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Human sound evaluations not only depend on the characteristics of the sound but
are also driven by factors related to the listener and the situation. Our research aimed
to investigate crucial factors influencing the perception of low-level sounds as they—
in addition to the often-researched loud-level sounds—might be decisive to people’s
quality of life and health. We conducted an online study in which 1,301 participants
reported on up to three everyday situations in which they perceived low-level sounds,
resulting in a total of 2,800 listening situations. Participants rated the sounds’ perceived
loudness, timbre, and tonality. Additionally, they described the listening situations
employing situational eight dimensions and reported their affective states. All sounds
were then assigned to the categories natural, human, and technical. Linear models
suggest a significant difference of annoyance ratings across sound categories for
binary loudness levels. The ability to mentally fade-out sound was the most crucial
situational variable after valence, arousal, and the situation dimensions positivity and
negativity. We ultimately selected the most important factors from a large number of
independent variables by applying the percentile least absolute shrinkage and selection
operator (Lasso) regularization method. The resulting linear regression showed that this
novel machine-learning variable-selection technique is applicable in hypothesis testing
of noise effects and soundscape research. The typical problems of overfitting and
multicollinearity that occur when many situational and personal variables are involved
were overcome. This study provides an extensive database of evaluated everyday
sounds and listening situations, offering an enormous test power. Our machine learning
approach, whose application leads to comprehensive models for the prediction of sound
perception, is available for future study designs aiming to model sound perception
and evaluation.

Keywords: machine learning, variable selection, human perception, situation, Lasso, environmental sound,
online-survey

INTRODUCTION

Myriad research has shown that annoyance reactions to unpleasant sounds can cause psychological
stress (Gunn et al., 1975; Wolsink et al., 1993; Lercher, 1996; Stallen, 1999) that consequently affects
cognition and health (Serrou, 1995; Babisch, 2002; World Health Organization, 2011; Beutel et al.,
2016; Klatte et al., 2017). While the majority of studies have focused on the perception, evaluation,
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and effects of medium or loud sounds generated by road traffic
(Aletta et al., 2018; Riedel et al., 2019) and aircraft noise (Kroesen
et al., 2008; Schreckenberg et al., 2016), annoyance has also
been found in response to low-level sounds—for example, noise
from wind turbines (Wolsink et al., 1993; Crichton et al., 2015;
Klatte et al., 2017; van Renterghem, 2019). Since research to
date in the field of wind turbine noise has focused on low
frequencies, we aimed to investigate the evaluation of low-level
day-to-day sounds in general and to establish comprehensive
models including situational, sound-related, and person-related
factors to predict the perception of environmental sounds in both
low- and mid/high-level scenarios. Moreover, we investigated
which influencing factors had a substantial impact on the
evaluation of low-level sounds when taking into account multiple
variables. To address these research aims, we conducted an
online study wherein 1,301 participants reported on up to
three everyday situations (including 32 relevant sound-related,
situational, and person-related variables) in which they perceived
low-level sounds. To handle this large number of variables, we
implemented the percentile least absolute shrinkage and selection
operator (Lasso) method, a linear machine learning approach, to
select the crucial variables associated with annoyance ratings and
to establish comprehensive models which overcome problems
associated with overfitting and can predict annoyance for new
data that were not involved in the model training and validation.

Previous research on soundscape perception and reactions
to noise has identified several influencing factors related to
sound, situation, and perception. Besides exposure level (Wolsink
et al., 1993; Basner et al., 2014; Guski et al., 2017), these
factors include many non-auditory variables, such as sensitivity
to noise (Fields, 1993; Job, 1996; Schreckenberg et al., 2010;
Hill et al., 2014; Shepherd et al., 2015; Park et al., 2016; Kim
et al., 2017), extraversion and neuroticism with contradictory
evidence for the relevance of this factor (Lercher, 1996), attitude
toward the source or the authorities that operate the sound
source (Stallen, 1999; Job et al., 2007; Kroesen et al., 2008),
perceived disturbance (Stallen, 1999; Kroesen et al., 2008),
fear of the noise source (Miedema and Vos, 1999), and the
failure to cope with the environment which leads to stress
(Guski, 1999). Many objective situational variables, including the
presence of other people, the location of the perceiver, the sound
insulation of dwellings, the visibility of the source, economic
benefit through the source, exposure time, or ambient noise level
(Fields, 1993; Wolsink et al., 1993; Bangjun et al., 2003; Janssen
et al., 2011; Steffens et al., 2017) have also been identified as
relevant factors.

Psychological Situations and Situational
Characteristics
Situations can be seen as “fluctuating, dynamic, and dependent
upon different perspectives” (Rauthmann, 2015, p. 177). Since
situational factors are known to be essential predictors of human
perception and behavior, they have been the subject of many
studies. Nevertheless, these factors, interpreted as “situational,”
have mostly been physical, objective, easily measurable, and
(in a laboratory setting) controllable quantities: exposure time,

noise insulation of dwellings, and ambient noise (Fields,
1993); age, benefit, and visibility of the source (Bangjun
et al., 2003; Janssen et al., 2011); or exposure level, buildings,
trees, and fences (Wolsink et al., 1993). Situations may be
defined by the actual objective environment (E) and the
momentary mental and affective state of the person (P)
perceiving the specific situation (S). Lewin (1936) described
a person’s behavioral states (B) driven by a function of the
perception of that situation as B = f(P, E) = f(S). Following
this theory, situations can be split up into cues, characteristics,
and classes (Rauthmann et al., 2015). The objective physical
quantities mentioned above can be seen as the situational
cues from which people derive situational characteristics
and psychological meaning during the evaluation processes.
Finally, situational classes group situations that have similar
characteristics or cues.

This view of situations is in line with the model of the
“cognitive–motivational–emotive system” discussed by
Smith and Lazarus (1990, p. 622). In that model, objective
conditions—the cues—are individually interpreted by the
person through imprinting his or her personality, including
individual needs, commitments, goals, knowledge, attitudes,
and beliefs. The resulting subjective situational construal—
the characteristics—ultimately serves as the basis for the
subsequent appraisal processes that mediate a person’s
emotional response. For example, imagine a bike path
parallel to a highly frequented 8-lane road surrounded by
tall trees in full leaf. Cyclists who were highly skeptical of the
greenery’s capability to attenuate traffic noise, improve air
quality, or enhance health reported lower soundscape quality
(Aletta et al., 2018).

The importance of taking psychological and situational
characteristics into account is evident, as they reflect situational
social aspects and people’s cognitive and emotional perceptions
of their environments. To propose a taxonomy for measuring
and describing psychological situations, Rauthmann et al.
(2015) developed the DIAMONDS model through measuring
individual differences in situation perception. This model
consists of eight situational dimensions: “Duty (does something
need to be done?), Intellect (is deep information processing
required?), Adversity (is someone being overtly threatened?),
Mating (is the situation sexually and/or romantically charged?),
pOsitivity (is the situation pleasant?), Negativity (do negative
things taint the situation?), Deception (is someone deceptive?)
and Sociality (is social interaction and relationship formation
possible, desired, or necessary?)” (Rauthmann et al., 2015,
p. 364). The DIAMONDS model follows the principle of
personality research that “individuals [may] think about
situational characteristics in much the same way they think
about personal characteristics” (Halevy et al., 2019, p. 4).
Interestingly, to the best of our knowledge, such a model has
not yet been used to investigate sound evaluation in terms
of differences in individual situation perception. Therefore, we
included the assessment of psychological situations in our study
and hypothesized that psychological situation characteristics
would significantly be associated with annoyance ratings of
environmental sounds.
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Stress and Its Precursors as Pivotal
Points in Human Perception
In addition to the psychological situations that might play
an essential role in human perception of sound, perceived
control was assumed to be “the most important non-acoustical
determinant of environmental noise annoyance” in the stress–
annoyance model developed by Stallen (1999, p. 77), which
interpreted annoyance as stress. He hypothesized that annoyance
is driven by three main factors: perceived disturbance, perceived
control, and coping with annoyance.

The first factor, perceived disturbance, depends on the sound
of the sources and an initial cognitive–emotive appraisal process
(Lazarus, 1966; Stallen, 1999). Disturbance occurs when people
are hindered from achieving their goals (e.g., concentration,
relaxation, sleep, communication). It is linked to annoyance
both directly (Stallen, 1999; Kroesen et al., 2008) and indirectly
through a mediated path via coping strategies (Park et al., 2016).
Disturbance is also influenced by the personality trait noise
sensitivity (Park et al., 2016).

The second factor, perceived control, is not associated with
disturbance or noise (Stallen, 1999). Instead, it has been
hypothesized that perceived control is driven by the noise
management of the source—not the source itself—and that it
directly affects annoyance through a secondary path (Lazarus,
1966; Stallen, 1999; Park et al., 2016). Kroesen et al. (2008)
followed the approach of Stallen’s stress model in investigating
annoyance induced by aircraft noise (Stallen, 1999). Perceived
control and coping capacity were together shown to be the most
important variables after concerns about adverse health effects
and perceived disturbance.

Coping can be defined as “constantly changing cognitive and
behavioral efforts to manage specific external and/or internal
demands that are appraised as taxing or exceeding the resources
of the person” (Lazarus and Folkman, 1984, p. 141). Coping
is driven by “the belief and confidence of an affected person
that he/she will somehow manage the problem” (Guski, 1999,
p. 51). Coping with stress in general or annoyance in particular
can be seen as a reappraisal of a person’s environment (Gunn
et al., 1975; Smith and Lazarus, 1990; Stallen, 1999). Botteldooren
and Lercher (2004), as well as Glass et al. (1972), assumed that
annoyance is a prerequisite for coping. Park et al. (2016) reported
an additional mediation effect of coping on the relationship
between disturbance and annoyance that was not present in the
model by Kroesen et al. (2008).

Personality Traits and Demographic
Factors
In contrast to the aforementioned dynamic situational factors,
stable personality traits change little in adulthood. The Big Five
dimensions of personality, for example, were derived through a
lexical approach, meaning that all relevant aspects of personality
will develop and be found in the language of a community:
Neuroticism, Extraversion, Openness to experience, Agreeableness,
and Conscientiousness have been consistently reported to be
important and sufficient descriptors of human personality

(for an overview, see Digman, 1990; Costa and McCrae, 2008).
Though Extraversion and Neuroticism (as well as all demographic
variables) have often been discussed in relation to human sound
evaluation, the results have been controversial (see the review by
Fields, 1993). Even when all Big Five dimensions are considered
together, a recent study by Lindborg and Friberg (2016) showed
only small, albeit significant, effects.

Noise sensitivity seems to play an essential role in moderating
or mediating the effect of sound on annoyance (Miedema and
Vos, 2003; van Kamp et al., 2004) and health (Job, 1996).
Shepherd et al. (2015) analyzed the effect of (other) personality
traits on sensitivity to noise and revealed that extraversion acted
as a major predictor. In their study, all Big Five dimensions
showed linear and independent effects on noise sensitivity and
together accounted for 33% of variance. Similarly, Lindborg and
Friberg (2016) reported that noise sensitivity can be predicted
by extraversion and conscientiousness. Belojević and Jakovjlevic
(2001) also investigated factors influencing sensitivity to noise
and found that neuroticism was the only significant person-
related factor in noisy environments but had no significant effect
in quiet areas. Since noise sensitivity plays a vital role in sound
perception and since extraversion and neuroticism may influence
noise sensitivity, extending existing findings by investigating
these variables for low-level sounds seems worthwhile.

Demographic variables have often been investigated in
noise annoyance research, showing only a small or generally
insignificant effect (Yu and Kang, 2008). Miedema and Vos
(1999) reported that people between 20 and 70 years of age
showed higher annoyance compared to younger or older people.
Gender was not significant, but education level showed a small
effect of increased annoyance with increasing years of education.
The hypothesis that people with higher education, and thus
higher income, experience less annoyance by seeking less noisy
living environments seems to apply only to residents of small or
medium-sized cities, with income not significantly moderating
annoyance (Fyhri and Klćboe, 2006).

Aims and Hypotheses
Many of the studies mentioned above have focused on a
small number of variables associated with sound evaluations
and annoyance reactions. Our study, in contrast, combined a
high number of relevant sound-related, situational, and person-
related variables in a comprehensive model to predict low- and
mid/high-level sounds in everyday life. We therefore attempted
to identify the most relevant predictors. Based on previous
research, we assumed that situational variables, as opposed to
person-related factors, would have higher explanatory potential
in predicting annoyance ratings of both low- and mid/high-level
sounds. We further hypothesized that the category of a sound
(natural vs. technical vs. human) would play a decisive role
in evaluating environmental sounds. We included demographic
factors to investigate the extent to which previous results are
reproducible in a retrospective online study. Finally, we explored
which low-level sounds participants perceived as particularly
pleasant or annoying and how often these sounds occurred in
day-to-day life.
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MATERIALS AND METHODS

Participants
Initially, we defined 18 quotas of 100 participants each. The
quotas were established by combining three Age Classes (20–40,
41–60, and 61–80 years) with two Genders (female and male)
and three Education Levels (International Standard Classification
of Education (ISCED) levels 0–2 (up to lower secondary
education), level 3 (upper secondary education), and levels
4–8 (university-level education); United Nations Educational,
Scientific and Cultural Organization (UNESCO) UNESCO
Institute for Statistics, 2015. For the application to the German
education system (see Schneider, 2008). We commissioned the
Cologne-based commercial market research company respondi
AG1 to provide suitable participants from its online panel
according to our quota targets defined above.

Of the 12,000 persons invited by email, 4,087 started the
online questionnaire; 1,815 (54%) completed the questionnaire
and reported and evaluated 5,445 sound situations. Of these,
514 (28%) reported no sound situations or gave implausible
answers. Consequently, 2,645 datasets were excluded from the
evaluation. We ultimately analyzed the data of 1,301 participants
(630 men, mean age = 49.9, SD = 15.5; 671 women, mean
age = 49.6, SD = 16.4), who reported on 2,800 sound situations.
Education Level and Gender were evenly distributed (men: 223
level 3, 185 below, 222 above; women: 228 level 3, 196 below,
247 above). In addition to German subjects, the sample also
included a few respondents of non-German Nationality (12 men;
13 women). Participants with any type of Hearing Impairment
(n = 213; 16.4%) were included in the final dataset since the
mean Annoyance ratings of all their reports did not differ
significantly from the ratings by persons without a known hearing
disability [Wilcoxon (W) = 530,871; p = 0.749; calculated on
raw data]. Additionally, their Noise Sensitivity (M = 15.16;
SD = 3.76; calculated on raw data) did not differ significantly
(W = 107,813; p = 0.107) from participants without a known
Hearing Impairment (M = 14.70; SD = 4.13).

Procedure
To address our research topics regarding the occurrence of
low-level environmental sounds in everyday life and person-
related and situational factors influencing their evaluations, we
conducted a large-scale online study using the LimeSurvey2

software (see the questionnaire in the Supplementary Material).
After reporting on sociodemographic and person-related
variables, participants described and evaluated up to three
sound situations they had experienced in the past, with no
acoustic stimuli provided by us. (If a participant reported less
than three sound situations, we provided one to three preset
sound situations, so that each participant had three to evaluate.
The situations we added were not taken into account in this
analysis.) We let the participants decide how they understood
“quiet” or “low-level” (in the sense of “not loud”). We further
used the term “sound” to avoid bias toward negatively perceived

1https://www.respondi.com/
2https://www.limesurvey.org/

sounds classified as “noise.” After finishing the questionnaire,
the participants were automatically redirected to the panel
operator respondi AG to receive monetary compensation for
their participation.

Design and Questionnaire
In our online study, we asked the participants to remember and
evaluate low-level sounds they had heard. Thus, we focused on
sound immission and not on sound emission. Since perceived
sound level decreases with increased distance from the source and
can be changed in terms of frequency components, we believe
that evaluating sound sources from a greater distance—e.g.,
through closed windows—will lead to biased, experience-driven
judgments. The questionnaire we used in our study is provided as
Supplementary Material.

Person-Related Variables
Besides the sociodemographic variables (i.e., Age, Gender,
Education Level, and Nationality), participants reported other
temporal stable variables, such as whether they were aware
of having any Hearing Impairment. They further rated their
living environment by answering the question, “How would you
describe your living environment?” using the five-level bipolar
item Liveliness, ranging from very lively (1) to very calm (5). They
also reported on the number of Persons living in the household
(1 to “6 or more”) and their household’s monthly disposable
Net Income (German Federal Statistical Office, 2018). Moreover,
since the person-related factors Extraversion, Neuroticism, and
Noise Sensitivity have shown associations with sound evaluations
in previous studies (Fields, 1993; Job, 1996; Lercher, 1996;
Schreckenberg et al., 2010; Hill et al., 2014; Shepherd et al.,
2015; Kim et al., 2017), we obtained those factors using
the German 10 Item Big Five Inventory (BFI-10; Rammstedt
and John, 2007; Rammstedt et al., 2012) and a nine-item
Noise Sensitivity questionnaire (“Kurzform des Fragebogens
zur Lärmempfindlichkeit,” LEF-K, developed by Zimmer and
Ellermeier, 1998). Participants also answered the question “Are
you generally able to mentally fade out sounds (even loud ones)?”
using a five-level scale ranging from does not apply at all (0) to is
absolutely right (4) for the item General Fade-out. To group the
reports for each participant (see section “Statistical Analyses” for
the random effect), we assigned a unique ID to each participant.

Sound-Related Variables
In addition to the temporally stable person-related variables, the
following variables are assumed to change over time depending
on the sound and its embedding situation. Participants responded
to the item “Please remember sounds that you have classified as
low-level in your environment in the past.” by reporting sounds
in free-form text descriptions. They also rated the perceived
Loudness of their sounds (“How do you rate the sound?”) on a
five-level scale ranging from scarcely audible (1) to low-level (3) to
middle and louder (5). The Loudness levels 4 and 5 were intended
to check whether participants had indicated a low-level sound.
The Timbre of the sound was assessed on a five-level bipolar scale
ranging from deep, dull (1; German: “tief, dumpf”) to high, shrill
(5; German: “hoch, schrill”) as well as the item Tonality based on
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the levels broadband noise (1; German: “rauschartig”) to tonal (5;
German: “tonhaltig”).

They also used a German translation of the standard
soundscape dimensions by responding to the question
“Please indicate how much you consider the following
characteristics to be a description of the sound.” These eight
dimensions—namely Pleasant (“angenehm”), Vibrant/Exciting
(“lebendig/pulsierend”), Eventful (“ereignisreich”), Chaotic
(“chaotisch”), Annoying/Distracting (“lästig/störend”),
Monotonous (“monoton”), Uneventful (“ereignislos”), and
Calm (“ruhig”)—are measured on Likert scales ranging from
strongly agree (1) to strongly disagree (5) and can be arranged in
a circumplex model of soundscape perception (Axelsson et al.,
2010; Lindborg and Friberg, 2016; following ISO/TS 12913-2,
ISO, 2018). To obtain the dependent variable Annoyance that
was relevant for our analyses, we computed the arithmetic mean
across the ratings of Pleasant (inversed) and Annoying.

Situational Variables
Concerning the time-varying situational variables, participants
responded to “For each sound, please mention a situation in
which you have experienced this sound.” using free-form text
descriptions. Participants’ affective state (“Please assess how you
feel in this sound situation.”) was obtained in terms of Valence
(negative-positive), Arousal (calm-excited), and the perceived
Control over the sound situation (weak-strong). Here, we used
the Self-Assessment Manikin (SAM), which consists of three sets
of nine pictograms (see the questionnaire in Supplementary
Material) representing the different states of the three affective
dimensions (Lang, 1980; Bradley and Lang, 1994; PXLab: Irtel,
2007). The SAM has been shown to be quickly and consistently
answerable by people of various nationalities and languages,
by adults and children, and by people with language disorders
(Bradley and Lang, 1994; Bynion and Feldner, 2017). It has
also been demonstrated to be applicable to the evaluation of
acoustic stimuli (IADS: Bradley and Lang, 2000) and therefore
seemed suitable for our study. The use of the SAM can
activate responses in any part of the emotional system, like
physiological, behavioral, and emotional (Suk, 2006). Thus, the
SAM seems to be a more profound measurement method than
written scales, which must be processed via cognition. The
pictograms can be modified or replaced with signs to achieve
similar results (Affective Slider: Betella and Verschure, 2016).
In many studies, the original SAM was adapted in terms of
number of levels, number of pictograms, and manipulation of
the pictograms (Bynion and Feldner, 2017; Bartosova et al.,
2019). The semiotics of the pictograms and signs, although self-
explanatory, are usually explained at the beginning of a test (Lang
and Bradley, 1997; Suk, 2006). Võ et al. (2009) used the SAM
to avoid the German translation for arousal (“Erregung”), which
could have sexual associations. Since the SAM pictograms can
be used for many attributes other than valence, arousal, and
dominance (Suk, 2006), we believed that additional descriptions
of the three affective variables were necessary. Because slightly
modified words were successfully used in most studies, we added
the adjectives given above to clarify the two anchors of each
of these scales.

Participants further responded to the question “Can you
mentally fade out this sound?” for the Specific Fade-out variable
using a five-level Likert scale ranging from does not apply at all
(0) to does fully apply (4). To assess participants’ Active Coping
response to the sound situation, we asked “Suppose you feel
disturbed by the sound 1 in situation a3. Would you take action
to reduce the disturbing effect?” to which respondents answered
yes or no. For a more detailed description of the situation
and its psychological characteristics, we utilized an ultra-brief
German measure of the situational eight-factor DIAMONDS
model (S8-II; Rauthmann, 2018). Finally, participants reported
the Frequency of occurrence of the described situation using six
levels: less than once a year (0); once to four times per year (1);
five to 11 times per year (2); once to three times monthly (3); once
to three times weekly (4); four to seven times weekly (5); and more
than once a day (6).

Data Analysis
Data Preparation
We first analyzed all sound descriptions and classified them
into the three macro-level sound categories of natural, human,
and technical sounds that have already been applied in previous
studies (Axelsson et al., 2010; Bones et al., 2018) as well as the
soundscape standard (ISO 12913-2, ISO, 2018).

We further established 38 micro-level sound categories (see
Figure 3) in the course of a more detailed qualitative analysis.
This categorization was mainly carried out using two processing
loops. In the outer loop, an audio expert looked through the
sound descriptions and searched for an often-mentioned sound
or word. A category was then established for the sounds described
by that word. This definition was based on the knowledge
of sound properties, sound sources, and theories of sound
perception. For example, the two categories Dogs and insects
with possible threats and Dogs, insects, and other animals without
possible threats were created, as an individual’s attitude to the
sound source can change the perception of sound; e.g., a fly might
be less annoying than a mosquito because one expects a possible
painful mosquito bite. Another example was the Signals category,
which includes all types of signals—such as ring tones, alarm
clocks, and doorbells—that have a concrete meaning for the
participant and urge the participant to take action. Some sounds
have been combined, such as sounds caused by garbage collection
and construction site noises, since participants usually have no
direct influence on these sound sources. As a result, reduced
perceived control and limited coping may emphasize annoyance.

In the inner loop, the data was then filtered by this word
or iteratively for a part of the word (e.g., by omitting the word
ending). The word was also modified or replaced by a synonym. If
the context derived from the sound and situation descriptions of
each filtered sound situation matched the noise category, all these
reports were assigned to the selected category and excluded from
further handling. By this exclusion, the number of remaining
reports was reduced successively. If no further observation
could be assigned to this category, the process was resumed

3Instead of “1” and “a,” the sound and situation descriptions given by the
participants were inserted here.
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TABLE 1 | Categories used for the variables Location and Activity.

Description Variable Nobs

Location

At home, indoors Home (indoors) 1,659

At home outdoors, incl. garden, and nature Garden/Nature 463

Undefined Undefined 259

Other, indoors Other (indoors) 212

At work/office Work/Office 129

Other (outdoors) Other (outdoors) 78

Activity

Undefined 978

Relaxing, falling asleep, awakening 864

Being on the move, transportation 331

Working, studying, cognitive work 220

Entertainment (TV, radio, movie, theater, gaming, internet surfing) 116

Housework 88

Social activities 74

Taking a meal 50

Personal hygiene 30

Exercise, sport, leisure activities, hobbies 17

Making a call 17

Pure music listening and entertainment (TV, books/news reading) 8

Coping with emotions and stress 7

Nobs Number of observations in the mentioned category.

with the outer loop and the next category was defined. These
loops were repeated until all sound situations were categorized.
Accordingly, there were numerous categories and no “undefined”
group. Datasets which included responses with nonsensical terms
(e.g., “fff”) or in a language other than German were excluded
from the evaluation.

We also derived categories for the Location where participants
experienced the described situations (see Table 1). In addition, we
applied the Activity categories introduced by Greb et al. (2018),
which we adapted slightly for our data, as shown in Table 1.
Namely, we removed Making music, added Making a call, and
assigned new activities to the existing categories when a similar
evaluation distribution existed. Of the 13 Activity categories,
the category Undefined was the largest due to 978 situation
descriptions that contained no information about activities. We
therefore excluded the Activities from further detailed analysis.

To test the inter-rater reliability, a second rater assigned
the sound situation descriptions to the micro-level sound
categories. For 190 descriptions, none of these categories
seemed reasonable. Again, reports with nonsensical sound and
situation descriptions were marked for removal. The point
estimate of Krippendorff ’s alpha of 0.782 with bootstrapped
95% confidence intervals (CIs) [0.767, 0.796]4 were obtained by
bootstrapping 1,000 samples (Zapf et al., 2016). This reliability
lies between α = 0.667 and α = 0.800, which is why the
micro-level sound categories should only be used for “drawing
tentative conclusions” (Krippendorff, 2004, p. 241). According

4N (number of subjects with two or more ratings) = 3,039; n (number of
ratings) = 2; k (number of categories) = 38+ 2.

to Krippendorff, an α above 0.800 is considered reliable, which
we observed for the macro-level sound categories (α = 0.877,
CI [0.863, 0.891]5). Values for the Locations (α = 0.625, CI
[0.599, 0.650]6) are below that threshold, which allows only
tentative conclusions.

As we were particularly interested in the perception and
evaluation of low-level sounds, we grouped all datasets according
to their Loudness rating as low-level (Loudness levels [1–3]) or
mid/high-level ([4–5]). The person-related variable describing
the perceived Liveliness of the living environment was grouped
into the category calm or lively through a median split
(Mdnenvironment = 4). Finally, we assigned to each participant the
mean value of the reported Net Income interval and combined
two variables—number of Persons living in the household and
monthly disposable household Net Income—to form a new
variable: net Income per Person.

Statistical Analyses
All statistical analyses were performed with R 3.6.3 (R Core Team,
2020) and R-Studio (RStudio Team, 2019). To predict Annoyance
assessments by person-related, situational, and sound-related
variables, we calculated several hierarchical linear mixed-effect
models, as such models can handle non-normally distributed data
and take into account dependencies of the three observations
(level 1) within the participants (level 2) while allowing for the
inclusion of time-varying (i.e., situation-related) predictors. The
participants, represented by their grouping ID, were included as
a random factor in all models we used in this paper (see Table 2
for an overview of all models).

To calculate these models, we used two different approaches.
First, we used the lme4 (Bates et al., 2015) and performance7 R
packages to calculate the marginal and conditional coefficients
of determination (R2

m and R2
c) as effect size measures (models

32SFF/32SFFA, Age∗Edu, and CMSFF1/2/3). R2
m addresses the

variance of Annoyance that is explained by fixed factors, whereas
R2

c represents the variance that is explained by both fixed and
random factors (Nakagawa and Schielzeth, 2013). We derived
probability values for each implemented variable and factor-level
dummy using the lmerTest R package (Kuznetsova et al., 2017).
To assess the influence of each variable of interest (see subsections
of section “Design and Questionnaire”) on Annoyance, we built
one single-fixed-factor model for each variable and dummy
(Table 4, model 32SFF). We also derived one probability value for
each variable (or, in the case of a factor, including the dummies
of a factor) using ANOVA (Figure 5, model 32SFFA). Several
publications have shown that ANOVA may be successfully
applied to non-normally distributed data (Glass et al., 1972;
Harwell et al., 1992; Lix et al., 1996). The probability values

5N (number of subjects with two or more ratings) = 3,039; n (number of
ratings) = 2; k (number of categories) = 3 + 2; B (number of bootstrap
samples) = 1,000.
6N (number of subjects with two or more ratings) = 2,778; n (number of
ratings) = 2; k (number of categories) = 6; B (number of bootstrap samples) = 1,000.
The N here is smaller than the N for the sound categories because locations have
not been clustered for nonsensical reports.
7https://easystats.github.io/performance/
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TABLE 2 | Overview about the Models used in this contribution.

Model Fixed factors Data Presented information Used in

Macro1 Macro-level sound categories All data Estimated marginal means and CI Sections “Statistical Analyses” and
“Sound Categories: Macro-Level”

Macro2 Macro-level sound categories +
Binary loudness levels

Section “Statistical Analyses”
Figure 2

Micro1 Micro-level sound categories All data Estimated marginal means and CI Sections “Statistical Analyses” and
“Influence of Micro-Level Sound
Categories”

Micro2 Micro-level sound categories +
Binary loudness

Section “Statistical Analyses”
Figure 3

Micro3a Micro-level sound categories Low-level subset Figure A1 in the Annex

Micro3b Micro-level sound categories Mid/high-level subset

Location Location + binary Loudness All data Estimated marginal means and CI Sections “Statistical Analyses” and
“Influence of Location”
Figure 4

Liveliness Liveliness + binary Loudness All data Estimated marginal means and CI Sections “Statistical Analyses” and
“Living Environment”
Table 3

32SFF 32 single-fixed-factor models All data β, CI, p, df, R2
m, R2

c Sections “Statistical Analyses” and
“Single-Fixed-Factor Models”
Table 4

32SFFA 32 single-fixed-factor models
(ANOVA)

β, R2
m Section “Statistical Analyses” and

“Single-Fixed-Factor Models”
Figure 5

Age*Edu Age * Education All data β, CI, p, df, R2
m, R2

c Sections “Statistical Analyses” and
“Role of Person-Related Factors”
Table 5

CML1
CML2
CML3

LASSO selected variables All data
Low-level subset
Mid/high-level subset

β, CI, p, df for all LASSO selected
variables and loudness subsets

Sections “Percentile Lasso Regression
Parameter Selection Method” and
“Comprehensive Models”
Table 6

CMSFF1
CMSFF2
CMSFF3

Relevant variables from
single-fixed-factor models

All data
Low-level subset
Mid/high-level subset

β, CI, p, df, R2
m, R2

c Sections “Statistical Analyses” and
“Comprehensive Models”
Table 7

SFF singe-fixed-factor; CM comprehensive model.

were calculated using Satterthwaite’s approximation of degrees
of freedom. This approximation combined with restricted
maximum likelihood estimation produces “the most consistent
Type 1 error rates, being neither anti-conservative nor overly
sensitive to sample size” (Luke, 2017, p. 1500).

Second, we used bootstrapping—drawing 50,000 samples—
with the clusterBootstrap R package (Deen and de Rooij, 2020)
to calculate the marginal means of Annoyance, including the
95% CIs for non-normally distributed data (models Macro1/2,
Micro1/2/3a/b, Location, and Liveliness). This method uses linear
models, is relatively free of assumptions, and is particularly well
suited for hierarchical data. Non-normally distributed data were
considered by resampling the observations at the individual
level (within persons). This means that if one observation of
a person was selected randomly, all other observations of this
person were also included in the calculation (which is also

the case for the Lasso regression method described in the
next section).

We used β as a standardized regression coefficient only
for independent variables that did not represent a physical
quantity (such as age, income, and persons in the household).
The factor levels represented by their dummy variables were
also standardized. The dependent variable Annoyance was not
standardized for a more intuitive interpretation.

When calculating CIs or probabilities, we accepted the
inflation of Type I errors because applying a correction to
the confidence levels and p-values for all models used in
this paper would have resulted in many different confidence
levels, complicating the interpretation. Additionally, reducing
the family-related error rate using a correction method would
have increased the probability of Type II errors and reduced
the validity of the test. More importantly, the discussion of
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which correction should be used and how the family might be
defined would be beyond the scope of this paper, as this is a very
controversial topic in the research community (Rothman, 1990;
Perneger, 1998; Bender and Lange, 2001). The same applies to the
general use of probabilities in the context of linear mixed-effects
regression models (Luke, 2017). Thus, all the probabilities and
CIs given here should be interpreted in this context and should
not be seen as a hard cut-off condition.

Percentile lasso regression parameter selection method
One of our aims was to establish a comprehensive model
predicting the perceived Annoyance of low-level sounds by
utilizing the most essential sound-related, situational, and
person-related factors. To this end, we followed the work of Greb
et al. (2018) and used the percentile-Lasso regression method
(Roberts and Nowak, 2014) for multilevel linear regression
modeling based on the measured data (models CML1/2/3). The
Lasso method was first described by Tibshirani (1996) and has
become a popular shrinkage method in the field of statistical
learning algorithms. It adds a `1 regularization term with a
tuning parameter λ to linear regression models that controls
the amount of shrinkage applied to the regression coefficients.
Choosing a high λ value potentially sets all coefficients to zero,
while λ = 0 results in a linear regression model without penalty
(see Figure 1). This form of regularization can thus be used to
extract important features from the data and reduce overfitting by
excluding less important predictors from the model and therefore
lowering its complexity. To achieve these advantages, the optimal
compromise between retaining all contributing factors in the
model (λ = 0) and excluding all variables (at λmax) must be
found. Therefore, the loss function, minimized within the Lasso,
is defined in Eq. 1.

n∑
i=1

(yi − ŷi)
2
=

n∑
i=1

yi −

p∑
j=0

βj × xij

2

+ λ

p∑
j=0

|βj| (1)

We chose five-fold cross-validation to find the optimal λ

value that results in a parsimonious and generalized model with
small prediction error. The technique of K-fold cross-validation
involves randomly splitting the data into K nearly equally sized
folds and using K–1 folds as training data. The remaining fold is
used for validating the previously estimated statistical model and
calculating the mean squared error (MSE) of the prediction on
unseen data that was not involved in the training. This routine
is repeated K times until every fold has been used as a validation
set, resulting in a cross-validation error (CV) as the mean MSE
calculated from all K repetitions. Our decision that K = 5 resulted
from the number of observations—considering computational
costs and a sensible amount of data in the validation sets—
since research has noted that 5- and 10-fold cross-validation can
be viewed as equally efficient with regards to the bias–variance
tradeoff (Krstajic et al., 2014). The random fold assignment was—
respecting the two-level structure of the measured data—based
on the level of the participants to assure that all measurements of
one participant were assigned to either the training or validation
set for all repeatitions within the cross-validation.

A set of 100 λ values (grid) was used to build and validate
models within every cross-validation cycle. As suggested by Greb
et al. (2018), the grid had an exponential form to achieve a
higher resolution of values toward zero. The value λmax was
determined in advance by successively increasing λ until all
regression coefficients were set to zero. As proposed by Hastie
et al. (2009), the 1-SE8 rule was then applied to calculate the
optimal λ value for every cross-validation cycle and to choose the
most parsimonious model whose MSE was within one SE of the
minimum cross-validation error.

To overcome the sensitivity of finding the optimal λ value
to the cross-validation fold assignment (Krstajic et al., 2014), we
repeated the process of cross-validation 100 times and selected
the 95th percentile as the optimal λ value for the final fit.
As reported by Roberts and Nowak (2014), the 95th percentile
produces good and reliable results.

We used the glmmLasso R package (Groll, 2017) to implement
the percentile-Lasso regression method. The package allowed
us to calculate the generalized linear mixed effect models
using a group Lasso estimator, as proposed by Groll and
Tutz (2014), which applies the same amount of shrinkage to
all dummy variables that constitute one factor variable. All
factor variables in the dataset were coded as dummy variables.
All predictor variables, including the dummy variables, were
z-standardized to ensure a fair penalization and to compare
their relative contributions to the Annoyance ratings. The factor
levels containing the most observations were selected as the
reference category for the dummy creation, as depicted in the
caption of Table 6.

RESULTS

Descriptive Statistics
Sound Categories: Macro-Level
Participants reported 904 natural (32%), 552 human (20%), and
1,344 technical sounds (48%) as well as 1,260 (45%) mid/high-
level and 1,540 (55%) low-level sounds (separated by the binary
perceived Loudness variable). The results of a linear mixed-effects
model (Macro1) revealed that predicted mean Annoyance of the
three macro-level sound categories differed significantly according
to the bootstrapped CIs (model Macro1): Mnatural = 1.87, CI
[1.79, 1.95]; Mhuman = 3.06, CI [2.94, 3.19]; Mtechnical = 3.41, CI
[3.33, 3.48]. Figure 2 shows the estimated marginal means and
CIs for both levels of perceived Loudness, indicating significant
differences between all means (model Macro2). The differences
of the estimated marginal mean values in relation to the Loudness
levels were the same for all three sound categories due to the
addition of Loudness levels as a second fixed factor. Figure 2
also displays the underlying distributions of the measured data
for the subsets shown. The distributions for the macro-level
sound categories human and technical differed across Loudness
levels. As expected, more mid/high-level sounds were reported
at higher levels of Annoyance. The low-level human sounds were
in the opposite direction, and low-level technical sounds were
normally distributed.

8SE, Standard Error.
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FIGURE 1 | Progression of the coefficients as a function of the tuning parameter λ during the shrinking process. The colored lines show predictors that don’t get
eliminated until the optimal λ (vertical dotted line) is reached. Dummy variables that constitute one factor variable share the same color. Most coefficients follow the
expected decreasing trend while some (see light green curve) show a completely unexpected and sometimes even strongly transient progression which can be
considered as regularization artifacts.

FIGURE 2 | Estimated marginal means for Annoyance for natural, human, and technical sounds, separated by binary Loudness levels, displayed with 95%
confidence intervals, both determined by bootstrapping. Very pleasant = 1, very annoying = 5. Distributions of the underlying measured Annoyance judgments are
presented in gray. Model Macro2.

Influence of Micro-Level Sound Categories
Participants reported a total of 2,800 sounds that were merged
into 38 micro-level sound categories (see Figure 3 with data from
model Micro2). Similar to the sound categories at the macro-level
shown in Figure 2, the estimated mean values for the categories at
the micro-level presented in Figure 3 were equally spaced between
the two Loudness levels. Since the distributions of the measured
data (not shown here) differed for the micro-level categories even

more than for the macro-level categories, the estimated marginal
mean values and CIs must be interpreted with the information
given above. To provide a more realistic view of these differences,
we calculated two different models for both Loudness subsets that
are not discussed in detail here (models Micro3a/b; Figure A1 in
the Appendix).

In addition to the Loudness-dependent results shown in
Figure 3, we now discuss the Loudness-independent estimated
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FIGURE 3 | Estimated marginal means for Annoyance for sounds from 38 micro-level sound categories, separated by binary Loudness levels, displayed with 95%
confidence intervals (both determined by bootstrapping) and the numbers of observations per category and Loudness level subsets. Very pleasant = 1, very
annoying = 5. Model Micro2.

marginal means (model Micro1). The reports comprised 360
sounds from Birds, which constituted the most pleasant natural
category (i.e., that with the lowest Annoyance ratings), and overall
the category with the highest number of reports (Annoyance
M = 1.56, CI [1.47, 1.66]). With low Loudness values, 44% of

these sounds were classified as low-level. By contrast, Dogs and
insects with possible threats were the category of natural sounds
that participants found most annoying on average (M = 3.66,
CI [3.38, 3.93]; 47% low-level sounds). The remaining natural
categories fell close together between the Birds value and
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the neutral/ambiguous Annoyance value 3. The second-highest
occurrence was reports of noisy, non-tonal sounds like Wind,
rustling leaves, rain, [. . .], sea (M = 1.68, CI [1.56, 1.80]; 74% low-
level), and Cats (M = 1.84, CI [1.69, 2.09]; 71% low-level), which
they perceived as pleasant.

The human sound category Quiet music was the most pleasant
of all micro-level sound categories, with 20 reports (M = 1.25,
CI [1.05 1.50]; 90% low-level). The remaining human sound
categories hovered around the neutral/ambiguous Annoyance
value 3 between the second most common human category
Unspecific music (M = 2.46, CI [2.21, 2.71]; 45% low-level; making
music, radio play, movie) and the most annoying human category
Tinnitus with 11 reports (M = 3.95, CI [3.21, 5.62]; 46% low-
level). The category Human noises at night (M = 2.68, CI [2.29,
3.08]; 33% low-level) was followed by Voices and whispers with
the highest number of human sounds (M = 3.21, CI [3.03, 3.40];
59% low-level).

The most pleasant technical category consisted of 11 sounds
from Electric vehicles (M = 2.00, CI [1.50, 2.50]; 100% low-level).
For neutral/ambiguous Annoyance ratings (value 3), there were
reports of Household appliances, such as washing machines and
dishwashers (M = 2.89, CI [2.60, 3.20]; 68% low-level). Most other
technical sound categories mainly fell above the Annoyance value
3, comprising 112 reports of Clocks (M = 3.32, CI [3.09, 3.54]; 77%
low-level) and 106 sounds from motor- or compressor-driven
fridges and freezers (M = 3.30, CI [3.10, 3.50]; 73% low-level).
Road traffic was the most frequently mentioned technical category
(M = 3.64, CI [3.50, 3.79]; 35% low-level).

Influence of Location
We evaluated the situation descriptions regarding the
categorization of the Location in which participants experienced
the sound (see Table 1 for the numbers of observations per
Location) and established six categories: Garden/Nature; Home
(indoors); Work/Office; Other (indoors), such as driving in a car
or being in a cinema; Other (outdoors), including walking or
riding a bike; and Undefined.

Figure 4 shows the marginal means for Annoyance separated
by the binary Loudness levels for the six locations given above
(model Location). Mid/high-level sounds were only rated as
pleasant for the Location Garden/Nature (M = 2.33, CI [2.20,
2.47]). In contrast, mid/high-level sounds in all other locations
were, on average, reported as neutral or slightly annoying (Home
(indoors): M = 3.48, CI [3.38, 3.57]; Work/Office: M = 3.64, CI
[3.42, 3.86]; Other (indoors): M = 3.38, CI [3.20, 3.56]; Other
(outdoors): M = 3.12, CI [2.83, 3.42]; and Undefined: M = 3.46,
CI [3.30, 3.62]). Unsurprisingly, the average estimated Annoyance
means for low-level sounds from all locations showed less
Annoyance and were rated from neutral (Work/Office: M = 2.85,
CI [2.64, 3.06]; Other (indoors): M = 2.59; CI [2.41, 2.76]; Home
(indoors): M = 2.68, CI [2.60, 2.76]; Undefined: M = 2.67, CI [2.51,
2.83]) to pleasant (Other (outdoors): M = 2.33, CI [2.04, 2.62]),
with Garden/Nature having the most pleasant ratings on average
by far (M = 1.54, CI [1.42, 1.65]). The indoor locations and the
Undefined category showed similar patterns.

Most of the estimated Annoyance means for all Loudness
levels together (not displayed in Figure 4 for better readability)

were rated as neutral or ambiguous (Other (outdoors): M = 2.61,
CI [2.13, 3.20]; Home (indoors): M = 3.04, CI [2.96, 3.12;
Work/Office: M = 3.15, CI [2.94, 3.36]; Other (indoors): M = 2.92,
CI [2.75, 3.08]); Undefined: M = 3.15, CI [2.98, 3.31]) except for
sounds from Garden/Nature, which had the only pleasant mean
value (M = 1.87, CI [1.76, 1.99]).

Living Environment
Of all participants, 63.6% stated that they lived in a calm or very
calm area. They reported 63.3% of all assessed sound situations
and 64.4% of all low-level sounds, as depicted in Table 3. The
bootstrapped estimated marginal means of all subsets differed
significantly regarding both Loudness and Liveliness levels, as
indicated by their CIs (model Liveliness).

Single-Fixed-Factor Models
In this section, we present the results of several linear mixed-
effects models, each including only one fixed factor, to investigate
the effect sizes and directions of the single bivariate relationships
related to perceived Annoyance of low-level sounds (see Table 4,
model 32SFF). Figure 5 (model 32SFFA) depicts the R2

m and
probability values for all variables assessed (except for the
soundscape dimensions, which were correlated with our target
variable Annoyance and thus would lead to tautological findings).
Among the crucial variables that explained a substantial amount
of variance (own criterion of R2

m ≥ 0.05) were eight situational
factors (the affective Valence, Arousal, Control, the Positivity
and Negativity DIAMONDS dimensions, the Specific Fade-
out ability, the Location, and Active Coping reaction) and
three sound-related factors (macro-level and micro-level sound
category as well as Loudness) but no person-related factor.
These relevant variables will be examined in more detail in the
following sections.

Role of Situational Factors
Of the situational variables, Valence explained the most variance
in the Annoyance evaluations (β =−0.87; R2

m = 0.411), followed
by Arousal, which had a lower but still substantial explanation
of variance (β = 0.63; R2

m = 0.213). While positive Valence
was associated with higher pleasantness (less Annoyance), high
Arousal was related to higher Annoyance judgments. Among
the situational DIAMONDS dimensions, Positivity (β = −0.60;
R2

m = 0.191) and Negativity (β = 0.52; R2
m = 0.145) revealed

the most substantial associations with Annoyance. The Specific
Fade-out ability (β = −0.46; R2

m = 0.112) was followed by
several minor effects: Concerning the Location (R2

m = 0.078)
variable, being in the garden or nature (β = −0.38) instead
of staying at home (reference level) was associated with
more pleasant sounds. Active Coping reactions (β = 0.37;
R2

m = 0.070) and perceived Control (β = −0.37; R2
m = 0.071)

showed similar variance explanations and similar effects but
in opposite directions: More Active Coping was associated
with greater Annoyance, while higher levels of perceived
Control were linked to less annoying sound evaluations. The
other situation dimensions, in contrast, revealed R2

m values
below 0.050.
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FIGURE 4 | Estimated marginal means for Annoyance for all Location categories, separated by binary Loudness levels, displayed with 95% confidence intervals,
both determined by bootstrapping. Very pleasant = 1, very annoying = 5. Model Location.

Role of Sound-Related Factors
Among sound-related variables, both the three macro-level
(R2

m = 0.207) and 38 micro-level sound categories (R2
m = 0.330)

explained a substantial amount of variance in the Annoyance
ratings. Both natural (β =−0.65) and human (β =−0.14) macro-
level sound categories had more pleasant sound evaluations
compared to the technical category. They were followed by
perceived Loudness (β = 0.33; R2

m = 0.058). Whereas the sound
characteristic Tonality was significant (β = −0.08; R2

m = 0.003;
p = 0.001), Timbre was not (β = −0.03; R2

m < 0.001; p = 0.257).
However, both variables showed a negligible effect size (|β|≤ 0.08;
R2

m ≤ 0.003).

Role of Person-Related Factors
The General Fade-out ability showed the highest, albeit still quite
small, variance explanation (R2

m = 0.029) and was negatively
associated with Annoyance judgments (β = −0.24). The Net
Income of the household as well as the Income per Person
revealed very little variance explanation but similar negative
effects, suggesting that higher income was associated with more
pleasant sound situations. By contrast, the personality traits
Noise Sensitivity (β = 0.14) and Neuroticism (β = 0.12) were
significant positive predictors of Annoyance judgments but
showed minimal R2

m values below 0.010. Moreover, Extraversion
(β = 0.04) did not show a significant effect at all (p = 0.274;
R2

m = 0.001). All other demographic variables and the Liveliness
of the living environment showed minimal R2

m values (<0.010)
and/or were insignificant. For Liveliness (β = 0.12), a more
lively living environment was associated with higher Annoyance
in sound evaluation. A model for the interaction effect of
Age Class and Education Class on our measured data (model
Age∗Edu, Table 5) confirmed the findings of Miedema and Vos
(1999) with these significant influences on annoyance: Younger
people (20–40 years) reported less annoying sound situations
(β = −0.26) than older people (61–80 years; reference dummy
level). Participants with no or up to a lower secondary–level
education were slightly less annoyed (β =−0.12) than people with
a university-level education (reference dummy level). Finally,
only one of the four interactions was significant, showing
that young people with an upper secondary–level education
experience less annoying sound situations than older people with
a university-level education (β =−0.22).

Comprehensive Models
In this section, we present the comprehensive model CML1
predicting Annoyance ratings derived from the Lasso regression
method for variable selection. Some variables had not been
processed due to missing values (Net Income and Income
per Person)—which were not allowed for the regularization
method—or having too many factor levels (Micro Sound
Categories). The minimum cross-validation error (CV = 0.81) was
reached at a tuning parameter value of λopt = 96.0 (see dashed
line in Figure 1). This optimal compromise between a model
in which all our variables were retained as contributors and a
model without any fixed factors left over (at a λmax = 2,256)
incorporated the most important variables shown in Table 6.
This prediction model explained over half of the variance of the
Annoyance evaluations (R2

m = 0.570).
The most crucial fixed factor was the affect Valence (β =−0.47,

CI [−0.51, −0.42]) followed by the natural sound category
(β = −0.38, CI [−0.41, −0.34]) and the Specific Fade-out
ability (β = −0.20, CI [−0.24, −0.16]). The situational variable
Positivity (β = −0.19, CI [−0.22, −0.15]) was included in
the model, whereas Negativity was excluded. Lower Annoyance
ratings were therefore related to higher (more positive) Valence
scores, natural sounds as opposed to technical ones, and the
stronger ability of respondents to fade out sounds. In contrast
to the aforementioned negative effects, the fifth most important
variable was the positive effect mid/high-level Loudness (β = 0.17,
CI [0.14, 0.21]), followed by the positive effects Active Coping
(β = 0.13, CI [0.09, 0.16]) and Arousal (β = 0.13, CI [0.09,
0.18]). That is, higher Annoyance values were related to higher
Loudness, higher Arousal, and higher Active Coping scores. The
sound characteristic Tonality had the smallest significant effect
(β = −0.05, CI [−0.09, −0.02]). Finally, the General Fade-out
capability (β = −0.01, CI [−0.05, 0.03]) was included as the only
variable with a non-significant p-value (p = 0.526), whereas all
other effects had highly significant p-values (p< 0.010).

Concerning the random effect ID, the residual (within-
subject) variance σ2 = 0.60 and the random intercept (between-
subject) variance τ00 = 0.21 were observed. The quite high
within-subject variance of the Annoyance ratings may be due to
high variation in the characteristics of the sounds and situations
reported by participants. This variation is slightly smaller for
the subset of sounds reported as low-level (σ2 = 0.55). An
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FIGURE 5 | R2
m and probabilities for the assessed variables determined by bivariate analyses of the single-fixed-factor models. Probabilities are given as

∗∗∗p < 0.001; ∗∗p < 0.010; ∗p < 0.050. Model 32SFFA.

TABLE 3 | Frequencies of observations and estimated marginal means for Annoyance judgments, differentiated by the Liveliness of the living environment.

Lively Calm

NID Nobs M CI NID Nobs M CI Nobs sum

Low-level 474 544 2.62 [2.51, 2.74] 827 984 2.39 [2.30, 2.47] 1,528

High-level 484 3.43 [3.31, 3.55] 788 3.20 [3.10, 3.30] 1,272

Nobs sum 1,028 1,772 2,800

With bootstrapped confidence intervals for each level of Liveliness of the living environment and each perceived Loudness level. NID number of participants; Nobs number
of observations; model Liveliness.
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TABLE 4 | Annoyance estimates of bivariate single-fixed-factor models including dummy variables of each factor.

All Loudness levels; factors from single-fixed-factor models

Predictors Estimates [CI] p df R2
m R2

c

Situational

Valence −0.87 −0.91, −0.83 <0.001 2717.6 0.411 0.563

Arousal 0.63 0.58, 0.68 <0.001 2772.3 0.213 0.476

8D: Positivity −0.60 −0.64, −0.55 <0.001 2797.1 0.191 0.481

8D: Negativity 0.52 0.47, 0.57 <0.001 2789.5 0.145 0.438

Specific Fade-out −0.46 −0.51, −0.41 <0.001 2795.2 0.112 0.444

Location5: Garden/Nature −0.38 −0.43, −0.33 <0.001 2721.4 0.078 0.431

Location5: Work/Office 0.01 −0.04, 0.06 0.600 2680.7

Location5: Other (indoors) −0.01 −0.06, 0.03 0.565 2495.3

Location5: Other (outdoors) −0.06 −0.11, −0.02 0.006 2623.4

Location5: Undefined 0.03 −0.02, 0.07 0.279 2740.1

Control −0.37 −0.42, −0.32 <0.001 2797.8 0.071 0.444

Active Coping 0.37 0.32, 0.41 <0.001 2665.3 0.070 0.461

8D: Intellect −0.30 −0.35, −0.25 <0.001 2752.3 0.047 0.434

8D: Adversity 0.30 0.24, 0.35 <0.001 2781.0 0.046 0.427

8D: Mating −0.25 −0.30, −0.20 <0.001 2790.1 0.034 0.435

8D: Deception 0.24 0.19, 0.30 <0.001 2768.7 0.031 0.420

8D: Sociality −0.16 −0.21, −0.11 <0.001 2760.1 0.013 0.422

8D: Duty 0.15 0.10, 0.20 <0.001 2693.8 0.011 0.415

Frequency7: less than once a year 0.11 0.06, 0.17 <0.001 2724.4 0.008 0.422

Frequency7: 1.4 times a year 0.06 0.01, 0.11 0.028 2628.4

Frequency7: 5.11 times a year 0.03 −0.02, 0.09 0.241 2638.1

Frequency7: 1.3 times a month 0.07 0.01, 0.13 0.013 2546.8

Frequency7: 1.3 times a week 0.03 −0.02, 0.09 0.256 2485.0

Frequency7: more than once a day 0.02 −0.04, 0.08 0.526 2547.3

Sound-related

Macro-level sound category8: natural −0.65 −0.70, −0.61 <0.001 2615.9 0.207 0.512

Macro-level sound category8: human −0.14 −0.18, −0.10 <0.001 2461.3

Loudness: mid/high-level (ref.: low-level) 0.33 0.28, 0.38 <0.001 2767.0 0.058 0.412

Tonality −0.08 −0.12, −0.03 0.001 2476.9 0.003 0.426

Timbre −0.03 −0.07, 0.02 0.257 2527.7 <0.001 0.419

Person-related

General Fade-out −0.24 −0.30, −0.18 <0.001 1240.4 0.029 0.417

Net Income of the household1
−0.16 −0.22, −0.09 <0.001 1174.1 0.013 0.416

Noise Sensitivity 0.14 0.08, 0.21 <0.001 1237.2 0.011 0.418

Liveliness: lively (Ref.: calm) 0.12 0.06, 0.19 <0.001 1248.7 0.008 0.418

Neuroticism 0.12 0.05, 0.18 <0.001 1238.8 0.007 0.419

Income per Person1,2
−0.12 −0.18, −0.05 <0.001 1161.6 0.007 0.415

Gender: male. (Ref.: female) 0.11 0.05, 0.18 <0.001 1257.6 0.007 0.419

Education Class4: ISCED level ≤ 2 0.07 −0.00, 0.14 0.054 1265.96 0.002 0.418

Education Class4: ISCED level 3 0.02 −0.05, 0.09 0.567 1228.29

Persons living in the household −0.04 −0.11, 0.02 0.202 1255.8 0.001 0.418

Extraversion 0.04 −0.03, 0.10 0.274 1254.6 0.001 0.418

Age Class3: 20 to 40 Years 0.16 0.09, 0.24 <0.001 1268.6 0.011 0.419

Age Class3: 41–60 Years 0.07 −0.01, 0.14 0.070 1237.0

Hearing Impairment: yes. (Ref.: no) −0.01 −0.07, 0.06 0.802 1273.4 <0.001 0.418

NID 1,301

Nobs 2,800

1Nobs 2612, NID 1215. Reference levels: 2 [3200; 4500[EUR, 361–80 years, 4 ISCED level 4.8, 5Home (indoors), 6Undefined, 74.7 times a week, 8macro-level sound
category: technical. Nobs number of observations. NID number of participants, 8D situational eight DIAMONDS. CI confidence intervals and p-values were not corrected.
The 38 micro-level sound categories are not shown for better readability. Model 32SFF. p-values that are significant at the level of α < 0.050 are shown in bold.
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TABLE 5 | Annoyance estimates of the Age Class and Education Class interaction effect model including all dummy variables of each factor.

All Loudness levels

Predictors Estimates [CI] p df R2
m R2

c

Intercept 2.85 2.79, 2.91 <0.001 1257.3 0.016 0.421

Age Class1: 20–40 Years −0.26 −0.37, −0.15 <0.001 1269.3

Age Class1: 41–60 Years 0.03 −0.08, 0.14 0.601 1245.2

Education Class2: ISCED level ≤ 2 −0.12 −0.23, −0.00 0.042 1265.6

Education Class2: ISCED level 3 0.04 −0.07, 0.15 0.504 1248.6

Age Class1: 20–40 Years * Education Class2: ISCED level ≤ 2 −0.01 −0.21, 0.19 0.925 1274.4

Age Class1: 41–60 Years * Education Class2: ISCED level ≤ 2 0.01 −0.18, 0.20 0.922 1256.5

Age Class1: 20–40 Years * Education Class2: ISCED level 3 −0.22 −0.41, −0.03 0.025 1264.0

Age Class1: 41–60 Years * Education Class2: ISCED level 3 −0.01 −0.20, 0.18 0.886 1233.4

NID 1,301

Nobs 2,800

Reference levels: 161–80 years, 2 ISCED level 4.8. Nobs number of observations. NID number of participants, CI bootstrapped confidence intervals were given at α = 0.05.
Model Age∗Edu. p-values that are significant at the level of α < 0.050 are shown in bold.

interpretation of this might be that the low-level sounds reported
by participants were generally less annoying, whereas mid/high-
level sounds (σ2 = 0.65) can be very annoying or even very
pleasant—for example, imagine playing your favorite music or
the Bird sounds that were reported as being mid/high-level.
This can be seen in Figure 2, which shows the distribution for
the two sound level subsets (additionally separated by macro-
level sound category, model Macro2). A similar relationship
between the sound level subsets can be observed for the between-
subject variation τ00 of the random effect. These values were
0.3–0.4 times the within-subject variances. Unsurprisingly, the
relationship between the sound level subsets mentioned above
can also be found in the standard deviations of the raw data
(SDall = 1.39; SDlow-level = 1.24; SDmid/high-level = 1.42; see also
the distributions of the reported raw-data in Figure 2). Finally,
an adjusted (i.e., conditional) intraclass-correlation coefficient for
the full dataset—ICCadj = τ00/(τ00 + σ2) = 0.26—described the
proportion of explained variance to total variance (including the
fixed effects) due to differences between participants which were
represented by the random effect ID. From a critical perspective,
all of the above differences in variances and their interpretation
may be strongly influenced by the huge variety in the sounds
reported by participants due to the fact that each participant
reported individual sounds, as no audio was played back and no
grouped listening (as in sound walks) was performed.

In addition to the aforementioned model computed over
the full dataset, we derived two further models using the
Lasso regression method for the subsets of low-level (model
CML2) versus mid/high-level (model CML3) observations. This
was done to investigate whether evaluations of both low-
and mid/high-level sounds would follow similar patterns. Both
models showed similar but slightly smaller marginal R2-values
(R2

m_low−level = 0.532; R2
m_mid/high-level = 0.543) compared to

the overall model. The Loudness variable was no longer included
in the sub-models, presumably because it served as the grouping
variable. The two variables Tonality and General Fade-out were
also excluded by the Lasso regression at the optimal tuning

parameters (low-level: λopt = 90.8, λmax = 1,231; mid/high-level:
λopt = 117.0, λmax = 1,124). Compared to the overall model,
the model for the low-level subset showed a slightly smaller
cross-validation error (CV = 0.72). In contrast, the error of the
mid/high-level model was slightly higher (CV = 0.93). When
comparing the predictor estimates of the two models based on
their CIs, no significant differences were observed, and both
showed the same selected variables.

A model (CMSFF1) containing all variables that were
significant in the bivariate analyses (subsections of section
“Design and Questionnaire” and Figure 5) and showed an
R2

m ≥ 0.050 is shown in Table 7. The variables selected in this
way confirmed the variable selection by the Lasso regularization
method. The variable Control, which was meaningful in the
bivariate analysis (β = −0.37; R2

m = 0.071; p < 0.001), became
unimportant in the comprehensive model (β = 0.00; p = 0.910).
Some Location levels were inconsistently significant within each
Loudness subset as well as between subsets. Although the Lasso
variable selection method—in a misleading manner—selected
General Fade-out, which was not significant, no person-related
variable we assessed achieved an R2

m of 0.050 in the single-fixed-
factor models, and such variables were therefore excluded in this
comprehensive linear model.

DISCUSSION

Summary
In this online study, we investigated the human perception of
low-level environmental sounds and the influencing effects of
sound-related, situational, and person-related factors. Moreover,
we investigated whether variable-selection methods from
linear machine-learning algorithms can aid noise effects and
soundscape research by creating comprehensive models which
can reliably predict and explain a considerable amount of
variance in unseen data which was not used in the training when
the model was built.
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TABLE 6 | Estimations of Lasso-selected parameters for the full dataset and two Loudness subsets.

All levels Low-level Mid/high-level

λopt 96.0 90.8 117.0

λmax 2,256 1,231 1,124

CV 0.81 0.72 0.93

Predictors Estimates p Estimates p Estimates p
[CI] df [CI] df [CI] df

(Intercept) 2.84 <0.001 2.47 <0.001 3.27 <0.001
2.80, 2.88 1193.8 2.42, 2.51 833.9 3.22, 3.33 735.1

Situational
Valence −0.47 <0.001 −0.49 <0.001 −0.43 <0.001

−0.51, −0.42 2787.7 −0.54, −0.43 1517.5 −0.49, −0.36 1252.0

Arousal 0.13 <0.001 0.14 <0.001 0.11 0.001
0.09, 0.18 2769.5 0.09, 0.19 1472.8 0.05, 0.18 1259.8

Positivity −0.19 <0.001 −0.13 <0.001 −0.24 <0.001

−0.22, −0.15 2778.9 −0.18, −0.08 1506.6 −0.30, −0.18 1263.9

Specific Fade−out −0.20 <0.001 −0.14 <0.001 −0.23 <0.001

−0.24, −0.16 2788.6 −0.19, −0.10 1508.0 −0.29, −0.17 1262.4

Active Coping 0.13 <0.001 0.11 <0.001 0.15 <0.001

0.09, 0.16 2785.4 0.07, 0.16 1509.6 0.10, 0.20 1257.5

Sound-related

Natural sounds −0.38 <0.001 −0.35 <0.001 −0.43 <0.001

−0.41, −0.34 2693.2 −0.40, −0.31 1496.3 −0.49, −0.37 1229.7

Human sounds −0.15 <0.001 −0.17 <0.001 −0.14 <0.001

−0.18, −0.11 2635.1 −0.21, −0.12 1455.7 −0.19, −0.08 1173.2

Mid/high-level 0.17 <0.001 (grouping variable) (grouping variable)

0.14, 0.21 2787.3

Tonality −0.05 0.002

−0.09, −0.02 2700.9

Person-related

General Fade-out −0.01 0.526

−0.05, 0.03 1325.9

Random effects

σ2 0.60 0.55 0.65

τ00 0.21ID 0.16ID 0.26ID

ICCadj 0.26 0.22 0.29

NID 1,301ID 930ID 798ID

Nobs 2,800obs 1,528obs 1,272obs

Marginal R2 0.570 0.532 0.543

Conditional R2 0.680 0.637 0.674

Reference micro-level sound category: technical. Reference Loudness: low-level. λmax highest value of Lasso tuning parameter, λopt optimal value of Lasso tuning
parameter, CV cross-validation error, i.e., the mean of the mean square errors of all cross-validation folds, σ 2 residual (within-subject) variance, τ00 random intercept
(between-subject) variance (i.e., variation between individual intercepts and average intercept), ICCadj, adjusted intraclass-correlation coefficient = τ00/(τ00 + σ

2) describes
the variance—including the fixed-effects variance—between participants; NID, number of persons; Nobs, number of observations; CI, confidence intervals were given at
α = 0.05. Models CML1/2/3. p-values that are significant at the level of α < 0.050 are shown in bold.

The results of our study corroborate previous findings
suggesting that sound evaluations are dependent on myriad
influencing factors, in particular situational factors (Fields, 1993;
Wolsink et al., 1993; Stallen, 1999; Job et al., 2007; Kroesen et al.,
2008; Steffens et al., 2017). Moreover, we demonstrated that linear
mixed-effects models combined with novel machine learning
variable-selection techniques are applicable in hypothesis
testing in noise effects and soundscape research. Furthermore,
they can overcome problems associated with overfitting and
multicollinearity when many situational and person-related

variables are included in the course of a multiple regression.
The feasibility of these techniques is further supported by our
extensive and time-consuming bivariate analyses of the single
variables, which overall led to similar results.

To the best of our knowledge, this is the first study in the
realm of sound perception that takes into account such a large
number of psychological variables and utilizes linear machine
learning to overcome the aforementioned statistical problems.
In addition, the established models derived from the percentile-
Lasso method maintain interpretability due to the linear, additive
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TABLE 7 | Comprehensive model of all parameters from the bivariate analyses that reached an R2
m ≥ 0.050, respectively; with the full dataset and two

Loudness subsets.

All levels Low-level Mid/high-level

Predictors Estimates p Estimates p Estimates p
[CI] df [CI] df [CI] df

(Intercept) 2.84 <0.001 2.47 <0.001 3.27 <0.001
2.80, 2.88 1188.3 2.42, 2.51 820.2 3.22, 3.33 722.1

Situational
Valence −0.46 <0.001 −0.47 <0.001 −0.42 <0.001

−0.51, −0.41 2779.7 −0.53, −0.42 1510.9 −0.49, −0.35 1231.2

Arousal 0.13 <0.001 0.12 <0.001 0.11 0.001
0.08, 0.17 2770.8 0.07, 0.18 1469.9 0.04, 0.17 1254.8

Positivity −0.17 <0.001 −0.12 <0.001 −0.23 <0.001
−0.21, −0.13 2768.3 −0.17, −0.06 1489.0 −0.30, −0.17 1256.7

Negativity 0.06 0.007 0.06 0.013 0.04 0.173

0.02, 0.10 2778.5 0.01, 0.11 1502.4 −0.02, 0.11 1254.7

Specific Fade-out −0.19 <0.001 −0.14 <0.001 −0.23 <0.001

−0.23, −0.16 2772.0 −0.19, −0.10 1497.9 −0.29, −0.17 1255.0

Location: Garden/Nature −0.02 0.299 −0.03 0.333 −0.03 0.398

−0.06, 0.02 2762.6 −0.08, 0.03 1511.4 −0.09, 0.03 1256.4

Location: Work/Office 0.00 0.840 0.02 0.298 −0.03 0.276

−0.04, 0.03 2771.0 −0.02, 0.07 1512.2 −0.08, 0.02 1226.9

Location: Other (indoors) −0.05 0.003 −0.02 0.370 −0.09 0.001

−0.08, −0.02 2659.1 −0.06, 0.02 1427.7 −0.14, −0.04 1200.9

Location: Other (outdoors) −0.03 0.052 −0.06 0.005 0.02 0.515

−0.07, 0.00 2738.1 −0.10, −0.02 1494.9 −0.03, 0.07 1228.0

Location: Undefined −0.03 0.126 0.01 0.680 −0.07 0.013

−0.06, 0.01 2782.2 −0.03, 0.05 1502.3 −0.12, −0.01 1255.1

Control 0.00 0.910 −0.01 0.758 0.02 0.442

−0.04, 0.04 2736.7 −0.06, 0.04 1453.5 −0.04, 0.08 1257.0

Active Coping 0.12 <0.001 0.10 <0.001 0.14 <0.001

0.09, 0.16 2781.1 0.06, 0.15 1505.4 0.08, 0.19 1249.9

Sound-related

Natural sounds −0.38 <0.001 −0.35 <0.001 −0.44 <0.001

−0.42, −0.34 2652.8 −0.40, −0.29 1487.9 −0.50, −0.37 1210.1

Human sounds −0.15 <0.001 −0.17 <0.001 −0.13 <0.001

−0.18, −0.11 2636.7 −0.21, −0.12 1455.9 −0.19, −0.08 1168.0

Mid/high-level 0.16 <0.001 (Grouping variable) (Grouping variable)

0.12, 0.19 2781.7

Random effects

σ2 0.61 0.56 0.64

τ00 0.20ID 0.15ID 0.26ID

ICC 0.25 0.21 0.29

NID 1,301ID 930ID 798ID

Nobs 2,800obs 1,528obs 1,272obs

Marginal R2 0.573 0.538 0.549

Conditional R2 0.678 0.635 0.679

Reference Location: Home (indoors). Reference micro-level sound category: technical. Reference Loudness: low-level. σ 2, residual (within-subject) variance; τ00, random
intercept (between-subject) variance; ICC, intraclass-correlation coefficient; NID, number of persons; Nobs, number of observations; CI, confidence intervals. Models
CMSFF1/2/3. p-values that are significant at the level of α < 0.050 are shown in bold.

effects of the predictor variables on the outcome variable, as
opposed to widespread deep learning approaches that obfuscate
those relationships. The percentile-Lasso regression approach is
assumed to be particularly useful if multiple (psycho-)acoustic
parameters—usually highly correlated—are also taken into

account in the course of more comprehensive future studies
and models. Moreover, the combination of multilevel modeling
and the percentile-Lasso approach will also allow time-series
analyses and the separate modeling of inter- and intra-individual
processes relevant to everyday sound perception.
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The more detailed analysis of our data further supported the
feasibility of using the three most frequently reported macro-
level sound categories (natural, human, and technical; Axelsson
et al., 2010; Bones et al., 2018; ISO/TS 12913-2,ISO, 2018), whose
mean annoyance ratings differed significantly. In addition, we
derived 38 micro-level sound categories from sound and situation
descriptions, which shed light on the kinds of sounds people
experience in their day-to-day life, including their prevalence and
how they were evaluated depending on the loudness level.

Since the bootstrapping for the marginal mean values is based
on resampling through the level 2 cluster variable, it cannot
reproduce well the different distributions of, e.g., low-level sounds
and mid/high-level sounds. When a second fixed factor was
included in the models, the differences between the marginal
means of the two loudness levels were equal across all levels of
the other fixed factor (see Figures 2–4). For study designs with
multiple fixed factor and non-homogeneously distributed data, a
specific statistical approach must be developed in future research
that relates the clustering to several levels of multiple factors.

Regarding the evaluation of low-level sounds, our models
revealed the expected significant positive effects of perceived
loudness on annoyance perception. However, the effect size
of loudness was oftentimes smaller than that of non-auditory
variables (Job, 1996; Kim et al., 2017; World Health Organization,
2018), which might be a result of the study design’s focusing
on low-level sounds. A significant loudness-dependent difference
in annoyance mean values was indeed observed for the three
macro-level sound categories (natural, human, and technical).
However, none of the effects of the Lasso-selected variables in the
optimal models for different loudness levels differed significantly.
As such, human sound perception strategies seem to be loudness-
level independent, as the same predictors for the two sub-models
(low-level and mid/high-level sounds) were selected by the Lasso.
This could be affected by the fact that no acoustic stimuli were
presented. The assessment of sounds that are remembered after
days or weeks may be affected by a memory bias. An example
could be the Peak-End rule, according to which people usually
base their retrospective judgments on the most intense (Peak)
and the last event (End) (Steffens et al., 2017). The inclusion
of more cognitive processing may further bias the assessment
compared to an in situ evaluation. Another explanation might
be that some participants remembered a low-level sound
while answering the questionnaire but—because no sound was
provided—connected it with the sound source that they might
have experienced in other situations at a shorter distance, i.e.,
higher loudness. Such a justification could also explain why the
other sound characteristics—tonality and timbre—contributed
negligibly to explaining the variance of annoyance or were even
not significant. Non-significant predictors, like the General Fade-
out, may be present in the model, especially resulting from the
usage of the 1-SE rule. The reason for this lies in the Lasso
variable selection method: The Lasso excludes predictors based
on regularization but not p-values. The model selection is based
on cross-validated MSE values in combination with the 1-SE rule
to detect the most generalized and parsimonious model with
low prediction error. Finally, we performed statistical testing and
p-value analysis after the model selection process.

Our results of the bivariate analyses of the DIAMONDS
psychological situation dimensions (Rauthmann et al., 2014)
showed only two strong associations. As expected, positive
situations were associated with low annoyance (i.e., pleasant)
judgments and negative situations with high annoyance. The
other six dimensions showed only small effects; sociality and
duty were insignificant. A situation with intellectual, romantic,
or social aspects was associated with more pleasant sounds,
whereas adversity, deception, and duty were connected with
greater annoyance. A reason for the relatively low contribution
of the DIAMONDS dimensions to the annoyance perception
may be that all participants rated individual sound situations
and incorporated high diversity in objective environmental
characteristics that were assessed—in the worst case—only once.
The situational variables then become individual perceptions,
i.e., personal variables (Rauthmann and Sherman, 2020). This
represents a particular challenge for online studies and more valid
field studies that must capture situations in a way that reduces
otherwise enormous diversity.

Another situational variable—perceived control, often
interpreted as perceived dominance over the situation—showed
a minor effect in our analyses. In contrast, other studies have
emphasized control as an important—if not essential—non-
auditory factor with a negative effect on annoyance (Kjellberg
et al., 1996; Stallen, 1999; Kroesen et al., 2008). An explanation
might be found in the retrospective study design, as participants
may not have been able to remember every aspect of the
situation described, leading to bias. Nevertheless, our results
are still consistent with the findings of Graeven (1975), who
reported a small but significant effect of control over noise
in the neighborhood or at home, and with the more recent
results of Hatfield et al. (2002), who found a small negative
effect of perceived control on sleep, reading disturbance, and
general symptoms.

Although other studies have discussed coping as one of the top
three non-acoustical factors of sound perception (Stallen, 1999;
Kroesen et al., 2008), active coping was a minor situational factor
for predicting annoyance in our study, both in the bivariate and
the Lasso regression model. More active coping was associated
with greater annoyance. Our result is in line with several studies
positing that coping can be seen as a consequence of annoyance
(Glass et al., 1972; Botteldooren and Lercher, 2004; Park et al.,
2016). At first glance, we observed a direction of the coping
effect contrary to that reported by Kroesen et al. (2008). It seems
plausible that one might only feel the strong need for coping
activity if one feels highly annoyed by a given situation. Kroesen
et al., however, defined a different aspect of coping, namely
“coping capacity,” which diminishes if one’s ability to face a threat
is limited or reduced. As a consequence of being not able to cope
with the situation, stress rises. By extension, perceiving a higher
coping capacity leads to less annoyance.

In our study, the self-determined ability to fade out the specific
reported sound in the specific situation was a crucial factor
in explaining the variance of annoyance after valence, arousal,
positivity, and (though not in the Lasso-selected variables)
negativity. This is quite interesting, as to our knowledge there
is no research on this topic available. As our study was very
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broad in scope, we could not explore every aspect in depth. It
seems worthwhile to further study this construct, its antecedents
and consequences, and its person-related (e.g., attention deficit
disorder), situational (e.g., fatigue), and sound-related (e.g.,
saliency) correlates. Here, it would be particularly interesting
to investigate the stability and situation dependency of this
ability and whether its effect on annoyance evaluation can be
reproduced in other contexts, such as the field or the laboratory.

Interestingly, noise sensitivity showed a minimal variance
explanation with a small positive effect, meaning that higher
noise sensitivity was associated with greater annoyance. Other
studies have identified noise sensitivity as the most crucial
factor in the annoyance responses caused by noise, considerably
stronger than the exposure level (Job, 1988; Öhrström et al., 1988;
Ryu and Jeon, 2011). In contrast, Stölzel (2004) and Kroesen
et al. (2008) found no added explained variance or only a small
correlation between noise sensitivity and annoyance, which is
in line with our findings. One explanation for this discrepancy
could be that we used a short questionnaire, the LEF-K (Zimmer
and Ellermeier, 1998). Another could be that, according to other
researchers, noise sensitivity may be seen as a multidimensional
construct, which means that it might be different for various
aspects of daily life (Schütte et al., 2007) and sound levels
(Job, 1999). Therefore, an (additional) measurement such as the
NoiSeQ (Schütte et al., 2007) or the short version NoiSeQ-R,
which considers three everyday scenarios (Griefahn, 2008), might
be advisable for future studies.

Since 1260 (45%) of all 2800 reported sounds were rated as
mid/high-level—although we were interested in the low-level
sounds perceived by the participants—one could hypothesize
that some participants indicated the presumed volume of the
sound source rather than what they heard. It could also be the
case that when asked to report low-level sounds, the participants
intuitively thought of a low-level sound, such as birdsong.
Later, when asked to evaluate the loudness, they probably made
a more cognitive evaluation, perhaps putting the sound into
a context or comparing it with other sounds and situations.
For example, birdsong might appear loud in a quiet morning,
while it is certainly still a low-level sound compared to an
accelerating bus passing by.

Limitations
Some limitations associated with the test design should be
addressed. First, we provided no acoustic stimuli to participants.
Instead, they recalled sounds, situations, and behavior, potentially
introducing a memory bias (Steffens et al., 2017; Greb et al.,
2019). Notwithstanding, our results (for example, in terms of
valence and arousal) revealed similar values compared to studies
that used acoustical stimuli (e.g., Hall et al., 2013). Furthermore,
the data we assessed allowed for the interpretation of correlative
relationships between variables but revealed neither directions
of effects nor moderation and mediation effects. In addition,
each participant reported only one to three observations, which
makes it inappropriate to calculate personal means of otherwise
time-varying measures. All of these drawbacks can be addressed
by conducting a field study applying the experience sampling

method and by obtaining a high number of repeated measures
for each participant. The authors are preparing a large-scale
field study, including on-site sound recordings, which aims to
replicate and extend the findings of this study.

CONCLUSION

Despite the limitations mentioned above, our study shows how
to deal with many influencing variables in the field of sound
perception using machine learning for the selection of the most
essential variables. Even though no actual acoustical stimuli
were used, our recall-based online study revealed some crucial
factors associated with annoyance judgments (valence, arousal,
sound categories, and mental fade-out ability). The results of
this study also have practical implications for manufacturers of
technical equipment and domestic installations, as even low-level
sounds—such as toilet flushing, which was associated with high
annoyance ratings in our study—can be prominent (Kuwano
et al., 2003). Manufacturers of heating installations, for example,
may offer their customers a sense of perceived control that can
lower annoyance perceptions by enabling customers to adjust
the flow rate of the heating installation to reduce flow noise, if
temporarily desired.
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APPENDIX

FIGURE A1 | Estimated marginal means for Annoyance for sounds from 38 micro-level sound categories, separated by binary Loudness levels, displayed with 95%
confidence intervals (both determined by bootstrapping) and the numbers of observations per category and Loudness level subsets. Very pleasant = 1,
very annoying = 5. Models Micro3a and Micro3b.
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