',\' frontiers
in Psychology

ORIGINAL RESEARCH
published: 11 January 2021
doi: 10.3389/fpsyg.2020.586976

OPEN ACCESS

Edited by:

Roumen Kirov,

Bulgarian Academy of Sciences
(BAS), Bulgaria

Reviewed by:

Markus Gerber,

University of Basel, Switzerland
Aurelio Olmedilla,

University of Murcia, Spain

*Correspondence:
Richard Mullen
rich.mullen@brunel.ac.uk

Specialty section:

This article was submitted to
Movement Science and Sport
Psychology,

a section of the journal
Frontiers in Psychology

Received: 24 July 2020
Accepted: 02 December 2020
Published: 11 January 2021

Citation:

Mullen R and Jones ES (2021)
Network Analysis of Competitive State
Anxiety. Front. Psychol. 11:5686976.
doi: 10.3389/fosyg.2020.586976

Check for
updates

Network Analysis of Competitive
State Anxiety

Richard Mullen’ and Eleri Sian Jones?

" Division of Sport, Health and Exercise Sciences, Brunel University London, London, United Kingdom, 2 School of Sport,
Health and Exercise Science, Bangor University, Bangor, United Kingdom

Competitive state anxiety is an integral feature of sports performance but despite
its pervasiveness, there is still much debate concerning the measurement of the
construct. Adopting a network approach that conceptualizes symptoms of a construct
as paired associations, we proposed re-examining competitive state anxiety as a
system of interacting components in a dataset of 485 competitive athletes from the
United Kingdom. Following a process of data reduction, we estimated a network
structure for 15 items from the modified Three Factor Anxiety Inventory using the
graphical LASSO algorithm. We then examined network connectivity using node
predictability. Exploratory graph analysis was used to detect communities in the network
and bridge expected influence calculated to estimate the influence of items from one
community to items in other communities. The resultant network produced a range
of node predictability values. Community detection analysis derived three communities
that corresponded with previous research and several nodes were identified that
bridged these communities. We conclude that network analysis is a useful tool to
explore the competitive state anxiety response and we discuss how the results of our
analysis might inform the assessment of the construct and how this assessment might
inform interventions.
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INTRODUCTION

The measurement of competitive state anxiety (CSA) has been the subject of much debate in
the sport psychology literature (Hardy, 1997; Mellalieu et al., 2006). While long acknowledged
as a multidimensional construct (Martens et al., 1990; Cox et al., 2003), there have been
important strides made toward understanding the exact nature of that multidimensionality to better
understand the function of the construct. For example, Cheng et al. (2009) presented a model
comprised of cognitive and physiological anxiety and a regulatory dimension, included to reflect
the adaptive nature of the competitive anxiety response. A unique feature of Cheng et al.’s model
is the differentiated structure of cognitive and physiological anxiety, designed to account for the
unique processes subsumed within these dimensions. Specifically, the full model includes three
higher order dimensions reflected by five lower order subcomponents; cognitive anxiety, reflected
by worry and self-focused attention; physiological anxiety, reflected by autonomic hyperactivity
and somatic tension and the regulatory dimension consisting of a single subcomponent, perceived
control. To measure their model Cheng et al. developed the Three Factor Anxiety Inventory (TFAI).
Initial testing failed to support the predicted hierarchical structure and Cheng et al. settled on a
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three-factor fit comprising cognitive anxiety, physiological
anxiety and perceived control. Further support for the predictive
validity of the model was established in subsequent research
(Cheng et al., 2011; Cheng and Hardy, 2016). In both studies, the
regulatory dimension played a key role in the dynamics of the
anxiety response.

Jones et al. (2019) extended the work of Cheng and associates
by respecifying the structure of the CSA model. From a
conceptual standpoint, Jones et al. (2019) suggested that the
self-focus subcomponent of the cognitive anxiety dimension
proposed by Cheng et al. failed to recognize the commonly
accepted multidimensional nature of this construct, which is
more typically composed of public and private facets (Fenigstein
et al, 1975; Geukes et al, 2013). In addition to specifying
a structure that fully differentiated private and public self-
focus, Jones et al. (2019) used a novel approach to model
specification and measurement. Rather than adopt the reflective
approach of classic test theory, where variation in scores on
measures is a function of the true score and error, Jones
et al. (2019) adopted a hybrid approach, consisting of reflective
and formative measurement. In formative models, variables
are viewed as composites of indicators, a notion Jones et al.
(2019) applied to a higher-order factor structure in which
the first order latent constructs of worry, private self-focus,
public self-focus, somatic tension, autonomic hyperactivity and
perceived control, were measured by reflective indicators. Each
of these constructs had a unique theme common to all the
items measuring it (Diamantopoulos and Winklhofer, 2001).
The first order constructs served as formative indicators for the
second-order latent variables, the cognitive, physiological and
regulatory dimensions. Jones et al. (2019) specified these models
as formative “as the direction of causality flows from the first
to the second order constructs” (Jones et al., 2019, p. 43). In a
series of studies, Jones et al. (2019) provided initial support for a
25-item representation of their model.

The work of Cheng and Jones and respective associates
has significantly advanced the measurement of CSA. Despite
these advances, the status of both reflective and formative
measurement models is the source of much discussion, with
most of the debate focused on the reasons for favoring one or
other approach (Schmittmann et al., 2013). Amid this debate,
others have sought alternative means of modeling psychological
responses. Network analysis has emerged as an alternative
to more traditional approaches to model development and
measurement and sport psychologists could benefit from a
consideration of the network structure of the phenomena they
seek to understand. The network perspective views mental states
as a complex system of interacting symptoms (Borsboom, 2017).
From this perspective, the causal interplay between symptoms
constitutes the mental construct (Fried et al., 2017). This view
stands in contrast to the more common approach in which
the construct is considered to be the latent cause of the
thoughts and feelings that reflect its presence. From the network
standpoint, CSA can be viewed as the emergent consequence of
the interactions among its constituent elements (Schmittmann
et al., 2013) and latent constructs are not necessary to explain
how the items in a questionnaire covary. These interactions are

depicted in a network and studying the construct means studying
the architecture of the network. As Schmittmann et al. note, “the
relation between observables and the construct should not be
interpreted as one of measurement, but as one of mereology: the
observables do not measure the construct but are part of it” (p.
5). Thus, a network constitutes a system wherein the constituent
variables mutually influence each other without hypothesizing
the existence of causal latent variables (Schmittmann et al.,
2013; Hevey, 2018). From this perspective, questionnaire items
refer to the state of a set of personality components that are
causally dependent upon one another and form a network. The
state of the network is determined by the total activation of
these components. High levels of CSA are portrayed when more
components of the construct are activated, and the network
is pushed toward an anxious state (Borsboom and Cramer,
2013). A network model of CSA would depict the observed
variables as nodes connected by edges, which represent statistical
relationships between nodes. In this way, the psychological
network helps illuminate the morphology of the construct.

A natural corollary of adopting a network approach is the
shift in focus of therapeutic interventions. Instead of targeting
a latent construct or disorder, interventions can focus upon
symptoms and the relations between symptoms (Borsboom
and Cramer, 2013). Sport psychologists can direct treatment
at the problems faced by athletes, the symptoms themselves,
or the causal relations that connect them. Network analysis
can reveal how these features interact, in contrast to the latent
variable perspective, which explicitly prohibits such interactions.
In addition, this approach can reveal how the features of CSA
might manifest themselves differently in athletes with the same
overall scores on state anxiety inventories. To date, researchers
have applied network theory to several different psychological
constructs (e.g., conscientiousness, Costantini and Perugini,
2016) and disorders (e.g., depression, Bringmann et al., 2015;
post-traumatic stress disorder, Ross et al., 2020; trait rumination,
Bernstein et al., 2019, and for a review, Fried et al., 2017). This
paper is the first to examine the dynamics of the CSA response
from a network perspective.

Network analysis also affords researchers the opportunity
to examine individual differences in the CSA response. In
the competitive state anxiety research, the examination of
gender effects has been equivocal. Despite the suggestion
that gender does moderate anxiety responses (Martens et al.,
1990), subsequent research using the Competitive State Anxiety
Inventory-2 (CSAI-2; Martens et al, 1990) has reported no
differences (e.g., Perry and Williams, 1998) and others reporting
a range of differences between males and females (e.g., Hagan
et al., 2017). Research using Cheng et al.’s three-dimensional
measure is more limited with only Cheng et al. (2011) examining
gender differences and reporting no effect. Consequently, we
aimed to explore potential differences between male and female
CSA network structures.

One of the challenges facing researchers constructing network
models using self-report scales such as the TFAI stems from the
design of such scales, which have been constructed to measure
underlying dimensions or latent variables (Fonseca-Pedrero et al.,
2018; Briganti and Linkowski, 2020). Specifically, the items
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contained in the scales are often similar and might measure
the same construct. Consequently, rather than representing the
mutualism inherent in paired connections between nodes within
a network, any interaction between items might represent shared
variance as the items were designed to measure the same thing
(Fried and Cramer, 2017). Researchers have adopted several
approaches to overcome this issue. For example, Fonseca-Pedrero
et al. (2018), Briganti et al. (2019), and Briganti and Linkowski
(2020) chose to estimate a network for the scale items and a
separate network for the latent variables the items reflected.
Others (Levinson et al., 2018; Bernstein et al., 2019) have
addressed this issue of topological overlap in the items using a
data-driven approach to reduce the number of items, based upon
their similarity, to the extent that they were more confident that
the items were not measuring the same symptoms. In this paper,
we adopted the latter approach with the TFAIL

The aim of this study is to extend the use of network modeling
techniques to the construct of CSA as represented by Jones
et al’s (2019) adaptation of the TFAI in a sample of athletes
competing in a range of sports. We first checked that there
were no differences between the networks of male and female
athletes and then explored the connectivity of CSA as a network
composed of its items. We assessed the accuracy of the networks
using bootstrapped confidence intervals on the edge weights
and used estimates of predictability to interpret the network
structures. Finally, we examined the TFAI items to see whether
the network items formed distinct communities or sub-networks
that corresponded to Cheng et al.’s (2009) three-factor structure
or Jones et al’s (2019) fully differentiated 6-factor first-order
structure. We used a community detection algorithm to identify
potential communities, which are groups of nodes that are highly
interconnected but connected weakly with other nodes or groups
of nodes. Importantly, these communities are not formed because
of a common cause, instead they “emerge from densely connected
sets of nodes that form coherent sub-networks within the overall
network” (Christensen et al., 2020, p. 6). If the presence of
communities of items was confirmed, we also set out to examine if
there were any items that acted as “bridges,” that is processes that
are shared by or connect communities. Overall, this examination
of CSA is novel and exploratory and is intended to provide a new
perspective on the structure of the CSA response.

MATERIALS AND METHODS

Participants

The de-identified archival data came from a research program
that previously investigated the competitive state anxiety
response (Jones et al, 2019). The sample of 485 British
participants comprised 162 male athletes (mean age = 21,
SD = 4) and 323 female athletes (mean age = 21, SD = 3.7)
who competed in a range of individual and team sports (males:
archery = 24, badminton = 13, basketball = 36, soccer = 39, field
hockey = 4, karate = 3, rugby union = 27, volleyball = 15; females:
archery = 14, badminton = 7, cheerleading = 5, hockey = 26,
karate = 5, netball = 227, rugby union = 30, touch rugby = 9).
The competitive level of the participants ranged from club to

international. Athletes had an average of 9.79 (SD = 5.59) and
9.21 (SD = 4.24) years of competitive experience, for males and
females, respectively. All participants were English speaking and
informed consent was obtained before beginning data collection.
Ethical approval for the study was granted by the university
ethics committee.

Measure

The Three Factor Anxiety Inventory (TFAI) modified by Jones
et al. (2019) was used in this investigation. The measure
comprises 25 items (see Table 1), with 11 items representing the
cognitive dimension (worry, 5 items; private self-focus, 3 items;
public self-focus, 3 items), 10 items representing physiological
anxiety (5 for both somatic tension and autonomic hyperactivity),
and 4 items reflecting the regulatory dimension of perceived
control. Participants were instructed to complete the measure
based on how they felt at that moment, reminded that their
data was confidential and that they should answer as openly
and honestly as possible. The prospective data were collected
approximately 1 h before a competitive performance. A 5-point
Likert scale was used (1 = totally disagree; 5 = totally agree).

Item Selection
To deal with the issue of which items from the TFAI to include
in the network we used a data driven approach and compared

TABLE 1 | ltems from the Three-Factor Anxiety Inventory (TFAI).

Cognitive dimension

| am worried that | might make mistakes

| am worried about the uncertainty of what might happen

| am worried about the outcome of my performance

| am worried that | might not perform to the best of my ability
| am worried about the consequences of failure

| tend to dwell on shortcomings in my performance

| am aware that | will scrutinize my performance

| am aware that | will be conscious of every movement | make
| am conscious that others will be judging my performance

| am conscious about the way | will look to others

| am worried that | might not meet the expectations of important others
Physiological dimension

| feel physically nervous

| find myself trembling

| have a slight tension headache

| feel lethargic

My body feels tense

My heart is racing

My chest feels tight

| feel tense in my stomach

| feel a lump in my throat

My hands are clammy

Regulatory dimension

| feel | have the capacity to be able to cope with this performance
| believe in my ability to perform

| am prepared for my upcoming performance

| am confident that | will be able to reach my target
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correlations between all items using the goldbricker function in
R. Goldbricker compares dependent overlapping correlations and
if the correlations are significantly different then the symptoms
being compared capture unique aspects of the CSA response
(see Levinson et al., 2018). The data driven approach involved
researcher guided judgment to determine (a) the method chosen
to compare correlations, (b) the appropriate level of alpha to
determine significance, and (c) which proportion of unique
correlations was considered necessary to differentiate items
(Levinson et al., 2018). The goldbricker output is interpreted
in a similar way to a scree plot in principal components
analysis: decisions are data driven but combined with theoretical
judgments regarding the exact cut off points. In the present
study, goldbricker was set to search for pairs of items that
were correlated at r > 0.50, with 0.25 as the significant
proportion for inclusion and 0.01 as the p-value for determining
statistical significance (Hittner et al., 2003; Levinson et al., 2018;
Bernstein et al., 2019).

Network Estimation and Visualization

A network consists of nodes and edges. Nodes represent the
individual item scores and the edges are connections between
nodes. Node placement was achieved using the Fruchterman and
Reingold (1991) algorithm, which places more important nodes
at the center of the model in terms of connections to other nodes.
An undirected weighted network was estimated a Gaussian
Graphical Model (GGM) using qgraph and regularized using
the Least Absolute Shrinkage and Selection Operator (LASSO).
The LASSO regularization returns a sparse network structure
as it reduces small connections (partial correlation coefficients)
between pairs of nodes to zero. The LASSO penalty is typically
implemented to overcome the limitation of relatively small
datasets used in psychological research to estimate networks
(Epskamp et al., 2017). More specifically, we used ggraph to
implement a graphical LASSO regularization (glasso, Friedman
et al., 2008), which is tuned using the hyperparameter gamma
(y) in combination with the Extended Bayesian Information
Criterion (EBIC; Chen and Chen, 2008). The hyperparameter
controls the trade-oftf between the inclusion of possible false-
positive edges (high specificity, y values close to 0) and the
removal of true edges (high sensitivity, y values close to 0.5)
in the final network (Heeren et al, 2018). We selected a
conservative value of y = 0.5, guiding the EBIC to favor a
sparse network structure with few edges. Epskamp’s bootnet
package automatically estimates this procedure in qgraph using
the “EBICglasso” default. In the resulting network, edges between
nodes signify conditional independence relationships among
the nodes, or more specifically, partial correlations between
pairs of nodes controlling for the influence of all other nodes
(Epskamp et al, 2017). In other words, the relationships
between symptoms account for all other relationships in the
model, functioning as a large multiple regression. As our
data was ordinal, we specified a Spearman’s correlation matrix
as the input for network estimation. We also conducted a
form of sensitivity analysis to address concerns that specificity
in EBICglasso networks can be lower when the network
is dense with many small edges, which can lead to false

positive identification of the smaller edges (Williams and
Rast, 2020). Although our main EBICglasso analysis used a
conservative level of the hyperparameter y, 0.5, to control
for potential false positives, we also constructed a more
conservative thresholded network that set edge weights to
zero when those edge weights were not larger than the set
threshold (see Supplementary Materials; Epskamp, 2018). The
network structures were visualized using the R-package ggraph
(Epskamp et al., 2012). Blue lines indicate positive partial
correlations and red lines negative partial correlations. More
saturated, thicker edges represent stronger relationships. To
assess the accuracy of the networks, we first estimated confidence
intervals on the edge weights using bootstrapping routines
(1,000 iterations) in bootnet. Smaller confidence intervals indicate
greater accuracy. We then conducted difference tests between all
pairs of edge weights.

Network Comparison

Male and female networks were compared using the Network
Comparison Test (NCT; van Borkulo, 2019). Comparison of
networks requires groups of equal sizes, otherwise regularization
becomes problematic. To overcome the imbalance between
males and females in the sample, we reduced the larger female
dataset to match the male dataset using random sampling.
We then estimated two networks as described for the overall
sample. Implemented in R, the NCT, which combines advanced
network inference with permutation testing, then evaluated
two hypotheses. The first that network strength was invariant
across the two sub-networks tested the extent to which
the network structures were identical. The second compared
invariant global network strength, which examined whether
overall sub-network connectivity was equal between the male
and female sub-networks. The NCT is a two-tailed permutation
test in which the difference between males and females is
calculated repeatedly (1,000 times) for randomly regrouped
individuals, with the assumption that both groups are equal.
The distribution can be used to test the observed difference
between the male and female networks, with a 0.05 significance
threshold (van Borkulo et al., 2015). As Stockert et al. (2018)
noted, the NCT was validated for networks based on Pearson
correlations. As we used Spearman correlations to construct
our network, we followed the same procedure as Stockert
et al. and investigated the similarity between the data’s Pearson
and Spearman correlation matrices. The resulting correlation
coefficient was r = 0.89 and on that basis, we used Pearson
correlations to compare the networks of the male and female
athletes. The result of the NCT was used to determine whether
subsequent network inference would proceed independently for
male and female athletes, or whether the sample could be
examined as a whole.

Network Structure and Inference

We estimated node predictability (Haslbeck and Waldorp, 2018)
using Haslbeck’s (2020) mgm package. Predictability is “the
degree to which a given node can be predicted by all the other
nodes in a network” (Haslbeck and Fried, 2017, p. 1) and is an
absolute measure of interconnectedness as it provides us with
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the variance of a node that is explained by all its neighbors. It
can be interpreted as being analogous to R?, or the percentage
of variance explained. Other measures of network structure and
inference are often used in the network literature, for example
strength centrality (Boccaletti et al., 2006) and expected influence
(Robinaugh et al., 2016), but these only address the relative
importance of nodes. As a result, in line with Briganti et al. (2019)
we relied upon node predictability to address the issue of node
interconnectedness.

Community Detection

To test whether the 15 items formed a single or multiple
communities within the network, we used Exploratory Graph
Analysis (EGA; Golino and Christensen, 2020) estimated using
the EGAnet package within the R environment. EGAnet uses
the Louvain community detection algorithm, which Christensen
et al. (2020) have demonstrated performs comparably or better
than the Walktrap or spinglass algorithms that have typically
been adopted in the network literature. The structure of detected
communities was further explored using standardized node
strength and structural consistency was examined using the
R package Bootstrap EGA (bootEGA; Golino and Christensen,
2020). Standardized node strength can be interpreted in the
same way as an exploratory factor analysis load matrix; however,
the community loadings are much smaller than the loadings
of a traditional factor analysis matrix as they represent partial
correlations (Christensen et al., 2020). To interpret these loadings
Christensen et al. recommend using effect sizes of 0.10, 0.30,
and 0.50, which correspond to small, moderate, and large effects,
respectively, however, these recommendations should be used
with caution as no norms have yet been established. Structural
consistency is the extent to which causally coupled components
form a coherent sub-network (community) within a network.
To calculate structural consistency, we used the non-parametric
bootEGA procedure, which computed the proportion of times
each community is exactly recovered from the replicate bootstrap
samples generated by bootEGA (Christensen et al., 2020).

Bridge Nodes

Using the bridge function from the R package networktools (Jones,
2020), we used one-step bridge expected influence, which is the
sum of the edge weights connecting a given node to all nodes
in the other community or communities, to identify important
nodes that serve as bridges between communities. Two-step
expected influence extends this measure by taking into account
the secondary influence of a node via the influence of those nodes
with which it shares an edge. For ease of interpretation, we plotted
z-scores rather than raw values.

RESULTS

Item Selection

The dependent correlation analysis run in goldbricker revealed
twenty-one pairs of items that were overlapping. One item from
each of these pairs was then removed, resulting in the removal of

10 items from the network. The final 15 items are highlighted in
Table 2.

Graphical LASSO Network

We produced two networks, a graphical LASSO network,
tuned using y = 0.5 in combination with the EBIC and a
thresholded network, which could account for the possibility
of detecting a large number of false positives in the EBIC
graphical LASSO model. The conservative thresholded method
produced a network that produced very few edges that likely
misrepresented the true sparsity of the network structure (see
Supplementary Material). We used the non-thresholded EBIC
graphical LASSO network for subsequent analyses. Figure 1
shows the graphical LASSO network representing the regularized
partial correlations among the 15 items of the TFAIL The
strongest edges identified were between the 2 nodes representing
perceived control (regularized partial correlation: 0.34), between
feeling physically nervous and my heart is racing (0.32), feeling
tense and having clammy hands (0.29), and worrying about
making mistakes and being conscious that others would judge
performance (0.26). There were also several negative edges that
linked the two perceived control nodes with other nodes across
the network. These edges were smaller in magnitude, for example,
the largest was between being confident of reaching one’s target
and worrying about making mistakes (—0.08), followed by a
series of six relationships where the regularized partial correlation
coefficient was —0.05.

Edge Weight Accuracy

The results of the accuracy analysis (Supplementary Figure S2)
indicated that some of the 95% confidence intervals for the
edge weights overlapped; however, many of the strongest
edges had intervals that did not overlap, suggesting that
they were significantly stronger. This interpretation was
supported by the bootstrapped edge-weight difference tests
(Supplementary Figure S3).

Network Structure: Gender Differences

The NCT test produced global connectivity values for males and
female networks of 5.70 and 5.40, respectively. This difference
in connectivity was not significant, p = 0.69. Similarly, the test
for network structure invariance also failed to reach significance,
M = 0.24, p = 0.32. The networks and edge weight bootstrap
results for males and females can be found in the Supplementary
Material. The edge weight bootstraps indicated that both the
male and female networks were less stable than the main network.
As the network structures did not differ for male and female
athletes, no further between-gender analyses were conducted.

Node Predictability

Estimates of node predictability can be found in Table 2. I feel
physically nervous scored highest on predictability, R* = 0.54,
indicating that over 50% of variance in this item could be
explained by the nodes with which it is connected. Over 40% of
the variance in I am worried I might make a mistake, R* = 0.47; My
body feels tense, R* = 0.46; and My heart is racing, R* = 0.40, could
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TABLE 2 | Items from the TFAI included in the network analysis following data reduction, including node predictability.

Node label Item Node Pred.
Cognitive dimension

MIST | am worried that | might make mistakes 0.47
UNCER | am worried about the uncertainty of what might happen 0.39
CONS | am worried about the consequences of failure 0.38
DWELL | tend to dwell on shortcomings in my performance 0.30
SCRUT | am aware that | will scrutinize my performance 0.27
CONS | am aware that | will be conscious of every movement | make 0.23
OTHER | am conscious that others will be judging my performance 0.33
Physiological dimension

NERV | feel physically nervous 0.55
HEAD | have a slight tension headache 0.28
LETH | feel lethargic 0.23
TENSE My body feels tense 0.46
RACE My heart is racing 0.40
CLAM My hands are clammy 0.31
Regulatory dimension

CAP | feel | have the capacity to be able to cope with this performance 0.24
CONF | am confident that | will be able to reach my target 0.19

Node Pred., Node Predictability.

© Cognitive
@ Physiological
@ Regulatory

FIGURE 1 | Gaussian graphical model of the final 15 TFAI items. Color groupings correspond to Jones et al.’s (2019) higher order dimensions of cognitive and
physiological anxiety and the regulatory dimension. Node labels represent abbreviations for items in Jones et al.’s model (see Table 2).

also be explained by their respective connected nodes. Mean
predictability across all of the nodes in the network was R? = 0.34
(SD = 0.10).

Community Detection

The EGA detected three communities of nodes that are depicted
using the different color schemes in Figure 1. Community
1 contained 3 items relating to worry (mistakes, uncertainty,

consequences), 3 relating to private self-focus (shortcomings,
scrutinize, conscious) and the single item representing public self-
focus (others). Community 2 included the 4 somatic tension
items (nervous, headache, lethargic, tense) and the 2 autonomic
hyperactivity items (heart racing, hands clammy), while the
final community comprised the 2 perceived control items
(capacity, confident). Standardized node strength, see Table 3,
was used to investigate the contribution of each node to the
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TABLE 3 | EGA community allocation and standardized node strength for each

node.
Node strength
Community 1 2 3

Mistakes 1 0.37 0.06 —0.13
Uncertain 1 0.21 0.16 —0.01
Consequences 1 0.32 0.05 0.00
Shortcomings 1 0.24 0.07 —-0.04
Scrutinize 1 0.28 0.00 0.02
Movement 1 0.20 0.06 0.00
Judging 1 0.28 0.02 0.03
Nervous 2 0.17 0.33 —0.01
Headache 2 0.09 0.25 -0.07
Lethargic 2 0.07 0.19 —0.11
Tense 2 0.01 0.45 0.00
Racing 2 0.04 0.25 0.05
Clammy 2 0.02 0.30 0.00
Capacity 3 -0.07 —0.09 0.33
Confident 3 —0.04 —0.03 0.33

coherence of each community. Using Christensen et al.’s (2020)
guidelines, the loadings for items on each of their respective
communities are in the moderate range, with only lethargic
registering a value of less than 0.20 in its primary community.
There are some small cross loadings; mistakes with community
3, 0.13; being worried about uncertainty with community 2,
0.16; feeling physically nervous with community 1, 0.17; and
lethargic with community 3, —0.11. Most of the cross-loadings
are small not only by traditional factor analysis standards but
also by partial correlation standards. This is because of the
LASSO penalty imposed during the estimation of the network,
leaving many nodes unconnected, which results in most of the
cross-community connections being small, producing the lower
loadings (Christensen et al., 2020). The structural consistency
values were high and ranged from 0.81 to 0.88 and 1.00 for
community 1, 2, and 3, respectively. Communities 1 and 2 are less
consistent that community 3. The small structural inconsistencies
in community 1 and 2 are explored in more detail in the
Supplementary Materials.

Bridge Expected Influence

Estimates of one-step (bridge EI1) and two-step (bridge EI2)
bridge expected influence are plotted in Figure 2. The values
reported are standardized expected influence values. Across the 3
communities identified, I feel physically nervous from community
2 was the most influential node for both one-step (bridge
EIl = 0.40) and two-step (bridge EI2 = 0.65) estimates. From
community 1, I am worried about the uncertainty of what might
happen had the highest bridge EI1 and EI2 scores; 0.30 and 0.59,
respectively. I feel I have the capacity to be able to cope with
this performance had the highest negative bridge EI1, —0.28, and
EI2, —0.55, values. Consistent with expected influence metrics,
a Bayesian Pearson’s correlation produced extreme evidence in
support of the hypothesis that bridge EI1 and EI2 scores were

positively related, r = 0.97, BF ¢ = 6.75e + 6, 95% CI: [0.88, 0.99],
see Supplementary Material for further detail.

DISCUSSION

To the best of our knowledge, this is the first study to examine
the network structure of the competitive state anxiety response.
To this end, our study was exploratory in nature. In terms of
network estimation, one of the most notable features of the
results was the observation that not all of the items were equally
important in determining the network structure of CSA, a feature
that highlights the value of viewing nodes as processes that can
interrelate without reflecting an underlying latent factor (van der
Maas et al., 2006). Looking more closely at the relative importance
of nodes using node predictability, the high scores recorded for
I feel physically nervous and I am worried that 1 might make
mistakes, indicate that a considerable amount of variation in
these symptoms can be explained by connections to other nodes
in the network. The interpretation of node predictability must
be conducted with the caveat that edges are non-directional
(Haslbeck and Waldorp, 2018). In calculating predictability, we
assume that all adjacent edges are directed toward that node, but
not vice versa. Consequently, Haslbeck and Waldorp note that
the predictability of a node acts as an upper boundary for how
much it is determined by the nodes connected to it. The two
relatively high predictability scores identify symptoms that afford
potential opportunities for controllability in the CSA response
(Haslbeck and Fried, 2017). If predictability is high, practitioners
might control symptoms via adjacent symptoms in the network.
For example, feeling physically nervous might be addressed using
traditional somatically oriented interventions that target the two
symptoms strongly connected to that node: My heart is racing,
and My body feels tense. Feeling physically nervous was also
connected to being worried about uncertainty, a cognitive anxiety
symptom, so practitioners might also use techniques designed to
manage this cognitive symptom in order to help athletes control
their physiological anxiety. While other conceptualizations of
CSA also feature interactions between cognitive and physiological
symptoms, for example, catastrophe models (Hardy, 1996), the
interactions described occur at the latent variable level. Network
models allow us to see how symptoms interact directly with one
another within the overall network structure. The potential to
target specific nodes with an intervention, which in turn has
a cascading effect to other nodes, might enable researchers to
explain how specific interventions prescribed to treat cognitive
and physiological anxiety separately according to the matching
hypothesis (Morris et al., 1981), can have cross-over effects
on different types of symptom. The cross over effects can be
more easily explained using network models without recourse to
explanations grounded in the shared variance of cognitive and
physiological anxiety. In a similar vein, network models also offer
a means of highlighting how multimodal treatment packages
(Burton, 1990) may help to control cognitive and physiological
aspects of anxiety. Feeling physically nervous was also connected
to one of the perceived control items, I feel I have the capacity
to be able to cope with this performance, so strategies to increase
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athletes’ coping capacity might also prove helpful. One of the
lowest predictability scores was for I feel lethargic, 0.23. While
some intervention via its neighbors might prove marginally
fruitful in managing this symptom, one might also search for
additional variables outside the network or try to intervene on
the node directly. It would, of course, be unwise to make any firm
recommendations based on this single study.

Mean predictability across the whole network was 34%, which
is a moderate level of predictability compared to values reported
in the clinical literature. For example, Fonseca et al. reported
that mean predictability in their network of schizotypal traits
was 27.8%, while Haslbeck and Fried reported values of 40%
for networks of depression and anxiety disorders. High overall
predictability can be interpreted as evidence for a network that
is self-determined, that is to say, the symptoms are generated
by one another. Low predictability is indicative of symptoms
that are largely influenced by variables outside the network, for
example, biological and environmental variables or additional
symptoms (Haslbeck and Fried, 2017). Thus, our results indicate
that variables contributing to the CSA response might be
missing in the estimated model. Some of this unaccounted for
variance might be attributed to the symptoms deleted during
the initial item selection procedure, used to ensure that our
network contained items that captured unique variance rather
than the shared variance inherent in the structure of Jones
et al.’s (2019) modified TFAL The mean predictability score for
the network comprised of the original 25-items of the TFAI
was 0.42, which indicates that we potentially lost 8% of the
network’s overall predictability by reducing the number of items
we used in our final 15-item network. We would prefer not to
sacrifice the parsimony of the 15-item network for increases in
node predictability.

Looking at the overall network structure, the thresholded
EBICglasso method produced a very sparse network (see
Supplementary Materials). We conducted the thresholded
analysis to guard against the possibility that specificity can be
lower in dense networks with many small edges, which could
lead to a large number of false positive edges (Williams and
Rast, 2020). The sparse network produced by the thresholded
analysis probably misrepresented the true nature of the network.
This is perhaps unsurprising as the thresholded method is
much more conservative than the regular EBICglasso, often
resulting in low sensitivity, which appears to be the case with
the present data. Thus, our choice of the non-thresholded
EBICglasso estimation was guided by the very sparse threshold
network estimated (Supplementary Figure S1) and by Epskamp
(2018), who suggested that for exploratory investigations such
as the present study, the original EBICglassso is likely to be
preferred, while for higher sample sizes and with a focus
on identifying small edges, the conservative threshold method
may be preferred.

The absence of any male-female differences in the network
supported the only research conducted with the TFAI that
has examined this individual difference (Cheng et al., 2011).
In a wider context, research conducted with the CSAI-2
over the last 40 years has also failed to find any consistent
differences between male and female athletes. A limitation
of our analysis in this respect is the relatively small sample
size used to compare the male and female networks. As
our sample only included 162 male athletes, we reduced the
size of the female sub-sample to the same number as the
Network Comparison Test is currently limited to comparisons
between equivalent groups (van Borkulo, 2019). Further research
examining potential differences between male and female
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athletes that also includes other moderating variables such
as skill level and sport type is needed to provide some
clarity as to how networks might differ as a function of
individual differences.

Community detection analyses revealed three distinct
subnetworks. An advantage of our method of community
detection, exploratory graph analysis, is the ability of the
bootEGA function to estimate and evaluate the stability of the
identified communities. While previous research has relied
upon more traditional walktrap and spinglass algorithms for
community detection, these methods are limited to placing items
in a single community. For psychological data, where items
might be expected to cross load between communities, this might
be problematic. bootEGA produced structural consistency values
of 1.00 for the regulatory community and 0.81 and 0.82 for the
cognitive and physiological anxiety communities, respectively.
As Christensen et al. (2020) note, there is insufficient research
to allow us to make judgments of how high or low the lower
levels of structural consistency for cognitive and physiological
anxiety are, but we can explore why these communities are
more structurally inconsistent. The results of this analysis
are presented in the Supplementary Materials. The three
communities identified by EGA corresponded to the second-
order dimensions of cognitive and physiological anxiety and
the regulatory dimension originally proposed by Cheng et al.
(2009) and supported by Jones et al. (2019). There was no
evidence to suggest that the network could be classified into the
six first-order factors that formed part of Jones et al’s (2019)
hierarchical model. Although no previous research has explored
state anxiety from a network perspective, Heeren et al. (2018)
have examined trait anxiety, noting that the trait response did
not decompose into communities or subnetworks and was best
represented as a unidimensional construct. Direct comparisons
are difficult to make as Heeren et al. focused upon anxiety as a
disposition rather than a state and they also chose to measure
trait anxiety using the STAI-T (Spielberger et al., 1983), which
is a scale designed to measure anxiety as a unidimensional
construct. One of the criticisms of the work conducted using
network analysis is the use of existing self-report measures and
in this respect the estimation of networks can only be as good as
the items included in the measure adopted by researchers. Future
research might focus on developing a more comprehensive
measure by engaging in a rigorous process of identifying self-
report, environmental and behavioral factors that can influence
competitive state anxiety.

In terms of bridge expected influence, which highlights
nodes that have the greatest effect on nodes outside their
own community, several symptoms stood out. Feeling physically
nervous from the physiological anxiety community was the
bridge node with largest influence throughout the network,
sharing large edge weights with I am worried about the
uncertainty of what might happen, which was the most influential
bridging node in the cognitive community, and I am worried
that I might make mistakes, also from the cognitive anxiety
community. I feel I have the capacity to be able to cope
with this performance had a bridge expected influence value
of —0.53 and Figure 1 illustrates how this node links with

other nodes outside of the perceived control community.
Although the edge weights are small, the negative associations
identify how perceived control might have the potential to
exert a dampening effect on both physiological and cognitive
anxiety symptoms.

While the present study makes a unique contribution to
the large body of literature on CSA and provides a novel
insight into the dynamics of the construct, there are several
limitations to consider that are in addition to the caveat
regarding the interpretation of node predictability and small sub-
sample size for the Network Comparison Test, noted above.
First, participants were from a community sample of athletes
experiencing a range of CSA responses. The network might look
different if the study was replicated on a sample of athletes who
experience high levels of CSA. Second, it is important not to draw
conclusions about the CSA response and its relationship with
performance from this data. The data are also cross sectional and
collected at one point in time. To more fully examine the anxiety-
performance relationship, further work is needed to examine how
CSA responds dynamically as a result of increased stress, for
example by comparing training and competition responses or by
tracking CSA across time to an important event and investigating
the impact of any change in CSA on athletic performance.
Finally, we do not suggest that the network model presented
here definitively captures the CSA construct. The aim of our
study was to highlight how network analysis can give us a new
perspective on how the component processes of the CSA response
cluster and interact, suggesting new approaches to intervention
by practitioners.

CONCLUSION

In conclusion, this study is the first to provide evidence that
competitive state anxiety can be conceptualized as a network
system. Our findings add to the growing body of literature that
has shown that personality dimensions can be conceptualized in
network terms. Further research is needed not only to replicate
the present data but also to investigate network dynamics as
a function of high and low levels of competitive stress and,
crucially, how these dynamics relate to performance. Without
the constraint that items reflect one or more latent constructs,
we have highlighted some of the implications of adopting a
network approach for practitioners; however, much more work
is needed before any concrete recommendations can be made.
Given the extensive literature on competitive state anxiety, our
findings set the scene for novel research directions focused
upon model conceptualization and the development of more
effective interventions.
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