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Model data fit plays an important role in any statistical analysis, and the primary goal is
to detect the preferred model based on certain criteria. Under the cognitive diagnostic
assessment (CDA) framework, a family of sequential cognitive diagnostic models (CDMs)
is introduced to handle polytomously scored data, which are attained by answering
constructed-response items sequentially. The presence of attribute hierarchies, which
can provide useful information about the nature of attributes, will help understand
the relation between attributes and response categories. This article introduces the
sequential hierarchical CDM (SH-CDM), which adapts the sequential CDM to deal with
attribute hierarchy. Furthermore, model fit analysis for SH-CDMs is assessed using
eight model fit indices (i.e., three absolute fit indices and five relative fit indices). Two
misfit sources were focused; that is, misspecifying attribute structures and misfitting
processing functions. The performances of those indices were evaluated via Monte
Carlo simulation studies and a real data illustration.

Keywords: sequential hierarchical cognitive diagnostic model, polytomous response data, attribute hierarchy,
processing function, model fit

INTRODUCTION

Cognitive diagnostic assessment (CDA) has gained widespread use since its introduction, as it can
provide fine-grained feedback through pinpointing the presence or absence of multiple fine-grained
skills or attributes (Leighton and Gierl, 2007; Templin and Bradshaw, 2013) based on some cognitive
diagnostic models (CDMs). Many different names according to their different connotations (Rupp
et al., 2010; Ma, 2017) can be applied to refer to the CDM, in which the diagnostic classification
model (DCM; Rupp et al., 2010) is most widely applied.

For dichotomously scored items, a number of CDMs can be found in literature, among others,
the deterministic inputs, noisy “and” gate (DINA; Haertel, 1989; Junker and Sijtsma, 2001) model,
the deterministic inputs, noisy “or” gate (DINO; Templin and Henson, 2006) model, and the
additive CDM (A-CDM; de la Torre, 2011) were most widely used. Furthermore, three most general
CDMs, the general diagnostic model (GDM; von Davier, 2008), the log-linear CDM (LCDM;
Henson et al., 2009), and the generalized deterministic input noisy and gate model (GDINA; de
la Torre, 2011), were proposed to better understand and handle the above models. Specifically, the
GDINA model is equivalent to the LCDM when the logit link is used, and the GDM is a general
version of both of them.
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For polytomously scored items, which yield graded responses
with ordered categories or nominal responses, a few models have
been developed, such as the GDM for graded response (von
Davier, 2008), the nominal response diagnostic model (NRDM;
Templin et al., 2008), the partial credit DINA model (de la Torre,
2010), the polytomous LCDM (Hansen, 2013), the sequential
CDM (sCDM; Ma and de la Torre, 2016), and the diagnostic tree
model (DTM; Ma, 2019). Among them, only sCDM and DTM
can model the possible relation between attributes and response
categories. Furthermore, Liu and Jiang (2020) proposed the rating
scale diagnostic model (RSDM), which was a special version of
the NRDM with fewer parameters. Culpepper (2019) presented
an exploratory diagnostic framework for ordinal data.

On the other hand, attribute dependencies often occur
in practical applications, instead of that all attributes are
independent for each examinee. To this end, four different types
of attribute hierarchies (i.e., linear, convergent, divergent, and
unstructured) were considered to reflect attribute dependencies
(Gierl et al., 2007). An example of different types of attribute
hierarchies is shown in Figure 1. For an external shape, a directed
acyclic graph (DAG) is used to express the attribute hierarchy;
and for an internal organization, all possible attribute profiles
are provided. Let α1, α2, α3, α4 denote four attributes measured
by a CDA. Take the linear structure as an example, αk is the
prerequisite of αk+1 (k = 1, 2, 3), as a result, the number of
all possible attribute patterns is 5, which is less than 24 = 16.
To model attribute hierarchy, Templin and Bradshaw (2014)
proposed a hierarchical diagnostic classification model (HDCM).
Zhan et al. (2020) proposed a sequential higher-order DINA
model with attribute hierarchy to handle the higher-order and
hierarchical structures simultaneously using the sequential tree.
Interested readers can refer to Rupp et al. (2010) and von Davier
and Lee (2019) for detailed information.

It is a central concern to assess global-level fit (i.e.,
model fit) in the psychometric area. Model fit analysis can
be evaluated by two aspects: absolute fit analysis, which
assesses how well a given model reproduces the sample
data directly; and relative fit analysis, which recommends a
better-fit model through comparing at least two candidates.
Under the CDA framework, the sources of model misfit
include inaccurate item response function (IRF), Q-matrix
misspecification, misspecifying attribute pattern structures (Han
and Johnson, 2019), abnormal response behaviors (e.g., rapid
guessing, and cheating), local item dependence, and so on.

Regarding absolute fit assessment, for the sequential GDINA
model, Ma and de la Torre (2019) proposed category-level
model selection criteria based on the Wald test and the
likelihood ratio (LR) test to identify different IRFs; and
Ma (2020) used limited-information indices [i.e., Mord and
standardized mean square root of squared residual (SRMSR)]
to detect model misspecification or Q-matrix misspecification.
On the other hand, Lim and Drasgow (2019) proposed
the Mantel–Haenszel (MH) chi-square statistic to detect
latent attribute misspecification in non-parametric cognitive
diagnostic methods.

In terms of relative fit assessment, Sen and Bradshaw (2017)
compared the Akaike information criterion (AIC), Bayesian

information criterion (BIC), and adjusted BIC (aBIC), and
found that they performed poorly to differentiate CDMs and
multidimensional item response theory (MIRT) models for
dichotomous response data.

Furthermore, some researches focused on the performances
of both absolute fit indices (AFIs) and relative fit indices (RFIs)
for dichotomous CDMs. Under Bayesian framework, Sinharay
and Almond (2007) used Bayesian residuals, which are based
on the individuals’ raw scores, as AFI and deviance information
criterion (DIC) as RFI to distinguish different measurement
models. Chen et al. (2013) used both AFIs [i.e., abs(fcor), residuals
based on the proportion correct of individual items and the log-
odds ratios of item pairs] and RFIs (i.e., -2LL, AIC, and BIC)
to identify model and/or Q-matrix misspecifications. Hu et al.
(2016) investigated the usefulness of AIC, BIC, and consistent
AIC (CAIC) as RFIs, and limited information root mean square
error of approximation (RMSEA2), abs(fcor), and max(χ2

jj′
) as

AFIs to detect model or Q-matrix misspecification. Lei and
Li (2016) detected model and Q-matrix misspecifications using
AFIs [i.e., RMSEA, mean of absolute values of Q3 statistic
(MADQ3), mean of absolute values of pairwise item covariance
residuals (MADres), mean of absolute deviations in observed
and expected correlations (MADcor), and mean of all item pair
χ2

jj′
statistics (Mχ2

jj′
)] and RFIs (i.e., AIC and BIC). Empirically,

Han and Johnson (2019) assessed global-level fit for dichotomous
CDMs using both RFIs (i.e., AIC, BIC, and aBIC) and AFIs
[i.e., M2, RMSEA2, and maximum of all item pair χ2

jj′
statistics

(max(χ2
jj′

))] through a real data illustration.
As no prior studies have analyzed the CDM fit for polytomous

response data with attribute hierarchy, the current study
concentrates on a novel model, named as the sequential
hierarchical CDM (SH-CDM), and assesses model-data fit. This
study provides important evidence and insight to support the
usefulness of SH-CDMs in the future. The remainder of this
article is listed as follows. First, we introduce the sequential
hierarchical CDMs and review different model fit indices. Next,
simulation studies and a real data illustration are provided to
evaluate the performances of those indices. Finally, we end
with some concluding remarks. Supplementary Appendix A
and Supplementary Material are provided to complement the
detailed information and simulation results.

MATERIALS AND METHODS

Model Description
In this section, SH-CDMs are introduced based on Templin and
Bradshaw (2014) and Ma and de la Torre (2016). The sCDM
(Ma and de la Torre, 2016) is a special version of SH-CDM with
non-hierarchical attribute structure, and the HDCM (Templin
and Bradshaw, 2014) is a special version of SH-CDM when all
response data are scored dichotomously.

To analyze the polytomously scored data from constructed-
response items, the sCDM is built upon a sequential process
model. As a result, it can provide the detailed problem-solving
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FIGURE 1 | Types of hierarchical attribute structures. For the convergent structure, mastering α4 needs to master both α2 and α3 (Zhan et al., 2020), as well as α1.

procedures to support subsequent inference. For a constructed-
response test with J items, assuming item j (j = 1, 2, . . ., J)
involves Hj tasks that need to be solved sequentially; therefore,
if the 1st task is failed, the score should be 0; if the first h
(0 < h < Hj) tasks are successful but the (h + 1)th task is failed,
the score should be h; else if all tasks are successful, the score
should be Hj. To this end, Ma and de la Torre (2016) proposed
a
∑J

j=1 Hj –by–K category-level matrix, named as the Qc-matrix,
the element of which is a binary indicator of whether the task
of the corresponding item measures this attribute. In this article,
only the restricted Qc-matrix is considered. Mathematically, let
Qc = {qjh,k}, qjh,k = 1 if attribute k (k = 1, 2, . . . K) is measured by
item j for task h (h = 1, 2, . . ., Hj), otherwise, qjh,k = 0.

Let the processing function, Sjh(
→αg), be the probability of

examinees with attribute pattern →αg answering the first h tasks
of item j correctly given answering the first (h-1)th tasks
correctly, where g = 1, 2, . . ., G, and G denotes the total
number of latent classes. Notating→α∗l,jh as the reduced attribute
profile of examinee l (l = 1, 2, . . ., N), which contains all
the required attributes of item j for task h. Then, Sjh

(
→αg
)
=

S(→α∗l,jh). In this article, the DINA model, DINO model,
A-CDM, and GDINA model are considered, which represent
the conjunctive, disjunctive, additive, and general condensation
rules, respectively. Hereafter, only the identity link is considered
for the GDINA model, which is equivalent to the logit link1.
Assuming that all categories share the same condensation rule,
let K∗jh be the total number of required attributes by item j for
task h; the expressions for processing functions are summarized
in Table 1.

Furthermore, the existence of attribute hierarchy will reduce
the model complexity of IRF. To deal with attribute hierarchies,
the HDCM was proposed by Templin and Bradshaw (2014). As
the HDCM is nested within more general CDMs, the SH-CDM
is introduced by combining it with the sCDM. In the SH-CDM,
the influence of attribute hierarchy is reflected in the processing
function. Take the SH-GDINA model as an example, assuming
four linear attributes (Figure 1) are measured in the test and
three attributes are required by item j for task h, S

(
→α∗l,jh

)
=

1A simulation check has been done to test the equivalence using the GDINA
package; results indicated there was no significant difference between the identity
link and the logit link.

TABLE 1 | Summary of S(→α∗l,jh) for different processing functions.

Processing
function

Formula Notations

DINA S
(
→α∗l,jh

)
=

φjh,0 + φjh,12...K∗jh

∏K∗jh
k=1 αlk

Examinee parameters:
αlk is the kth attribute of
examinee l.

Item parameters:
φjh,0 is the intercept;
φjh,k is the main effect of
αlk ;
φjh,kk′ is the two-way
interaction effect of αlk and
αlk′ ;
φjh,12...K∗jh

is the K∗jh –way

interaction effect of→α∗l,jh

DINO S
(
→α∗l,jh

)
= φjh,0 + φjh,kαlk

A-CDM S
(
→α∗l,jh

)
=

φjh,0 +
∑K∗jh

k=1 φjh,kαlk

GDINA S
(
→α∗l,jh

)
=

φjh,0 +
∑K∗jh

k=1 φjh,kαlk +∑K∗jh
k′=k+1

∑K∗jh−1

k=1 φjh,kk′ αlkαlk′ +

. . .+ φjh,12...K∗jh

∏K∗jh
k=1 αlk

φjh,0 + φjh,k1αlk1 + φjh,k1k2αlk1αlk2 + φjh,k1k2k3αlk1αlk2αlk3 , where
the subscript of k denotes the order of the required attributes.

To ensure joint identifiability of the HDCMs, Gu and Xu
(2019) restricted that the sparsified version of Q-matrix had at
least three entries of “1”s in each column and Q-matrix can be
rearranged as Q = (Q0

Q∗ ), where Q0 was equivalent to a K-by-
K identity matrix IK under the attribute hierarchy and the
densified version of Q∗ contained K distinct column vectors.
In addition, if Q-matrix was constrained to contain an IK , the
HDCMs were identified. The SH-CDM identifiability shares the
same restrictions as those mentioned above. Interested reader
can refer to Gu and Xu (2019) for further discussion on model
identifiability.

Model Fit Indices
To assess global-level fit of CDMs, both absolute fit assessment
and relative fit assessment are done to identify adequate-
fit models and select the best-fit model, respectively.
To ensure the comparability of different AFIs, SRMSR,
100∗MADRESIDCOV, and MADcor are considered as they
share the same rule. To choose the best-fit model among all
candidates, five widely used RFIs [i.e., AIC, BIC, the second-
order information criterion (AICc), aBIC, and CAIC] are
evaluated and compared.
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Absolute Fit Index
The SRMSR (Maydeu-Olivares, 2013) is a measure of pairwise
correlations. As a standardized statistic, test length has few
influences on the performance of SRMSR. The SRMSR can be
calculated as

SRMSR =

√√√√ 2
J (J − 1)

∑
j<j′

(
rjj′ − r̂jj′

)2
, (1)

where rjj′ and r̂jj′ denote the observed and predicted pairwise item
correlations, respectively. The model with smaller SRMSR will be
identified as a good fit one.

The mean absolute deviation (MAD) is a fundamental
statistic to calculate the last two AFIs mentioned before, which
measures the discrepancy between the observed item conditional
probabilities of success and the predicted ones. The RESIDCOV
denotes the residual covariance of pairwise items. Then, we can
obtain the mean of absolute deviations of residual covariances
(MADRESIDCOV; McDonald and Mok, 1995) by replacing
the conditional probabilities in MAD by the RESIDCOVs. The
MADRESIDCOV measures the discrepancy between observed
and predicted pairwise item residual covariance (RESIDCOV).
Let,

γjj′ , RESIDCOVjj′ =
njj′,11njj′,00 − njj′,10njj′,01

n2

−
ejj′,11ejj′,00 − ejj′,10ejj′,01

n2 , (2)

Then, we can obtain

MADRESIDCOV =

∑J
j=1
∑

j6=j′
∣∣γjj′ − γ̂jj′

∣∣
J (J − 1)

. (3)

100∗MADRESIDCOV is used equivalently, as the magnitude
of MADRESIDCOV is usually small. The MADcor (DiBello
et al., 2007) is the mean of absolute deviations in observed
and expected correlations of pairwise items. The MADcor
equals 2

J(J−1)
∑

j<j′
∣∣rjj′ − r̂jj′

∣∣, where rjj′ and r̂jj′ have the same
meanings as those in SRMSR. For MAD-type indices, a smaller
value (i.e., value near to zero) denotes better fit.

Relative Fix Index
Different types of information criteria are calculated with respect
to the penalty term, the expressions of which are presented
in Table 2. AIC (Akaike, 1974) and BIC (Schwarz, 1978) are
most widely applied since their introductions. The second-order
information criterion (AICc; Sugiura, 1978) was derived to deal
with the small ratio of sample size to estimated number of
parameters case (i.e., less than 40; Burnham and Anderson, 2002).
As the sample size gets large, AICc converges to AIC. The aBIC
(Sclove, 1987) modified BIC by adjusting the sample size term to
handle the small sample size case well. The CAIC was proposed
by Bozdogan (1987), in which then penalty terms include both
the order of the model and the sample size. The candidate model
with smaller RFI is recommended.

TABLE 2 | Formulas of different relative fit indices.

Index Formula Notation

AIC AIC = –2ln(LL) + 2P
LL: likelihood
P: the effective
number of
parameters
N: sample size

BIC BIC = –2ln(LL) + P ln(N)

AICc AICc = AIC + [2P(P + 1)]/(N – P – 1)

aBIC aBIC = –2ln(LL) + P ln[(N + 2)/24]

CAIC CAIC = –2ln(LL) + (ln(N) + 1)P = BIC – P

AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC,
adjusted BIC; CAIC, consistent AIC.

Simulation Studies
The simulation studies aim (a) to examine parameter recovery
for SH-CDMs and (b) to compare the performances of different
AFIs and RFIs for SH-CDMs. Two different sources of misfit are
considered: the first type of misfit is due to attribute structures
misspecification, and the second type of misfit relies on different
processing functions. To this end, three simulation studies are
conducted: (I) to examine whether parameters of SH-CDMs
can be recovered well; (II) to investigate the performances of
model fit indices to identity attribute structures; and (III) to
investigate their performances to detect the processing function
misspecification, respectively.

The simulation conditions are summarized in Table 3. More
details will be given in the simulation design sections. In this
article, the GDINA R package (Ma and de la Torre, 2020) was
used to estimate different SH-CDMs and assess the model fit.
The source code including the computation of indices, which
were not provided in the GDINA R package, was provided
in Supplementary Appendix A. The mapping matrix method
(Tutz, 1997) and the expected a posteriori (EAP) method, which
are the default methods in the GDINA package for sequential
CDMs, were used to estimate item parameters and attribute
profiles, respectively. Five hundred replications were conducted
for each condition.

Study Design I
In this study, the GDINA model was chosen as the processing
function, as its generality. Attribute profiles were generated from
the uniform structure; that is, all the possible latent classes shared
the same probability. Sample size was 1,000. A 24-item test, in

TABLE 3 | Summary of simulation conditions.

Factors Studies I and II Study III

Sample size (N) 1,000 1,000; 3,000

Attribute structure Non-hierarchical; linear; convergent; divergent;
unstructured

Generation processing function GDINA DINA, DINO, A-CDM, GDINA

Calibration processing function GDINA DINA, DINO, A-CDM, GDINA

Item quality High: U(0.1, 0.2), low: U(0.2, 0.3)

Attribute generation Uniform structure

Test length (J) 24

Number of attributes (K) 4

Number of categories (G) 4
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TABLE 4 | Summary of parameter recovery when CM = GM.

Model Low item quality High item quality

AAR PAR RMSE bias RAbias AAR PAR RMSE bias RAbias

S1 0.9008 0.6742 0.1683 0.0000 6.8400 0.9787 0.9226 0.1336 0.0001 2.0298

S2 0.9623 0.8593 0.1842 0.0688 4.6691 0.9915 0.9664 0.2448 0.0961 4.5692

S3 0.9514 0.8240 0.1998 0.0655 4.4051 0.9904 0.9626 0.2552 0.0906 12.9081

S4 0.9518 0.8248 0.1715 0.0390 6.1866 0.9899 0.9604 0.2176 0.0544 3.7261

S5 0.9422 0.7938 0.1801 0.0396 10.9168 0.9903 0.9624 0.2242 0.0556 6.3453

AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC, adjusted BIC; CAIC, consistent AIC.

TABLE 5 | Summary of parameter recovery when data were fitted by S1.

GM Low item quality High item quality

AAR PAR RMSE bias RAbias AAR PAR RMSE bias RAbias

S2 0.9475 0.8154 0.4556 −0.0004 13.6676 0.9862 0.9486 0.4808 −0.0001 8.2845

S3 0.9490 0.8169 0.4077 0.0000 9.6069 0.9894 0.9595 0.4383 −0.0002 9.2714

S4 0.9369 0.7796 0.4300 −0.0002 11.2261 0.9837 0.9385 0.4452 0.0000 30.6335

S5 0.9255 0.7426 0.4159 −0.0001 13.1993 0.9825 0.9343 0.4057 0.0001 6.0283

GM, data generation model; AAR, attribute-wise agreement rate; PAR, pattern-wise agreement rate; RMSE, root mean square error; RAbias, average relative absolute bias.

TABLE 6 | Correct detection rates of RFIs for different hierarchical attribute structures.

GM CM Low item quality High item quality

AIC BIC aBIC CAIC AICc AIC BIC aBIC CAIC AICc

S2 S1 0 0 0 0 0 0 0 0 0 0

S2 0.99 1 1 1 1 0.998 1 1 1 1

S3 0.01 0 0 0 0 0.008 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0

S5 0 0 0 0 0 0 0 0 0 0

S3 S1 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0.99 1 1 1 1 1 1 1 1 1

S4 0.01 0 0 0 0 0 0 0 0 0

S5 0 0 0 0 0 0 0 0 0 0

S4 S1 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 0 0 0

S4 1 1 1 1 1 1 1 1 1 1

S5 0 0 0 0 0 0 0 0 0 0

S5 S1 0 0 0 0 0 0 0 0 0 0

S2 0 0 0 0 0 0 0 0 0 0

S3 0 0 0 0 0 0 0 0 0 0

S4 0 0 0 0 0 0 0 0 0 0

S5 1 1 1 1 1 1 1 1 1 1

GM, data generation model; CM, calibration model; RFI, relative fit index; AIC, Akaike information criterion; BIC, Bayesian information criterion; aBIC, adjusted BIC;
CAIC, consistent AIC. The bold value means the largest value in a specific condition.

which there were 20 four-category items and four dichotomously
scored items, was used. For four-category items, four attributes
were measured totally and no more than three attributes were
required by each item. Without loss of generality, the last

four items were dichotomously scored with an identity subQ-
matrix to ensure model identifiability. Two manipulated factors
included attribute structure (non-hierarchical, linear, convergent,
divergent, and unstructured) and item quality (high and low).
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TABLE 7 | CDRs of AFIs for different hierarchical attribute structures.

GM CM Low item quality High item quality

MADcor 100MAD RESIDCOV SRMSR MADcor 100MAD RESIDCOV SRMSR

S2 S1 0.282 0.226 0.270 0.292 0.210 0.304

S2 0.206 0.238 0.228 0.248 0.306 0.224

S3 0.150 0.162 0.174 0.128 0.150 0.136

S4 0.178 0.164 0.150 0.134 0.128 0.124

S5 0.184 0.210 0.178 0.198 0.206 0.192

S3 S1 0.296 0.260 0.308 0.302 0.266 0.298

S2 0.006 0.008 0 0 0 0

S3 0.280 0.312 0.274 0.294 0.314 0.292

S4 0.196 0.226 0.230 0.212 0.200 0.224

S5 0.222 0.194 0.188 0.192 0.220 0.186

S4 S1 0.426 0.364 0.396 0.410 0.37 0.420

S2 0 0 0 0 0 0

S3 0 0 0 0 0 0

S4 0.314 0.360 0.326 0.306 0.33 0.296

S5 0.260 0.276 0.278 0.284 0.30 0.284

S5 S1 0.510 0.446 0.496 0.454 0.42 0.458

S2 0 0 0 0 0 0

S3 0 0 0 0 0 0

S4 0.002 0.014 0.004 0 0 0

S5 0.488 0.540 0.500 0.546 0.58 0.542

GM, data generation model; CM, calibration model; CDR, correct detection rate; AFI, absolute fit index; SRMSR, standardized mean square root of squared residual. The
bold value means the largest value in a specific condition.

For each data set, item parameters and attribute profiles were
simulated separately and the Q-matrix was kept consistent.

The item parameter recovery was calculated in terms of
average root mean square error (RMSE), average bias, and
average relative absolute bias (RAbias), and the classification
accuracies were examined using pattern-wise agreement rate
(PAR) and attribute-wise agreement rate (AAR).

Simulation Result I
Hereafter, for convenience, let S1 = the SH-GDINA model with
non-hierarchical attribute structure; S2 = the SH-GDINA model
with linear attribute structure; S3 = the SH-GDINA model with
convergent attribute structure; S4 = the SH-GDINA model with
divergent attribute structure; S5 = the SH-GDINA model with
unstructured attribute structure.

Table 4 summarizes the estimation accuracy and precision of
SH-GDINA models. For different attribute structures, attribute
profiles in high item quality cases could be recovered better
than in the corresponding low item quality cases. The estimation
accuracy of item parameters had a similar trend except for
convergent attribute structure cases, although the values of RMSE
and bias in low item quality cases were smaller than those in high
item quality cases, which is because true item parameters’ values
in the low cases were smaller, and the smaller true values led to
larger RAbiases.

Furthermore, the SH-GDINA model with non-hierarchical
attribute structure, which was the most general one among these
models, was used to fit response data generated by different
SH-GDINA models. The parameter recovery is summarized
in Table 5. Compared with results shown in Table 4, AAR

and PAR were smaller, and RMSE and RAbias were larger. It
appears that specifying the attribute hierarchy can significantly
improve the estimation accuracy and precision, which supports
the introduction of SH-CDMs.

Study Design II
In this study, the same simulation settings as the simulation study
I were considered. Correct detection rates (CDRs) were used to
evaluate the performances of different indices. For AFIs, as there
is no sufficient evidence for the cutoff values of these AFIs to
support model fit assessment, the CDR is calculated as the rate
of the smallest values for all replications. Meanwhile, the box plot
of AFIs is also provided to compare the performances of different
AFIs intuitively.

Simulation Result II
A popular rule for AIC (Burnham and Anderson, 2002) is that
a difference of 2 or less is considered negligible and a difference
exceeding 10 constitutes strong support. In this article, the same
rule is used for all the RFIs. For the non-hierarchical attribute
structure, all AFIs of the data generation model had the smallest
values, and all RFIs recommended the true model with strong
support. For hierarchical attribute structures, Tables 6, 7 provide
CDRs of RFIs and AFIs, respectively.

As shown in Table 6, all RFIs could select the true model
with a probability larger than 0.99. Regarding the effectiveness of
detecting distinguished models with similar RFIs, we calculated
the rates of the differences between RFI values of two candidates,
which were smaller than 10, and named as the indistinguishable
proportion. When response data were generated by S2, the
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FIGURE 2 | Box plots of absolute fit indices (AFIs) in low item quality cases of simulation study II.
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FIGURE 3 | Box plots of absolute fit indices (AFIs) in high item quality cases of simulation study II.
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TABLE 8 | Selected results of CDRs of RFIs for different models.

Condition CM AIC BIC aBIC CAIC AICc

Non-hierarchical structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 1 0.502 1 0.134

M4 1 0 0.498 0 0.866

Non-hierarchical structure Low item quality, N = 3,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.76 0 0.978 0

M4 1 0.24 1 0.022 1

Convergent structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.642 0.05 0.822 0.014

M4 1 0.358 0.95 0.178 0.986

Divergent structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.888 0.02 0.988 0

M4 1 0.112 0.98 0.012 1

Unstructured structure Low item quality, N = 1,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.894 0.002 0.998 0

M4 1 0.106 0.998 0.002 1

Unstructured structure High item quality, N = 3,000 GM = M4 M1 0 0 0 0 0

M2 0 0 0 0 0

M3 0 0.652 0.002 0.938 0

M4 1 0.348 0.998 0.062 1

GM, data generation model; CM, calibration model; CDR, correct detection rate; RFI, relative fit index; AIC, Akaike information criterion; BIC, Bayesian information criterion;
aBIC, adjusted BIC; CAIC, consistent AIC. The bold value means the largest value in a specific condition.

indistinguishable proportions of AIC to differentiate S3 were
4.8% and 27.2% for the high item quality case and the low item
quality case, respectively; and the indistinguishable proportion
of AICc was 0.2% for the high item quality case. To generate
response data using S3, for the high item quality case, the
indistinguishable proportion of AIC to differentiate S4 was 3.8%;
for the low item quality case, the indistinguishable proportion of
AIC to differentiate S4 was 29%, among them 1% of the time AIC
could not differentiate S3, S4, and S5. For the case in which data
were generated by S4, the indistinguishable proportion of AIC to
differentiate S4 and S5 was less than 6%. Other cases could be
differentiated well.

In terms of AFIs (Table 7), S1 mostly had the smallest AFIs.
The CDRs of different AFIs were similar. According to the box
plots of AFIs (Figures 2, 3), when generating data using S2,
it was very hard to differentiate these models. Similarly, it was
difficult to distinguish S3 from S1 and S5, S4 from S1 and S5,
or S5 from S1. High item quality led to large values of AFIs. It
appears that RFIs outperform AFIs for SH-GDINA models, and
RFIs distinguish SH-GDINA models with convergent attribute
structures from models with unstructured attribute structures
with difficulty.

Simulation Design III
In this study, attribute generation method, test length, and test
structure were kept the same as those in simulation studies I
and II. The manipulated factors included sample size (1,000 and

3,000), attribute structure (non-hierarchical, linear, convergent,
divergent, and unstructured), item quality (high and low),
and data generation/calibration model (SH-DINA, SH-DINO,
SH-ACDM, and SH-GDINA). To evaluate the performances
of different indices, the CDRs were reported. Hence, item
parameters and the Q-matrix were fixed for each condition, and
attribute profiles were simulated separately.

Simulation Result III
For convenience, let M1 = the SH-DINA model, M2 = the
SH-DINO model, M3 = the SH-ACDM, and M4 = the SH-
GDINA model.

Relative Fit Index
Limited by the space, we only provided the results when the
probabilities of true model selection by different RFIs were
different or incorrect in Table 8. The whole results (i.e., CDRs
of both RFIs and AFIs, box plots of AFIs) were provided in
the Supplementary Material. The different performances were
reflected in the SH-ACDM and the SH-GDINA model. Under
the conditions mentioned in Table 8, AIC and AICc always
chose the true model, BIC and CAIC always chose the alternative
model, and aBIC mostly selected the true model. Besides, for
linear attribute structures, when the data generation model was
the SH-ACDM, all RFIs recommended the SH-GDINA model
with a probability larger than 0.98. In other cases, all RFIs could

Frontiers in Psychology | www.frontiersin.org 9 October 2020 | Volume 11 | Article 579018

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-579018 October 5, 2020 Time: 13:20 # 10

Zhang and Wang Sequential Hierarchical CDM

TABLE 9 | CDRs of AFIs for different models with linear attribute structures.

GM CM Low item quality High item quality

MADcor 100MAD RESIDCOV SRMSR MADcor 100MAD RESIDCOV SRMSR

N = 1,000

M1 M1 0.158 0.142 0.114 0.176 0.144 0.126

M2 0 0 0 0 0 0

M3 0.53 0.526 0.528 0.42 0.472 0.454

M4 0.312 0.332 0.358 0.404 0.384 0.42

M2 M1 0 0 0 0 0 0

M2 0.082 0.082 0.056 0.042 0.044 0.036

M3 0.444 0.438 0.454 0.536 0.522 0.514

M4 0.474 0.48 0.49 0.422 0.434 0.45

M3 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.554 0.548 0.558 0.554 0.592 0.54

M4 0.446 0.452 0.442 0.446 0.408 0.46

M4 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.46 0.492 0.492 0.562 0.568 0.556

M4 0.54 0.508 0.508 0.438 0.432 0.444

N = 3,000

M1 M1 0.146 0.158 0.114 0.154 0.162 0.128

M2 0 0 0 0 0 0

M3 0.438 0.44 0.488 0.464 0.44 0.508

M4 0.416 0.402 0.398 0.382 0.398 0.364

M2 M1 0 0 0 0 0 0

M2 0.078 0.072 0.048 0.078 0.072 0.048

M3 0.422 0.438 0.46 0.422 0.438 0.46

M4 0.5 0.49 0.492 0.5 0.49 0.492

M3 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.492 0.462 0.48 0.502 0.498 0.53

M4 0.508 0.538 0.52 0.498 0.502 0.47

M4 M1 0 0 0 0 0 0

M2 0 0 0 0 0 0

M3 0.558 0.49 0.554 0.562 0.542 0.544

M4 0.442 0.51 0.446 0.438 0.458 0.456

GM, data generation model; CM, calibration model; CDR, correct detection rate; AFI, absolute fit index; SRMSR, standardized mean square root of squared residual. The
bold value means the largest value in a specific condition.

FIGURE 4 | The Qc-matrix for Booklet 1 data from TIMSS 2007. 131 and 132 denote the 1st and 2nd tasks of item 13, respectively.

select the data generation model as the better fitting one with a
probability larger than 0.93.

When data were generated by M4 with non-hierarchical
attribute structures, in low item quality cases, the
indistinguishable proportions of aBIC and AICc to differentiate
M3 and M4 were about 10% for a small sample size; for
a large sample size, BIC could not differentiate M3 and

M4 5.4% of the time and the indistinguishable proportion
of CAIC was 1%.

For linear attribute structures, AIC could not distinguish
M1 from M3 or M4 for one or two replications under
different conditions. When the generation model was M2, the
indistinguishable proportions of AIC with high item quality
were similar to those in the “GM = M1” case. When response

Frontiers in Psychology | www.frontiersin.org 10 October 2020 | Volume 11 | Article 579018

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-11-579018 October 5, 2020 Time: 13:20 # 11

Zhang and Wang Sequential Hierarchical CDM

data were generated by M3 or M4, all RFIs could not
differentiate M3 and M4.

For convergent attribute structures, AIC could not distinguish
M2 from M4 in no more than one replication under different
conditions. M3 and M4 could not be distinguished well.
When generating response data using M3, the indistinguishable
proportions of AIC to differentiate M4 ranged from 45% to 69%,
the corresponding indistinguishable proportions of AICc ranged
from 3% to 27%, and BIC was not able to differentiate M3 from
M4 11% of the time for the high item quality case with small
sample size. When “GM = M4,” for the low item quality case

TABLE 10 | Summary of hierarchical attribute structures.

#structure DAG #structure DAG

2 α1 → α2 → α3 7 α2 → α3, α1

3 α1 → α3 → α2 8 α3 → α2, α1

4 α3 → α1 → α2 9 α3 → α1, α2

5 α1 → α2, α3 10 α1 → α2, α1 → α3

6 α1 → α3, α2 11 α3 → α1, α3 → α2

DAG, directed acyclic graph.

with the large sample size, aBIC was not able to differentiate M4
and M3 32% of the time, and the indistinguishable proportion
of CAIC was 8%; the indistinguishable proportions of AIC, BIC,
aBIC, CAIC, and AICc for the low item quality case with the
small sample size were about 1.6%, 39%, 7.8%, 30.2%, and 7.6%,
respectively; and for the high item quality case with the small
sample size, the indistinguishable proportions of BIC and aBIC
were 11.4% and 24.8%, respectively.

For divergent attribute structures, in one replication, AIC
could not distinguish M1 from M4. Furthermore, AIC was not
able to distinguish M3 from M4 about 8.4% of the time, and
the corresponding indistinguishable proportion of AICc was
2%. When data were generated by M4, the indistinguishable
proportions of BIC and CAIC for high item quality with the
small sample size were 7.2% and 14%; for low item quality,
the corresponding proportions of BIC, aBIC, CAIC, and AICc
with the small sample size were 7.6%, 5.2%, 2.8%, and 1.4%,
respectively, and those of BIC and CAIC with the large sample
size were 2.2% and 5.6%, respectively.

For unstructured attribute structures, distinguishing M3
from M4 using AIC would fail about 1.4% of the time, and
the indistinguishable proportions of BIC, aBIC, and CAIC

TABLE 11 | Model fit indices of SH-GDINA models for TIMSS data.

#structure MADcor 100MAD RESIDCOV SRMSR AIC BIC aBIC CAIC AICc

1 0.039 0.698 0.062 7904.80 8063.86 7946.41 8100.86 7910.36

2 0.038 0.687 0.063 7899.01 8036.58 7935.00 8068.58 7903.14

3 0.039 0.692 0.063 7899.95 8037.51 7935.93 8069.51 7904.08

4 0.039 0.703 0.062 7899.34 8036.90 7935.32 8068.90 7903.47

! 5 0.039 0.701 0.062 7901.89 8052.35 7941.25 8087.35 7906.85

6 0.038 0.690 0.063 7902.96 8049.12 7941.19 8083.12 7907.63

7 0.038 0.691 0.063 7902.46 8052.92 7941.82 8087.92 7907.42

8 0.039 0.703 0.063 7901.72 8052.18 7941.08 8087.18 7906.68

9 0.039 0.703 0.062 7902.13 8048.29 7940.36 8082.29 7906.80

10 0.038 0.687 0.063 7901.01 8042.87 7938.12 8075.87 7905.41

11 0.039 0.698 0.062 7904.80 8063.86 7946.41 8100.86 7910.36

The recommended attribute structures by RFIs were highlighted in gray. SRMSR, standardized mean square root of squared residual; AIC, Akaike information criterion;
BIC, Bayesian information criterion; aBIC, adjusted BIC; CAIC, consistent AIC; AICc, second-order information criterion. The bold value means the smallest value of an
index.

TABLE 12 | Summary of estimated proportion of each latent class.

#structure 000 100 010 001 110 101 011 111

1 0.487 0.030 0.001 0.035 0.014 0.000 0.021 0.412

2 0.535 0.033 – – 0.016 – – 0.417

3 0.535 0.041 – – – 0.000 – 0.424

4 0.517 – – 0.052 – 0.000 – 0.431

5 0.489 0.034 – 0.047 0.012 0.000 – 0.418

6 0.531 0.032 0.007 – 0.016 0.000 – 0.415

7 0.514 0.028 0.004 – 0.017 – 0.029 0.408

8 0.483 0.038 – 0.042 – 0.000 0.019 0.419

9 0.510 – 0.003 0.039 – 0.000 0.025 0.423

10 0.535 0.033 – – 0.016 0.000 – 0.417

11 0.511 – – 0.040 – 0.000 0.025 0.424

“–” denotes the latent class is impermissible.
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to differentiate M4 from M3 were about 11%, 2%, and 3%,
respectively. Overall, AICc can select the true model and almost
distinguish it from others for all manipulated conditions.

Absolute Fit Index
As M4 almost had the smallest values of AFIs for all conditions
except the linear attribute structure cases, only the results of
these cases were presented in Table 9. Both small sample size
and high item quality led to larger values of AFIs. For linear
attribute structures, it was hard to differentiate M3 and M4,
when to generate data using M4, the difference between AFIs
of M3 and M4 decreased as item quality became low. For other
structures, the trends were similar. This observation indicates
that AFIs cannot easily differentiate SH-CDMs that differ by
processing functions.

Real Data Illustration
Data Source
This example application is from the TIMSS 2007 eighth-grade
mathematics assessment, which is from Booklet 1 that measured
three attributes (Lee et al., 2013): Attribute 1 (α1): whole
numbers and integers; Attribute 2 (α2): fractions, decimals, and
percentages; and Attribute 3 (α3): data analysis and probability.
There are 12 dichotomously scored items and one three-category
item answered by 544 students from the United States.

The Qc-matrix based on the works by Lee et al. (2013)
and Ma (2019) is presented in Figure 4. According to general
knowledge about numeric, α2 cannot be the prerequisite of
α1. Hence, including the non-hierarchical attribute structure
(#structure = 1), 11 different attribute structures are analyzed.
The detailed DAGs of different hierarchical attribute structures
are shown in Table 10. Without loss of generality, the GDINA
model is chosen as the processing function in this section because,
in simulation studies, we noticed that it is not easy to differentiate
the SH-GDINA model from others. This dataset is analyzed using
the GDINA R package (Ma and de la Torre, 2020).

RESULTS

Table 11 shows the comparison among different structures using
both AFIs and RFIs. The smallest values are in boldface. Different
indices performed similarly to assess model-data fit that is
because most of the items required only one attribute. From
an item-level perspective, if only one attribute is required by
one item, there is no difference among candidate models with
different attribute structures.

On the other hand, Wang and Lu (2020) proposed two
predetermined cutoff values (i.e., 0.025 and 0.05) of estimated
proportions of latent classes to identify the labels for estimated
latent classes. The estimated proportions of latent classes were
shown in Table 12. All estimated proportions of (000), (100),
(001), and (111) were larger than 0.025, and except (000) and
(111), only (001) modeled using 4th structure had an estimated
proportion larger than 0.05. It is not enough to distinguish
different structures, which may be because the sample size of this
dataset was small.

CONCLUSION

In order to avoid possible misleading conclusion, model-data fit
must be thoroughly assessed before drawing the model-based
inference. Although there are abundant research examining
model fit assessment for CDMs, there is a lack of an effective
guidance on how to deal with polytomously scored items with
hierarchical attribute structures, and the aim of the present study
is to fill in this gap. In this paper, we developed a sequential
hierarchical cognitive diagnostic model to handle polytomous
response data with hierarchical attribute structures and further
evaluated model-data fit using both absolute fit indices and
relative fit indices.

Across all simulation conditions, the SH-CDM can be
recovered well, and aBIC and AICc are recommended for the
SH-CDMs due to their high CDRs and acceptable distinguishable
proportions. To distinguish different attribute structures for
SH-GDINA models, RFIs outperform AFIs. Furthermore, AFIs
used in this study are inappropriate to differentiate processing
functions of the SH-CDM.

This study was the first attempt at assessing global-level fit
of hierarchical CDMs and polytomous response data. However,
the results are limited to SH-CDMs using the same condensation
rules; future research pertaining to mixture measurement model
and different condensation rules for different tasks in one item
should be expanded to enhance the practicability of SH-CDMs.
Also, it is necessary to extend the study to deal with sparse
Q-matrix with large K. In addition, local-level (i.e., item-level) fit
should be further examined to complement global fit analysis. On
the other hand, as smaller values (close to zero) of AFIs indicate
a good model-data fit, it would be worthwhile to identify the
corresponding cutoff values using the resampling technique.
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