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Bayesian approaches for estimating multilevel latent variable models can be beneficial in

small samples. Prior distributions can be used to overcome small sample problems, for

example, when priors that increase the accuracy of estimation are chosen. This article

discusses two different but not mutually exclusive approaches for specifying priors. Both

approaches aim at stabilizing estimators in such away that theMean Squared Error (MSE)

of the estimator of the between-group slope will be small. In the first approach, the MSE

is decreased by specifying a slightly informative prior for the group-level variance of the

predictor variable, whereas in the second approach, the decrease is achieved directly by

using a slightly informative prior for the slope. Mathematical and graphical inspections

suggest that both approaches can be effective for reducing the MSE in small samples,

thus rendering them attractive in these situations. The article also discusses how these

approaches can be implemented in Mplus.

Keywords: Bayesian estimation, Markov chain Monte Carlo, multilevel modeling, structural equation modeling,

small sample

As van de Schoot et al. (2017) pointed out, the number of applications of Bayesian approaches is
growing quickly, mainly because software that is easy to use such as Mplus (Muthén and Muthén,
2012) is providing Bayesian estimation as an option. Bayesian approaches can be beneficial in
several respects, for example, by offering greater flexibility (e.g., Hamaker and Klugkist, 2011;
Muthén and Asparouhov, 2012; Lüdtke et al., 2013) or fewer estimation problems (e.g., Hox et al.,
2012; Depaoli and Clifton, 2015; Zitzmann et al., 2016), particularly when latent variable models
are estimated. One major difference between Bayesian and traditional Maximum Likelihood (ML)
estimation is that the former not only uses the information from the data at hand (i.e., the likelihood
function) but combines it with additional information from what is called the prior distribution.
Inferences are based on the result of this combination, that is, the posterior distribution. Scholars
have advised researchers against the use of default priors in an automatic fashion and have
encouraged them to specify priors on their own (e.g., McNeish, 2016; Smid et al., 2020). This may
be an obstacle to some researchers. However, the prior can also be considered a feature of Bayesian
estimation that can be used to improve estimation by choosing a favorable prior—a task that is
particularly challenging but also particularly worth pursuing when the sample size is small.
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The choice of prior has received a lot of attention in
the methodological literature (e.g., Natarajan and Kass, 2000;
Gelman, 2006; Chung et al., 2013), and scholars have made
different suggestions about how priors can be specified in
advantageous ways. Only recently, Smid et al. (2020) discussed
how priors can be “thoughtfully” constructed on the basis of
previous knowledge about the parameter of interest (e.g., on
the basis of a previous study or a meta-analysis) in order to
reduce small-sample bias. However, it has been argued that the
variability of an estimator should not be ignored when evaluating
the quality of a method (e.g., Greenland, 2000; Zitzmann et al.,
2020), particularly when the sample size is small. Therefore,
other suggestions for specifying the prior have been aimed at
reducing the Mean Squared Error (MSE), which combines bias
and variability: MSE = bias2 + variability. One such approach
was proposed by Zitzmann et al. (2015), who focused on the
between-group slope in multilevel latent variable modeling. The
authors suggested that researchers should suitably modify the
estimator of the group-level variance of the predictor variable
because this will result in a more stable (i.e., more accurate)
estimator of the slope. To this end, a slightly informative prior is
specified for the group-level variance of the predictor to pull the
variance estimates away from zero (i.e., the indirect approach).
By doing so, the estimates of the slope will not be too large, and
the MSE of the estimator of the slope will be reduced. Notably,
in contrast to Smid et al.’s (2020) suggestion, the prior does
not need to match previous knowledge or the true value of the
parameter in the population. Rather, an incorrect prior whose
location deviates from the parameter in the population might
reduce the MSE even more than a correct prior will. Zitzmann
et al. (2015) found that for a standardized predictor (standardized
at Level 1), a slightly informative inverse gamma prior for the
group-level variance provided a somewhat biased but muchmore
accurate (because it had a smaller MSE) estimator in small
samples. Alternatively, to reduce the MSE of the estimator of the
slope, one can specify a slightly informative prior directly for the
slope in order to shrink the estimates and thereby ensure that they
will not be too large (i.e., the direct approach).

In the present article, we mathematically work out the idea
behind the direct approach for a simple multilevel latent variable
model, and we contrast this approach with the indirect approach
and with ML. Then, we graphically show the benefits that both
approaches have over ML when the sample size is small. Finally,
we discuss how these approaches can be implemented in Mplus.

1. EXAMPLE MODEL

Before we go into detail, we present an example model that
we will use later to illustrate the different strategies. The model
was suggested by Lüdtke et al. (2008) as one way to yield
(asymptotically) unbiased estimates of between-group slopes in
contextual studies (see also Asparouhov and Muthén, 2019). To
this end, on the group level in the model, the dependent variable
Y is predicted by a latent variable (i.e., the latent group mean)
instead of the unreliable manifest group mean of the predictor
variable, which is why the model was named themultilevel latent

covariate model (Lüdtke et al., 2008). Such latent group means
have become part of many more complex multilevel structural
equation models that are commonly applied in research practice
(see Preacher et al., 2010, 2016, for overviews of such models).

More specifically, the individual-level predictor X splits into
two uncorrelated and normally distributed parts: a between-
group part Xb, which is the latent group mean, and a within-
group part Xw, which is the individual deviation from Xb. For
a person i = 1, . . . , n in group j = 1, . . . , J, the decomposition
thus reads:

Xij = Xb,j + Xw,ij (1)

Xb,j is distributed around µX with variance τ 2X , whereas the

deviation Xw,ij has variance σ 2
X . Hereafter, we will also call

σ 2
X and τ 2X the within-group and between-group variances

of X, respectively.
Applying Raudenbush and Bryk’s (2002) notation, the

regression at the individual level reads:

Level 1: Yij = β0j + βwXw,ij + εij (2)

where βw is the (fixed) within-group slope that describes the
relationship between the predictor and the dependent variable at
the individual level, and the εij are normally distributed residuals.
The residual variance is σ 2

Y . At the group level, the intercept β0j

is regressed on Xb:

Level 2: β0j = α + βbXb,j + δj (3)

where α is the overall intercept, and βb is the between-group
slope (i.e., the relationship between X and Y at the group level).
The δj are normally distributed residuals with variance τ 2Y .

Here, we focus on the between-group slope (βb), which is of
great interest in many applications of multilevel models (e.g., in
the analysis of contextual effects). When the data are balanced
(i.e., equal numbers of persons per group), the ML estimator of
βb is given by:

β̂b =
τ̂YX

τ̂ 2X
(4)

where τ̂ 2X and τ̂YX are sample estimators of the group-
level variance of X and the group-level covariance of
X and Y , respectively.

Some statistical properties of the ML estimator in Equation 4
need to be discussed first to be able to compare this estimator
with the Bayesian estimators later on. First, by using the first-
order Taylor expansion (e.g., Casella and Berger, 2001; see also
Grilli and Rampichini, 2011) and ignoring terms involving higher
order factors such as 1

n2(n−1)
or 1

n2
for better readability, then the

bias of β̂b can roughly be approximated by:

E
(

β̂b

)

−βb ≈ −
2

J − 1

{

−
2 (1− ρX)

nρX
+

1− ρX

nρX

(

1+
βw

βb

)}

βb

(5)
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where ρX =
τ 2X

τ 2X+σ 2
X

is the intraclass correlation (ICC) of X.1

This equation could be simplified further, but we continue to
use this expression here to emphasize formal similarities with the
biases of the Bayesian estimators (see below). However, even in
its current form, it is evident from Equation (5) that the bias
critically depends on the sample size (because J occurs in the
denominator) and that the bias is generally non-zero in small
samples. However, if we let J become large, the bias diminishes
because 1

J−1 becomes very small—a property of the estimator that
we refer to as “asymptotic unbiasedness.” In a similar way, we can
yield an approximation of the variability of β̃b:

Var
(

β̂b

)

≈
1

J − 1

{[

ρY

ρX
+

1− ρX

nρX

(

ρY

ρX
+

1− ρY

1− ρX

)]

τ 2Y + σ 2
Y

τ 2X + σ 2
X

+

[

−1−
2 (1− ρX)

nρX

βw

βb

]

β2
b

}

(6)

where ρY =
τ 2Y

τ 2Y+σ 2
Y

is the ICC of Y . Similar to the bias, the

variability depends on the sample size in such a way that the
variability will be small when J is large. Because the MSE of β̂b

is the sum of the squared bias and the variability,

MSE
(

β̂b

)

≈

[

E
(

β̂b

)

− βb

]2
+ Var

(

β̂b

)

(7)

this measure will be small as well. Taken together, the more
information the data provide, the more the overall accuracy of
the estimator improves.

Whereas the asymptotic properties are favorable, the ML
estimator tends to be biased in small samples, and it has high
variability and thus a largeMSE in these situations (e.g., McNeish,
2017). This challenges the usefulness of the ML estimator when
the sample size is small because the result from a single study
might be highly inaccurate. Therefore, scholars have called
for alternative estimators that are less variable and thus more
accurate (i.e., they have a smaller MSE), although they might be
more biased thanML. In themultilevel literature, such estimators
have been suggested by Chung et al. (2013), Greenland (2000),
Grilli and Rampichini (2011), and Zitzmann et al. (2015), for
example. Next, we develop the direct strategy, and recap the
indirect strategy of specifying the prior.

2. THE DIRECT STRATEGY

We refer to the first strategy as the direct strategy because the
prior is specified directly for the between-group slope (βb). To
illustrate, we assume a normal prior, which can be formalized as:

βb ∼ N
(

a, b
)

(8)

which should be read as “βb is normally distributed with mean a
and variance b.” However, for better interpretability, we employ

1The ICC quantifies the amount of the total variance that can be attributed to

differences between the groups (e.g., Snijders and Bosker, 2012).

another, more convenient parameterization. Instead of a and b,

we use the terms β0 and
τ 2Y

ν0τ
2
X

:

βb ∼ N

(

β0,
τ 2Y

ν0τ
2
X

)

(9)

As we will show, β0 and ν0 can be meaningfully interpreted.
One way of expressing the likelihood for the slope is:

βb ∼ N

(

β̂b,
τ̂ 2Y

Jτ̂ 2X

)

(10)

where τ̂ 2Y and τ̂ 2X are the sampling variances of τ 2Y and τ 2X ,
respectively. If we combine the prior in Equation (9) with the
likelihood, we obtain the following posterior:

βb ∼ N

(

ν0

ν0 + J
β0 +

J

ν0 + J
β̂b,

J

ν0 + J

τ̂ 2Y

Jτ̂ 2X

)

(11)

which is also a normal distribution. The mean of this distribution
defines the Bayesian Expected A Posteriori (EAP) estimator,
which is the standard choice for a point estimator in Bayesian
estimation (Note that the Bayes module inMplus uses themedian
of the posterior).Withw =

J
ν0+J , this Bayesian estimator can also

be expressed as:

β̄b = (1− w) β0 + wβ̂b (12)

As can be seen from the equation, the estimator is simply the
weighted average of the mean of the prior (β0) and β̂b, which
suggests straightforward interpretations for the parameters of the
prior. One may think of β0 as the prior guess for the between-
group slope and ν0 as the prior sample size (see also Hoff, 2009).
These interpretations are substantiated by the observation that
the larger ν0, the smaller w, and the more the estimates shrink
toward β0. Less technically speaking, whenwe aremore confident
in β0, the prior will gain more weight, and the posterior will
shift to the mean of the prior. However, when we choose ν0 to
be very small, w will be close to 1, and β̄b will be similar to β̂b,
which justifies the view that the modified estimator includes the
original ML estimator as a limiting case. Notice that the prior
guess does not need to represent previous knowledge about βb.
Rather, it could be set to a value that is much smaller than what
previous studies have suggested and also much smaller than the
parameter in the population. However, such an “incorrect” prior
guess might still be beneficial, particularly when the sample size
is small.

To be able to compare the properties of the Bayesian estimator
with the ML estimator and with the Bayesian estimator from the
second strategy of specifying the prior, we again use the Taylor
expansion, and we ignore terms involving higher order factors. A
rough approximation of the bias of β̄b is then given by:

E
(

β̄b

)

− βb ≈ (1− w) β0

+

{

− (1− w) −
2w

J − 1

[

−
2 (1− ρX)

nρX

+
1− ρX

nρX

(

1+
βw

βb

)]}

βb (13)
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Similar to the ML estimator, β̄b is generally biased when
the sample size is small. However, the bias vanishes when J
approaches infinity because w approaches 1, and 1

J−1 approaches
0 (asymptotic unbiasedness). Moreover, if ν0 is set to a value close
to 0, the bias will become similar to the bias of β̂b.

The variability of β̄b can be approximated as:

Var
(

β̄b

)

≈
w2

J − 1

{[

ρY

ρX
+

1− ρX

nρX

(

ρY

ρX
+

1− ρY

1− ρX

)]

τ 2Y + σ 2
Y

τ 2X + σ 2
X

+

[

−1−
2 (1− ρX)

nρX

βw

βb

]

β2
b

}

(14)

With a very large J, the variability becomes negligibly small,
and the same holds for the MSE. However, the more interesting
questions are: How does the MSE of β̄b depend on the prior
parameters (β0, ν0) when the sample size is small, and how must
they be chosen such that the MSE will be smaller than the MSE
of ML? Before we compare the different choices for (β0, ν0), we
present another strategy for specifying the prior. Alternatively to
specifying the prior directly for the between-group slope, one can
also specify a prior for the group-level variance of the predictor,
thereby also modifying the estimator of the slope. We call this
strategy the indirect strategy.

3. THE INDIRECT STRATEGY

The principle that underlies the indirect strategy was discovered
in the early years of Structural Equation Modeling (SEM), where
models were fit on the basis of the variances and covariances of
variables. One observation was that when the sample size was
small, covariance matrices tended to be on the border of positive
definiteness (e.g., a variance estimate close to 0, correlations close
to −1 or 1; e.g., van Driel, 1978; Dijkstra, 1992; Kolenikov and
Bollen, 2012). Hence, estimators of slope parameters tended to
have high variability and thus also a large MSE. This led Yuan
and Chan (2008) to develop the ridge technique to mitigate such
problems as it modifies the estimator of the covariance matrix
by adding a small value to the main diagonal (see also Yuan and
Chan, 2016; Yang and Yuan, 2019). The main idea behind this
technique can also be adapted for Bayesian estimation. Papers by
Chung et al. (2013), Chung et al. (2015), or Zitzmann et al. (2015)
are good examples of this. By means of simulation, Zitzmann
et al. (2015) verified that specifying a slightly informative prior
for the group-level variance of the predictor that pulls estimates
of this variance slightly away from zero can increase the accuracy
of the estimator of the between-group slope by reducing its
MSE. Note that pulling the variance estimates away from zero
corresponds to adding a value to these estimates. A formal
argument for why such a prior reduces theMSE was only recently
presented by Zitzmann et al. (2020). For reasons of completeness
and comparability with the two previously presented estimators,
we illustrate the strategy here once more, using the example
model from above.

Rather than beginning with the assumption of a normal prior
for the between-group slope, we begin with a gamma prior for the

inverse of the group-level variance of the predictor variable (τ 2X):

1

τ 2X
∼ Gamma

(

a, b
)

(15)

where a and b are the parameters of the gamma distribution.2

Equation (15) reads “τ 2X is inverse-gamma distributed.” As
for the normal prior in the previous section, we employ a
reparameterization for better interpretability later on. If we set

a to ν0
2 and b to

ν0τ
2
0

2 , the prior reads:

1

τ 2X
∼ Gamma

(

ν0

2
,
ν0τ

2
0

2

)

(16)

where, as we will show, τ 20 and ν0 have interpretations similar to
those of the parameters of the (reparameterized) normal prior.

The likelihood for the inverse of the group-level variance can
be written as:

1

τ 2X
∼ Gamma

(

J

2
,
Jτ̂ 2X
2

)

(17)

where τ̂ 2X is the sample variance. Combined with the prior in
Equation (16), we yield the inverse gamma posterior:

1

τ 2X
∼ Gamma

(

ν0 + J

2
,
ν0τ

2
0 + Jτ̂ 2X
2

)

(18)

As Zitzmann et al. (2020) showed in their Appendix C, the mean
of this distribution can be approximated as:

τ̄ 2X ≈ (1− w) τ 20 + wτ̂ 2X (19)

where w =
J

ν0+J . This equation defines the Bayesian EAP

estimator of τ 2X . It is interesting to note that the equation
resembles Equation (12). The right-hand side of the equation is
also a weighted average, and τ 20 and ν0 can be thought of as the
prior guess and the prior sample size, respectively (see Hoff, 2009;
Lüdtke et al., 2018; Zitzmann et al., 2020).

Adding a prior for τ 2X also has consequences for the estimator
of the between-group slope (βb). Replacing the denominator in
Equation (4) (τ̂ 2X) with τ̄ 2X results in:

β̃b =
τ̂YX

(1− w) τ 20 + wτ̂ 2X
(20)

This new estimator is indicated by a tilde (∼) in order to better
differentiate it from the ML estimator and from the Bayesian
estimator that results from the direct strategy of specifying the
prior (Equation 12).

2The inverse of a variance is sometimes also referred to as the precision in the

statistical literature (e.g., Hoff, 2009).
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To derive some properties of β̃b, we apply exactly the same
reasoning that led to the respective properties of β̂b and β̄b.
Accordingly, the bias of β̃b is roughly:

E
(

β̃b

)

− βb ≈
(

f − 1
)

βb −
2wf 2

J − 1

{

−wf

[

1+
2 (1− ρX)

nρX

]

+ 1

+
1− ρX

nρX

(

1+
βw

βb

)}

βb (21)

where f is used as an abbreviation for the ratio
τ 2X

(1−w)τ 20+wτ 2X
.3

Notice that the equation implies that β̃b is generally biased when
the sample size is finite, whereas the bias diminishes when J
approaches infinity (asymptotic unbiasedness). Moreover, the
bias becomes similar to the biases of β̄b and β̂b when we let ν0
become very small.

The variability of β̃b is:

Var
(

β̃b

)

≈
f 2

J − 1

{[

ρY

ρX
+

1− ρX

nρX

(

ρY

ρX
+

1− ρY

1− ρX

)]

τ 2Y + σ 2
Y

τ 2X + σ 2
X

+

[

2wf

(

wf

(

1+
2 (1− ρX)

nρX

)

− 2

(

1+
1− ρX

nρX

(

1+
βw

βb

)))

+ 1

+
2 (1− ρX)

nρX

βw

βb

]

β2
b

}

(22)
Similar to the previous equation, we can easily infer that when
J is large, the variability will be small and, thus, the MSE,
which combines bias and variability, will be small as well—an
observation that once again demonstrates the role of the sample
size in determining the accuracy of estimations. However, as
mentioned above, it is muchmore interesting to ask how the prior
parameters τ 20 and ν0 must be chosen such that the MSE will be
reduced in comparison with ML in small samples.

4. COMPARING THE MSEs IN SMALL
SAMPLES

In this section, we investigate the MSE of the different strategies
for specifying priors in small samples for different choices of
the prior parameters, using the example model from above to
simulate data that are typical in psychology. Because it is difficult
to infer from the equations how the MSEs compare with each
other, they were plotted against the sample size to allow for
graphical comparisons.

In accordance with Lüdtke et al. (2008), we considered the
case of standardized variables (standardized at Level 1), and

3We would like to state that we recognized a typo in the bias formula of

Zitzmann et al.’s (2020) original publication. There should be a minus sign in

front of the first term of the curly-bracketed expression. Equation (21) presents the

corrected formula. However, the numerical results on which Figure 3 in Zitzmann

et al. (2020) was based were not affected by the typo because these results were

generated from formulas that were correct and also provided even more precise

approximations than the ones presented in the article (because terms with higher

order factors were not omitted).

we assumed that the between-group slope (βb) was 0.7 in
the population. Moreover, we set the number of persons per
group (n) to 5, which is not uncommon in many subdisciplines
of psychology, including organizational, personality, and social
psychology. The ICC of the predictor was 0.1, which could be
considered small- to medium-sized compared with typical ICCs
(Snijders and Bosker, 2012; Zitzmann et al., 2015). The sample
size at the group level (J) was varied from 20 to 60 groups because
these numbers represent small sample sizes (e.g., Hox et al.,
2012; see also Hox et al., 2010) and the aim was to compare the
estimators in these situations.

Figure 1 depicts a normalized version of the MSE, the Root
Mean Squared Error (RMSE), for five different estimators of
the slope. The first estimator in the figure is the ML estimator
(solid black line). The second estimator (blue dashed line) is
the Bayesian estimator that results when the direct strategy is
combined with a correct prior for βb (i.e., the prior guess, β0,
equals the parameter in the population). Because βb was 0.7 in the
population, a correct prior for βb was specified by setting β0 equal
to this value. The third estimator (blue dotted line) also resulted
from the direct strategy. However, β0 was set to 0 (and thus well
below 0.7) in order to shrink estimates that were too large toward
zero. The fourth estimator (red dashed line) resulted from the
indirect strategy with a correct prior for the group-level variance
of the predictor (τ 2X). The prior guess (τ

2
0 ) was set to 0.1, which

was the value of τ 2X in the population.4 The fifth estimator (red
dotted line) resulted from the indirect strategy as well. However,
β0 was set to 1, which was above the parameter in the population.
Thus, estimates of the variance were pulled away from zero, and,
therefore, the estimates of the slope were shrunken. The three
different panels of Figure 1 show the RMSEs for different values
of ν0: 0.1 (upper left), 1.0 (upper right), and 5.0 (lower left). The
first two values can be considered choices that are only slightly
informative, whereas the latter is more informative and was used
here to illustrate what happens to the RMSE when the priors
become more informative.

As can be seen in the Figure 1, the different estimators tended
to provide different RMSEs. The RMSE was largest for the ML
estimator, whereas the RMSE was reduced when a Bayesian
estimator was used. The reduction was particularly pronounced
when J was very small. In addition and more important, the
extent of the reduction also depended on the strategy for
specifying the prior and the choices for the prior parameters.
Although the direct strategy reduced the RMSE overall, the
RMSE was slightly smaller when this strategy was combined with
an incorrect prior (i.e., β0 = 0) than with a correct prior (i.e.,
β0 = 0.7). Moreover, the choice of a larger ν0 was associated with
a smaller RMSE. However, the smallest RMSEs emerged when the
indirect strategy was used with an incorrect prior (i.e., τ 20 = 1,
which was also the upper bound of τ 2X due to standardization).
With a larger value of ν0 = 1, the RMSE was reduced relative to
a ν0 of 0.1. However, setting ν0 to 5 did not yield an RMSE that
was even smaller. Rather, the RMSE was slightly larger than with
a ν0 of 1 because the bias induced by the prior outweighed the
variability in the computation of the RMSE. Additional results

4Because of the standardization, τ 2X is equal to the value of the ICC.
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FIGURE 1 | The analytically derived Root Mean Squared Error (RMSE) in estimating the between-group slope for the direct and the indirect approach as a function of

the sample size at the group level (J) and the prior distribution. Results are shown for n = 5 persons per group and an intraclass correlation of ICC = 0.1. ML,

maximum likelihood; direct, the prior was specified directly for the between-group slope; indirect, the prior was specified for the group-level variance of the predictor

variable; correct, correct prior (i.e., the prior guess equaled the value of the parameter in the population); incorrect, incorrect prior (i.e., the prior guess deviated from

the parameter in the population); ν0, prior sample size.

are presented in the Appendix. Figure A1 shows the RMSEs
of the different estimators for a larger number of 10 persons
per group, whereas Figure A2 shows the RMSEs for a higher
ICC of .2. Although the RMSEs were smaller in Figures A1, A2
compared with Figure 1, the big picture was similar overall:
The different estimators provided different RMSEs. All Bayesian
estimators provided smaller RMSEs than the ML estimator in
very small samples except the indirect strategy with an incorrect
informative prior.

To sum up, both strategies for specifying the prior offer
attractive ways to obtain more accurate estimators of the
between-group slope in small samples when used with slightly
informative priors. Especially when no previous knowledge exists

about the parameters, the choice of a relatively small prior guess
for the between-group slope or a relatively large prior guess for
the group-level variance of the predictor could be useful when
these choices are combined with a small ν0 in the low one-
digit range. Although somewhat biased, the resulting Bayesian
estimators of the slope were found to be more accurate than ML
when the sample size was small.

5. DISCUSSION

It has been argued that Bayesian approaches can be beneficial
when the sample size is small because prior distributions can
be used to increase estimation accuracy. In the present article,
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we focused on the between-group slope because this parameter
is often of interest in multilevel latent variable modeling. Two
approaches for specifying priors can be distinguished, both
of which are aimed at reducing the MSE of the estimator
of the between-group slope: In the first approach, a slightly
informative prior is specified directly for the slope, whereas in
the indirect approach, the MSE is reduced by using a slightly
informative prior for the group-level variance of the predictor
variable. In the present article, we worked out the former
approach mathematically and compared it with the indirect
approach and with ML. Graphical inspections suggested that
both approaches can be very effective in reducing the MSE
compared with ML in small samples, rendering them attractive
for researchers. We would like to add that these approaches

are not mutually exclusive and that researchers can also apply
them simultaneously by specifying slightly informative priors
for the slope as well as for the group-level variance of the
predictor variable. To provide initial information about how such
a simultaneous application of the two approaches performs, we
conducted an additional simulation study with 20 to 60 groups,
5 persons per group, and an ICC of the predictor variable of
0.1. Figure 2 depicts the RMSE for five different estimators of
the slope. The first estimator is the ML estimator (solid black
line). The second estimator (blue dashed line) is the Bayesian
estimator that resulted when the direct strategy and the indirect
strategy were simultaneously applied and combined with correct
priors for the between-group slope and the group-level variance
of the predictor, respectively. The third estimator (blue dotted

FIGURE 2 | The simulated Root Mean Squared Error (RMSE) in estimating the between-group slope for the combined approach as a function of the sample size at

the group level (J) and the prior distribution. Results are shown for n = 5 persons per group and an intraclass correlation of ICC = 0.1. ML, maximum likelihood;

correct/correct, correct priors (i.e., the prior guesses equaled the values of the parameters in the population) were specified for the between-group slope and the

group-level variance of the predictor variable; correct/incorrect, a correct prior was specified for the between-group slope, and an incorrect prior (i.e., the prior guess

deviated from the parameter in the population) was specified for the group-level variance of the predictor variable; incorrect/correct, an incorrect prior was specified

for the between-group slope, and a correct prior was specified for the group-level variance of the predictor variable; incorrect/incorrect, incorrect priors were specified

for the between-group slope and the group-level variance of the predictor variable; ν0, prior sample size.
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line) also resulted from combining the two strategies. However,
whereas the direct strategy was combined with a correct prior,
the indirect strategy was combined with an incorrect prior. The
fourth estimator (red dashed line) resulted from simultaneously
applying the direct strategy with an incorrect prior and the
indirect strategy with a correct prior. The fifth estimator (red
dotted line) resulted from the simultaneous application of the two
strategies as well. However, both strategies were combined with
incorrect priors. The three different panels of the figure show the
RMSEs for different values of the prior sample size. Again, the
RMSE was largest for the ML estimator, whereas the RMSE was
reduced when a Bayesian estimator was used, particularly when
this estimator was combined with slightly informative priors
and the sample size was small. Thus, the overall finding from
this simulation confirmed that a simultaneous application of
the two approaches (i.e., specifying slightly informative priors
for the slope as well as for the group-level variance of the
predictor variable) can also be beneficial. However, because the
consequences of such a use could not be studied exhaustively
here, it would be interesting to conduct a more thorough
simulation on this topic in future research.

Although our findings were generally favorable and could be
considered a successful “proof of concept,” a word of caution is
nevertheless needed. Our demonstrations were very limited. For
example, the specific conditions we studied do not completely
reflect real data. Future research should consider a wider range of
conditions for more conclusive findings. Moreover, the example
model we used was overly simple. Realistic models typically
involve more than one predictor and also multiple indicators
per construct. However, one can derive the Bayesian estimators
analogously in this more general multivariate case. Zitzmann
(2018) even showed that in a multilevel SEM with two latent
predictors with three indicators each, a slightly informative
inverse Wishart prior for the covariance matrix of the predictors
led to more accurate estimators of the between-group slopes,
particularly when the samples size was small. Finally, the MSEs
of the estimators we derived were only rough approximations.
These approximations can nevertheless be useful for deriving
hypotheses about which prior works well under which condition.

Before we come to Mplus, we wish to acknowledge that
parameter stabilization does not require Bayesian estimation.
In fact, the idea of using slightly informative priors is similar
to using techniques from the frequentist framework (Hastie
et al., 2009). For example, the weighting parameter (w) of the
Bayesian estimator in Equation (12) has an effect similar to
that achieved by the penalty in regularized SEM (e.g., Jacobucci
et al., 2016), and the weighting parameter in Equation (19)
corresponds with the tuning parameter in ridge generalized least
squares (e.g., Yuan and Chan, 2016) and regularized consistent
partial least squares estimation (e.g., Jung and Park, 2018).
Despite the existence of these methods, we employed Bayesian
estimation here for reasons of convenience and because this type
of estimation is an option in Mplus, which is the software that
many researchers use to fit multilevel latent variable models.

Mplus does not use Bayesian estimation as the default, and
users must request it by setting ESTIMATOR to BAYES. Next,
to yield a more accurate estimator of the between-group slope

by using a slightly informative prior for this parameter, users
must specify such a prior manually. In Mplus, normal priors are
parameterized as in Equation (8), where a is the mean and b is the
variance. Thus, to specify a normal prior with the prior guess (β0)
and the prior sample size (ν0) equaling 0 and 1, respectively, users

must compute a and b first. Given a = β0 and b =
τ 2Y

ν0τ
2
X

, we yield

an a of 0 and a b of
τ 2Y
τ 2X
. Because τ 2Y and τ 2X are unknown, they

need to be replaced with, for example, their sample estimates.
Assuming that these estimates are τ̂ 2Y = 0.15 and τ̂ 2X = 0.1, then
the prior is specified by the following line of code:

MODEL PRIORS:
Name of slope ~ N( 0, 1.5);

Our findings suggest that this prior increases the accuracy of
estimation in small samples. Choosing an even smaller value for b
can also be useful in these situations. Alternatively, one could also
specify a slightly informative prior for the group-level variance
of the predictor. To be able to do this, users must compute the
parameters a and b in Equation (15) because Mplus uses this
parameterization of the inverse gamma prior. Setting both τ 20 and

ν0 to 1 results in a = b = 1
2 , using a =

ν0
2 and b =

ν0τ
2
0

2 . The
following code line implements the prior with Mplus:

MODEL PRIORS:
Name of variance ~ IG( 0.5, 0.5);

For a standardized predictor, this prior is quite effective when the
sample size is small. Specifying somewhat larger values (e.g., by
setting ν0 = 2) might increase estimation accuracy even further
(Depaoli and Clifton, 2015).

To conclude, we worked out and discussed Bayesian
approaches that perform better than ML in small samples,
and we offered some practical guidance on how to implement
these approaches with Mplus. We hope that this article will
help researchers in the field of psychology move beyond using
Bayesian estimation as “just another estimator” and will help
them make choices that are beneficial when their aim is to fit
multilevel latent variable models and the sample size is small.
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APPENDIX

FURTHER RESULTS

FIGURE A1 | The analytically derived Root Mean Squared Error (RMSE) in estimating the between-group slope for the direct and the indirect approach as a function

of the sample size at the group level (J) and the prior distribution. Results are shown for n = 10 persons per group and an intraclass correlation of ICC = 0.1. ML,

maximum likelihood; direct, the prior was specified directly for the between-group slope; indirect, the prior was specified for the group-level variance of the predictor

variable; correct, correct prior (i.e., the prior guess equaled the value of the parameter in the population); incorrect, incorrect prior (i.e., the prior guess deviated from

the parameter in the population); ν0, prior sample size.
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FIGURE A2 | The analytically derived Root Mean Squared Error (RMSE) in estimating the between-group slope for the direct and the indirect approach as a function

of the sample size at the group level (J) and the prior distribution. Results are shown for a small number of n = 5 persons per group and an intraclass correlation of

ICC = 0.2. ML, maximum likelihood; direct, the prior was specified directly for the between-group slope; indirect, the prior was specified for the group-level variance of

the predictor variable; correct, correct prior (i.e., the prior guess equaled the value of the parameter in the population); incorrect, incorrect prior (i.e., the prior guess

deviated from the parameter in the population); ν0, prior sample size.
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