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to Estimate Patterns of Musical
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Barcelona, Spain, 2Centre for Performance Science, Royal College of Music, London, United Kingdom, 3 Faculty of Medicine,
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Repetitive practice is one of the most important factors in improving the performance of

motor skills. This paper focuses on the analysis and classification of forearm gestures

in the context of violin playing. We recorded five experts and three students performing

eight traditional classical violin bow-strokes:martelé, staccato, detaché, ricochet, legato,

trémolo, collé, and col legno. To record inertial motion information, we utilized the Myo

sensor, which reports a multidimensional time-series signal. We synchronized inertial

motion recordings with audio data to extract the spatiotemporal dynamics of each

gesture. Applying state-of-the-art deep neural networks, we implemented and compared

different architectures where convolutional neural networks (CNN) models demonstrated

recognition rates of 97.147%, 3DMultiHeaded_CNN models showed rates of 98.553%,

and rates of 99.234% were demonstrated by CNN_LSTM models. The collected data

(quaternion of the bowing arm of a violinist) contained sufficient information to distinguish

the bowing techniques studied, and deep learning methods were capable of learning the

movement patterns that distinguish these techniques. Each of the learning algorithms

investigated (CNN, 3DMultiHeaded_CNN, and CNN_LSTM) produced high classification

accuracies which supported the feasibility of training classifiers. The resulting classifiers

may provide the foundation of a digital assistant to enhance musicians’ time spent

practicing alone, providing real-time feedback on the accuracy and consistency of their

musical gestures in performance.

Keywords: gesture recognition, bow-strokes, music interaction, CNN, LSTM, music education, ConvLSTM,

CNN_LSTM

1. INTRODUCTION

The purpose of this study was to investigate how state-of-the-art machine learning techniques
can be applied to sensor-based, multimodal recordings to complement and enhance the learning
of musical instruments. Using violin performance as a test-case, we aimed to provide real-time
feedback to musicians regarding their bowing technique, using expert models as reference. This
work is a collaboration between the Music Technology Group (MTG) at the Universitat Pompeu
Fabra, the University of Genova, and the Royal College of Music, London.

To determine the quality of a gesture performed by a musician is a challenge that involves many
factors, not only in terms of motor variability and motor learning. Musicians, whether amateurs
or those that strive for professional careers, must internalize an immense amount of information
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regarding how to read, create, interpret, analyse, memorize, and
perform music. This process is often guided by an expert in a
classroom or one-to-one setting; a master-apprentice model in
which knowledge is passed from one generation of expert to
the next. However, most musicians spend the majority of their
time away from the expert in their own practice spaces. Thus,
they do not have external, consistent, expert feedback on their
performance. Such feedback is particularly important in the cycle
of self-regulated learning, where good practice is defined by the
planning of deliberate goals and strategies to achieve them, the
careful execution of these strategies, and, crucially, monitoring
and evaluating their performance to determine whether the goals
have been met and whether the strategies used are effective
(Hatfield et al., 2017). As musicians become expert, they improve
their ability to self-evaluate; until they reach this point, it is
the role of the teacher to diagnose and provide feedback on
a developing musician’s performance skills. The technological
approach described in this study does not seek to replace the role
of music teachers. Rather, it aims to extend the influence of an
expert teacher into the practice space so that musicians can learn
more efficiently and avoid developing badmotor habits that must
be unlearned in each session with a teacher. Should musicians
be able to learn complex motor gestures and techniques more
efficiently, it can also free time to spend developing creativity and
exploring the vast repertoire available to musicians.

The question also remains as to whether musicians,
particularly those studying the centuries-old traditions of the
violin and related instruments, will engage with such a system.
While technology plays a central role in the creation, production,
recording, performance, and dissemination of music, it is
conspicuously absent in the domain of a music student and
teacher were the instrument, the musical score, a metronome,
a tuner, and perhaps an audio- or video-recording device may
be the only technologies present, and all of which might be
present on a single mobile device. However, Waddell and
Williamon (2019) found in an international survey of student
and professional classical musicians that there was an openness
to new technologies to enhance musical learning so long as they
were both easy to use and useful. They also found that, while
technology was frequently used tomonitor and develop aspects of
rhythm and intonation (i.e., the metronome and the tuner) there
was a gap in use of technologies to address the physical aspects
of music-making. This is a gap that the present technology, with
further development, might fill.

To address this challenge, we focus on the implementation
of artificial intelligence (AI) and machine learning (ML)
techniques that have been applied to human gesture recognition
across numerous domains with significant impact on
human-robot/computer interaction, human activity recognition
(HAR), music generation and interaction, and motor learning.
Capturing the temporal dynamics of performance gestures
requires spatial-temporal event analysis; thus, deep learning
architectures with an emphasis on time-series forecasting and
classification are widely used, particularly Long-Short Term
Memory models (LSTMs), Gated Recurrent Units (GRUs),
or hybrid Convolutional Neural Networks paired with LSTM
(CNN-LSTM). In the field of human-computer interaction in

music, real-time gesture recognition has been reported utilizing
ML models that allow precise temporal gesture estimation with
just a few samples of reference (Françoise et al., 2012; Caramiaux
and Tanaka, 2013; Caramiaux et al., 2013). Caramiaux et al.
(2015) presented an ML model for gestural estimations in
real-time without the need to define the beginning of an action
based on a Sequential Monte Carlo inference. Françoise et al.
(2014) have developed useful ML abstractions within the
Max/MSP community, proposing Gaussian Mixture Models
(GMM) and Hierarchical Hidden Markov Models (HHMM) as
temporal likelihood sequential descriptors by defining states of
probabilities to fulfill a specific gesture.

In a previews publication (Dalmazzo and Ramirez, 2019b)
we have presented an implementation of Hidden Markov Model
architecture which provided a foundation to the current study
by recognizing bow-gesture patterns in a professional violinist.
In this study we described gestural probability fulfillment states
through trajectories, providing an accuracy per gesture of (a)
96.3%, (b) 95%, (c) 99.9%, (d) 95.1%, (e) 95.5%, (f) 72.5%, and
(g) 88.2% for detaché, martelé, spiccato, ricochet, sautille, staccato,
and bariologe, respectively. In the next publication (Dalmazzo
and Ramirez, 2019a), we described a block of HMM chain to
recognize bow-stroke gestures applying a parallel observation
of ten different gestures from an expert dataset; however, this
approach has some limitations as the gesture is described by
limited reference samples. From this perspective, in this current
study, we propose a more generic technique to compose a system
that can learn the spatiotemporal features that constitute a bow-
stroke gesture applying deep neural network algorithms.

2. RELATED WORK

2.1. Human Activity Recognition
HumanActivity Recognition (HAR) is applied in both theoretical
research and actual industrial applications. Research has been
undertaken in health human activity monitoring (Wearables,
2017), smart homes (Ahmed and Kim, 2016), and human-
computer interaction (Xu, 2017). HAR academic practices
promote the development of open public datasets (Anguita
et al., 2013), fostering the implementation of Deep Learning
architectures. Researchers commonly use the “Opportunity”
benchmark dataset (Anguita et al., 2013) as it contains IMU
(intertial measurement unit) recordings from home activities
labeled with actions, such as opening devices or objects (door,
fridge, dishwasher, drawer, etc.), cleaning a table, drinking from a
cup, flipping a switch, etc. Ordóñez and Roggen (2016) proposed
an accurate model called DeepConvLSTM to predict seventeen
sporadic arm gestures recorded from multimodal wearable
IMUs comprising a gyroscope and accelerometers. Patterns were
recorded from four subjects where daily activity was categorized
and uploaded to the “Opportunity” dataset. Wang et al. (2017)
implemented a three-dimensional convolutional neural network
(3DCNN) coupled with LSTM to recognize human activity
patterns analysing video sequences. Activities were defined in
the datasets with labels, such as bowling, drumming, swimming,
push-ups, swing, among many others. Guan and Plötz (2017)
applied an LSTM architecture fed with IMU data taken from
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the same “Opportunity” activity recognition dataset. Zhao et al.
(2018) proposed a residual bidirectional LSTM (Res-Bidir-
LSTM) to tackle the similar problem of recognizing standard
human activity, such as walking in a straight line, walking
upstairs or downstairs, sitting, standing, laying down, and
standing still with 93.6% accuracy. Zebin et al. (2018) presented
an LSTM model adding a batch normalization (+dropout 0.2)
to increase the recognition accuracy to 92% for six standard
daily-life home activities. UK Biobank publishes the dataset
(Doherty et al., 2017). Kuppusamy and Harika (2019) proposed
a supervised learning model based on LSTM-RNN with an
attentional network to recognize patterns from video-recorded
sport actions. Wang et al. (2017) introduced a model called
scLSTM, which provides a method to generate salience-aware
videos to apply 3DCNN-LSTM. The model for video activity
recognition consists of 51 action categories, which together
contain ∼7,000 labeled clips extracted from a variety of sources
[HMDB-51 (Kuehne et al., 2011)]s. This research field is an
excellent source of DL models to apply to human-computer
interaction in the musical context.

2.2. Dance Generators
Another field of research involving coder-decoder ML model
translators and musical inputs are dance choreography
generators. This is an example of how different artistic
disciplines can be extrapolated harnessing DL models with
similar time-sequence analysis principles. Françoise et al.
(2017) developed the GrooveNet framework. It generates
dance movements from a specific pre-trained audio reference
in real-time, with models based on Factored Conditional
Restricted Boltzmann Machines (FCRBMs) and Recurrent
Neural Networks (RNNs). Tang et al. (2018) implemented
an LSTM-autoencoder model to define a mapping between
acoustic and motion features. Jia (2019) presented an automatic
music choreography generator implementing a 3-layer LSTM
which learns the relationships between quaternion motion
data from dance recordings coupled with musical features.
Yalta et al. (2019) developed an optimization technique for
weakly-supervised deep recurrent neural networks for dance
generation. Their model is based on two blocks of LSTMs, where
one has the role of reducing the music input sequence (encoder),
and the other is for the motion output sequence (decoder). Sun
et al. (2020) proposed a Generated Adversarial Network-based
cross-modal association framework, which correlates dance
motion and music modalities together. The model generates
dance sequences from a musical input.

2.3. Gestures and Sensors
Inertial measurement unit (IMU) devices are composed of a kit
of sensors (e.g., accelerometers, gyroscopes, magnetometers, etc.)
and transmit inertial data through Wi-Fi or Bluetooth wireless
connections at 200 Hz. IMUs and IR optical sensors such as
LeapMotion are the most common tools to capture gestural
events for different subjects. Ordóñez and Roggen (2016) have
implemented a 3DCNN-LSTM deep neural network to recognize
seven gestures (five for finger tapping, one palm tapping, and
one pointing) as a model for interactive music applications

utilizing the LeapMotion device. Zhang et al. (2017) proposed
an architecture based on 3DCNN->LSTMs fully connected (FC)
to a 2DCNN pre-output layer and projected to an FC/Softmax
final output descriptor. In this study, the analysis was based
on color videos divided into 249 labeled gestures performed
by 21 participants. Drumond et al. (2018) published a study
wherein five action movements were recorded utilizing the Myo
sensor in a game environment for interaction purposes. The
proposed LSTMmodel had an accuracy of 96%. Seok et al. (2018)
presented a reinforcement learning model with the architecture
of an LSTM layer with two consecutive Dense FC layers to
estimate hand gestures, capturing data from the Myo armband.
Zhang and Li (2019) confirmed that the CNN-LSTM architecture
is suitable for analyzing sequential data gathered from the
Myo’s electromyogram (EMG) sensors with an accuracy of 98%.
Hasson (2019) applied a CNN-LSTM technique to recognize
hand gestures labeled as rest, wave in, wave out, spread, fist, index
pointing, “1 + 2,” “1 + 3,” “1 + 4,” and scissors, implementing
Myo’s EMG data. Chen et al. (2020) have also focused on the
electromyogram signals from the Myo sensor. They proposed
CWT+EMGNet, which consists of four convolutional layers,
plus a max-pooling layer without a fully connected layer in the
output. The gestures are part of the Myo Dataset (Côté-Allard
et al., 2019) and NinaPro DB5 (Pizzolato et al., 2017). Guo and
Sung (2020) captured human motion utilizing the HTC-VIVE
virtual reality device in synchronization with the Myo armband.
They harnessed the Bi-LSTM and two-layer LSTM architecture
to recognize 15 different motor actions using the arms in a 3D
video-game context. Gestures are labeled as “exploring the cave,”
“running away,” “through the tunnel,” “through the waterfall,”
“attacking,” “fighting,” and “capturing equipment,” among others.

2.4. Music Gestures and RNN
Hantrakul and Kondak (2018) implemented an LSTM
architecture composed of four layers [LSTM(64), LSTM(32),
FC(16), and FC(3)] to recognize and predict different hand
gesture drawings over a Roli Lightpad Block. Hand gestures
are used as an interactive new layer over electronic musical
real-time manipulation. The authors have released the code
where communication between Ableton live, Wekinator, and
Roli lightpad is proposed. Erdem et al. (2020) presented
an LSTM-based model to add a new layer of interaction in
electric guitar interpretation, by training the system with three
specific sound manipulations defined as impulsive, sustain,
and iterative. To do so, the authors utilized the Myo sensor
as an interactive input, reading the electromyogram signals of
the performer’s forearm, to trigger the sound manipulations.
Pati et al. (2018) proposed a hybrid model based on Mel
spectrogram analysis from audio recordings of traditional
music performance to pass the multidimensional data stream
into a convolutional 1D layer projected to a recurrent neural
network. The model receives the name of M-CRNN. The main
goal of the authors is to propose an RNN model to provide
music performance assessment of wind instruments in Western
classical music contexts.
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3. MATERIALS AND METHODS

3.1. Musical Materials
Eight bow-strokes were recorded by musicians following a
musical score (see Figure 1) with a fixed metronome tempo
of quarter-notes at 80 bpm. All gestures were established in
G, primarily in the major mode except for tremolo (G minor)
and col legno (chromatic). On the violin, two octaves from G3
to G5 covers the whole neck and also all four strings. Eight
musicians participated in the recording sessions, with expert
models constructed using the data from five violinists; the other
three participants were reserved as test cases. The recordings
are part of a collaboration with the Royal College of Music
in London.

The eight bow-strokes the violinists were instructed to
perform comprised:

• Martelé: meaning hammered; an extension of détaché with a
more distinctive attack, caused by a faster and slightly stronger
initial movement to emphasize the starting point with an
accent followed by a smooth release and silence between notes.

• Staccato: a shorter, sharper version of martelé. It features a
clean attack generated by controlled pressure over the string
with an accentuated release in the direction of the bow-stroke.
It is controlled by a slight rotation of the forearm where
pronation attacks the sound and supination releases it. It is
generated from the wrist by an up-and-down motion attack,
or a pinched gesture with the index finger and the thumb.

• Detaché: meaning separated; a stable sound produced in each
bowing direction. The sound has to be kept dynamically stable,
moving smoothly from one note to the next. The weight
over the violin strings is kept even for each note performed.
It is perhaps the most common bowing technique in the
violin repertoire.

• Ricochet: a controlled bouncing effect that produces a
rhythmic pattern, usually comprising two to six rapidly
repeated notes. It is played in a single down-bowed stroke
starting with a staccato attack, while movement of the wrist is
used to control the weight of the bow against the violin’s string.

• Legato: created by sustaining the bow though multiple notes,
establishing fluency without pause in the sound. The musician
avoids excessive emphasis, accents, or attacks. For the musical
excerpt, consecutive arpeggios composed of four notes each
were recorded.

• Trémolo: a stroke commonly found in orchestral repertoire
where the bow moves back and forth very rapidly, often
without any defined meter. For this study, a semiquaver
trémolo was established as a constraint.

• Collé: meaning stuck or glued; created by a heavily weighted
bow resting on the string followed by a subtle release. It
produces a short attack with a rough sound effect.

• Col legno: meaning with the wood; caused by the percussive
strike of the string with the wooden shaft of the bow.

3.2. Data Acquisition and Synchronization
• Myo, an IMU device developed by Thalmic Labs for

gestural-control human-computer interaction purposes, was
used for data acquisition. The IMU bracelet weighs 93

grams with an adjustable diameter of 12.5–38.4 cm; none
of the eight participants reported that the device caused
any significant impediment their optimal performance. The
hardware includes eight medical-grade stainless steel EMG
sensors which report raw electrical muscle activity in a voltage
range of 0–2 mV expressed in oscillations of −1 to 1 (Hassan
et al., 2019). Two battery cells are embedded with a capacity
of 260 mA/hr and an operating voltage range of 1.7 to 3.3 V.
A three-axis gyroscope records angular velocity in degrees of
change in radians per second, and a three-axis accelerometer
as an estimation of −8 to 8 g (1 g = 9.81 m/s2). A three-
axis magnetometer produces a quaternion defined as q = a
+ bi + cj + dk (where a, b, c, and d are real numbers and
i, j, and k represent the imaginary-number pointing vector);
this records rotation of the Myo in space. It houses an ARM
Cortex M4 processor, and it can provide short, medium, and
long haptic feedback vibration. Its communication with the
computer is based on Bluetooth with an included adapter,
giving a sampling rate of 200Hz (hop-time of 5ms). TwoMyos
were placed on both forearms of the participants to record
right arm bowing motion and left hand EMGs of movements
on the violin neck and strings.

• Max/MSP is a visual programming language platform
commonly used in electronic music and interactive media
development and creation, suitable for quick prototyping.
It allows communication with external devices. Myo
is captured in Max/MSP utilizing the external object
https://github.com/JulesFrancoise/myo-for-max.

• Synchronization To record the gestures and synchronize the
Myo device with the audio data, we implemented a Max/MSP
program which recorded Myo’s data at 60 fps and audio data
with a master trigger-clock to start and stop both recordings
in the same folder. The IMU database was formatted as
a CSV file. These files were created taking into account
a synchronization format: sample counter, time counter
reference in milliseconds, accelerometer (x, y, z), gyroscope (x,
y, z), quaternion (w,x,y,z), electromyogram (eight values), and
MIDI notes. Those CSV files were recorded in the same time-
window range reference of the audio data. We programmed
an interface for participants to provide coding information
then we formatted the names of the recorded files as an
automated counter+user_name+gesture_id+second+minute+
hour+day+month+year (using .csv and .wav extensions),
where the counter was the iteration of the recording session
and the gesture was an identification number and time/date
description which stacked all files to avoid overwriting. The
master recorder in Max/MSP sent the global timer (ms)
reference to theMyo recorder, which was reported in the CSV
file. To acquire audio, we used an Zoom H5 interface linked
to Max, recording WAV files with a sample rate of 44.100
Hz/16 bits. The Myo device was operated via a MacBook
Pro (13-inch, 2017) with a 2.5 GHz Intel Core i7 processor
and a memory of 8 GB 2133 MHz LPDDR3 with a latency
of 10 ms.

• TensorFlow and Python libraries To process the data,
reorganize and format the final database, and define
the ML models, we used Python “3.6.8,” TensorFlow
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FIGURE 1 | Musical excerpts performed for each of the eight violin bowing gestures.

“2.0.0,” NumPy “1.17.4,” Scikit-learn “0.23.1,” and
Pyquaternion “0.9.5.”

• Repository All of the deep learning models, code, and
processed data utilized in this research can be tested and
reproduced. To access to the repository please visit the link.1

The code and datasets are released under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA
4.0) license.2

3.3. Methods
• Data Preparation: The steps to prepare the data were:

– translate quaternions to normalized and centralized Euler
3D orientation;

– organize the data into a three-dimensional format;
– create a windowed dataset;
– define the labels;
– shuffle the packages of windowed data;
– format the data to supervised learning.

1https://github.com/Dazzid/Applying_Deep_Learning_Techniques_to_Estimate_

Patterns_of_Musical_Gesture
2http://creativecommons.org/licenses/by-nc-sa/4.0/

• Translate quaternions to normalized and centralized Euler

3D orientation: Myo’s orientation is given by a quaternion as
x,y,z,w. Its orientation formula is q = a+ bi+ cj+ dk formed
by a real-numbers component expressed in the letters a, b, c,
d and imaginary-number components expressed as i, j, k as
a pointing vector along the three spatial axes. It can also be
expressed as:

q = cos (θ)+ sin (θ)(i+ j+ k)

For visualization purposes, the quaternion is reoriented to
a defined origin to match the computer screen and the
performer forearm angle. If the “orientation” desired is given
by q(0.93, 0.0, 0.0,−0.36), then the origin will be given by the
first sample of the performer. The performerQuaternion is the
gestural data array.

result = orientation ∗ performerQuaternion ∗ origin.inverse

∗ orientation.inverse

Finally, the result is transformed into a normalized 3D vector
as Euler angles (yaw/pitch/roll) as is shown in Figure 2. For
a cluster visualization of the normalized data see Figure 3.

Frontiers in Psychology | www.frontiersin.org 5 January 2021 | Volume 11 | Article 575971

https://github.com/Dazzid/Applying_Deep_Learning_Techniques_to_Estimate_Patterns_of_Musical_Gesture
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Dalmazzo et al. Deep Learning and Music Gestures

FIGURE 2 | Trajectory samples of all gestures. The bow-stroke examples displayed were chosen randomly from the expert performers. The shapes can be

understood as temporal signatures with specific speeds and sounds. The performer’s samples are similar in speed and shape but not identical. The color bar is the

reference of the depth shown as the “y” axis.

Further information on quaternion transformations can be
found on the website of 3Blue1Brown and Ben Eater.3

• Organize the data into a three-dimensional format: The
Myo’s raw data for each subject is stored in a CSV table (2D)
with more than 2,800 samples (n) and 22 columns. The file
header is: (sample, timer, acc_x, acc_y, acc_z, gyro_x, gyro_y,
gyro_z, quat_x, quat_y, quat_z, quat_w, emg_0, emg_1,
emg_2, emg_3, emg_4, emg_5, emg_6, emg_7, gesture_id,
note). To organize the data, we first discarded the samples that
did not belong to a specific bow-stroke. The “note” column
was used to identify where the gestures were performed as it
provides the reference of the MIDI note given by the musical
score being performed. As a result, there is a performing
window of 75 samples per gesture, which has 0.375 s of range,
and 30 gestures as a good reference of window-observation
per each exercise/gesture recorded. We then discarded the
EMG features to train using only the inertial motion data.
Next, all data from all subjects were recollected to extract
independently the sensor-axes, which served as the “features.”
They are three sensors (acc, gyro, and Euler) multiplied by
three axes, totalling nine independent files, each of them as
tables with shape [n,150]. Both architectures, Convolutional
Neural Networks (CNN) and the Long-Short Term Memory
(LSTM), expect three-dimensional formatted data, which is
defined by [Samples, Time-steps, Features]:

– Samples: the sequence of the windowed data.
– Time-steps: one time-step is the definition of a window

range as a point of observation of the sequence.
– Features: the number of different observations; in this case,

the axis of each sensor.

3https://eater.net/quaternions

• Create a windowed dataset: The data characteristics
comprised fixed windows of 0.375 s, given 150 data points to
observe, with 50% overlap as shown in Figure 4. This method
is a standard data augmentation technique. The format was
then stored in a folder containing nine matrices made of a
single sensor axis. All files (acc_x, acc_y, acc_z, gyro_x, gyro_y,
gyro_z, euler_x, euler_y, euler_z) were made of samples(n),
time-steps(150). For instance, after dividing the data into
training and test by 80–20 %, we have an input_shape for
training data of [940,150,9].

• Define the labels: Labels were extracted from the gesture
column. A new file was then created that matched the
n Samples shape. They provided the reference class for
each sample.

• Shuffle the packages of windowed data: The data were then
shuffled in groups of five consecutive Samples. A defined
shuffle array was created as a file, then its values were passed
as a pointer reference to both datasets to the [samples, time-
steps] array and the labels array. This method will reorganize
both matrices in a predefined shuffle. In Figure 5 the final data
are visualized.

• Format the data to supervised learning: Supervised learning
is applied to the LSTM forecasting time-series model. As
we are working with nine features which will output
eight different gestures with a time-step of 75 data-point
observations, we need to work in a Multivariate Time Series
format. The sliding window with multiple steps technique
is applied with a window range of 75 samples to divide
the dataset for training and test into consecutive sequential
batches where the test observation has as an output to the
next 75 windowed data-points. In other words, we define that
the gesture is completed in a range of 75 samples. That range
is defined as a batch. Hence, we can compare the next batch
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FIGURE 3 | The cluster visualization serves to check if the data distribution is centralized and normalized.

execution to the previews one by estimating how accurate
the LSTM model expressed the trajectory. That comparison is
defined as a supervised learning technique.

3.4. Classification Models
• Traditional Machine Learning Models: To test and compare

different approaches to the problem of estimating which
gesture is being performed, we implemented the traditional
ML models found in the literature. The main idea was to
define a background starting point of gestural-estimation
accuracy. Based on the default Scikit-learn python library
(Pedregosa et al., 2011), non-linear-algorithms were tested:
(1) k-Nearest Neighbors, (2) Classification and Regression
Tree, (3) Support Vector Machine, and (4) Naive Bayes.
For the ensemble-algorithms: (5) Bagging Classifier, (6)
Decision Trees, (7) Random Forest, (8) Extra Trees, and
(9) Gradient Boosting Machine. We also tested Hierarchical
Hidden Markov Models in a previous publication (Dalmazzo
and Ramirez, 2019b).

• CNN Models: We tested three CNN models: (1) CNN,
following the standard architecture applied in Human Activity
Recognition (HAR); (2) the same CNN model with data
Standardization; and (3) a Multi-headed CNN model. In
Figure 6, the first two models used the architecture shown
in (a) and the Multi-headed model is given by (b). The
standardization is the normalization of the data to have amean
centered at zero and a standard deviation of 1. Taking into
account that the motion data was recorded as a variation from
an origin with a Gaussian distribution, it is possible to apply
the technique. This serves to enhance the formation of the
learned features. Themodels are composed of 1D Convolution
layers as they are extracting features from each sensor channel
independently, instead of the traditional 3D Convolution
where each dimension is the package of red, blue, and green
channels of video data streams (see Figure 6). Six different
CNN filters were tested for architecture optimal accuracy:
filter = [8, 16, 32, 64, 128, 256]. Also, five versions of kernel
sizes were tested: kernel = [2, 3, 5, 7, 9]. The Multi-headed:
CNN model was composed of three different sized kernels.
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FIGURE 4 | The three-dimensional data is organized in sets of 150 samples which contain two bow-strokes per sample. The x-axis is the observation of those paired

bow-strokes, the y-axis is the number of observations defined as “samples,” and the z-axis is the number of features, which in this case is 3 × 3 sensor axes

(gyroscope, accelerometer, and Euler-angles). Hence, each of the features is itself a file of time-steps × samples stored in a folder.

The main idea was to process the data in three different
resolutions; however, the interpretations are concatenated by
a fully connected layer which projects to the Dense layer that
will define the output. See Figure 6.

• LSTM Models: Three state-of-the-art models were included:
Vanilla Long Short-TermMemory Recurrent Neural Network,
One-dimensional Convolutional Neural Network LSTM
(CNN_LSTM), and One-dimensional Convolutional LSTM
(ConvLSTM). Vanilla LSTM is a single hidden layer of LSTM
and it reads one time-step of the sequence at a time. The
model forms its own representations by passing the time-steps
through different cells, maintaining and remembering the
features that are relevant through the cycles and forgetting
those representations that do not pass a sigmoid forget gate.
It is capable of learning long-term dependencies of patterns.
The standard model is given by:

ft = σg(Wf xt + Uf ht−1 + bf ) (1)

it = σg(Wixt + Uiht−1 + bi) (2)

c̃t = σh(Wcxt + Ucht−1 + bc) (3)

ct = ft ◦ ct−1 + it ◦ c̃t (4)

ot = σg(Woxt + Uoht−1 + bo) (5)

ht = ot ◦ σh(ct) (6)

The first cell is a Forget Gate layer. It observes ht−1 and
x1, giving as an output a number from 0 to 1 (ct−1). The
value is the weight of the forgetting cell; when it is zero, the
observation is discarded. The next step is the intersection (it)
called Input Gate that decides what information is going to
be stored in the next cell. The third gate is called Cell State.
It updates the old observation c̃t into the new ct multiplying
the Forget Cell, adding it with the old ct intersection. The
next step is to pass the result into a tanh function to express
the values in a −1 to 1 range. The last gate is the Output
Gate with the following layer called hidden state (ht). The
result will be passed to the input gate in the next cycle. It
multiplies the tanh output with the sigmoid output to decide
which information should be carried in the next step to be
compared with the new observation input, giving a long-term
memory cell.

CNN_LSTM: It is a hybrid model of a convolutional
neural network passed to a LSTM’s cell (see Table 1). Two
layers of 1D Convolution are used to extract temporal-
sequence features that will be given to an LSTM layer that
will remember the local features extracted from the CNN to
keep updating the classification models. For this architecture,
the multivariate data is formatted as [samples, sub-sequences,
time-steps, features].
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FIGURE 5 | The shuffled data gives an insight into how the features and the labeled datasets have to be reorganized with the same sample order. By shuffling, we

ensure that each data observation creates an independent unbiased change on the model, learning all gestures in the same proportion.

ConvLSTM: was developed to read two-dimensional spatial-
temporal data. It expects an input-shape of [samples, time-
steps, rows, columns, features]. For this study, the rows were
translated to number-of-sequence and columns into number-
of-steps (the length of the sequence). For further insight
into the DNN architecture, see the python code reference
(GitHub). The architecture is outlined in Figure 7.

4. RESULTS

We addressed the challenge of recognizing bow-stroke gestures
utilizing data acquired from forearmMyo sensor recordings from
expert performers. By sending the nine features observations to
ML and DNNmodels, we correctly classified and estimated eight
standard violin bow-strokes with the following results:

• Traditional Machine Learning:
After training nine ML classifier models included in the
Skit-learn python library, we produced the following
accuracy report, organized from highest to lowest:
97.447% with Gaussian Process, 95.319% with Extra
Trees, 94.468% with Random Forest, 93.191% applying
Bagging classifier, 92.340% with Gradient Boosting, 90.638%
with K-Nearest-Neighbors, 86.809% with Support Vector
Machine, 71.915% using Decision Tree, and 61.277%
with Naive Bayes classifier. The training parameters were
defined via testing by-default references from the Skit-learn
tutorials. The code can be found in the GitHub repository4

(see Table 2).

4https://https://github.com/Dazzid/Applying_Deep_Learning_Techniques_to_Es

timate_Patterns_of_Musical_Gesture
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FIGURE 6 | (A) CNN architecture: After the filtering layers, with a dropout of 0.5, the first Dense layer is 100 neurons in size projected to eight neurons of output. (B)

3D_Multihaded_CNN: Each head is a different resolution of the whole package of data which is concatenated in the layer concatenate_1.

TABLE 1 | Model: sequential CNN_LSTM.

Layer (Type) Output shape Param#

Conv1D (TimeDistributed) (None, None, 48, 32) 896

Conv1D (TimeDistributed) (None, None, 46, 32) 3,104

Dropout_1 (TimeDistributed) (None, None, 46, 32) 0

MaxPooling1D (TimeDistributed) (None, None, 23, 32) 0

Flatten (TimeDistributed) (None, None, 736) 0

LSTM (LSTM) (None, 100) 334,800

Dropout_2 (Dropout) (None, 100) 0

Dense (Dense) (None, 100) 10,100

Dense_1 (Dense) (None, 8) 808

Total params: 349,708.

Trainable params: 349,708.

Non-trainable params: 0.

• CNN:
The CNN architecture reported a percentage of correct
classified gestures of 96.979% (sd. ± 0.922). The same CNN
architecture with data Standardization, had an accuracy

of 97.149% (sd. ± 0.809). We tested different parameter
configurations. As an experiment, we ran the model ten
times with each of the parameters to estimate a mean and
standard deviation of correct classified gestures: The filters
we tested defined the size of the first convolutional layer.
For the Filter-Parameter (FP) fp = 8, the accuracy reported
was 86.383% (sd. ± 3.651). fp = 16: 93.319% (sd. ± 1.713).
fp = 32: 95.447% (sd. ± 2.059). fp = 64: 96.894% (sd. ±
1.077). fp = 128: 97.234% (sd. ± 0.956). fp=256: 97.617%
(sd. ± 0.993). See Figure 8A. The same approach of running
the model ten times was applied to five different Kernel-
parameters (KPs) (2,3,5,7,9). The parameters reported a

percentage of correct gesture estimations of: kp = 2: 97.319%

(sd.± 0.603). kp = 3: 97.702% (sd.± 0.545). kp = 5: 98.170%

(sd.± 0.383). kp = 7: 97.830% (sd.± 0.817). kp = 9: 96.723%
(sd. ± 2.738). See Figure 8B. The Multi-Headed_CNN
model with each cnn_head filters defined as 3,5,9,
correspondingly, had an improvement of accuracy to 98.553%
(sd.± 0.340).

• LSTM: Three LSTM models were tested, first a Vanilla LSTM
with a classification and regression accuracy of 86.383% (sd.±
5.516). The secondmodel was a Conv_LSTMwith six different
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FIGURE 7 | (A) CNN_LSTM is a hybrid model with six layers of CNN processing extracting temporal features of the gestures and projecting them to a standard Vanilla

LSTM. (B) ConLSTM is a recurrent neural network LSTM that handles 3D tensors, receiving in the input gates the matrices processed by its internal CNN.

TABLE 2 | Traditional machine learning techniques.

Model Accuracy (%)

Gaussian Process classifier 97.447

Extra Trees classifier 95.319

Random Forest classifier 94.894

Gradient Boosting classifier 93.191

Bagging classifier 93.191

K-Nearest-Neighbors classifier 90.638

Support Vector Machine classifier 86.809

Decision Tree classifier 71.915

Naive Bayes classifier 61.277

Machine learning models taken from Scikit-learn. All models were utilized applying

standard parameters explained in the Scikit-learn web tutorials called “Classifier

comparison”.

batch-sizes (BZ) (8, 16, 32, 63, 128, 256) having the report of
correct gesture estimations of: bz = 8: 99.234% (sd. ± 0.707).
bz = 16: 98.000% (sd. ± 2.244). bz = 32: 98.255% (sd. ±
1.165). bz = 64: 97.745% (sd. ± 1.204). bz = 128: 98.426%

(sd.± 0.809). bz = 256: 96.894% (sd.± 1.593). SeeTable 3 and
Figure 8C. The third LSTM model was a CNN_LSTM, tested
with a convolutional layer with five alternatives for the filter-
parameter (32, 64, 128, 256, 512), with an output of correct
estimations of: fp = 32: 96.638% (sd. ± 1.749). fp = 64:
97.532% (sd. ± 1.154). fp = 128: 98.255% (sd. ± 1.830).
fp = 256: 99.404% (sd. ± 0.434). fp = 512: 99.234% (sd. ±
1.106). See Figure 8.

4.1. Data Size
We have run a computational experiment to determine
the minimum size of data applicable to train the RNN
models (∼28.4 MB). Through this test, we identified
the minimum limit in terms of data size to resolve
the classification a task. The experiment consists of
training using only 10% of the available data, sequentially
increasing the size by 10% with each test. We established
20 epochs as the minimum optimal training setup
and we have also cleared the session at each test cycle
[tf.keras.backend.clear_session()]. The result is plotted in
Figure 9.
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FIGURE 8 | Boxplot of accuracy reports from (A) CNN filter configurations of 8, 16, 32, 64, 128, 256; (B) CNN kernel configurations of 2, 3, 5, 7, 9; (C) CNN_LSTM

Batches configurations 32, 64, 128, 256, 512; and (D) Conv_LSTM with filters configurations of 8, 16, 32, 64, 128, 256. All models were run 10 times to determine

their range of accuracy.

5. DISCUSSION

We applied deep convolutional neural network architectures for
learning spatiotemporal features in violin bow-stroke gesture
recognition. After testing different state-of-the-art models, the
Vanilla LSTM was not as accurate (86.383% sd. ± 5.516) as the
standard CNN model (97.149 sd. ± 0.809). However, the hybrid
model CNN_LSTM showed better results. The architecture of
two convolutional layers, with a filter of 512 and a kernel
of 3, extracted the features from the time-series sequence
observations encoding the global temporal information and the
local spatial characteristic of each gesture. The tensors of the
CNN layers are projected to the LSTM, which maintains the
key features over the different cycles, improving its recognition
scores to 99.235% (sd. ± 1.106). In Table 3 the filter = 256
showed high accuracy; however, with a more compact standard
deviation than the previous version, it might be the better model
for stability.

The traditional MLmodels resolved the classification problem
with good results for the Gaussian Process classifier, with an

accuracy report of 97.447%, as well as the Extra Trees classifier,
which reported accuracy of 95.319%. Those results confirm that
many classifications challenges can be resolved with standard
models, taking into account that any particular adaptation or
fine-tuning was applied to the ML models, which could also
enhance their correct classification percentages.

As shown in Table 4, only the trémolo articulation had a
precision lower than 90% accuracy. Among the techniques
studied, trémolo is arguably the least-defined gesture in this
context; it can be executed with an arbitrary temporal pattern.
However, the architecture identified the gestures, even with
different spatiotemporal shapes among the same class, reporting
a precision of 100% in almost every trial.

Related to the data size, after doing the data reduction
experiment to establish the minimum requirement to perform
the gesture recognition tests, we have clarified that the data
published in this study is sufficient to train the RNN models.
Based on the results of the experiment (see Figure 9), using
about the 60 or 70% of the data, the accuracy reports are
already acceptable.
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TABLE 3 | Deep learning techniques.

Models Parameters Accuracy (%) Standard

deviation

CNN (Filter = 64, Kernel = 9) 96.979 (±0.922)

CNN (Standardization) (Filter = 64, Kernel = 9) 97.149 (±0.809)

CNN (Filter = 16) 93.319 (±1.713)

(Filter = 32) 95.447 (±2.059)

(Filter = 64) 96.894 (±1.077)

(Filter = 128) 97.234 (±0.956)

(Filter = 256) 97.617 (±0.993)

CNN (Kernel = 2) 97.319 (±0.603)

(Kernel = 3) 97.702 (±0.545)

(Kernel = 5) 98.170 (±0.383)

(Kernel = 7) 97.830 (±0.817)

(Kernel = 9) 96.723 (±2.738)

3DMultiHeaded_CNN (Filter1 = 3, Filter2 = 5, Filter3 = 9) 98.553 (±0.340)

Conv_LSTM (Filter = 64, Batches = 8) 99.234 (±0.707)

(Filter = 64, Batches = 16) 98.000 (±2.244)

(Filter = 64, Batches = 32) 98.255 (±1.165)

(Filter = 64, Batches = 64) 97.745 (±1.204)

(Filter = 64, Batches = 128) 98.426 (±0.809)

(Filter = 64, Batches = 256) 96.894 (±1.593)

CNN_LSTM (Filter = 32) 96.638 (±1.749)

(Filter = 64) 97.532 (±1.154)

(Filter = 128) 98.255 (±1.830)

(Filter = 256) 99.404 (±0.434)

(Filter = 512) 99.234 (±1.106)

The report of all models tested. CNN_LSTM reported the best accuracy percentage in

the case of the filter parameter setup in 256. Conv_LSTM with a setup of Filter = 64 and

Batches = 8 had a high accuracy percentage as well.

Further work will be needed to develop the gesture-
recognition models described here into a feedback system that
could be used by musicians in their practice. This system would
ideally be co-created with students and teachers to ensure that the
feedback is clear and relevant, and the system as easy as possible
to operate and understand. Key to this application would be the
visualization of performance movements usually hidden to the
performer; the graphics presented in Figure 2 and, in particular,
Supplementary Figure 4 indicate how a musician might better
understand the quality of their gestures in terms of consistency
and efficiency. This work would include controlled experimental
trials to determine the efficacy of the systems in increasing
practice efficiency and, perhaps, reducing physical load and long-
term injury resulting from the repetitive motions involved in
music performance. The gesture recognition presented is also
applicable to other instruments within and beyond the string
family, each of which requires a wide set of techniques to
master. A further challenge would be to test the same gestures
by extracting only the audio features and applying CNN to the
resultant audio spectrograms. This approach would provide a

FIGURE 9 | The figure is composed of 10 experiment runs per parameter

(percentage of the data used in this study) with 20 epochs each test run.

TABLE 4 | CNN_LSTM classification report.

Class Precision Recall F1-score Support

Martelé 1.00 0.95 0.97 40

Staccato 1.00 1.00 1.00 25

Detaché 1.00 0.96 0.98 25

Ricochet 1.00 1.00 1.00 40

Legato 1.00 1.00 1.0 35

Trémolo 0.89 1.00 0.94 25

Collé 0.96 1.00 0.98 25

Col legno 1.00 0.95 0.97 20

Micro avg 0.98 0.98 0.98 235

Macro avg 0.98 0.98 0.98 235

Weighted avg 0.98 0.98 0.98 235

The classification report gives a percentage of correct classifications per gesture at a scale

of 1:100.

significant increase in usability in that musicians would no longer
need to purchase, set up, and wear separate IMU sensors and it
would remove a significant potential point of failure in a future
at-home system for music practice. While these technologies are
at present in their early stages, they offer promising potential for a
paradigm shift in how musical expertise is developed and shared.
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