fell inside a 95% confidence interval
around the optimal rate of 5% for 10,000 replications (CI: [4.573;
5.427]) in bold. For ordinal and dichotomous noise variables,
all SEM tree implementations yielded error rates mostly close
to the desired 5%. For continuous covariates, however, only fair,
maxLR, CvM, and maxLM trees had satisfactory type I error rates.
DM trees exhibited slightly too few type I errors. As predicted by
Brandmaier et al. (2013b), naïve trees that were provided with
continuous noise variables over-adjusted and produced error
rates that were too small by a factor of 10. Increasing the sample
sizes amplified this overcorrection. For the remaining methods,
varying the number of noise variables and the sample size did not
systematically influence the error rates.

Runtime
We recorded the computation time for the different SEM trees
in seconds. As a matter of course, the runtime varies widely
depending on the computing platform. However, comparing
the runtime of the different methods allows for relative
comparisons and provides estimates for current standard
computing platforms. Necessarily, the absolute estimates will
become outdated soon. The simulation was conducted with an
Intel R© Xeon R© CPU E5-2670 processor using a single core.

Table 2 presents the median of the computation time in
seconds. The median runtime for ordinal and dichotomous
noise variables was small. The score-guided trees (WDM,
maxLMO, and LM) showed a minor speed advantage over
the likelihood-ratio-guided trees (naïve, fair, and maxLR).
For continuous noise variables, however, for which many
possible cut points needed to be evaluated, the runtime of
likelihood-ratio-guided SEM trees was excessively larger than
the computation time of score-guided SEM trees. For instance,
given the larger sample size and five noise variables, likelihood-
ratio-guided SEM trees needed several minutes to compute,
whereas score-guided SEM trees (DM, CvM, and maxLM)
were performed in fractions of a second. The runtime of the
fair trees was roughly half as long as the runtime of naïve
and maxLR trees, most likely because the fair method tests
only half of the possible cut points for continuous variables.
As expected, a larger sample size and more noise variables
led to an increase in computation time of the likelihood-
ratio-guided SEM trees. In contrast, the runtime of score-
guided SEM trees remained virtually the same. This implies
that even for larger samples consisting of larger numbers of
individuals and many covariates, score-guided SEM trees can be
computed in short time.

Simulation II: Power, Cut Point
Estimation, and Group Recovery
Simulation II evaluated the performance of likelihood-ratio and
score-guided SEM trees in heterogeneous samples consisting
of two subgroups.

TABLE 1 | Empirical type I error rates.

Continuous Ordinal Dichotomous

Nr. noise N Naïve Fair maxLR DM CvM maxLM Naïve Fair maxLR WDM maxLMO Naïve Fair LM

1 504 0.56 5.15 5.27 3.85 5.01 5.05 4.50 5.71 5.31 5.08 5.16 5.15 5.21 4.89

3 504 0.60 5.01 5.43 4.17 5.05 5.57 4.99 5.78 5.41 5.38 5.59 5.18 5.45 4.76

5 504 0.51 5.26 5.25 4.18 5.11 5.62 5.10 5.73 5.66 5.59 5.69 5.07 5.39 4.55

1 1,008 0.25 4.71 5.39 3.93 4.86 5.17 3.93 5.27 4.71 4.95 4.76 5.17 5.31 4.99

3 1,008 0.35 4.95 5.04 3.91 4.57 5.01 4.80 5.67 5.23 5.60 5.24 5.13 4.97 4.92

5 1.008 0.35 5.23 5.37 4.61 5.13 5.48 4.95 5.60 5.27 5.25 5.68 4.81 5.04 4.61

Nr. noise = number of noise variables, N = sample size. Error rates within the 95% confidence interval around the optimal rate of 5% are printed in bold.

TABLE 2 | Median runtime in seconds.

Continuous Ordinal Dichotomous

Nr. noise N Naïve Fair maxLR DM CvM maxLM Naïve Fair maxLR WDM maxLMO Naïve Fair LM

1 504 35.0 15.8 34.7 0.2 0.2 0.2 0.6 0.7 1.4 0.2 0.2 0.4 0.4 0.2

3 504 105.6 48.1 105.7 0.2 0.2 0.2 1.3 1.5 1.9 0.2 0.2 0.4 0.7 0.2

5 504 179.3 81.0 179.3 0.2 0.2 0.2 2.1 2.5 2.6 0.2 0.2 0.7 1.0 0.2

1 1,008 72.7 34.5 72.7 0.2 0.2 0.2 0.5 0.6 1.3 0.2 0.2 0.3 0.4 0.2

3 1,008 222.7 105.0 222.7 0.2 0.2 0.2 1.3 1.5 1.9 0.2 0.2 0.5 0.7 0.2

5 1.008 374.7 175.4 366.7 0.2 0.2 0.2 2.1 2.5 2.7 0.3 0.3 0.8 1.1 0.2

Nr. noise = number of noise variables, N = sample size.
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We varied the following experimental factors:

• Level of measurement of the covariate: The SEM tree
was provided with a single covariate that was either a
continuous variable (standard normal), an ordinal variable
with 6 levels, or a dichotomous variable.
• Group differences: We tested two types of group differences.

Either the fixed slope of the linear latent growth
curve model shown in Figure 3 or all random effects
varied between groups. Table 3 presents the values used
for the heterogeneous parameters. Note that in the
fixed slope condition, only a single parameter varied
between groups, whereas in the random effects condition,
three parameters varied. The values of the remaining
homogeneous parameters are shown in Figure 3.
• Noise variable: In the noise condition, the SEM tree

algorithm was provided with a noise variable in addition
to the informative covariate. In the no-noise condition,
only the informative covariate was given to the tree. The
noise variable was independent of the group differences
and randomly selected to be a continuous variable
(standard normal), an ordinal variable with 6 levels, or a
dichotomous variable.
• Cut point location: We tested three different positions of

the optimal cut point in the informative covariate. The cut
points were either central, partitioning the sample into two
groups of equal size, moderately non-central, resulting in
a larger subgroup consisting of 66.67% of the observations
and a smaller subgroup with 33.33% of the observations,
or strongly non-central with 83.33% of the observations in
the larger subgroup and 16.67% of the observations in the
smaller subgroup. We counterbalanced the non-central cut
points so that moderately non-central cut points occurred
either after the 1/3- or after the 2/3-quantile of the covariate
and strongly non-central cut points either after the 1/6- or
the 5/6-quantile.
• Sample size (N): The sample consisted either of 504 or 1,008

observations.

We evaluated each method in terms of statistical power to
detect heterogeneity, the precision of the estimated cut points,
group recovery, and runtime. For each condition, the results of
the best-performing method are printed in bold in the following
tables. Due to space constraints, we report only the most
important simulation results. The complete simulation results are
provided as Online Supplemental Material2.

TABLE 3 | Parameter differences used in Simulation II.

Fixed effects Random effects

Parameter Group 1 Group 2 Parameter Group 1 Group 2

E(fI ) 5.389 5.695 Var (fI) 25.137 38.023

Var (fS) 2.808 4.247

Cov (fI, fS) 0.745 1.127

Power
We define statistical power as the percentage of SEM trees that
correctly selected the covariate as a split at any cut point and any
level of the tree.

Table 4 shows the estimated power of the different SEM
trees. We will first compare the overall performance of the
original naïve and fair trees with the newly implemented
maxLR and score-guided trees. With respect to power, we
found that naïve trees performed roughly as well as the newly
implemented methods for ordinal and dichotomous covariates
but poorly for continuous covariates. The other classical method,
fair trees, showed overall the lowest power of all methods
under investigation. As expected, the likelihood-ratio-guided
maxLR trees yielded similar results as the score-guided maxLM
trees but were consistently slightly more powerful. Among the
experimental conditions, the type of group differences and the
cut point location impacted the rank order of the methods the
most. DM and WDM trees were the most powerful methods
for detecting heterogeneity in the fixed slope parameter. In
contrast, maxLR, CvM, maxLM, and maxLMO trees proved to
be the more powerful methods for detecting heterogeneity in
the random effects. We expected this behavior because the DM
and WDM test statistics focus on heterogeneity in a single
parameter, whereas all other methods monitor group differences
in multiple parameters. Overall, the likelihood-ratio-based test
statistic maxLR and the score-based test statistics with a scaling
term (that is, maxLM, WDM, and maxLMO) were more sensitive
for non-central cut points but less sensitive for central cut points
than the DM and CvM statistics for continuous covariates that
do not use any scaling. As an optimal baseline, we compared
the power of the SEM trees with MGSEMs, denoted as MG
in Table 4. Like the SEM trees, the MGSEMs were specified
by letting all parameters vary between groups. In contrast to
SEM trees, MGSEMs were unaffected by noise variables and
were informed about the true cut point. Therefore, the MGSEMs
present the upper limit achievable in terms of statistical power.
Not surprisingly, MGSEMs were more powerful than all SEM
tree methods, given continuous and ordinal covariates, but
equally powerful in conditions with dichotomous covariates and
without noise variables, where cut points did not need to be
learned from the data.

The presence of a noise variable (not shown in Table 4)
approximately halved the power of all tree methods but affected
naïve trees most severely. The pronounced effect of noise
variables on naïve trees was mainly driven by continuous noise
variables, which led to severely over-adjusted p-values. Providing
naïve trees with ordinal or dichotomous noise variables led to
a decrease of power that was comparable to the decrease in
other methods. Increasing the sample size had an approximately
uniform effect and raised the power of all methods substantively.

Precision of Estimated Cut Points
The estimation of the optimal cut point in the covariate is crucial
for recovering the true grouping of individuals. The approaches
for locating cut points differed between likelihood-ratio and
score-guided SEM trees. Likelihood-ratio-guided trees found cut
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TABLE 4 | Power to detect group differences.

Continuous Ordinal Dichotomous

N CL Naïve Fair maxLR DM CvM maxLM MG Naïve Fair maxLR WDM maxLMO MG Naïve Fair LM MG

Group difference in the fixed slope

504 1⁄2 10.0 14.5 36.8 46.7 41.7 35.4 52.8 35.8 17.4 38.4 44.2 37.0 52.4 52.8 27.0 51.8 52.8
1⁄3 7.7 13.1 31.6 35.4 32.4 30.5 47.1 30.4 15.7 32.6 37.7 31.6 46.1 45.9 24.0 45.2 45.9
1⁄6 3.2 8.1 16.8 9.8 13.0 16.4 29.7 17.8 10.4 19.4 21.2 19.0 29.8 30.1 17.0 29.3 30.1

1,008 1⁄2 30.6 29.8 72.9 84.9 76.3 72.1 87.2 73.8 37.6 75.7 83.3 75.0 86.4 85.5 51.4 85.2 85.5
1⁄3 24.3 26.1 66.1 74.9 64.8 65.6 82.0 65.7 32.3 68.0 77.2 67.4 81.3 81.5 47.6 81.2 81.5
1⁄6 8.7 15.6 38.5 25.9 26.2 38.5 58.2 39.5 19.9 42.0 48.7 41.4 57.9 58.6 30.4 58.7 58.6

Group differences in the random effects

504 1⁄2 18.2 19.4 51.8 48.3 56.5 49.9 69.4 52.1 24.5 54.2 46.4 53.2 68.5 68.8 36.0 67.4 68.8
1⁄3 13.7 17.1 44.1 35.6 44.6 42.8 62.8 45.0 21.0 47.5 39.9 45.9 63.1 62.9 32.8 61.0 62.9
1⁄6 5.3 10.4 22.9 12.0 18.1 23.8 40.6 24.5 13.4 26.4 22.8 26.8 40.9 41.1 21.0 38.0 41.1

1,008 1⁄2 53.3 45.1 88.0 85.7 89.6 87.6 95.9 89.4 55.0 90.4 84.2 90.1 95.7 95.7 69.1 95.5 95.7
1⁄3 43.9 37.5 82.7 74.4 80.0 80.9 93.3 84.2 47.7 85.6 77.5 84.3 93.1 93.4 63.3 93.0 93.4
1⁄6 17.3 21.0 52.8 26.6 36.4 49.9 73.4 55.3 28.3 57.4 47.3 53.6 73.4 73.3 39.8 69.8 73.3

N = sample size, CL = cut point location, 1⁄2 = central cut point location, 1⁄3 = moderately non-central, 1⁄6 = strongly non-central, MG = MGSEM. Best-performing
methods are printed in bold.

points by maximizing a partitioned log-likelihood, and score-
guided SEM trees determined cut points by searching through a
disaggregated maxLM statistic. We limit ourselves to discuss cut
points estimated by maxLR and maxLM trees in the following.
We used only trees that selected the covariate for the initial split
of the data, ignoring possible further splits. Since noise variables
had no visible effect, we will discuss only simulation trials without
additional noise variables. Also, we did not evaluate dichotomous
covariates because there is only a single trivial cut point.

Table 5 presents bias, standard deviation, and root mean
squared error (RMSE) of the estimated cut points. Both
approaches produced similar cut points that were nearly
unbiased. Overall, cut points estimated by maxLR were slightly
more precise in terms of RMSE. Interestingly, group differences
in the random effects led to slightly biased cut point estimates
provided by maxLM trees, which was not observed for maxLR
trees. Estimates for non-central cut points showed more
variability than for central cut points in both methods. A larger
sample size of 1,008 observations increased both methods’
precision and reduced the bias of cut points estimated by maxLM.

Group Recovery
We used the adjusted Rand index (ARI; Hubert and Arabie,
1985; Milligan and Cooper, 1986) to measure how well the true
groups are recovered by each SEM tree method. The ARI is
widely used to measure the similarity between two partitions
and is adjusted for agreement by chance. A large ARI value up
to the maximum of 1 indicates a high agreement between the
partitioning estimated by a tree and the true partitioning, while
smaller values imply a lower degree of similarity. Particularly, an
ARI of 0 is obtained if a tree fails to detect any group differences
and does not split the sample.

The ARI of the different tree methods is shown in Table 6. In
our simulation setup, the ARI of a SEM tree method seemed to
be mainly determined by its power to detect heterogeneity as a

similar rank order as for the statistical power emerged. Given a
continuous covariate, score-guided DM and CvM trees showed
the largest ARI for central cut points, maxLM and maxLR trees
showed the largest ARI for non-central cut points, while the
original likelihood-ratio-guided naïve and fair trees performed
poorly. As with power, DM trees had a higher ARI for a difference
in the slope, and the ARI of the other score-guided and maxLR
trees was higher for differences in the random effects. Naïve trees
performed better when provided with an ordinal or dichotomous
covariate. For ordinal covariates, WDM trees exhibited the largest
ARI if the fixed slope differed between groups, whereas the ARI
of maxLR and maxLMO trees was higher for differences in the
random effects. For dichotomous covariates, naïve trees showed
a slightly higher ARI than score-guided LM trees. However, if
provided with an additional noise variable, naïve trees showed
a more pronounced decrease in the ARI than LM trees (not
shown in Table 6). This effect was mainly driven by continuous
noise variables, which led to overcorrected p-values of naïve trees.
Non-central cut points generally reduced the ARI of all trees,
affecting DM and CvM trees without a scaling term the most.
The ARI of all tree methods improved substantially for larger
samples with 1,008 simulated individuals without drastically
changing the rank order.

Runtime
The computation time of the SEM trees in Simulation II was
in line with the observed runtime in Simulation I. Overall, the
median computation time of score-guided SEM trees was 0.50 s
with little variability across the simulation conditions. In contrast,
the runtime of likelihood-ratio-guided trees varied considerably
according to the level of measurement of the covariate and noise
variable. The overall median computation time for simulation
conditions with ordinal or dichotomous covariate and noise
variable was 0.88 s for naïve trees, 0.89 s for fair trees, and 1.40 s
for maxLR trees. However, if either the covariate or the noise
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TABLE 5 | Estimated cut points.

Continuous Ordinal

maxLR maxLM maxLR maxLMO

N CL B SD RMSE B SD RMSE B SD RMSE B SD RMSE

Group difference in the fixed slope

504 1⁄2 0.013 0.388 0.389 0.017 0.408 0.408 −0.003 0.798 0.797 0.011 0.750 0.750
1⁄3 0.014 0.430 0.430 0.014 0.440 0.440 0.022 0.955 0.956 0.013 0.878 0.878
1⁄6 0.011 0.694 0.694 −0.022 0.686 0.686 0.010 1.347 1.347 0.015 1.312 1.312

1,008 1⁄2 −0.002 0.273 0.273 0.000 0.282 0.282 −0.004 0.546 0.545 −0.010 0.459 0.459
1⁄3 −0.006 0.310 0.310 −0.007 0.311 0.311 −0.004 0.603 0.603 −0.006 0.494 0.494
1⁄6 0.004 0.491 0.491 −0.001 0.499 0.499 0.004 0.933 0.933 0.007 0.836 0.836

Group differences in the random effects

504 1⁄2 0.014 0.345 0.345 0.183 0.348 0.393 0.003 0.699 0.699 0.255 0.790 0.831
1⁄3 0.011 0.381 0.381 0.177 0.401 0.439 0.018 0.769 0.769 0.246 0.882 0.916
1⁄6 0.013 0.611 0.611 0.098 0.602 0.610 0.003 1.187 1.187 0.138 1.260 1.267

1,008 1⁄2 0.015 0.224 0.225 0.085 0.240 0.255 0.001 0.415 0.415 0.118 0.542 0.555
1⁄3 0.011 0.245 0.245 0.092 0.268 0.283 0.010 0.457 0.457 0.117 0.600 0.611
1⁄6 0.004 0.387 0.387 0.076 0.421 0.428 −0.001 0.728 0.728 0.102 0.943 0.949

N = sample size, CL = cut point location, 1⁄2 = central cut point location, 1⁄3 = moderately non-central, 1⁄6 = strongly non-central, B = bias, SD = standard deviation,
RMSE = root mean squared error.

TABLE 6 | Adjusted Rand index.

Continuous Ordinal Dichotomous

N CL Naïve Fair maxLR DM CvM maxLM Naïve Fair maxLR WDM maxLMO Naïve Fair LM

Group difference in the fixed slope

504 1⁄2 0.069 0.085 0.243 0.377 0.323 0.234 0.277 0.120 0.296 0.361 0.294 0.527 0.270 0.518
1⁄3 0.055 0.075 0.208 0.261 0.215 0.204 0.230 0.108 0.246 0.306 0.248 0.459 0.240 0.452
1⁄6 0.022 0.044 0.101 0.036 0.036 0.105 0.131 0.065 0.141 0.159 0.142 0.301 0.170 0.293

1,008 1⁄2 0.248 0.209 0.557 0.726 0.636 0.556 0.647 0.313 0.662 0.751 0.675 0.855 0.514 0.852
1⁄3 0.196 0.179 0.500 0.604 0.490 0.504 0.575 0.267 0.593 0.697 0.607 0.815 0.476 0.812
1⁄6 0.067 0.098 0.275 0.137 0.097 0.290 0.335 0.159 0.353 0.430 0.358 0.586 0.304 0.587

Group differences in the random effects

504 1⁄2 0.136 0.125 0.361 0.378 0.441 0.341 0.428 0.187 0.444 0.361 0.413 0.688 0.360 0.674
1⁄3 0.102 0.109 0.309 0.252 0.312 0.293 0.371 0.160 0.388 0.308 0.356 0.629 0.328 0.610
1⁄6 0.038 0.063 0.150 0.049 0.066 0.170 0.192 0.091 0.205 0.175 0.206 0.411 0.210 0.380

1,008 1⁄2 0.449 0.339 0.711 0.714 0.763 0.701 0.818 0.479 0.827 0.747 0.800 0.957 0.691 0.955
1⁄3 0.370 0.281 0.664 0.585 0.632 0.645 0.769 0.415 0.780 0.686 0.744 0.934 0.633 0.929
1⁄6 0.142 0.149 0.406 0.141 0.171 0.398 0.494 0.243 0.509 0.404 0.457 0.733 0.398 0.698

N = sample size, CL = moderately non-central, 1⁄2 = central cut point location, 1⁄3 = moderately non-central, 1⁄6 = strongly non-central, MG = MGSEM. Best-performing
methods are printed in bold.

variable were continuous, the overall median runtime increased
drastically. For instance, for conditions with a continuous
covariate, a continuous noise variable, and a sample size of 504,
the computation time of naïve, fair, and maxLR trees increased
to 70.18, 32.85, and 71.05 s, respectively. For samples with
1,008 individuals, the runtime increased to 149.91, 72.23, and
280.58 s, respectively.

Simulation III: Focus Parameters
The goal of Simulation III was to demonstrate how specific
hypotheses about parameter heterogeneity, such as certain types

of measurement invariance, can be tested with the use of
SEM trees with focus parameters. By default, SEM trees split
with respect to differences in any model parameter. At times,
researchers may be interested in finding group differences only
for a subset of parameters that are referred to as focus parameters
in the semtree package. When focus parameters are given,
SEM trees will only assess heterogeneity in these parameters and
ignore group differences in the remaining parameters to evaluate
a split.

Figure 4 shows the population model used to generate data in
Simulation III and IV. Depicted is a confirmatory factor model
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FIGURE 4 | Path diagram of the CFA model used in Simulation III and
Simulation IV. The model consists of two correlated latent factors, each
measured by three indicators. The latent covariance φ differed between the
two groups in Simulation III. In Simulation IV, there were also differences in the
factor loading λ.

with two correlated factors, each measured by three indicators.
A two group-population was simulated, where both factors were
uncorrelated in the first group (φg1 = 0) and covaried with φg2 =

0.471 in the second group. The factor loading λ did not vary in
Simulation III and was set to 0.837 in both groups, corresponding
to a latent factor accounting for 70% of the variance in the
observed variables. In each simulation replication, we generated
250 individuals per group, resulting in a total sample size of
500. The model shown in Figure 4 was then estimated with
a common identification constraint; specifically, by fixing the
variances of the two factors f 1 and f 2 to one and estimating the
latent covariance, all factor loadings, and all residual variances
freely. We did not specify a mean structure. To recover the group
difference, we provided maxLR and maxLM trees with a standard
normally distributed informative covariate. The true cut point in
the covariate point was central.

We explored the following three scenarios:

• Testing measurement invariance: We ignored heterogeneity
in the latent covariance φ and tested only the
(homogeneous) measurement part of the model by
treating all factor loadings and residual variances as
focus parameters. This scenario can be seen as an
exploration of which covariates predict violations of strict
measurement invariance.
• Testing the latent covariance: Only the (heterogeneous)

latent covariance φ was treated as a focus parameter, and the
remaining (homogeneous) parameters did not contribute
to the assessment of potential splits. This scenario is
akin to ignoring the covariates’ information on violations
of measurement invariance and, instead, investigating
differences on the latent level only.
• No focus parameters: No focus parameters were specified,

and all parameters contributed to the evaluation of a
potential split. This scenario served as a baseline.

Table 7 shows the percentage of maxLR and maxLM trees that
split the sample and rejected the specific null hypothesis for a
significance level of 5%. In the measurement invariance scenario,

TABLE 7 | Type I error and power to detect group differences.

Scenario maxLR maxLM

Testing measurement invariance 4.86 4.85

Testing the latent covariance 99.10 99.18

No focus parameters 82.97 81.21

The first row shows the type I error rates and the second and third row the statistical
power to detect group differences.

the SEM trees tested the null hypothesis that all parameters of
the measurement model are homogeneous. Both maxLR and
maxLM trees yielded error rates that were close to the optimal
rate of 5%. In other words, the SEM tree methods successfully
ignored the group difference in the covariance structure of the
latent variables. Without focus parameters, the SEM trees tested
the standard null hypothesis of complete parameter equivalency
across groups. The maxLR and the maxLM trees rejected the
null hypothesis in over 80% of the replications. If only the latent
covariance φ was declared as a focus parameter, the power of
both SEM trees to detect the group difference rose substantially
and almost approached one. This finding highlights that the
sensitivity of SEM trees for heterogeneity in a specific set of
target parameters can be significantly enhanced by specifying
focus parameters if differences with respect to the non-focus
parameters can be safely ignored.

Simulation IV: Global Equality
Constraints
Simulation IV aimed at investigating the utility of SEM trees
with equality constraints and pointing out common pitfalls.
Equality constraints are useful to incorporate prior knowledge
about the homogeneity of specific parameters into a SEM tree.
By constraining a parameter to equality, a so-called global
constraint, this parameter is estimated once in the full sample,
and the resulting estimate is used in all submodels. Constraining
parameters increases a SEM tree’s sensitivity for group differences
in the remaining parameters and might stabilize estimation.
However, by erroneously constraining parameters to equality
that are actually different in certain groups, a SEM tree can be
severely misspecified.

We investigated the following conditions:

• Group differences: We tested two types of group differences.
Either the latent covariance differed between groups
(φg1 = 0, φg2 = 0.471) and the factor loading was
homogeneous (λg1/g2 = 0.837) or the latent covariance
was homogeneous (φg1/g2 = 0.471) and the factor loading
differed (λg 1 = 0.837, λg 2 = 0.640). All other values were
as shown in Figure 4. We generated 250 individuals per
subgroup and provided the SEM trees with a standard
normal covariate with a central cut point.
• Equality constraints: Either the heterogeneous parameter

(the latent covariance φ or the factor loading λ), all factor
loadings and residual variances of the factor f 2, or no
parameters were constrained to equality.
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TABLE 8 | Power to detect group differences.

Equality constraints maxLR maxLM

Group difference in the latent covariance φ

None 82.52 81.13

Latent covariance φ 5.71 5.52

Measurement model of f2 91.25 90.40

Group difference in the factor loading λ

None 83.20 81.44

Factor loading λ 24.89 22.65

Measurement model of f2 91.52 90.92

The empirical power of maxLR and maxLM trees for detecting
heterogeneity for a significance level of 5% is shown in Table 8.
Without equality constraints, both SEM tree methods showed
a power of slightly above 80%. As expected, constraining a
heterogeneous parameter reduced the power significantly, but
the exact effect depended on the specific parameter. After
constraining the heterogeneous latent covariance φ, there was no
possibility for the trees to detect a difference between groups. The
latent covariance φ was the only parameter associated with the
correlation between the factors, and the group difference had no
other parameter left to manifest. As a result, the power of maxLR
and maxLM trees reduced to the type I error level. However,
after constraining the heterogeneous factor loading λ, the trees
still found significant group differences in 24.89% (maxLR) and
22.65% (maxLM) of the replications. This finding implies that the
group difference in the factor loading λ were picked up by other
unconstrained parameters of the measurement model. Finally,
constraining the homogeneous parameters of the measurement
model of factor f 2 increased the power to detect differences
in the latent covariance or the factor loading by roughly 10
percentage points.

The results of Simulation IV suggest that constraining
homogeneous parameters to equality can increase the power
of SEM trees but also involves the risk of introducing severe
misspecification. Constraining a heterogeneous parameter leads
to a distorted picture of group differences as the SEM tree might
or might not find significant heterogeneity in other parameters
that are homogeneous across subgroups. Thus, it seems generally
advisable to fully explore differences in all parameters or to use
focus parameters rather than taking the risk of misspecifying trees
by using inadequate equality constraints.

Summary
In our simulation studies, the likelihood-ratio-guided naïve trees
showed mixed results, confirming the known weaknesses of
the approach. When provided with ordinal or dichotomous
covariates, naïve trees showed an adequate control of type
I errors and were among the best-performing methods in
terms of power to detect heterogeneity and group recovery.
However, with continuous covariates, naïve trees were overly
conservative, resulting in too few type I errors and low power.
The likelihood-ratio-guided fair trees showed overall the lowest
power of all methods, resulting in a poor group recovery.
In contrast to naïve trees, the type I error rate of fair trees

was close to optimal, regardless of the measurement level of
the provided covariates. Therefore, fair trees may be useful in
very large samples where low power is less of an issue. The
likelihood-ratio-guided maxLR trees, that we implemented in
the semtree package, resolved many of the weaknesses of
the classical SEM tree methods naïve and fair and positioned
themselves slightly above the score-guided maxLM trees in
terms of power, group recovery, and cut point precision. maxLR
trees and the score-guided maxLM (for continuous covariates),
and maxLMO trees (for ordinal covariates) exceeded other split
selection approaches in conditions with group differences in
multiple parameters associated with the random effects and non-
central cut points. SEM trees guided by the score-based DM (for
testing continuous covariates) and WDM (ordinal covariates) test
statistics outperformed other methods in terms of power and
group recovery when group differences were to be found in a
single parameter describing the fixed slope. Different from DM
trees, WDM trees were also sensitive to non-central cut points.
Score-guided CvM trees performed better than other methods in
detecting heterogeneity in the random effects when the cut point
was central. Finally, the score-based LM trees for categorical
covariates were slightly less powerful than the naïve method.
Although maxLMO and LM trees were roughly on par with naïve
trees, the score-based methods clearly outperformed naïve trees
when provided with an additional continuous noise variable.
Overall, all score-guided trees and the newly implemented
maxLR trees showed a satisfactory control of type I errors.
The most striking difference between likelihood-ratio and score-
guided SEM trees was the runtime. Whereas the runtime of
all likelihood-ratio-based methods was excessive if one of the
covariates under evaluation was continuous, score-guided trees
were computed quickly. In summary, all newly implemented
methods (maxLR and the score-based methods) outperformed
the original naïve and fair methods. Moreover, no single method
under evaluation performed best across all situations, and all of
the new methods had some unique advantages which may justify
their use given certain conditions.

Regarding focus parameters and equality constraints, we
found that both can successfully be applied to increase the
power of SEM trees to detect group differences if there is
either a clear set of target parameters or prior knowledge about
homogeneous parameters available. Still, we discourage the use
of equality constraints in favor of focus parameters, which allow
exploring the effects of selected parameters without incurring
misspecifications during the split evaluation.

DISCUSSION

In the present study, we introduced score-guided SEM trees
as a fast and efficient way for growing SEM trees. Along with
score-guided SEM trees, we also implemented a new likelihood-
ratio-guided split selection based on the maxLR statistic that
solved many of the shortcomings of the original likelihood-ratio-
guided SEM trees (Brandmaier et al., 2013b). We evaluated and
compared the newly implemented and the original SEM tree
approaches in a Monte Carlo simulation study. We investigated
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those cases in which users want to adjust the type I error
rate for multiple testing of covariates. Overall, we conclude
that the new split selection procedures are superior to the
original split selection because they have higher statistical power
and are unbiased in the selection of covariates that predict
group differences in SEM parameters. Among the SEM tree
methods, score-guided trees stand out due to their computational
efficiency, making the use of SEM trees in large data sets feasible.

Our simulation studies evaluated three different likelihood-
ratio-guided SEM tree approaches and five different score-guided
SEM trees. The score-guided SEM trees were based on test
statistics recently popularized in psychometrics by Merkle and
Zeileis (2013) and Merkle et al. (2014) for studying heterogeneity
in SEM parameters. When provided with continuous covariates,
we found that guiding SEM trees with score-based tests
significantly reduced the runtime of the trees. If solely provided
with ordinal and categorical variables, score-guided SEM trees
performed as well as likelihood-ratio-guided SEM trees. The large
difference in the runtime of both approaches for continuous
covariates can be attributed to the fact that the evaluation of
a covariate by a likelihood-ratio-guided SEM tree requires the
estimation of a MGSEM for every unique value of covariate. This
leads to a large number of MGSEMs to be estimated as most
values of continuous covariates are usually unique. However,
score-guided SEM trees do not require the estimation of any
MGSEMs for the evaluation of a covariate and, therefore, can be
computed in little time.

Score-guided SEM trees and likelihood-ratio-guided trees
based on the newly implemented maxLR statistic also proved
to be more powerful in detecting group differences than the
original SEM tree methods if one of the covariates provided
to the SEM tree were continuous. The low statistical power
of the original SEM tree implementation is a side effect of a
suboptimal correction of the selection bias. The low power of
the naïve method for continuous covariates can be explained by
the overcorrection of the Bonferroni adjusted p-values due to too
many possible cut points in the continuous variables. The low
power that the fair method displayed throughout all simulation
conditions was because the fair selection method uses only half
of the sample for selecting the best covariate.

Besides the evaluation of the original and newly proposed SEM
tree methods, we also demonstrated the utility and pitfalls of
trees with focus parameters and equality constraints. We showed
that focus parameters are well suited to investigate specific
hypotheses about parameter heterogeneity, such as different types
of measurement invariance. Specifying equality constraints for
homogeneous parameters increased the power of SEM trees for
detecting group differences in the remaining parameters. We also
demonstrated that misspecified equality constraints can obscure
group differences and thus discourage this approach. As the effect
of misspecified equality constraints can be hard to predict for a
user, we recommend to explore differences in all parameters or to
use focus parameters rather than risk to misspecify trees by using
inadequate equality constraints.

The faster runtime of score-based tests is a major advantage
for practical use and enables the wider adoption of SEM trees.
The slow runtime of likelihood-ratio tests had made SEM trees
unattractive if not impossible to run with large data sets on

desktop computers. The runtime improvement may become even
more important if one wishes to complement SEM tree inferences
with resampling methods such as SEM forests (Brandmaier et al.,
2016). SEM forests are a more robust alternative to single SEM
trees if the overall importance of variables is of primary interest
because small variations in the sample often lead to different
trees. As SEM forests are based on hundreds if not thousands of
trees, they will profit dramatically from the score-guided strategy.

The question remains which of the newly implemented
methods should be used to estimate SEM trees. Our simulation
results imply that all of the new methods have their unique
strengths. However, in practice, when it is usually unknown
how many of the model parameters are heterogeneous or if
the subgroups are roughly equal in size, the advantages of the
DM, WDM, and CvM statistics seem hard to exploit. Instead,
the maxLR (if computational feasible), maxLM, maxLMO, and
LM trees statistics are best suited for situations without a priori
knowledge about potential group differences. Moreover, if one
is only interested in change in a specific parameter, specifying a
focus parameter may represent an excellent alternative to the DM
and WDM statistics.

Although SEM trees are a powerful and flexible method for
investigating heterogeneity in SEMs, we want to stress that they
are not always the most appropriate one. It is important to note
that the performance of the SEM trees depends on the covariates
available. If none of these covariates is in any way related to
group differences, SEM trees will fail to detect any heterogeneity.
In situations without informative covariates, researchers may
resort to latent class or finite mixture models (Jedidi et al.,
1997; Muthén and Shedden, 1999; Lubke and Muthén, 2005) for
detecting heterogeneity. Latent class approaches automatically
test for differences between all possible groups of individuals
without requiring covariates. A disadvantage of these methods
is that the number of subgroups needs to be pre-specified by
the user. Another disadvantage of SEM trees is that they provide
only sparse information about how a parameter changes with
respect to a covariate. Recently, Arnold et al. (2019) suggested
a framework called individual parameter contribution regression
that allows modeling SEM parameter estimates as a linear
function of covariates.

There are several limitations of our study. First, we focused
narrowly on the semtree package for growing SEM trees
and did not evaluate SEM trees estimated by the generic
MOB algorithm from the partykit package. Ideally, a future
study should aim to replicate our findings using MOB. Second,
most of our simulations were performed using a linear latent
growth curve model with only two types of group differences.
Likely, different types of SEMs or parameter differences could
have changed the performance of some of the methods under
investigation. However, we would expect the general pattern of
results to hold for other models as well. Third, for the sake
of simplicity, we tested only a small number of uncorrelated
covariates and did not test any covariate interactions. Fourth, we
did not assess the influence of non-normally distributed data and
model misspecification on the SEM trees. These remain topics for
future research.

In summary, we found score-guided SEM trees to be fast,
flexible, and powerful tools for investigating heterogeneity in
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SEM parameters. Based on our work, we suggest that score-
guided split selection should become the new standard for
estimating SEM trees and forests.
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