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A SEM-based approach using likelihood-based confidence interval (LBCI) has been
proposed to form confidence intervals for unstandardized and standardized indirect
effect in mediation models. However, when used with the maximum likelihood
estimation, this approach requires that the variables are multivariate normally distributed.
This can affect the LBCIs of unstandardized and standardized effect differently. In the
present study, the robustness of this approach when the predictor is not normally
distributed but the error terms are conditionally normal, which does not violate the
distributional assumption of ordinary least squares (OLS) estimation, is compared to four
other approaches: nonparametric bootstrapping, two variants of LBCI, LBCI assuming
the predictor is fixed (LBCI-Fixed-X) and LBCI based on ADF estimation (LBCI-ADF), and
Monte Carlo. A simulation study was conducted using a simple mediation model and a
serial mediation model, manipulating the distribution of the predictor. The Monte Carlo
method performed worst among the methods. LBCI and LBCI-Fixed-X had suboptimal
performance when the distributions had high kurtosis and the population indirect effects
were medium to large. In some conditions, the problem was severe even when the
sample size was large. LBCI-ADF and nonparametric bootstrapping had coverage
probabilities close to the nominal value in nearly all conditions, although the coverage
probabilities were still suboptimal for the serial mediation model when the sample size
was small with respect to the model. Implications of these findings in the context of this
special case of nonnormal data were discussed.

Keywords: mediation, nonnormal, confidence interval, structural equation modeling, bootstrapping

Mediation model is now a popular kind of theoretical model in research. According to Google
Scholar, about 19,500 entries from 2015 to 2020 had the keywords mediation, mediating, or indirect
effect (as of May 8, 2020) even if the search was restricted to only entries with one of these terms
in the titles. Measuring the indirect effect, the effect of a variable (the predictor) on another
one (the outcome) through one or more mediators is useful because it can help us to assess the
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importance of different casual mechanisms, to test whether
a posited mechanism is supported by data, and to obtain
the interval estimation of the indirect effect using confidence
intervals. For a simple mediation model with one predictor, one
mediator, one outcome variable, and some control variables,
the unstandardized indirect effect is the product of the
unstandardized regression coefficient of the path from the
predictor to the mediator (the a path) and that of the path
from the mediator to the outcome variable (the b path). The
standardized indirect effect (also called completely standardized
indirect effect in Preacher and Kelley, 2011) is the product
of the standardized coefficients of the a path and the b path.
Preacher and Kelley argued that the preferred metric to use is
the “metric that most effectively communicates the particular
effect size in the specific context” (p. 95). However, the sample
estimates of both unstandardized and standardized indirect
effects are the products of two or more sample estimates of
path parameters, resulting in a nonnormal sampling distribution
with no simple analytic form (Craig, 1936). This makes forming
the confidence interval for the indirect effects difficult. Various
methods have been proposed to form an optimal confidence
interval. In the present paper, for reasons to be presented later,
we focus on two group of methods, namely, the regression-
based nonparametric bootstrapping and the structural equation
modeling (SEM)-based likelihood approach. We compare the
performance of these methods in a special case of nonnormal
data: nonnormal predictors. In this paper, we first present the
simple mediation model and its estimation. We then discuss
how the case of nonnormal predictors is different from other
cases of nonnormal predictors. Next, we briefly present the
methods to be examined and how nonnormal predictors may
impact their performance. The simulation study conducted is
described and the results are reported. Last, we discuss the
implications of the findings on forming interval estimates of
indirect effects.

SIMPLE MEDIATION MODEL AND THE
ESTIMATION OF INDIRECT EFFECTS

As shown in Figure 1, the classical simple mediation model has
three variables, predictor (x), mediator (m), and outcome variable
(y)1, and can be described by two regression models (Baron and
Kenny, 1986; MacKinnon, 2008):

m = im + ax+ em, (1)

y = iy + bm+ c′x+ ey (2)

where em and ey are the error terms, im and iy are the intercepts,
and a, b, and c′ are the unstandardized regression coefficients.
The outcome variable can also be expressed in terms of the
predictor and the two error terms only:

y = iy + b (im + ax+ em)+ c′x+ ey

1In some literature, x and y are called independent variable and dependent variable.

FIGURE 1 | A Simple Mediation Model.

=
(
iy + bim

)
+
(
ab+ c′

)
x+

(
bem + ey

)
(3)

If we standardize all variables in Eqs. 1 and 2, the corresponding
standardized models are (see also MacKinnon, 2008, and
Preacher and Kelley, 2011):

zm = azzx + ezm , (4)

zy = bzzm + c
′

zzx + ezy , (5)

where ezm and ezy are the error terms, and az , bz , and c
′

z are the
standardized regression coefficients.

The unstandardized indirect effect is equal to ab. The
standardized indirect effect is then azbz . The standardized
indirect effect can also be computed by the following equation
(called completely standardized indirect effect in Preacher and
Kelley, 2011):

azbz =
σx

σy
ab, (6)

where σx and σy are the standard deviations of x and
y, respectively.

Interval estimation of the indirect effects is more complicated
than point estimation. When the parameters in the two models
are estimated from the sample data, there are well-established
methods to estimate the parameters, such as using ordinary least
squares (OLS) on the two regression models, or using maximum
likelihood to fit the model as one single path model. However, the
sampling distribution of the sample ab is nonnormal and does
not have a simple analytic form (Craig, 1936). The standardized
indirect effect has one complication on top of the complications
in relation to the unstandardized indirect effect: the standardizers
(the standard deviations of the predictor and the outcome) are
used in the computation but they themselves are sample statistics.
The sampling distribution of the standardized indirect effect is
even more complicated than that of the unstandardized indirect
effect, as suggested by the results by Yuan and Chan (2011) on the
sampling distribution of standardized regression coefficients in a
multiple regression model.

Various methods to form the confidence interval of indirect
effects have been proposed and empirically studied (see Hayes
and Scharkow, 2013 for a review). In the comprehensive
studies by Cheung (2009a,b), some methods were found to
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have unsatisfactory performance in forming the confidence
intervals of a standardized indirect effect, even for normally
distributed variables and residuals. Therefore, we only selected
methods that have been shown to perform satisfactorily for
standardized indirect effect and examined their performance
when the predictor was not normally distributed.

Currently, it seems that the most popular method is
nonparametric bootstrapping (Bollen and Stine, 1990; Shrout
and Bolger, 2002; Preacher and Hayes, 2004). This method,
to be elaborated below, involves resampling the raw data
and forming an empirical distribution of the indirect effect
point estimates to form the confidence interval of an indirect
effect. We selected this method for examination because it
has been found to perform well across various situations and
for both standardized and unstandardized indirect effects (e.g.,
MacKinnon et al., 2004; Cheung, 2009a,b; Biesanz et al., 2010)
and can serve as a benchmark to assess the performance of the
other approaches, presented next.

Another approach selected is the likelihood-based confidence
interval (LBCI) in SEM (Neale and Miller, 1997; Cheung, 2009a,b;
Falk and Biesanz, 2014), to be elaborated after the discussion
of nonnormal predictors. Like nonparametric bootstrapping,
this method does not require the knowledge of the sampling
distribution of the indirect effect. Unlike nonparametric
bootstrapping, this method is parametric and relies on the
distributional assumptions made by an estimation method.
Although not as popular as the nonparametric bootstrapping, this
method has its own advantages. It does not require the raw data
and does not involve resampling.

The last approach selected was the Monte Carlo method
(Preacher and Selig, 2012). Like the LBCI approach, this method
does not require the raw data and does not involve resampling. It
only needs to estimate standard errors and the point estimates.
It is even simpler than the LBCI approach because it does
not involve re-estimating the model. Although less popular
than nonparametric bootstrapping, a crude search in Google
Scholar for papers cited Preacher and Selig (2012) and had the
keyword Monte Carlo returned over 600 entries on or after 2016.
Preacher and Selig found that this method performed as good as
nonparametric bootstrapping for unstandardized indirect effects.
However, this method was not included in the comprehensive
simulation studies by Cheung (2009a,b). Therefore, we also
selected this method for investigation in the present study.

NONNORMAL PREDICTORS

Although many statistical techniques assume that the variables
of concern are normally distributed or multivariately normally
distributed, there are also many variables that are not normally
distributed. Although we labeled all these distributions that
deviate from the normal distribution (univariate or multivariate)
as nonnormal distributions, we would like to remark that
this group of distributions encompasses a wide variety of
distributions. Some are symmetric but have heavy tails (e.g.,
t distribution), some are asymmetric (e.g., the distribution of
monthly salary), and some are uniform (e.g., the distribution

of students across different years of studies). Therefore, in the
following sections, we are not assuming that all nonnormal
distributions are the same, as will become apparent when we
presented the types of nonnormal distributions we investigated.

Despite the name “nonormal,” nonnormal data are more
popular than usually believed. In the seminal paper by Micceri
(1989), an investigation of over 400 samples in psychology found
that nonnormality, rather normality, was the norm. A recent
study by Blanca et al. (2013) of nearly 700 distributions also
led to the same conclusions. There are various possible reasons
for nonnormality. In some cases, the nature of a variable results
in nonnormality (e.g., the scores on a clinical state such as
depression or gambling problems, or individual monthly salary).
In some other cases, nonnormality may be the result of data
collection methods, even of unbiased ones (e.g., recruiting similar
numbers of students from each year of study in a university, or
similar numbers of participants across different age groups).

The impact of nonnormal variables on forming confidence
interval of indirect effects have been studied in various
situations (e.g., Biesanz et al., 2010; Falk, 2018). However,
most of them studied the case in which the distributional
assumption of an estimation method is violated. For example,
Biesanz et al. (2010) studied the case of nonnormal errors,
which violates the assumption of normal errors for OLS
estimation and so even the standard errors of the regression
coefficients used to compute the product are incorrect. Falk
(2018) studied the case of latent mediation model using
SEM, and all the variables are nonnormal. However, there is
a scenario, to be discussed next, that has all variables not
multivariate normal but the distributional assumption of OLS
estimation and maximum likelihood estimation are actually
not violated.

As discussed above, variable can be nonnormal by nature,
or nonnormal because of the research design. Let us consider
the case in which the distribution of both error terms in
the two regression models in the simple mediation model are
normally distributed, or at least not too nonnormal and the
assumption of normal distribution is a good approximation. Even
though nonnormal variable is common, in some situations, it is
theoretically reasonable to expect that the error is approximately
normally distributed, if ceiling effect and floor effect are absent
and the error is a consequence of many unmeasured factors
combined. The predictor, however, can be nonnormal for reasons
described above. It also differs from the error because it
represents one attribute or a group of homogeneous attributes,
instead of an aggregation of many factors. If the predictor is
nonnormal, then the distribution of the mediator conditioned
on the predictor is still normal, but the marginal distribution
of the mediator is nonnormal. Similarly, the distribution of the
outcome variable conditioned on the predictor is normal, but
the marginal distribution of the outcome variable is nonnormal.
Consequently, the joint distribution of the three variables are
multivariate nonnormal.

For illustration, let us consider a sample of 5000 cases (data
generation R script available as supplementary Material). The
predictor is exponentially distributed and rescaled to have zero
population mean and population standard deviation equal to one.
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The univariate distribution and the normal Q–Q plot are shown
in Figure 2.

Suppose the predictor has an effect of 0.60 on the mediator and
the error is normally distributed with variance set to 1 −0.602

or 0.64 such that its population variance is one. Its univariate
distribution and normal Q–Q plot are shown in Figure 2. Though
not as skewed as the predictor, the distribution of the mediator
is slightly nonnormal, with skewness equal to 0.45 and excess
kurtosis equal to 0.81.

Suppose the outcome variable is influenced by both the
mediator and the predictor, with the effects from the mediator
and the predictor equal to 0.60 and 0.40, respectively. Again,
the error of the outcome variable is normally distributed, with
variance set to 0.192 such that the population variance of the
outcome variable is one. The univariate distribution and the
normal Q–Q plot of the outcome variable are presented in
Figure 2.

Compared to the mediator, the distribution of the outcome
variable is more nonnormal, partly because of the direct effect
from the nonnormal predictor. The skewness of the outcome
variable is 0.95 and its excess kurtosis is 2.33, both larger
than those of the mediator. It can be inferred that the joint
multivariate distribution of these three variables is nonnormal.
However, as discussed below, this does not necessarily violate
the distributional assumptions of OLS estimation and maximum
likelihood estimation.

First, in OLS estimation, the distributional assumption is
on the conditional distribution of the error (Fox, 2016), not
on the predictors. The estimates of the standard errors of the
unstandardized regression coefficients are consistent even if the
predictors are not normally distributed (Yuan and Chan, 2011).
This is obvious when we consider the well-established practice of
using dummy variables in linear regression, in which the dummy
variables certainly cannot be normally distributed, and the joint
distribution of the predictors and the outcome variables cannot
be multivariate normal. As shown in Figure 3, if we examine the
normal Q–Q plots of the residuals of the two regression models,
their distributions are close to normal, as we already know from
the way we generate the error.

Second, this case also does not violate the distributional
assumption for maximum likelihood estimation in the SEM-
based approach. Although it is usually believed that maximum
likelihood estimation assumes the variables to have a multivariate
normal distribution, in path analysis models, if (a) the exogenous
variables and the errors are independent, (b) the joint distribution
of the endogenous variables (precisely speaking, the error terms
of these variables in the structural models of observed variables)
conditional on the exogenous variables (the predictors in a path
model) are multivariate normal, and (c) the distribution of
the exogenous variables are not functions of model parameters
(other than their own variances and covariances), minimizing
the usual maximum likelihood discrepancy function still leads to
the maximum likelihood estimators of the parameters involving
the endogenous variables, such as the path coefficients from
the exogenous variables to the endogenous variables and the
error variances and covariances of the endogenous variables (see
Bollen, 1989, pp. 126–127; also see Jöreskog, 1973, pp. 94–95).

In other words, when a path analysis model, such as the
simple mediation model, is fitted and estimated by maximum
likelihood, the required distributional assumption for maximum
likelihood estimation of the path coefficients is similar to that
for OLS estimation of one single regression model, although
more restrictive because it is on the joint distribution of
the error terms.

To our knowledge, this kind of nonnormality is rarely
investigated. In the next section, we briefly present the two
approaches to form the confidence interval for indirect effects,
and how this kind of nonnormality may or may not affect their
performance. In view of how this kind of nonnormality may affect
the LBCIs for unstandardized and standardized indirect effects
differentially, we also present two variants of LBCI, as well as the
Monte Carlo method.

Robustness to Nonnormality
Despite our discussion above on nonnormality, we would like to
remark that, based on central limit theorem, some parametric
methods that assume normally distributed error are still valid
even if this assumption is violated, when the sample size is large
enough. For example, in the simple case of a sample mean, it
is well known that, as the sample size increases, the sampling
distribution of the sample mean approaches normality even
when the population distribution is not normal. In the case of
OLS estimation in multiple regression, the significance tests and
confidence intervals are approximately correct when the sample
size is large enough, even when the assumption of normality for
the residuals is violated (Fox, 2016). In the present study, rather
than examining cases in which the assumption of normality is
violated, we examined cases in which this assumption is not
violated in estimating the model parameters, but may be violated
when estimating derived parameters such as the standardized
indirect effects.

PROCEDURES EXAMINED

Nonparametric Bootstrapping
Bootstrapping method (Efron and Tibshirani, 1993) has been
used widely in forming the confidence interval for a sample
indirect effect. The most popular implementation in mediation
analysis is perhaps nonparametric bootstrapping, partly because
it can be implemented easily by the tool developed by Hayes
(2017). For a sample of N cases, a bootstrap sample is
generated by randomly drawing N cases from this sample
with replacement. The indirect effect is then estimated from
this bootstrap sample. These steps are repeated K times
to generate K bootstrap estimates of the indirect effect.
Various methods have been proposed to form the confidence
intervals. Percentile method is the simplest one, using the
2.5th and 97.5th percentiles to form the 95% confidence
interval. This is also the current default method used in the
SPSS PROCESS macro by Hayes (2017). Interested readers
are referred to other references for more information on
nonparametric bootstrapping (e.g., Efron and Tibshirani, 1993;
Efron and Hastie, 2017).
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FIGURE 2 | Distributions of x, m and y.

Previous studies found that this simple method performed as
well as more complicated methods, if not better (e.g., MacKinnon
et al., 2002; Fritz et al., 2012). Bootstrapping is attractive because
it is simple to implement. It has been shown to perform well in

the interval estimation of both unstandardized and standardized
indirect effects (MacKinnon et al., 2004; Cheung, 2009a). This
method does not assume the variables in the model to have
any particular joint distribution (Efron and Tibshirani, 1993).
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FIGURE 3 | Normal Q-Q Plot of Residuals.

When the predictor is not normally distributed in the population,
this method should also have optimal performance for both
unstandardized and standardized indirect effects. Therefore,
we selected this method as the benchmark for evaluating the
performance of the other methods.

Likelihood-Based Confidence Interval
Another method to form the confidence interval for the indirect
effect adopts a SEM approach and uses the likelihood-based
method (Cheung, 2007, 2009a; Falk, 2018). This is a general
method for forming the confidence interval of an estimate using
likelihood ratio test. Adopting Falk’s example (2018, see also
Neale and Miller, 1997), suppose we want to form the 95% LBCI
of the path coefficient θ in a model. Let the estimate be θ̂ when θ is
freely estimated. We find two values, θL and θH , the former higher
than θ̂ and the latter lower than θ̂, such that the likelihood ratio
tests between two alternative models, each with θ equal to one of
these values, and the model with θ freely estimated have p value
equal to 1−0.95 or 0.05. The 95% LBCI is then θL to θH . A model
with θ equal to a value outside this range, such as lower than θL
or higher than θH , will be significantly different from the model
with θ equal to its maximum likelihood estimate by the likelihood
ratio test, with p < 0.05. The idea behind this method is forming
the confidence interval by “inverting a test statistic” (Casella
and Berger, 2001, p. 420). This method can be generalized to
forming the confidence interval of a function of parameters
(Pek and Wu, 2015), such as the unstandardized indirect effect,
which is a function of a and b. Interested readers are referred
to Casella and Berger (2001) for the theoretical justification,
Pek and Wu (2015) on the technical details in implementation,
and Falk and Biesanz (2014) on the algorithm to find the LBCI
for a function of parameters, such as the indirect effect. In the
present study, we used the OpenMx R package (Neale et al., 2015),
which adopts the algorithm developed by Neale and Miller (1997)
and Wu and Neale (2012).

When applied to form the LBCI of an unstandardized
indirect effect, a mediation model is fitted as a structural
equation model. A LBCI is then formed for the product of two
parameters, the regression coefficients of the a path and the b path
(Cheung, 2007).

abunstandardized = ab. (7)

This method, theoretically, yields confidence limits within
the bound of the parameter space and allows for asymmetric
limits for the unstandardized indirect effect, as it should be
due to the asymmetric sampling distribution of the product.
Previous studies have found that it performed satisfactorily in
giving the interval estimates of the unstandardized indirect effect
(e.g., Cheung, 2007).

To form the confidence interval for the standardized indirect
effect, an early implementation requires the formation of a
special model with latent variables and nonlinear constraints
(e.g., Cheung, 2009a). Recently, some SEM software packages
(e.g., OpenMx) allow users to specify a derived parameter directly
and compute its LBCI. In the simple mediation model, the
standardized indirect effect can be expressed as a function of the
following model parameters:

abstandardized = ab

√√√√ σ2
x

b2σ2
em
+ σ2

ey
+ σ2

x
(
ab+ c′

)2 , (8)

where σ2
x is the variance of the predictor and σ2

em
and σ2

ey
are the

variances of the error terms of the mediator and the outcome
variable, respectively. Other parameters have been defined in
the presentation of the simple mediation model. The sample
estimate of the standardized indirect effect is computed from
the sample estimates of these parameters. This parameter is a
function of more parameters than the unstandardized indirect
effect, which is a function of only two parameters. Simulation
studies have shown that the coverage probability of this interval
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is close to the nominal level when the variables had a multivariate
normal distribution and maximum likelihood estimation was
used (e.g., Cheung, 2009a).

Few studies examined the performance of LBCI for indirect
effect when the predictor is drawn from a nonnormal distribution
and maximum likelihood is used for estimation. Falk (2018)
compared various methods for forming the confidence interval of
the indirect effect for a latent variable mediation model when the
observed variables are nonnormal and found that nonparametric
bootstrapping with percentile confidence interval was on average
the best methods among those compared, including a robust
version of LBCI. We first discussed the case for unstandardized
indirect effect. On the one hand, it can be argued that LBCI
will have suboptimal performance because maximum likelihood
estimation assumes multivariate normality, as in previous studies
on latent variable mediation model. On the other hand, if only
the predictor is nonnormal, it can be argued that maximum
likelihood estimation, and subsequently LBCI, will still perform
optimally because the conditional joint distribution of the
error terms is still multivariate normal. The unstandardized
indirect effect is a function of only two parameters, both path
coefficients. As long as the likelihood ratio test that involves
changing these two parameters is valid, the LBCI should be
valid. This is the case for nonnormal predictor coupled with
normal errors, as discussed above. In the present study, the
performance of LBCI for unstandardized indirect effect was
examined empirically.

The case for standardized indirect effect is different. As
shown above, the standardized indirect effect is a function of six
parameters, and one of them is the variance of the predictor.
Therefore, the likelihood ratio test used for forming LBCI will
involve estimating these six parameters. Even though maximum
likelihood estimation of the three path coefficients and the two
error variances does not require the predictor to be normally
distributed, the maximum likelihood estimation of the sample
variance of the predictor obviously assumes that the predictor
is normally distributed. Therefore, unlike the unstandardized
indirect effect, it is reasonable to expect that the performance of
the LBCI of standardized indirect effect will be adversely affected
by normally distributed predictors. However, unlike previous
studies on nonnormal variables, only one of the six parameters is
affected. Therefore, practically, the impact may not be as large as
in previous studies of nonnormal variables. In the present study,
the degree of impact of nonnormality in predictors on the LBCI
for the standardized indirect effect was examined empirically.

In short, it is not clear whether and how the LBCI for the
unstandardized indirect effect will be affected by nonnormal
predictors coupled with normal errors, while it is plausible that
the LBCI for the standardized indirect effect will have suboptimal
performance in this case. Two possible variants of LBCI that may
be applicable when the predictor is not normally distributed will
be presented below.

LBCI With ADF (LBCI-ADF)
The likelihood-based method is not confined to maximum
likelihood estimation. As long as likelihood ratio test can be done
appropriately using a one-df chi-square test, LBCI can be formed

(Pek and Wu, 2015). Therefore, if the data are nonnormal, other
estimation methods can be used and the LBCI is formed in
the same manner. For example, Pek and Wu suggested that the
asymptotically distribution free (ADF) method (Browne, 1984)
can be used for nonnormal data. As an initial investigation, we
follow their suggestion and study the performance of LBCI based
on ADF, which we call LBCI-ADF in the present paper. We
selected this approach because it is readily available in OpenMx
(Neale et al., 2015), one of the common R packages for forming
LBCI, allowing researchers to use this method with no additional
programming. ADF is rarely used in practice because the required
sample size is large (Hu et al., 1992; Curran et al., 1996). However,
the models we studied only have three to four variables and
therefore the range of sample sizes we studied may be sufficient
for ADF. If this method is promising, then further studies can
examine other robust methods in forming the confidence interval
of the indirect effect with nonnormal predictors.

LBCI With Fixed X (LBCI-Fixed-X)
If one suspects that the predictor (x) is nonnormally distributed,
one may consider fitting a path model, fixing the variance of the
predictor to its observed value, and computing the LBCI for the
unstandardized and standardized indirect effects. In other words,
when searching for the confidence limits, only the other five
parameters used to compute the standardized indirect effect will
change. Setting exogenous observed variables as fixed variables is
also the default option in some statistical functions (e.g., lavaan,
Rosseel, 2012). This sounds like a viable option because the
maximum likelihood estimator, as described above, can also be
derived when all exogenous observed variables (only one in this
case, the predictor) are treated as fixed and the conditional joint
distribution of the error terms are multivariate normal (Bollen,
1989). In other words, nonnormality of the predictor should not
affect the validity of the confidence interval.

However, if an exogenous variable is assumed to be fixed,
then its variance (and standard deviation) is also assumed to be
fixed. This may affect the interval estimation of the standardized
indirect effect if the predictor is actually stochastic rather than
fixed, as is the case in most studies. The sampling error of
the variance of the predictor is not taken into account when
forming the LBCI for the standardized indirect effect. Therefore,
this method, while avoiding the problem of nonnormality, may
suffer from the problem of fixed variance when the predictor is
stochastic. The net impact of nonnormality on this method needs
to be examined empirically.

Monte Carlo
The last method is the Monte Carlo. Like nonparametric
bootstrapping, it is a simulation-based method. However, this
method does not need the raw data. This method only needs
the point estimates and standard errors of the a path and the b
path. If the assumptions of OLS estimation are met, the sampling
distribution of these two parameters are normal. In the Monte
Carlo method, a large number of pairs of random numbers from
a bivariate normal distribution are generated, with the means
and standard deviations of this distribution equal to the point
estimates and standard errors of the two parameters. Previous
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studies (MacKinnon et al., 2004; Preacher and Selig, 2012) have
set the covariance to zero following the assumption that, in the
case of the simple mediation model, the covariance between
a path and b path is zero (Sobel, 1982). The distribution of
the product of these pairs of random numbers is then used to
form the confidence interval of the indirect effect. For example,
for a 95% confidence interval, the 2.5th and 97.5th percentiles
of the distribution are the lower and upper confidence limits,
respectively. The Monte Carlo method has been shown to have
satisfactory performance in forming the confidence interval of
the unstandardized indirect effect (MacKinnon et al., 2004;
Preacher and Selig, 2012).

This method is based on the rationale that the two OLS
estimates are normally distributed, which are the assumptions
made implicitly when researchers interpret the confidence
intervals of the a and b paths in OLS estimation. In OLS
estimation, no distributional assumption is needed for the
predictors. Therefore, even if the predictor is not normally
distributed, if all other assumptions are met, the sample
unstandardized regression coefficients are still normally
distributed. It is expected that the Monte Carlo method
will also perform satisfactorily in interval estimation of the
unstandardized indirect effect with nonnormal predictors.

To our knowledge, this method has not yet been extended
to standardized indirect effect. One problem is the standardizer.
The standardized indirect effect is computed by multiplying the
product by the standard deviation of the predictor and dividing
it by the standard deviation of the outcome (Eq. 6). Even if
the sampling distribution of the sample standard deviation of
the predictor can be simulated by the Monte Carlo method, the
sampling distribution of the sample standard deviation of the
outcome cannot be easily simulated because it is a function of
the standard deviations of the predictor and the error terms. One
possible option is to assume that the standardizers are fixed. We
suspect that this was how the Monte Carlo confidence interval for
the standardized indirect effect was computed in some previous
studies. Therefore, we also adopted this method for standardized
indirect effects for completeness. However, this approach ignored
the sampling variances and covariances of the sample standard
deviations of the predictor and outcome. Therefore, this method
may fail to work in forming the confidence interval for the
standardized indirect effect. Its performance on the standardized
indirect effect needs to be empirically investigated.

MATERIALS AND METHODS

Models
In this study, we examined two models: a simple mediation model
with one predictor, one mediator, and one outcome variable, and
a serial mediation model with one predictor, two mediators, and
one outcome variable. We restricted to just one predictor to avoid
confounding from other factors such as control variables and
inter-predictor correlations. For the simple mediation model, the
path from the predictor to the mediator was denoted as a, the
path from the mediator to the outcome variable was denoted
as b, and the path from the predictor to the outcome variable

was denoted as c′ (see Figure 1). For the serial mediation model
(Figure 4), the path from the predictor (x) to the first mediator
(m1) was denoted as a, the path from the first mediator to the
second mediator (m2) was denoted as b1, the path from the
second mediator to the outcome variable (y) was denoted as b2,
and the direct path from the predictor to the outcome variable
was denoted as c′. The population values of all other paths were
zero, although they were still estimated in the simulation, such
that the model being fitted were saturated in both conditions.
The population distribution of the predictor was manipulated,
while the errors of the mediators and the outcome were generated
from normal distributions. The serial mediation model had one
more variable, resulting in four more elements in the variance–
covariance matrix and four more parameters, allowing us to
examine the impact of number of variables on the estimation
methods, especially the LBCI-ADF method, which was known to
require a large sample size.

Factors Examined
Sample Size (n)
The same five levels of sample size examined in Cheung (2009a)
were examined: 50, 100, 150, 200, and 500. This range should
cover the sample sizes found in most studies of mediation effects
and also ensure that the results in the present study could be
compared directly with those in Cheung (2009a).

Indirect Effect (ab and ab1b2)
Cheung (2009a) adopted the rule of thumb proposed by Cohen
(1988, pp. 413–414) for small, medium, and large effects for
R2 (0.02, 0.13, and 0.26) and derived that the corresponding
standardized indirect effects (abs) are 0.141, 0.361, and 0.510. If a
and b paths are equal, the corresponding levels of a and b paths
are 0.376, 0.600, and 0.714. The condition of nil indirect effect
(a = b = 0) was also examined. For the simple mediation model,
we extended the conditions to unequal a and b, by setting one
of the paths to the largest level examined (0.714), resulting in
these four pairs of values: a = 0.1975 and b = 0.714, a = 0.714
and b = 0.1975, a = 0.5056 and b = 0.714, as well as a = 0.714
and b = 0.5056. The standardized indirect effects of the first
two pairs are 0.141 (small effect), and the standardized indirect
effects of the last two pairs are 0.361 (medium effect). The total
number of combinations of a and b values is eight. For the serial
mediation model, we constrained b1 and b2 to be equal in all
conditions. Conditions for the serial mediation model shared the
same combinations of levels as in the simple mediation model,
with the square root of the population value b used as the

FIGURE 4 | A Serial Mediation Model with Two Mediators.
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FIGURE 5 | Normal Distribution (Unstandardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation
model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc:
Monte Carlo. Please refer to the text on the parameters for the distribution.

population values of b1 and b2. Therefore, the levels of indirect
effect examined were the same for both models, even though they
differ on the number of mediators.

Direct Effect (c′)
The levels of direct effect (c′) were chosen such that the
population R2 increases when adding the predictor to the
regression model after the mediation has been included (that is,
adding the c′ path) were 0.00, 0.02, 0.13, and 0.26, following the
rule of thumbs for the R2 above. Given the R2 increase (d), c′
depends only on d and a: c′ = d/(1− a2). For some combinations
of a, b, and c′, the total R2 values were unusually high. Therefore,
we dropped combinations that result in an implied population R2

larger than 0.80 (corresponding to a multiple correlation of 0.89).

Distributions of Predictors
Five distributions of the predictor were examined: normal
distribution (skewness = 0, excess kurtosis2

= 0), exponential
distribution (rate = 1, skewness = 2, excess kurtosis = 6), beta
distribution (α = β = 1.5, skewness = 0, excess kurtosis = −1),
t distribution with df = 5 (skewness = 0, excess kurtosis = 6),

2The kurtosis of the normal distribution is 3. Because it is common to use the
normal distribution as the benchmark for comparison, we used excess kurtosis in
this paper, which is kurtosis −3. The normal distribution has an excess kurtosis
of 0.

and t distribution with df = 6 (skewness = 0, excess
kurtosis= 3). These distributions include five kinds of situations:
normal distribution, positively skewed distribution, symmetric
distribution with light tails, symmetric distribution with heavy
tails, and symmetric distribution with moderately heavy tails. We
selected these specific nonormal distributions because they reflect
situations that researchers may encounter in their contexts. For
example, response times often follow an exponential distribution;
variables that are bell-shaped and symmetric might have extreme
values resulting in positive excess kurtosis, which can be more
appropriately modeled with a t distribution, using the df to
control the degree of excess kurtosis; and lastly, scale scores
computed from the means of item responses that have lower
and upper limits can be more appropriately modeled with a
beta distribution with α = β = 1.5. The generated random
values for the predictor were rescaled such that the population
means and standard deviations of all four distributions are
identical (see below).

Data Generation
The R software environment for statistical computing (R Core
Team, 2018) was used to generate the raw data. For each
condition, the required number of raw predictor scores (x)
were generated using the corresponding R function (rnorm for
normal distribution, rexp for exponential distribution, rbeta for
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FIGURE 6 | Beta Distribution (Unstandardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation
model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc:
Monte Carlo. Please refer to the text on the parameters for the distribution.

beta distribution, and rt for t distribution). The scores were
rescaled using the distribution’s population mean and standard
deviation such that the population mean and standard deviation
after rescaling were zero and one for all four distributions. For
example, for the simple medication model (implemented by
gendata in the package used for this study), raw mediator scores
(m) were then generated by m = ax+ em, where em scores
were generated from a normal distribution with population
mean equal to zero and population standard deviation equal to√

1− a2. This ensures that the population mean and standard
deviation of m were also zero and one, respectively. Last,
the outcome scores (y) were generated by y = bm+ c′x+ ey,
where ey scores were generated from a normal distribution with
population mean equal to zero and population standard deviation
equal to

√
1− b2 − c2 − 2bca. This ensures that the population

mean and standard deviation of y were also zero and one,
respectively. In sum, for all four distributions, the population
means and standard deviations of x, m, and y are all equal to
zero and one, respectively. The computation was slightly more
complicated in the serial mediation. Interested readers can refer
to the function gendata_serial in the package used for the present
study for the details.

To simulate real-life situation with nonzero population means
and standard deviations not equal to one, for the simple
mediation model, the three variables were then rescaled to

have population means equal to three, five, and four for x, m,
and y, respectively, and population standard deviations equal
to four, five, and three for x, m, and y, respectively. For the
serial mediation model, population means were five and two
for m1 and m2, respectively, and population standard deviations
were five and two for m1 and m2, respectively. These values
are arbitrary and would not affect the results, but would make
the unstandardized coefficients and standardized coefficients
different, serving as a safe guard against programming errors that
would result in treating one as the other.

The package used to generate the data and do the analysis, as
well the summary data, can be found at the OSF page for this
manuscript3.

Implementing the Selected Methods
Nonparametric Bootstrapping
R functions were used to implement nonparametric
bootstrapping. For each replication, 2000 bootstrap samples
were generated. For the simple mediation model, in each
bootstrap sample, OLS linear regression was used to estimate the
unstandardized and standardized a and b by fitting two models:
regressing the mediator on the predictor, and regressing the
outcome on both the mediator and the predictor. For the serial

3https://osf.io/8gsw3/
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FIGURE 7 | t(5) Distribution (Unstandardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation
model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc:
Monte Carlo. Please refer to the text on the parameters for the distribution.

mediation model, three models were fitted: regressing the first
mediator on the predictor, regressing the second mediator on the
first mediator and the predictor, and regressing the outcome on
all mediators and the predictors. The unstandardized a, b1, and
b2 are estimated from these three models. The unstandardized
and standardized indirect effects were computed for each
bootstrap sample. The 2.5th and 95th percentiles of these two
estimates in the 2000 bootstrap samples were used to form
the confidence intervals for this replication. This method was
implemented by the function boot_ci and boot_ci_serial in the
package used in the present study.

LBCI
In each replication, OpenMx was used to fit a saturated partial
mediation model using maximum likelihood estimation. Two
user parameters were specified in the model specification using
mxAlgebra. For the simple mediation model, the unstandardized
indirect effect was simply the product of a and b, given by Eq. 7,
and the standardized indirect effect was given by Eq. 8. The
denominator in the term inside the square root is the variance of
the outcome variable (see Appendix A of Cheung, 2009a). For the
serial mediation, the unstandardized indirect effect was simply
the product of a, b1, and b2. The standardized indirect effect was

given by:

ab1b2standardized

= ab1b2

√√√√ σ2
x

σ2
em1

(
b1b2

)2
+ σ2

em2
b2

2 + σ2
ey
+ σ2

x
(
ab1b2 + c′

)2 (9)

where σ2
x is the variance of the predictor and σ2

em1
, σ2

em2
,

and σ2
ey

are the variances of the error terms of the first
mediator, the second mediator, and the outcome, respectively.
The denominator in the term inside the square root is the
variance of the outcome implied by the serial mediation
model. The 95% likelihood-based confidence intervals for
the unstandardized and standardized indirect effects were
computed by mxCI in OpenMx (Neale and Miller, 1997;
Wu and Neale, 2012). This method was implemented by the
functions lb_ci_observed_free and lb_ci_observed_free_serial in
the package used in the present study.

LBCI-ADF
This method was implemented as in the LBCI method above,
except that the asymptotic distribution free method (called
weighted-least squares in OpenMx) was used as the estimation
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FIGURE 8 | Exponential Distribution (Unstandardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial
mediation model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with
ADF;mc: Monte Carlo. Please refer to the text on the parameters for the distribution.

method, using mxFitFunctionWLS (weights = “WLS”) to set
the fit function (Neale et al., 2015). The 95% likelihood-based
confidence intervals of the unstandardized and standardized
indirect effects were computed as in LBCI above. This method
was implemented by the functions lb_ci_wls and lb_ci_wls_serial
in the packages used in the present study.

LBCI-Fixed-X
For each replication, a partial mediation model was fitted as in
the LBCI method above, except that the variance of the predictor(
σ2

x
)

was fixed to the sample variance of the predictor in each
replication. The 95% likelihood-based confidence intervals of the
unstandardized and standardized indirect effects were computed
as in LBCI above. This method was implemented by the functions
lb_ci_observed and lb_ci_observed_serial in the package used in
the present study.

Monte Carlo
For each replication, OLS regression was used as in
nonparametric bootstrapping to estimate the unstandardized
a and b (a, b1, and b2 for the serial mediation model) and
their standard errors. We then generated 1000 sets of random
numbers from two normal distributions (three for the serial

mediation model), using the sample estimates of unstandardized
a and b (a, b1, and b2 for the serial mediation model) as the
means and their standard errors as the standard deviations, as
in Preacher and Selig (2012), Eq. 9. For the simple mediation
model, for each set of Monte Carlo a and b, the product ab
was computed. For the serial mediation model, the product
ab1b2 was computed. The 2.5th and 97.5th percentiles of these
1000 products were then used to form the confidence interval
for the unstandardized indirect effect. To form the Monte
Carlo confidence interval for the standardized indirect effect,
the confidence limits were multiplied by the sample standard
deviation of the predictor and divided by the sample standard
deviation of the outcome. For the technical details, please
refer to the functions mc_ci (for simple mediation model) and
mc_ci_serial (for the serial mediation model) in the package used
in the present study.

Assessment of Performance
For each method in a condition, the coverage probability, defined
as the proportion that a 95% confidence interval includes the
true population value, was computed. The nominal coverage
probability for a 95% confidence interval is 0.95. We used the
interval 0.935 to 0.965 (Serlin and Lapsley, 1985; Serlin, 2000;
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FIGURE 9 | t(6) Distribution (Unstandardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation
model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc:
Monte Carlo. Please refer to the text on the parameters for the distribution.

Biesanz et al., 2010; Falk and Biesanz, 2014) as a criterion for
robustness to assess how close the coverage probability is to the
nominal value of 0.95 for each method. Coverage probabilities
within this range, denoted as the tolerable range below, were
considered acceptable.

RESULTS

The coverage probabilities for all five methods in all conditions
were presented in Figures 5–14, except for two groups of
conditions: conditions with both a and b paths zero in the
population, and conditions with R2 increase due to the direct
effect (c′) greater than 0.100. First, similar to previous studies
(e.g., Cheung, 2009a), in these conditions, all methods have
confidence intervals that were too wide and the coverage
probabilities were close to one. Second, when the R2 increase
due to direct effect was greater than 0.100, in which ab = 0.014,
the patterns of results were similar to those with R2 increase
equal to 0.023 or 0.000. Therefore, these conditions were not
displayed. The graphs for all conditions can be found in the
Supplementary Materials.

Unstandardized Indirect Effect
As shown in Figures 5–9, all selected methods had coverage
probabilities close to the nominal level (0.95), with the exceptions
of LBCI-ADF, to be reported below. There were fluctuations in
the coverage probabilities across conditions and a few conditions
had coverage probabilities slightly below the tolerable range.
However, no notable patterns were found and most of the
miss rates were within the tolerable range. In short, even when
the predictor was nonnormal, if the conditional distribution
of the errors was normal, thus not violating the distributional
assumptions in maximum likelihood or OLS, the common
methods to form the confidence interval for the indirect effect
still have optimal performance.

Unlike the other methods, LBCI-ADF had coverage
probabilities lower than the optimal value in the serial mediation
model when the standardized b path was large (0.7746 or 0.8450)
and the sample size was 50, even when the predictor was normal
distributed. The coverage probability could be lower than 90%
when both the a path and b path were large and the sample size
was 50. However, when the sample size was 100 or larger, the
coverage probabilities of LBCI-ADF were within the tolerable
range in the serial mediation model.
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FIGURE 10 | Normal Distribution (Standardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation
model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc:
Monte Carlo. Please refer to the text on the parameters for the distribution.

Standardized Indirect Effect
Nonparametric Bootstrapping
For nonparametric bootstrapping, the coverage probabilities
were within the tolerable range in both the simple mediation
model and the serial mediation model when the predictor
was normally distributed (Figure 10). This replicated the
results in previous studies (e.g., Cheung, 2009a). When the
predictor had a symmetric beta distribution with light tails, the
nonparametric bootstrapping percentile confidence interval still
had coverage probabilities within the tolerable range in both
models (Figure 11). However, when the predictor was drawn
from a t(5) distribution, which has heavy tails, the nonparametric
bootstrapping percentile confidence interval tended to have
coverage probabilities slightly below the tolerable range in
both models (Figure 12), especially when the sample size was
small (50 to 100). This tendency was more apparent when the
predictor was drawn from an exponential distribution, which
is positively skewed and has a heavy tail (Figure 13). In these
conditions, if the standardized indirect effect was 0.36, the
coverage probabilities could be as low as 0.925. When the
predictor was drawn from a t(6) distribution, which has a
smaller excess kurtosis (3) but is symmetric, the pattern was less
obvious than that in the t(5) conditions (Figure 14). Despite the

relatively worse performance compared to the conditions with
normally distributed predictors, nonparametric bootstrapping
percentile confidence interval generally had optimal to acceptable
performance for all five distributions in both simple and serial
mediation models when the sample size was 200 or higher.

LBCI
The LBCI for standardized indirect effects had coverage
probabilities close to the nominal level for all conditions in both
models when the predictor was normally distributed (Figure 10),
replicating findings in previous studies (e.g., Cheung, 2009a).
The lines for the LBCI and nonparametric bootstrapping
substantially overlapped across conditions. Interestingly, in the
serial mediation model with a normally distributed predictor,
when the sample size was small (50 to 100), the coverage
probabilities of the LBCI could even be closer to the nominal
value than nonparametric bootstrapping did. When the predictor
was drawn from a symmetric beta distribution with light tails
(Figure 11), the LBCI tended to have coverage probabilities
higher than those of nonparametric bootstrapping, though the
coverage probabilities were still within the tolerable range in
all conditions in both models. For the other two distributions
with heavy tails [t(5) distribution and exponential distribution,
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FIGURE 11 | Beta Distribution (Standardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation
model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc:
Monte Carlo. Please refer to the text on the parameters for the distribution.

Figures 12, 13], if the standardized indirect effect was small
(0.14), the coverage probabilities of LBCI was still within the
tolerable range in all conditions. However, when the standardized
indirect effect was 0.36 or 0.51, the LBCI tended to be
substantially too narrow, with coverage probabilities as low as
0.90 in some conditions. Moreover, the tendency to have low
coverage probabilities did not lessen even if sample size increased,
with coverage probabilities lower than 0.92 even with a sample
size of 500 in some conditions. Last, when the predictor was
drawn from a t(6) distribution, which has a smaller excess
kurtosis (Figure 14), the coverage probabilities of LBCI were
closer to the tolerable range in both models, but were still
lower than the lower bound of the tolerance in some conditions,
especially when the model is larger, with more variables (the serial
mediation model).

LBCI-ADF
For both the simple mediation model and the serial mediation
model, the LBCI-ADF method had coverage probabilities nearly
indistinguishable from those of nonparametric bootstrapping
in most conditions. When the differences were noticeable,
usually it was the LBCI-ADF that had coverage probabilities
closer to the nominal level than those of nonparametric

bootstrapping. LBCI-ADF had coverage probabilities close
to the nominal level even when the distribution was t(5)
or exponential (Figures 12, 13), which both have excess
kurtosis equal to 6, except when the sample sizes were
small and the predictor was drawn from an exponential
distribution. Nevertheless, in these conditions, the LBCI-
ADF, similar to nonparametric bootstrapping, still had
coverage probabilities closest to the nominal level than
the other methods.

LBCI-Fixed-X
When the standardized indirect effect was small (0.14),
the coverage probabilities of LBCI-Fixed-X were within or
close to the tolerable range in most conditions, even when
the predictor was drawn from an exponential distribution.
When the standardized indirect effect was medium (0.36)
or large (0.51), the coverage probabilities of LBCI-Fixed-
X were still within the tolerable range when the predictor
distribution was normal or beta (Figures 10, 11). However,
when the predictor distribution was t(5) or exponential
(Figures 12, 13), the coverage probabilities tended to be
lower than the nominal value and exceed the tolerable range.
The coverage probabilities could be as low as 0.90 in some
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FIGURE 12 | t(5) Distribution (Standardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation model);
cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc: Monte
Carlo. Please refer to the text on the parameters for the distribution.

conditions and could even be lower than 0.90 in the serial
mediation model. It seems that sample size, even in the
range of 100 to 500, did not have a strong and consistent
impact on the coverage probabilities, suggesting that having
a large sample could not help reduce this problem of
suboptimal coverage of LBCI-Fixed-X for the two distributions
with heavy tails.

Monte Carlo
The Monte Carlo confidence interval for the standardized
indirect effect had miss rates consistently within the tolerable
range only when the standardized indirect effect was small
(0.14). When the standardized indirect effect was 0.36 or 0.51,
the coverage probabilities could be far above the tolerable
range (too liberal) even when the predictor was normally
distributed (Figure 10). The same pattern was observed when
the predictor was drawn from a symmetric beta distribution
with light tails (Figure 11). Although the hit rate, unexpectedly,
tended to move closer to the nominal level when the
distribution of the predictor had heavy tails [t(5) distribution
and exponential distribution, Figures 12, 13], we believe
that this was merely due to the tendency to have a lower
coverage probability due to heavy tailed distributions that offset

the tendency of the Monte Carlo method to have a higher
coverage probability.

DISCUSSION

The study demonstrated the performance of SEM-based LBCI
methods to produce confidence intervals for unstandardized
and standardized indirect effects under various kinds of
nonnormal predictors in two mediation models. Results for
unstandardized indirect effects showed that, if the nonnormality
in variables were only due to nonnormality in predictors,
as long as the assumption of normality of the conditional
distributions of the errors are met, no notable departure from
expected coverage probabilities was observed. If raw data are
available, researchers can use either nonparametric bootstrapping
or LBCI with maximum likelihood estimation to form the
confidence interval of unstandardized indirect effect even if
the predictor is nonnormal. If only the covariance matrix is
available, then the Monte Carlo method or LBCI with maximum
likelihood can be used.

However, results for standardized indirect effects showed
some interesting patterns. First, LBCI with maximum likelihood
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FIGURE 13 | Exponential Distribution (Standardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial
mediation model); cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with
ADF;mc: Monte Carlo. Please refer to the text on the parameters for the distribution.

performed well even in cases where the predictor was nonnormal
when the effect size of the standardized indirect effect was small.
Problems started to show, however, as in medium and large effect
sizes especially in conditions where departure from normality
was severe (e.g., t distribution and exponential distribution).
Increasing the sample size did not seem to be helpful in
estimating accurate confidence intervals in these situations.
Therefore, although standardized indirect effect is just a simple
transformation of unstandardized indirect effects, the LBCIs for
them can perform substantially differently if the predictor is
nonnormally distributed.

Second, LBCI-ADF performed the best across the LBCI
methods, even slightly better than nonparametric bootstrapping
in some conditions. Nonnormality did not have much influence
on the estimation of confidence intervals for this procedure.
This suggests that the LBCI method is still a viable option for
standardized indirect effect with nonnormal predictor, although
the suitable estimation method should be used. However, there
are issues with using this method along with ADF distribution.
First, when the departure from normality was extreme, cases
where sample sizes were small produced lower hit rates when
the effect size was medium or large. This is expected as the ADF
estimator requires larger sample size compared to maximum

likelihood due to the need to compute the fourth-order moments
in the estimation. Second, the differences in results between
the simple mediation model and the serial mediation model
suggest that the sample size required for optimal performance
of LBCI-ADF also depends on the number of variables. For a
model with more variables, caution need to be taken in using the
LBCI-ADF approach.

Third, LBCI-Fixed-X did not perform better than LBCI. In
fact, in some cases, it performed much worse, most notably
when the departure from normality was extreme. Therefore,
unless the nonnormal predictor is genuinely a fixed variable in
a study, fixing its variance can lead to worse performance. Given
that fixing the exogenous variables may be the default in some
programs, researchers may also unintentionally use the LBCI-
Fixed-X for the standardized indirect effect, with the variance of
the predictor fixed, resulting in suboptimal interval estimation
when the predictor is nonnormal.

Last, Monte Carlo performed poorly for standardized indirect
effect even when the predictor was normally distributed, except
when the indirect effect was small. This finding is alarming
because it means that, even for normally distributed predictor,
this method can yield confidence interval that is too wide.
Paradoxically, the larger the population effect, the wider the
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FIGURE 14 | t(6) Distribution (Standardized Indirect Effect). a, b, ab: Population values of the standardized path parameters (b = b1 × b2 for serial mediation model);
cp_Rsq: Population R-squared increase due to the c′ path; boot: bootstrapping; Ibci: likelihood-based; Ibci-fx: LB with fixed X; Ibci-adf: LB with ADF;mc: Monte
Carlo. Please refer to the text on the parameters for the distribution.

interval, and consequently the closer one of the confidence
limits is to zero.

In sum, nonparametric bootstrapping and LBCI-ADF
were the best-performing methods when the predictor was
nonnormal, at least for the types of nonnormal investigated.
Even in cases where the departure from normality for the
predictor was extreme as in the case of the t(5) and exponential
distributions, these methods still provided coverage probabilities
within the tolerable range. Sample size, however, becomes
relevant in the case of the exponential distribution, in as much
as coverage probabilities were slightly below the tolerable range
when sample sizes are small.

RECOMMENDATIONS

Based on our findings, we recommend that, when multivariate
nonnormality is present, researchers need to examine the
nature and distribution of the variables to see whether the
source of nonnormality is due to nonnormal errors of the
mediator and/or outcome variable, or only due to the nonnormal
predictor. This can be done with the usual techniques for
assessing normality of residuals in regression models (e.g.,

Fox, 2016). If the normality is merely due to the nonnormal
predictor, then all five methods yield confidence intervals for
unstandardized indirect effect with coverage probabilities close
to the nominal level across the conditions examined. Researchers
can select methods suitable for their situations. If raw data are
available, nonparametric bootstrapping can be used. If sample
size is small (50 in the case of simple mediation model), then
LBCI is preferred because it performed slightly better than
nonparametric bootstrapping. If raw data are not available, then
the Monte Carlo method can be used.

However, care must be taken if the confidence interval of
standardized indirect effect is of interest, even if the only source
of nonnormality is from the predictor. First, the Monte Carlo
method, as implemented in the present study, should never
be used. Second, all the other four methods still have optimal
coverage probabilities when the distributions were nonormal
but excess kurtosis was negative. For the distributions with
excessive kurtosis, such as t(5) and t(6) distributions, which are
symmetric, and exponential distribution, which is skewed, the
LBCI and LBCI-Fixed-X can yield substantially low coverage
probabilities when the standardized indirect effect was medium
to high. Nonparametric bootstrapping and LBCI-ADF had
similar performance and the coverage probabilities approached
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the nominal values as sample size increased. However, for
the two distributions with high excess kurtosis, their coverage
probabilities can be outside of the tolerable range even when
the sample size was 150, which was large for a simple
mediation model with just three variables. Therefore, even
though nonparametric bootstrapping and ADF are distribution
free in principle, they still need sufficient sample size to have
optimal performance, and the results suggested that the larger the
excess kurtosis, the larger the sample size requirement.

LIMITATIONS

The present study had three limitations that deserve further
investigation. First, we investigated only two models: a simple
mediation model and a serial mediation model with two
mediators. We followed the practice of some previous studies
(e.g., Cheung, 2009a) to use the simple mediation model for
investigation. This is a suitable starting point for studying
the impact of nonnormal predictors. We also included a
serial mediation model, which increased the number of
variables while maintaining the comparability with the simple
mediation in levels of indirect effect investigated. However,
to enhance generalizability of the findings, further studies
on more complicated models, such as parallel mediation
models, need to be carried out to examine the impact of
nonnormality and the minimal sample size required for optimal
performance of distribution free methods, such as nonparametric
bootstrapping and LBCI-ADF.

Second, we examined only three types of nonnormal
distributions. We selected them because they have real-life
counterparts and researchers are easier to see how these
distributions can be related to their own situations. For example,
variables such as depressive symptom scores in the general
population (Tomitaka et al., 2017, 2018) and other similar clinical
variables in psychology may follow a distribution that is highly
skewed with a heavy tail. These variables can be approximated
by the exponential distribution or similar skewed distributions.
Variables with bounded scales are also common in psychology,
such as variables measured as rates, percentages, or proportions.
Likert-style rating scales are also common in psychological

research and are used to measure a wide range of variables such
as intelligence, personality, and psychological disorders. The sum
or mean of these rating scales are likewise bounded. The double
boundaries in the distribution of these variables may be better
modeled using the beta distribution in the present study (Ferrari
and Cribari-Neto, 2004). Last, sometimes the variables may be
approximately symmetrically distributed in a study but there are
some extreme values on both ends. This kind of distributions
can be modeled by the t distribution, using the df to adjust the
degree of extremeness on both ends. Although the distributions
we selected covered distributions that are common in studies
and qualitatively different, to understand better the impact of
nonnormal predictors, other kinds of nonnormal distributions
also need to be investigated.

Third, we did not include other robust methods recently
developed for LBCI (e.g., Falk, 2018). They are not yet
widely available in statistical packages or functions, but they
may perform better than the distribution free methods we
investigated. Further studies need to be conducted to examine
the performance of these methods for nonnormal predictors in
mediation models, especially for standardized indirect effects.
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