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Tracking emotional responses as they unfold has been one of the hallmarks of applied

neuroscience and related disciplines, but recent studies suggest that automatic tracking

of facial expressions have low validation. In this study, we focused on the direct

measurement of facial muscles involved in expressions such as smiling. We used

single-channel surface electromyography (sEMG) to evaluate the muscular activity

from the Zygomaticus Major face muscle while participants watched music videos.

Participants were then tasked with rating each video with regard to their thoughts and

responses to each of them, including their judgment of emotional tone (“Valence”),

personal preference (“Liking”) and rating of whether the video displayed strength and

impression (“Dominance”). Using a minimal recording setup, we employed three ways

to characterize muscular activity associated with spontaneous smiles. The total time

spent smiling (ZygoNum), the average duration of smiles (ZygoLen), and instances of high

valence (ZygoTrace). Our results demonstrate that Valence was the emotional dimension

that was most related to the Zygomaticus activity. Here, the ZygoNum had higher

discriminatory power than ZygoLen for Valence quantification. An additional investigation

using fractal properties of sEMG time series confirmed previous studies of the Facial

Action Coding System (FACS) documenting a smoother contraction of facial muscles

for enjoyment smiles. Further analysis using ZygoTrace responses over time to the

video events discerned “high valence” stimuli with a 76% accuracy. Additional validation

of this approach came against previous findings on valence detection using features

derived from a single channel EEG setup. We discuss these results in light of both the

recent replication problems of facial expression measures, and in relation to the need for

methods to reliably assess emotional responses in more challenging conditions, such as

Virtual Reality, in which facial expressions are often covered by the equipment used.

Keywords: facial expressions, valence, surface electromyography, emotion detection, v-commerce metrics

1. INTRODUCTION

Humans display emotional responses in a variety of ways, including changes in facial expressions,
skin conductance, heartbeat, brain signals, body temperature, and pulse rate. These measurable
body changes are the foundation of Affective Computing, a discipline that studies how to detect
emotions and their effect on cognition, perception, learning, communication, and decision-making
(Picard, 2003). Among the physiological variables for emotion assessment, those most commonly

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2020.566354
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2020.566354&domain=pdf&date_stamp=2020-12-17
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:mauro.nascimben@neuronsinc.com
https://doi.org/10.3389/fpsyg.2020.566354
https://www.frontiersin.org/articles/10.3389/fpsyg.2020.566354/full


Nascimben and Ramsøy Spontaneous Smile Quantification for Valence Detection

applied are electroencephalography (i.e., EEG, for a review;
Solnais et al., 2013), electrocardiogram (i.e., ECG), galvanic skin
response (i.e., GSR, for a review; Caruelle et al., 2019) and heart
rate variability (i.e., HRV). However, the most immediate and
natural way humans share their emotions are through facial
expressions. Seemingly simple, yet highly intricate, the dynamics
of facial expressions depend upon a complex architecture of
musculature surrounding the calvaria region, orbital opening,
mouth, and the nose (Bentsianov and Blitzer, 2004). Among these
groups of muscles, the most important one for facial expressions
is in the oral area (Cohen, 2006).

Spontaneous activity of facial muscles in response to
emotional stimuli is usually referred to as “facial motor
resonance” to differentiate it from themovement of facial muscles
in imitation of the expression of individuals with whom we are
interacting (i.e., “facial mimicry”) (Hess and Fischer, 2014). In
addition to providing feedback on emotions we are experiencing,
facial muscle moreover help to recall an emotion. For example,
to evoke a positive or negative emotion subjects “re-execute”
the motor pattern of the facial expression corresponding to
that emotion (Baumeister et al., 2015). Indeed, contraction of
facial muscles in response to emotional stimuli is linked with
the activation of limbic system and amygdala (Dalgleish, 2004).
Interestingly, the reverse is equally true: Hennenlotter et al.
(2008) measured a reduced activation of the left amygdala
and brain-stem when subjects induced with botulinum toxin
attempted to imitate emotional facial expressions.

In Neuromarketing, consumer engagement can be partitioned
into a triad of characteristics (behavioral, emotional, and
cognitive) that can have positive or negative outcomes onmarket-
related behaviors (Turley and Milliman, 2000; Mattila andWirtz,
2001). The effectiveness of a marketing stimulus as an exchange
of behavioral, cognitive, and emotional factors is directly
related to the purchase intention. From a consumer psychology
perspective, emotional aspects of decision making have been at
the core of our understanding of how consumer choices are
made ever since Damasio and Bechara proposed the “somatic
marker hypothesis” (Bechara and Damasio, 2005). Since then,
multiple studies have demonstrated the relevance of emotional
responses to understanding consumer-relevant behaviors from
ad memory (Missaglia et al., 2017), brand name (Ramsøy and
Skov, 2014), or product preference (Groeppel-Klein, 2005),
among others. However, emotions are sometimes negatively
related to willingness to pay for a certain product. Incidental
emotions are responses that influence the decision we take but
are caused by sources outside the decision-making process (for
example, an argument with one’s partner or a frustrating day
at work). They are carried over in the decision-making process
without our awareness: for example, an incidental feeling of anger
automatically triggers a motive to criticize other individuals
in another context (Quigley and Tedeschi, 1996). Indeed,
neuroscience studies of financial decisions showed a positive
correlation between incidental emotions elicited by a sunny day
and the performance of the stock market (Kamstra et al., 2003),
or the negative correlation between being eliminated at the
football world cup and the stock returns for a specific country
(Edmans et al., 2007). To attenuate the effect of incidental

emotions in marketing context there are several moderating
factors that could be considered. Conversely, integral emotions
are related to the decision itself. According to Rozin et al.
(1986), integral emotions that are linked to a decision target
are difficult to remove, discrediting or benefiting the decision.
Integral emotions as part of the “decision-making” process
should be related the brain activity in the ventromedial prefrontal
cortex (i.e., vmPFC), an important region of the brain for
integrating emotion and cognition (Naqvi et al., 2006). One
of the roles of neuromarketing is to provide insights able to
shape integral emotions to optimize purchasing decisions in
the presence of conflicting cognitive information (Loewenstein,
1996; Loewenstein and Lerner, 2003).

Facial expressions are a way to discern the emotional states
of customers offering insights into their opinions. Indeed,
neuromarketing employs facial electromyography, the Facial
Action Coding System (Ekman and Keltner, 1997) through
a trained scorer or using a video-capture software that
automatically interprets facial landmarks. Marketing research
typically relies on self-reports to gather emotional information,
forcing individuals to consciously convert their feelings into
numerical values with the possibility of introducing “cognitive
interferences” (Poels and Dewitte, 2006). Facial expressions
have been successfully employed as a non-verbal medium to
predict the positive emotional engagement of marketing stimuli
when predicting the popularity of YouTube videos (Lewinski,
2015), and in evaluating social media marketing campaigns
of two banks over time. However, some authors (Hamelin
et al., 2017) used facial expression to relate emotionality of
public service announcements with long-term safe driving
attitude, concluding that highly emotional advertisements do
not impact customer attitude over time compared to low
emotional ones.

Recently, doubt has also been raised about facial expressions
as a reliable measure of emotional responses. For example,
there has been doubts and failed replications of the traditional
theory of facial expressions by Ekman (Keltner and Cordaro,
2017), and recent reviews have suggested that facial expressions
do not reliably provide sufficient clues to infer emotions from
facial movements (Barrett et al., 2019). Indeed, it has been
demonstrated that remote facial coding can produce high degrees
of false positives and false negatives (Ramsøy, 2015). This implies
that the business of using facial expressions as reliable measures
of emotional experiences is rather doubtful, and that there is a
need for additional research.

The combination of valid and reliable neuroscience with
physiology tools to track emotional and cognitive responses can
provide solutions for marketers for both off-line and on-line
commerce (Ramsøy, 2019). Recently, a new trend of on-line
commerce involving virtual reality platforms has emerged,
named v-commerce, where web-stores displayed dynamic 3D
models of their products (Zhang et al., 2004). However, the
future lies in creating immersive VR shops allowing consumers
to navigate and interact as in physical ones. Neuromarketing
research is trying to simulate these environments to gather
information on consumer behavior when immersed in virtual
worlds. For example, consumer intentions were analyzed in a
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virtual grocery when subjects were exposed to tri-dimensionally
reconstructed fruits or vegetables (Verhulst et al., 2017).
Another recent paper addressed state of the art and future
challenges of this emerging sector offering a panoramic view
of different immersive techniques applicable in v-commerce
(Alcañiz et al., 2019). The adoption of immersive technologies
is further encouraged by the rapidly decreasing prices of VR
helmets, spurring the potential of v-commerce environments.
In virtual settings, future investigations will decode how
virtual worlds influence behavioral, emotional, and cognitive
factors in their convergence to the decision-making process.
Thus, there is an explicit need for solutions that allow low-
intrusive, valid, and reliable measures of emotional responses in
VR solutions.

1.1. Previous Literature on the Relation
Between Surface Electromyography From
Zygomaticus Major and Emotions
Zygomaticus Major is a muscle of the lower face that has
a large cortical representation over the primary motor area
(cortical homunculus) (Rinn, 1984). A study based on a
large population of women (Larsen et al., 2003) reported
that there are mainly two muscular groups of interest for
emotion detection: muscles surrounding the eyes (mainly
Orbicularis Oculi for frowning) and those of the cheek for
smiling (primarily the Zygomaticus Major). The joint activation
of these muscles is commonly called Duchenne smile. The
authors found a linear relation between these two muscles
and the pleasantness of stimul i. Moreover, for affective
stimuli, it seems that surface electromyography (i.e., sEMG)
changes on the Duchenne smile muscles are present even
if they are not visible (Cacioppo et al., 1986; Tassinary and
Cacioppo, 1992). This last observation could lead to the
conclusion that sEMG is a superior methodology compared
to facial expression detection by video capture. In fact, a
recent review of facial configurations as universal expression of
emotions (Barrett et al., 2019) suggested to re-evaluate facial
expression in the daily life context where they are produced
together, with how they are perceived in a “sender” and
“receiver” relationship.

In the field of Neuromarketing, facial EMG was already
proposed in the past as a way to understand consumers’
emotional experiences (Bolls et al., 2001) in advertising research.
While listening to radio commercials, if the tone of the
voice was more positive a greater activation was noticed
over the Zygomaticus muscle, while negative tones elicited
more frowning activity. In consumer judgment and decision
making, “fluency” of information perception can be associated
with positive valence and has facial sEMG correlates over the
region of the Zygomaticus Major as shown by Winkielman
and Cacioppo (2001) with easy-to-process pictures. “Fluency”
becomes important when individuals have to decide between
products: products with higher fluency are usually preferred
(Schwarz, 2004), and the Zygomaticus major could be an
indicator of it.

1.2. Study Aim : Assessment of
Zygomaticus-Based Metrics as Viable for
3D VR Shopping Scenarios
In the present study we tried to evaluate spontaneous muscular
activation leading to smiles evoked by screening of musical
videos. This study does not consider the social context of smiling,
but solely spontaneous smiling in response to a stimulus when
subjects are alone. This situation is similar to VR where subjects
are isolated from the outer reality. We focused our research on
the Zygomaticus major because it is a muscle easily accessible
with a low level of intrusion, with a potential application in
neuromarketing studies. The corrugator supercilii may provide
similar insights into the affective state of a subject (Larsen et al.,
2003), yet its suitability is hindered due to the frequent coupling
of eye-tracking in neuromarketing studies leading to potential
interference in electrode placement. Moreover, the increasing
adoption of virtual commerce studies in neuromarketing and
corresponding use of VR headsets which occupy the areas
surrounding the brows impede the attachment of sEMG
electrodes near the eyes. Likewise, the presence of VR headsets
limits the usage of video-cameras to automatically detect facial
expressions through software able to categorize facial features, as
in on-field neuromarketing research with eye-trackers.

For these reasons, we focused on the time course of the
zygomaticus major, a paired facial muscle of the cheek area
that lifts the angle of the mouth upwards and laterally to
allow a person to smile. Usually this area of the face is not
occupied by devices used in neuromarketing studies or VR
equipment, and requires only a minimal setup of two electrodes
for muscular activity detection. Our aims were to provide an
alternative method to video-based emotion detection and to
find an interpretable connection between the activity of the
zygomaticus major and emotional states applying a minimal
sEMGmontage.

Here, we sum up some advantages of introducing sEMG
from the Zygomaticus in Neuromarketing studies for emotional
state detection:

• Zygomaticus can be recorded in neuromarketing studies when
the eye area is unavailable due to being covered by a VR
headset or eye-tracking devices. In this case, the region of
the eyes is also hidden to camera-based facial recognition
techniques reducing their applicability.

• The Zygomaticus can be recorded from a single cheek with
a pair of self-adhesive gelled electrodes (positioned as in
Figure 1). This minimal setup could be justified considering
that spontaneous smiles representing enjoyment are more
symmetrical compared to deliberate smiles (Skinner and
Mullen, 1991; Hager and Ekman, 1997). This minimal setup
is suitable in case of large-scale studies.

• sEMG, like other neurophysiological techniques, suffers from
artifacts, notably power line interference and movement
artifacts. Signal processing can reliably isolate spurious
activity. Electromagnetic noise is usually suppressed by a
notch filter. During head turns, the movement of the cable
connecting the electrode to the amplifier could produce
a low oscillation on the sEMG signal cancelable by the
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FIGURE 1 | Detection of “on” periods (muscular contractions).

FIGURE 2 | Additive properties of the binary vector.

highpass filter. Both artifacts can be addressed by designing
proper filters.

• In women, makeup usually requires stronger algorithms
for automatic detection of facial expressions (Moeini et al.,
2014) yet sEMG technique overcomes this and only requires
the correct application of electrodes with an acceptable
contact impedance.

1.3. Number of Emotional Dimensions
Investigated in This Study
Each participant judged his/her emotional state in response to
audio-visual stimuli through questionnaires at the end of video
exposure. Participants rated each musical video in terms of
arousal, valence, dominance and liking. Arousal and valence are
the main dimensions of the circumplex model of affect (Posner
et al., 2005): valence is the degree of pleasantness usually related
to the frontal cortex, while arousal is associated with subcortical
and parietal circuits. Arousal grades stimulus intensity from
neutral or boredom responses to high excitement. Dominance
is an addition to the classic valence and arousal dichotomy, and
attempts to capture psychosomatic aspects of control. It expresses
the feeling of control over a given stimulus. Valence, arousal and
dominance could be linked in some way to affect, cognition, and
behavior in the so-called ABCmodel or to the concepts of feeling,

thinking, and acting (Bakker et al., 2014). Together with the three
emotional dimensions, we included Liking scores ranging from 1
to 9 representing how much the participants liked the musical
video-clip they watched.

1.4. Neural Basis of Emotions
Emotions are conveyed by vision, hearing and touch to
the central nervous system to trigger both behaviors and
feelings. Feelings of emotions are mental states that follow
a behavior caused by external circumstances. Amygdalae are
the center of the best know emotion that is fear (Feinstein
et al., 2011) while disgust, another human protective emotion,
arises from a small portion of the anterior insula (Harrison
et al., 2010). Emotions enclosed in the circumplex model of
affect seem involving different neral loops. Stimuli evoking
arousal showed an activity over the left thalamus, globus
pallidus, caudate, parahippocampal gyrus, amygdala, premotor
cortex, and cerebellar vermi (Colibazzi et al., 2010), with
some differences between genders (Canli et al., 2002) regarding
the activation of the amygdala. Valence instead involved
midbrain, ventral striatum, and caudate nucleus as portions
of a “reward” loop while unpleasant experiences activated
supplementary motor, anterior midcingulate, right dorsolateral
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FIGURE 3 | Pre-processing pipeline for binned analysis (ZygoTrace).

prefrontal, occipitotemporal, inferior parietal, and cerebellar
cortices (Colibazzi et al., 2010).

2. MATERIALS AND METHODS

The dataset used for this analysis is a public-domain benchmark
collected by Koelstra et al. (2011). The dataset represents
physiological recordings from 32 participants during exposure
to 40 musical videos for 60 s each. The videos included different
kinds of musical genres. We focused our analysis on the sEMG
recordings from the zygomaticus major to highlight muscular
patterns in response to the emotional content of the musical
videos. Data was recorded at a sampling frequency of 512 Hz with
an Actiview software (Biosemi BV, The Netherlands). Electrode
placement is shown in Supplementary Figure 1: one electrode
was placed one centimeter above the corner of the mouth and
the other 1 cm from it following a straight line (blue circles).

2.1. Behavioral Data
All participants rated each video on a continuous scale from
1 to 9 in terms of valence (pleasantness or unpleasantness),
arousal (boredom or excitement), dominance and liking
(Supplementary Figure 2). Authors of the dataset invited
participants involved in the study to evaluate their affective
reactions on self-assessment manikins (i.e., SAM) for valence,
arousal, and dominance. Dominance was intended as a
measure of self-control, and participants had to estimate the
degree of control musical videos could inspire, ranging from

“without control” or helpless to “everything under control” or
empowering. For liking scores (i.e., “how much did you like the
video?”), researches included icons with thumbs up and thumbs
down instead of SAMmannequins.

2.2. Pre-processing of Surface
Electromyography From the Zygomaticus
Major
During the preprocessing stage we initially removed power line
noise with a notch filter centered on 50 Hz, and high-passed
the sEMG signals at 5 Hz to remove any DC offset. Cut-off
frequency of the high-pass filter was selected in accordance with
the International Society for Electrophysiology and Kinesiology
recommendations for surface EMG (Merletti and Di Torino,
1999). Other publications involving sEMG followed the same
standards: for example, in research for muscular prosthetic
control (Polygerinos et al., 1996) or in clinical settings for
physiatry (Thuresson et al., 2005). After filtering, we calculated
the differential mode signal converting the two sEMG traces in a
single time series resulting from the difference in voltage between
the two recording electrodes.

2.2.1. sEMG Signal Analysis: Muscular Contractions

on Whole Window (ZygoNum)
To highlight time instants during which subjects smiled, the
signals were further processed with full wave rectification
and envelope calculation. Root-mean-square envelopes were
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determined with 25 ms sliding window (De Luca, 1997). On
the envelopes, we detected the number of times at which
zygomaticus muscles turned “on” and “off” using a voltage
threshold. Threshold was calculated as µ + J ∗ σ where µ and σ

are the mean and standard deviation of the envelope during the
3 s baseline recorded before presentation of each video (period of
muscular inactivity). Parameter J = 3 was selected as in Di Fabio
(1987). In accordance with (Hodges and Bui, 1996), we counted
that window as an “on” period in each 25 ms window when the
mean voltage exceeded the threshold, we counted that window as
an “on” period (Figure 1). Muscular contractions lasting <125
ms were filtered out to remove micro-expressions. This measure
is closer to the upper limit of the original definition of micro-
expression given by Ekman and Friesen (1969), Ekman (2009),
and Ekman (2003) that quantifies the duration of facial micro-
expressions ranging from 1/25 to 1/5 of second. This inclusion
limit also removes transient muscular contractions or isolated
occurrences of facial tics. The outcome of this procedure is
a one-dimensional vector containing a binary sequence with
length equal to the original length of the sEMG signal. In
the binary sequence, zeros represent time instants where the
muscle is “off,” while ones are instants of muscular activation
(“on”). The binary vector has two additive properties: binary
sequences can be summed up horizontally or vertically as shown
in Figure 2. Horizontal summation of all binary values will result
in a single score (Figure 2 “A,” called ZygoNum) that could be
averaged among subjects to return a general score for a specific
stimulus (in our case musical videos). The horizontal summation
procedure can be considered as the amount of the time spent
by Zygomaticus Major in active state and the time spent smiling
by the subject. Instead, vertical summation could show the time
instants where subjects smile in the same moment, identifying
single events of enjoyment during video screening (Figure 2
“B”). For a practical illustration on the usage of the vertical
summation of the binary vector we prepared an example shown
in Supplementary Figure 3. In Supplementary Figure 3A, we
plotted the valence-arousal plane (Russell, 1980) for each musical
video. The green dashed line represents the second order
polynomial fit of the data. On the scatter-plot we identified two
points with a similar arousal value: one corresponding to a high
valence score and one corresponding to a low valence score. We
decided for two videos with similar arousal level because induced
mood changes fade quickly for arousal but are more consistent
over time for valence (Gomez et al., 2009). For the corresponding
two musical videos, the sum of the binarised vectors from all
subjects was plotted as in Supplementary Figure 3B obtained
with vertical summation. Observing Supplementary Figure 3B,
it could be noticed that the high valence video had a time interval
around 8 s where 5–8 people used to smile for some seconds.
In contrast, there are no evident grouped activation in the lower
Valence trace. To facilitate the interpretation and visualization of
Supplementary Figure 3B we calculated the root-mean-squared
upper and lower envelopes of the time series and shaded the
area between them. The vertical summation metric will not be
used in this work but could be considered for future extension
of present findings. Single patterns of muscular contractions
could also be analyzed following the procedure exemplified in

TABLE 1 | Correlation between Self-reported ratings and ZygoNum.

N = 40, df = 38 r F-value (p-value) R2 (adjusted R2)

Arousal 0.2661 2.9 (0.0970) 0.0708 (0.0463)

Valence 0.4848 11.7 (0.0015) 0.235 (0.215)

Dominance 0.5595 17.3 (0.0002) 0.313 (0.295)

Liking 0.3426 5.05 (0.0305) 0.117 (0.0941)

Figure 2 counting the duration of consecutive “on” instants.
We called this measure ZygoLen (Supplementary Figure 4).
ZygoLen was mainly added to evaluate, at single subject level,
which metric (ZygoNum or ZygoLen) is more effective in
detecting emotions and to check whether together they could
improve the characterization of affective states (in section 4).
Both ZygoNum and ZygoLen provide a single numeric value as
output: this characteristic could be useful not only to quantify
the sEMG activity with an index, but also because it could be
used directly as input feature in combination with other bio-
metric indicators for machine learning approaches focusing on
emotion detection.

2.2.2. ZygoTrace: Binned Analysis of Zygomaticus

Major
We used disjoint segmentation (Oskoei and Hu, 2008) using a
sliding window of 64 time points as predefined length (equivalent
to 125 ms) to identify a subset of signal segments. In each
segment we calculated 14 parameters: mean absolute value of the
signal, modeled mean absolute value using a weighting window
function (Phinyomark et al., 2012), modeled mean absolute value
considering the function as continuous (Phinyomark et al., 2012),
mean absolute value slope estimating the difference between
neighbor mean absolute values (Phinyomark et al., 2012),
waveform length as cumulative length of the waveform over the
segment (Englehart et al., 1999), zero crossings as the number
of times the waveform changes sign (Phinyomark et al., 2012),
slope sign changes, Willison amplitude as the number of times
the first derivative exceeds a threshold (Oskoei and Hu, 2008),
and squared integral as energy feature (Oskoei and Hu, 2008).
In frequency domain, from power spectral density, we gathered
information about the frequency median, the frequency mean,
frequency ratio (Han et al., 2000), and the modified frequency
median and mean (Phinyomark et al., 2012). The time course of
the 14 features (640 points each feature) was collected for each
subject and each video (32 subjects × 40 musical videos= 1,280
trials in total). To evaluate feature redundancy and retain
only relevant information principal component analysis was
performed on each trial. It appeared that the first principal
component was able to explain nearly 99% of variance in the data.
For this reason, the envelope of the first principal component
was calculated to simplify the comparisons. Upper envelope was
calculated using the root mean square and window length of 16
points. The whole process is depicted in Figure 3.
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FIGURE 4 | Linear regression models between ZygoNum and Emotional scores for each video (average across subjects). Figures include least square fit and

confidence limits.

3. RESULTS

The sum of all activations (“on” periods) of the Zygomaticus
major (ZygoNum) were averaged over subjects and compared to
the average scores of Arousal, Valence, Dominance, and Liking
as shown in Table 1. The linear dependence is reported with
the Pearson correlation coefficient r and the p-value testing the
hypothesis that there is no relationship between self-reported
ratings and number of muscular activations in the zygomaticus
major. The number of time instants spent smiling appears to
correlate with Valence, Dominance and Liking. Relationships
between behavioral data and sEMG activations are portrayed
in Figure 4 as linear regressions. Arousal was not included in
Figure 4 because it did not reach the threshold of significance and
this does not allow us to model a linear relation with the number
of muscular contractions. So far, we noticed that ZygoNum
has higher correlation with Valence, Dominance and to a lesser
extent with Liking. Dominance usually shows lower variance
in subjective scores compared to Valence probably because

it is more difficult to estimate through surveys: Dominance
requires the estimation of an abstract concept like the degree
of empowering sensation a musical video could elicit. Valence
instead is a more immediate response and its values float more
consistently between participants: it could be probably easier for
a subject to rate a musical video in terms of Valence using a scale
ranging from unpleasant (e.g., sad, stressed) to pleasant (e.g.,
happy, elated) rather than in terms of Dominance, from “without
control” to “under control.” It could be argued that Dominance
does not represent a strictly emotional feeling compared to
arousal and valence (Russell et al., 1981) and probably it has a
cognitive or conative nature.

3.1. ZygoTrace for Emotion Detection:
Emotional Dimension Detection
In Table 2, trials are grouped in three levels for Arousal (i.e.,
A), Valence (i.e., V), Dominance (i.e., D), and Liking (i.e., L):
“high” level means an affective ranking above the mean + half
standard deviation (i.e., H), “low” level is an affective score below
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TABLE 2 | Emotional dimensions grouped by score.

Count Percent

AROUSAL

High (HA) 428 33.44

Neutral (NA) 436 34.06

Low (LA) 416 32.50

VALENCE

High (HV) 460 35.94

Neutral (NV) 376 29.38

Low (LV) 444 34.69

DOMINANCE

High (HD) 409 31.95

Neutral (ND) 453 35.39

Low (LD) 418 32.66

LIKING

High (HL) 500 39.06

Neutral (NL) 394 30.78

Low (LL) 386 30.16

mean minus half standard deviation (i.e., L) and “neutral” level
is between “high” and “low” levels (i.e., N). Each group has a
similar number of observations to maintain an acceptable level of
statistical power.Data distribution of averaged ZygoTrace metric
in the three emotional levels (“H,” “L,” “N”) is shown in Figure 5.
Analysis of variance to test the effects of the three emotional levels
(H, L, and N) on the mean values of ZygoTrace was performed
for each emotional dimension (Table 3). The null hypothesis
was tested at significance level of α = 0.05 adding “subjects”
as random factor to the main factor “emotional dimension”
(n= 1,280, df = 1,278). It should be mentioned that data comes
from a not normally distributed sample (verified with Jarque-
Bera test). However, the sample size is large enough to ensure
that the non-normality should not impact test’s validity (Stevens,
2012). Valence scores were furtherly investigated in a post-hoc test
with Bonferroni correction. It returned a significant outcome for
comparisons between HV vs. NV (p = 5.44e-7) and HV vs. LV
(p= 2.31e-07) while NV vs. LV was not significant. Independent
two samples t-tests with assumption of inequality of variances
were performed for all the groups on the averaged ZygoTrace
signal (Table 4). Statistical tests report a significant link between
ZygoTrace and Valence. In particular, it seems that ZygoTrace
can detect “high valence” stimuli compared to the other two
emotional levels.

3.2. Identified Relation Between Valence
and ZygoTrace: Characterization of Their
Affinity
Time course of themetric derived from sEMGwith the procedure
illustrated in Figure 3, is shown in Supplementary Figure 5A.
We plotted the time course of the averaged response for each
of the three groups. For further analysis, we kept the same
categorization of emotional scores in “H,” “N,” and “L” as
used before. In the legend of Supplementary Figure 5A we
abbreviate Arousal with “A,” Valence with “V,” Dominance with
“D” and Liking with “L.” In Supplementary Figure 5B, the
nonparametric representation (kernel) of the probability density

function of the signals in Supplementary Figure 5A is shown.
Observing the distribution of data point for Valence in Figure 3

and Supplementary Figure 5B we can visually appreciate the
different distribution of values in the three emotional levels
(H, L, and N) as previously highlighted by the statistical tests.
Taking advantage of statistical outcomes, we also built a model
able to predict the relation between the statistical distribution of
ZygoTrace and Valence scores (pleasant vs. unpleasant). Fifteen
descriptive statistics were collected from each subject and trial:
mean, median, mode, variance, standard deviation, maximal,
minimal value, and range between them, inter-quartile range, 5
and 95% percentile, skewness, kurtosis (Stevens, 2012), Hjorth
mobility, and complexity (Hjorth, 1970). Mobility parameter
is the square root of the variance of the first derivative divided
by the variance. Complexity is the mobility of the first derivative
of the time series divided by the mobility of the time series. All
these parameters were statistically tested one against the other
using independent t-tests to assess the significance of each feature
in separating the “H” class against the others (we grouped “L” and
“N” in one class as direct consequence of significant comparisons
shown in Table 4). Neutral and Low Valence were merged in
a single class to have a binary classification representing the
negative and neutral classes against the “highly pleasant” class.
Absolute value two-sample t-test with pooled variance estimate
are displayed in Table 5 together with their rank. Kurtosis and
skewness are the best statistical descriptors because they could
be more helpful in categorizing ZygoTrace between “HV” and
the other levels of Valence (“LV” and “NV”). Considering a
cut-off value of |t| = 1.96 (two tailed, df = 1,280, α = 0.05).
Inter-quartile range and Mobility could be excluded from further
analysis because they do not have enough discriminatory power
(they are “redundant” features).

3.3. Predictive Ability of ZygoTrace to
Detect “High Valence” Musical Videos
Among Others
The predictive ability of ZygoTrace to detect high valencemusical
videos was tested using a Support vector machine classifier
(i.e., SVM) setup for a two classes problem: detecting “High
Valence” against “Other levels of Valence” stimuli. The predictive
ability was tested on 13 features (same features as in Table 5

except redundant ones) collected on 1280 ZygoTrace time series
(32 subjects watching 40 videos). The SVM classifier had its
hyperparameters optimized using a Bayesian iterative procedure.
We also introduced in the model a penalization parameter to
account class imbalance in form of the relative dimension of each
class (Supplementary Table 1). The SVM model had a linear
kernel function and it was tested in a 10-Fold stratified cross-
validation with training size of 1,152 and test size of 128 samples
(Supplementary Table 2).

4. DISCUSSION

Modern interpretations of facial expressions are reconsidering
their connection with emotions. Facial expressions are not
just a mirror of the emotional state, but part of the relation
between a sender and a receiver (Russell et al., 2003). However,
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FIGURE 5 | Averaged ZygoTrace grouped by emotional dimensions.

spontaneous facial expression while watching a video streaming
on a screen without a human interlocutor may provide a more
genuine emotional feedback. Spontaneous facial expressions can
be related to a wide range of psychological phenomena but the
contraction of the zygomaticus major to raise the angle of the
mouth in a smile it has been proved to be a marker of enjoyment
in different populations and cultures (Ekman, 1997). Hence, we
sought to test the possible relation between the muscular activity
of the Zygomaticus Major and four different emotions. Emotions
were self-rated using surveys while the muscular activity was
recorded using a pair of surface electrodes. We proposed two
different ways to interpret the sEMG data from the Zygomaticus
called ZygoNum and ZygoTrace. From the binarization of sEMG
signals (a sequence of 0 and 1 s) we obtained a vector representing
the time instant when the muscle is active (“on” state). We
introduced a single score summing up the number of “on”
periods of the Zygomaticus (horizontal summation procedure)
called ZygoNum. From the binary vector, we also established that
it is possible to obtain a time series summing up the sequence of
activations from all subjects (vertical summation, time series used
only for illustrative purposes in Figure 2 “B”). We also presented
a way to extract features from the binned sEMG trace using
time and frequency domain parameters. The time series obtained
with binned analysis (called ZygoTrace) has characteristics that
can identify “high valence” stimuli among others. This feature
is important in neuromarketing as highly emotional marketing

TABLE 3 | Analysis of variance on ZygoTrace over three emotional levels (H, L, N).

Emotional dimension F p-value

Arousal 1.85 0.1628

Valence 4.61 0.0134 [*]

Dominance <0.0005 Inf

Liking 1.34 0.2677

*Means p < 0.05 for statistical significance.

stimuli are related to stable purchasing intentions over time
(Hamelin et al., 2017).

4.1. ZygoNum and FACS: Testing
“Duration” and “Smoothness” of Smiles
The “Facial Action Coding System” (i.e., FACS) method does
not use sEMG, but relies on a trained scorer to measure visible
facial behavior or on software to automatically detect facial
expressions. Previous reports (Frank et al., 1993) using the FACS
found that smiles expressing joy and enjoyment show a smoother
contraction of facial muscles compared to non-enjoyment smiles
together with a less variable duration of the activation. Authors
studied duration of smiles with or without the Duchenne
marker (contraction of Orbicularis Oculi) and their findings were
confirmed for Duchenne smiles only. Our aim was to test how
a minimal sEMG montage can support identification of valence
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TABLE 4 | t-test values comparing the averaged ZygoTrace for each group.

t-value p-value

AROUSAL

H vs. L 0.89 0.3735

H vs. N −0.71 0.4719

N vs. L −1.73 0.0837

VALENCE

H vs. L 2.60 0.0095 [*]

H vs. N 3.00 0.0028 [*]

N vs. L 0.84 0.3987

DOMINANCE

H vs. L −0.86 0.3870

H vs. N −0.84 0.3976

N vs. L −0.12 0.8973

LIKING

[0.7ex] H vs. L 1.47 0.1408

H vs. N 0.54 0.5882

N vs. L −1.02 0.3073

*Means p < 0.05 for statistical significance.

TABLE 5 | ZygoTrace features ranking.

Descriptive statistics t-value Rank

Mean 2.88 8

Median 2.81 11

Variance 2.16 13

Maximal value 2.84 9

Minimal value 2.93 4

Range 2.75 12

Inter-quartile range 1.60 14

5% percentile 2.93 7

95% percentile 3.14 3

Skewness 4.25 1

Kurtosis 3.46 2

Mode 2.93 5

Standard deviation 2.84 10

Mobility 1.54 15

Complexity 2.93 6

in experimental stimuli and for this reason we could not detect
Duchenne smiles. To display Duchenne smiles we should have
included electrodes near the eyebrows with potential conflict
with VR or other devices involving ocular region. Moreover, in
the presence of VR devices, the FACS method to detect facial
expressions does not work due to the same physical obstacles.
However, we tried to test the outcomes of FACS research with
our minimal setup proposing two ways to relate the duration and
smoothness of the Zygomaticus with self-reported emotions.

4.1.1. Features Derived From Binarized Signals of the

Zygomaticus Major to Evaluate Duration of Muscular

Contractions (Single Subject Study)
We introduced a new metric that measures the length
of consecutive “on” periods from the Zygomaticus (called

TABLE 6 | Correlation coefficients at single subject level.

N = 1,280, df = 1,278 ZygoLen ZygoNum

r p-value r p-value

Arousal 0.0267 0.91 (0.3403) 0.0337 1.45 (0.2283)

Valence 0.0569 4.15 (0.0418) 0.1137 16.7 (4.54e-05)

Dominance −0.0076 0.0736 (0.7863) 0.0270 0.934 (0.3340)

Liking 0.0719 6.64 (0.0101) 0.0951 11.7 (0.0007)

ZygoLen). We used this index to test the effectiveness of
ZygoNum in discovering emotional states and to examine if a
mixed model together with ZygoNum could be more precise
for emotional state detection. Moreover, we decided to pinpoint
which definition of “duration” could fit better the previous
findings on the Duchenne smiles. With these two metrics we
can evaluate if the total duration or if the mean duration of
the muscular contractions of the Zygomaticus are more effective
in identifying the affective outcomes. We also calculated the
linear relation at single subject level for each stimuli (1,280 total
observations, 1,278 degrees of freedom), as shown inTable 6. The
results are weak in terms of generalization because self-reported
emotional scores are scattered around ordinal numbers while at
averaged level we can consider them as nearly continuous. In
addition, emotional responses are not pre-defined but affective
reactions are under the effect of various subject-dependent
variables. Considering these limitations, we can observe that
duration of muscular contractions shows a “trend” with the
subjective measures of Valence (for example, Pearson coefficient
of correlation is 0.1137 for ZygoNum and 0.0569 for ZygoLen,
Table 6). ZygoNum seems to show a score nearly double than
ZygoLen in determining stimuli pleasantness. Regarding Liking,
metrics have a closer value to each other. We also run a
multinominal logistic regression study using duration features
of Zygumaticus’s sEMG as predictors (ZygoNum and ZygoLen).
We used the total sum of muscular “on” periods (horizontal
summation, ZygoNum) and their mean duration (ZygoLen) as
input features to investigate their relationship with self-reported
emotional dimensions (Table 7). To build an ordinal model we
had to round self-reported scores (the responses) that were
decimals to the nearest integer. In this way the model used
the natural ordering of the self-reported emotional scores to
describe the relationship between cumulative probabilities of the
emotional categories and predictor variables. As link function we
used the logit function, assuming that the effects of the predictor
variables are the same for all categories on a logarithmic scale.
It seems that the original notion of ZygoNum as single number
resulting from the total sum (horizontal sum) of “on” time
instants could be able to describe a relation with Valence and
Liking. Also, in this case, the model identifies a “trend” between
smiling time and pleasantness (valence) or liking: more time
participants spend smiling and higher could be the Valence or
Liking score they will assign for that video. We also report the
p-values of the interaction terms for the relative probability of
being scored a number between 1 to vs. 9 (9 is the highest score
the participants could select in the emotional scale and it is our
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TABLE 7 | Significant differences (“*” when p < 0.05) between emotional scores and the reference category (highest value i.e. 9).

1 vs. 9 2 vs. 9 3 vs. 9 4 vs. 9 5 vs. 9 6 vs. 9 7 vs. 9 8 vs. 9

Arousal ZygoNum 0.1014 0.0746 0.0612 0.0614 0.9279 0.4654 0.5791 0.1385

ZygoLen 0.4129 0.2915 0.4503 0.7735 0.4661 0.1638 0.8159 0.0941

Valence ZygoNum 0.2453 0.127 0.0164* 0.0154* 0.0012* 0.0074* 0.0209* 0.0003*

ZygoLen 0.4726 0.23 0.4311 0.4137 0.6374 0.1064 0.63 0.5129

Dominance ZygoNum 0.514 0.3581 0.2176 0.0338* 0.1304 0.3985 0.9821 0.3864

ZygoLen 0.3478 0.4918 0.4613 0.4096 0.8951 0.266 0.1971 0.0389*

Liking ZygoNum 0.1008 0.1131 0.1218 0.0273* 0.0087* 0.4359 0.0508 0.0004*

ZygoLen 0.973 0.7428 0.8342 0.9405 0.7049 0.0437* 0.3702 0.5098

TABLE 8 | Correlation coefficient between self-reported ratings and smoothness

of the Zygomaticus major (averaged across subjects).

r F-value (p-value) R2 (adjusted R2)

Arousal vs. FD of the

Zygomaticus

−0.2124 1.79 (0.188) 0.0451 (0.02)

Valence vs. FD of the

Zygomaticus

−0.3972 7.12 (0.0122) 0.158 (0.136)

Dominance vs. FD of

the Zygomaticus

−0.4978 12.5 (0.00108) 0.248 (0.228)

Liking vs. FD of the

Zygomaticus

−0.1763 1.22 (0.277) 0.0311 (0.00558)

“reference category”). At the end of each stimuli (each musical
video), participants rated emotions the video-clip inspired them
on a scale from 1 to 9 for all the three emotional dimensions
(Arousal, Valence, Dominance) and Liking. In Table 7, we can
observe that the total time spent smiling (ZygoNum) has more
discriminative power in detecting emotional scores for Valence
and at lesser extent for Liking. Using FACS system and Duchenne
smiles Frank and Ekman found that enjoyment smiles have less
variable duration of activation. We cannot prove this concept
using only with the Zygomaticus Major, but we could report a
trend between the total number of time instants the Zygomaticus
is active (ZygoNum) and the degree of pleasantness felt after
watching a musical video (Valence). With less precision, results
are extendable to Liking.

4.1.2. Smoothness of Activation Patterns in the

Zygomaticus Major
We tested this hypothesis measuring the degree of smoothness
of the sEMG activity from the Zygomaticus through Higuchi’s
Fractal Dimension (i.e., FD). This non-linear method has a long
history of application in neurophysiology (Kesić and Spasić,
2016) and we interpreted this fractal measure of irregularity as
the degree of smoothness of the sEMG time series. We preferred
this method instead of the classic calculation of the number of
“onsets” and “offsets” as in Hess and Kleck (1990) because the
FACS method does not assume a return to the neutral position
(Frank et al., 1993). We calculate Higuchi’s fractal dimension on
the sEMG envelope previously obtained as in Figure 1 (skipping
the last two steps, without proceeding with the sliding window

for the “on” period calculations). Each single envelope was
down sampled by a factor of 16 to reduce the RAM usage
and we calculated Higuchi’s fractal dimension using 126 sub-
series composed from the original signal. The correlation was
measured between the degree of smoothness and the emotional
dimension using the coefficient of correlation (Table 8) and
fitting a linear regression method (Figure 6). From the data
we examined it seems that a certain degree of relation exists
between the smoothness of the sEMG from the Zygomaticus
and the emotional dimension of each stimuli (only Valence and
Dominance have a linear inverse relation with p <0.05). When
Valence of the musical video increases the complexity of the
sEMG activity from the Zygomaticus decreases, leading to a
more smoothed envelope. The models are an approximation and
probably the portion of variance they explain is limited but a
trend seems to emerge from this investigation: this tendency
seems aligned with previous findings using the FACS method.

4.2. ZygoTrace and Previous Literature:
Usage of Zygomaticus for Valence
Prediction
ZygoTrace is obtained using a binned analysis: in each window
we extracted 14 features in time domain and frequency domain.
We processed the data to obtain a single time series using
principal component analysis for dimensionality reduction
and root-mean-square envelope for smoothing the redundant
fluctuations of the signal. From the resulting signal we extracted
13 statistical descriptors and used them as input features
of a Support Vector Machines classifier: it resulted that it
is possible to detect “High Valence” stimuli with a mean
accuracy of 76.63% at cross validation (Supplementary Table 2).
We compared our method that uses a single channel sEMG
(ZygoTrace) with a recent work on valence classification using
a single channel EEG device (Ogino and Mitsukura, 2018).
It seems that methods perform similarly, with the single
channel EEG valence predictor achieving 72.40% accuracy on
binary classification of valence levels (Table 9). Both methods
use Support Vector Machines as machine learning approach.
Considering the good predictive ability shown by ZygoTrace
to detect Valence we could suggest for future research to
include sEMG in EEG models for emotion classification, using
respectively sEMG to detect Valence and choosing EEG to
measure Arousal. In this way the circumplex model of affect
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FIGURE 6 | Inverse relation between FD and Emotional dimensions. Figures include least square fit and confidence intervals.

TABLE 9 | Single channel sEMG vs. EEG for Valence detection.

Input type Number of classes Targeted emotion Accuracy

1 channel sEMG

(ZygoTrace)

Binary (2 classes) Valence 76.63%

1 channel EEG (Ogino

and Mitsukura, 2018)

Binary (2 classes) Valence 72.40%

that reduces all emotions as a linear combination of valence
and arousal (Colibazzi et al., 2010), could be reconstructed with
machine learning models using sEMG from the Zygomaticus
for Valence and EEG channels for Arousal. Alternatively,
sEMG and EEG could be both used as single inputs or
as fused or agglomerated input features to enhance Valence
prediction. The overall findings that we report on facial
EMG seem in accordance with previous literature (Cacioppo
et al., 2000) where facial sEMG from Zygomaticus can detect
pleasant versus unpleasant stimuli but cannot categorize different
emotional states.

4.3. Role of Valence in Neuromarketing
Emotional valence as the concept ranging from attractiveness
to averseness has a natural application in marketing and
customer choice. In the rationalistic theory of decision making,
reasoning leads to the optimal choice optimizing utility for
a customer. Under this view, emotions are distortion of the
rational thinking due to their irrational nature. However,
emotions play an important role in decision making before and
after taking a decision (Loewenstein and Lerner, 2003). The
emotions felt before taking a decision build the expectations
while emotions after the decision is taken have a somatic or
outward expression. In our study we evaluated Valence after
stimulus presentation, but Valence could have important impact
before a decision is taken. For example, in Ma et al. (2010)
the Authors asked to the participants of their experiment
to rate a picture with negative or neutral valence before
viewing beverage brand names and product names of other
categories. Outcomes from evoked potentials suggested that
“brand extension” (using an established brand name on new
products to increase sales) would not be accepted when a
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negative emotional valence was induced. Similar outcomes are
reported in Bastiaansen et al. (2018) where the vision of a
video-clip with positive valence showing a touristic destination
before judging pictures of the same or other touristic places
could have an effectiveness on tourism marketing. Regarding
emotional valence, Authors of Bercik et al. (2015) detected
valence from EEG signals investigating the influence of lights
position and colors on non-packed food displayed in grocery
shops. Authors suggest that a correct combination of light
position and colors could enhance the perception of a positive
valence in the displayed fruit or vegetable. Relation between
valence and information fluency was already mentioned in the
Introduction: information fluency is important in customer
experience because it can lead to increased feeling. Cited
papers of neuromarketing literature indicate that valence
seems important in product evaluation, brand extension, and
information fluency.

4.4. Further Notes on sEMG Application for
Neuromarketing Studies
• sEMG from the Zygomaticus cannot detect spontaneous

smiles covertly: EMG electrodes attached to one’s face may
induce a less naturalistic behavior. However, a minimal
montage of only one muscular channel should minimize this
problem. Moreover, we tested this technique on a dataset that
evaluates spontaneous smiles of subjects alone in a room while
watching musical videos. In this context there are not social
biases that could rationally affect our unconscious behavior.
During VR, we think that the same pattern could be found
because the subject is isolated from the outside world both in
terms of visual and audible stimuli.

• Zygomaticus has a large cortical representation (cortical
homunculus) but it could have a dominant side (as we have
for the hand) and the position of the side of the face where
to place the electrode should be evaluated. It should be noted
that here we are evaluating only spontaneous smiles outside
the social context where facial expressions are usually more
complex. It was also demonstrated that spontaneous smiles are
less asymmetric (Skinner andMullen, 1991; Hager and Ekman,
1997).

5. CONCLUSIONS

In this paper we analyzed the relation between muscular
activations of the Zygomaticus major and affective responses
elicited by musical video-clips. We proposed two ways to
characterize the muscular activity using a minimal setup of
one sEMG channel: a duration index extracted from muscular
contractions representing the total time spent smiling and
another method that produces a time series whose statistical

features can detect “high valence” stimuli at 76% of accuracy.
From analysis of muscular onsets, we found a connection
between the activity of the Zygomaticus and Valence (and at
lesser extent with Liking). The relation between the muscular
activity of the Zygomaticus Major and the degree of pleasantness
was already identified in previous literature and we confirmed
previous findings using the proposed metrics. We hypothesize
that these metrics could be used in future to detect the degree
of pleasantness of stimuli in neuromarketing studies that cannot
use computer programs to detect facial expressions. For example,
in v-commerce when the area near the eyes is covered by VR
headsets, video-capture methods for emotion detection cannot
be applicable. For Valence detection while wearing VR headsets,
researcher could consider the inclusion of a single channel EMG
trace from the Zygomaticus Major.
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