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Alzheimer’s Disease (AD) is a form of dementia that affects the memory, cognition,

and motor skills of patients. Extensive research has been done to develop accessible,

cost-effective, and non-invasive techniques for the automatic detection of AD. Previous

research has shown that speech can be used to distinguish between healthy patients

and afflicted patients. In this paper, the ADReSS dataset, a dataset balanced by

gender and age, was used to automatically classify AD from spontaneous speech.

The performance of five classifiers, as well as a convolutional neural network and long

short-term memory network, was compared when trained on audio features (i-vectors

and x-vectors) and text features (word vectors, BERT embeddings, LIWC features, and

CLAN features). The same audio and text features were used to train five regression

models to predict the Mini-Mental State Examination score for each patient, a score that

has a maximum value of 30. The top-performing classification models were the support

vector machine and random forest classifiers trained on BERT embeddings, which

both achieved an accuracy of 85.4% on the test set. The best-performing regression

model was the gradient boosting regression model trained on BERT embeddings and

CLAN features, which had a root mean squared error of 4.56 on the test set. The

performance on both tasks illustrates the feasibility of using speech to classify AD and

predict neuropsychological scores.

Keywords: Alzheimer’s disease, dementia detection, speech, BERT, i-vectors, x-vectors, word vectors, MMSE

prediction

1. INTRODUCTION

Alzheimer’s Disease (AD) is a progressive, neurodegenerative disease that affects the lives of more
than 5 million Americans every year. The number of Americans living with AD is expected to
be more than double that number by 2050. AD is a deadly and costly disease that has negative
emotional, mental, and physical implications for those afflicted with the disease and their loved
ones (Alzheimer’s Association, 2019).

There is currently no cure for AD (Yadav, 2019) and early detection is imperative for effective
intervention to occur (De Roeck et al., 2019). Currently, AD is diagnosed using PET imaging
and cerebrospinal fluid exams to measure the concentration of amyloid plaques in the brain, a
costly and invasive process (Land and Schaffer, 2020). A more cost-effective, non-invasive and
easily-accessible technique is needed for detecting AD.

Previous research has shown that speech can be used to distinguish between healthy and AD
patients (Pulido et al., 2020). Some researchers have focused on developing new machine learning
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model architectures to improve detection (Chen et al., 2019;
Chien et al., 2019; Liu et al., 2020), while others have used
language models (Guo et al., 2019) to classify AD. Others have
focused on trying to extract acoustic and text features that capture
information indicative of AD. These features include non-verbal
features, such as the length of segments and the amount of silence
(König et al., 2015). Other researchers have used linguistic and
audio features extracted from English speech (Fraser et al., 2016;
Gosztolya et al., 2019), as well as Turkish speech (Khodabakhsh
et al., 2015). Prosodic features have been extracted from English
speech (Ossewaarde et al., 2019; Nagumo et al., 2020; Qiao et al.,
2020) and German speech (Weiner et al., 2016) to classify AD,
and so have paralinguistic acoustic features (Haider et al., 2019).
Other researchers have chosen to focus on the type of speech
data that is used instead of the type of model or type of features
and have used speech from people performing multiple tasks to
improve generalizability (Balagopalan et al., 2018). This provides
a brief summary of the work that has been done in the past few
years. A more extensive review of the background literature can
be found in the review paper of de la Fuente Garcia et al. (2020).

Although promising research has been done, the datasets that
have been used are often imbalanced and vary across studies,
making it difficult to compare the effectiveness of different
modalities. Two recent review papers (Voleti et al., 2019; de la
Fuente Garcia et al., 2020) explain that an important future
direction for the detection of cognitive impairment is providing
a balanced, standardized dataset that will allow researchers to
compare the effectiveness of different classification techniques
and feature extraction methods. This is what the ADReSS
challenge attempted to do. The ADReSS challenge provided
an opportunity for different techniques to be performed on a
balanced dataset that alleviated the common biases associated
with other AD datasets and allowed those techniques to be
directly compared.

Previous work has been done using the ADReSS dataset.
Some researchers only participated in the AD classification task
(Edwards et al., 2020; Pompili et al., 2020; Yuan et al., 2020),
others only participated in the Mini-Mental State Examination
(MMSE) prediction task (Farzana and Parde, 2020), and others
participated in both tasks (Balagopalan et al., 2020; Cummins
et al., 2020; Koo et al., 2020; Luz et al., 2020; Martinc and
Pollak, 2020; Pappagari et al., 2020; Rohanian et al., 2020; Sarawgi
et al., 2020; Searle et al., 2020; Syed et al., 2020). The best
performance on the AD classification task was achieved by Yuan
et al. (2020), who obtained an accuracy of 89.6% on the test set
using linguistic features extracted from the transcripts, as well as
encoded pauses. The best performance on the MMSE prediction
task was achieved by Koo et al. (2020), who obtained a root mean
squared error (RMSE) of 3.747 using a combination of acoustic
and textual features.

In this paper, audio features (i-vectors and x-vectors) and
text features (word vectors, BERT embeddings, LIWC features,
and CLAN features) were extracted from the data and used to
train several classifiers, neural networks, and regression models
to detect AD and predict MMSE scores. I-vectors and x-vectors,
originally intended to be used for speaker verification, have been
shown to be effective for detecting AD (López et al., 2019) and

other neurodegenerative diseases, such as Parkinson’s Disease
(Botelho et al., 2020; Moro-Velazquez et al., 2020). Word vectors
have also been shown to be useful for detecting AD (Hong et al.,
2019). I-vectors, x-vectors, and BERT embeddings have been
used with the ADReSS dataset to classify AD (Pompili et al.,
2020; Yuan et al., 2020) and predict MMSE scores (Balagopalan
et al., 2020). Pompili et al. (2020) used the same audio features
that we used and also used BERT embeddings, but they did not
apply their techniques to theMMSE prediction task and their best
fusion model obtained lower performance on the classification
task than our best model. The difference between our work and
the work of Balagopalan et al. (2020) and Yuan et al. (2020) is that
they finetuned a pre-trained BERT model on the ADReSS data
and used that model for classification and regression, whereas
we used a pre-trained BERT model as a feature extractor and
then trained different classifiers and regressors on the extracted
BERT embeddings.

CLAN features were used in the baseline paper (Luz et al.,
2020) and were combined with BERT embeddings in this paper
to explore whether performance improved. Lastly, LIWC features
have been used to distinguish between AD patients and healthy
controls in the past (Shibata et al., 2016) but the dataset was very
small (nine AD patients and nine healthy controls), and to our
knowledge, literature using LIWC for Alzheimer’s detection is
limited. However, LIWC features have been used to analyze other
aspects of mental health (Tausczik and Pennebaker, 2010) and
may be useful in the field of AD. For these reasons, we wanted
to further explore whether LIWC features could be useful for
AD detection and MMSE prediction. Even though our results
do not out-perform the best performance on the classification
and MMSE prediction tasks, the approaches we employ are
different than previous approaches, which provides additional
insight into which techniques are best for AD classification and
MMSE prediction.

2. MATERIALS AND METHODS

2.1. ADReSS Dataset
The ADReSS challenge dataset consists of audio recordings,
transcripts, and metadata (age, gender, and MMSE score) for
non-AD and AD patients. The dataset is balanced by age, gender,
and number of non-AD vs. AD patients, with there being 78
patients for each class. The audio recordings are of each patient
completing the cookie theft picture description task, where each
participant describes what they see in the cookie theft image. This
task has been used for decades to diagnose and compare AD
and non-AD patients (Cooper, 1990;Mendez and Ashla-Mendez,
1991; Giles et al., 1996; Bschor et al., 2001; Mackenzie et al.,
2007; Choi, 2009; Hernández-Domínguez et al., 2018; Mueller
et al., 2018), as well as patients with other forms of cognitive
impairment, and was originally designed as part of an aphasia
examination (Goodglass and Kaplan, 1983).

Normalized audio chunks were provided for each speaker,
in which a voice activity detection (VAD) system was applied
to each patient’s recording to split it into several chunks. The
VAD system used a log energy threshold value to detect the
sections of the audio that contained speech by ignoring sounds
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TABLE 1 | Age and gender details for patients in the training set, as well as the average MMSE scores, average years of education, and corresponding standard

deviations (sd), for the patients in each age interval.

AD Non-AD

Age interval Male Female MMSE (sd) Educ. (sd) Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 30.0 (n/a) 12.0 (n/a) 1 0 29.0 (n/a) 12.0 (n/a)

[55, 60) 5 4 16.3 (4.9) 12.4 (1.7) 5 4 29.0 (1.3) 15.8 (2.8)

[60, 65) 3 6 18.3 (6.1) 12.5 (2.1) 3 6 29.3 (1.3) 13.1 (2.3)

[65, 70) 6 10 16.9 (5.8) 12.8 (2.0) 6 10 29.1 (0.9) 13.8 (3.1)

[70, 75) 6 8 15.8 (4.5) 10.4 (2.6) 6 8 29.1 (0.8) 14.9 (3.4)

[75, 80) 3 2 17.2 (5.4) 10.6 (2.7) 3 2 28.8 (0.4) 14.2 (3.7)

Full set 24 30 17.0 (5.5) 11.9 (2.4) 24 30 29.1 (1.0) 14.3 (3.1)

TABLE 2 | Age and gender details for patients in the test set, as well as the average MMSE scores, average years of education, and corresponding standard deviations

(sd), for the patients in each age interval.

AD Non-AD

Age interval Male Female MMSE (sd) Educ. (sd) Male Female MMSE (sd) Educ. (sd)

[50, 55) 1 0 23.0 (n/a) 20.0 (n/a) 1 0 28.0 (n/a) 12.0 (n/a)

[55, 60) 2 2 18.7 (1.0) 12.5 (1.0) 2 2 28.5 (1.2) 13.7 (2.1)

[60, 65) 1 3 14.7 (3.7) 13.2 (2.2) 1 3 28.7 (0.9) 12.2 (0.5)

[65, 70) 3 4 23.2 (4.0) 11.7 (1.9) 3 4 29.4 (0.7) 13.3 (1.4)

[70, 75) 3 3 17.3 (6.9) 12.8 (3.6) 3 3 28.0 (2.4) 13.2 (1.8)

[75, 80) 1 1 21.5 (6.3) 13.0 (1.4) 1 1 30.0 (0.0) 14.0 (2.8)

Full set 11 13 19.5 (5.3) 12.8 (2.7) 11 13 28.8 (1.5) 13.2 (1.6)

below a certain threshold. A 65 dB log energy threshold value
was used, along with a maximum duration of 10 s per chunk.
Volume normalization involves changing the overall volume
of an audio file to reach a certain volume level. There was
some variation in the recording environment for each audio file,
such as microphone placement, which lead to variation in the
volume levels for different recordings. The volume of each chunk
was normalized relative to its largest value to remove as much
variation from the recordings as possible. Each patient had an
average of 25 normalized audio chunks, with a standard deviation
of 13 chunks. The CHAT coding system (MacWhinney, 2014)
was used to create the transcripts.

The ADReSS dataset is a subset of the Pitt corpus (Becker
et al., 1994), which is a dataset that contains 208 patients with
possible and probable AD, 104 healthy patients, and 85 patients
with an unknown diagnosis. The dataset consists of transcripts
and recorded responses from the participants for the cookie theft
picture description task, a word fluency task, and a story recall
task. In order to provide additional in-domain data for training
some of the feature extractors, the cookie theft data for patients
not included in the ADReSS dataset was separated from the Pitt
corpus and used for pre-training. Normalized audio chunks for
this data were created using the steps mentioned above. The
pre-training process is described in greater detail in section 2.2.2.

The age and gender distributions, along with the average
MMSE scores, average years of education, and corresponding
standard deviations, for the training and test sets, can be seen

in Tables 1, 2. Education information was not provided with the
ADReSS dataset. However, the Pitt corpus did have education
information and was cross-referenced with the ADReSS dataset
to determine which patients overlapped and to extract each
patient’s education information. A total of 108 patients (54 non-
AD and 54 AD) were selected from the full dataset to create the
training set, and the remaining 48 patients (24 non-AD and 24
AD) were used for the test set. For both the training and test sets,
an equal number of AD and non-AD patients were included for
each age group and the number of male and female AD and non-
AD patients was the same for each age group. For the training
set, the average MMSE score for the AD patients was 17.0 and
the average MMSE score for the non-AD patients was 29.1. The
average years of education were 11.9 and 14.3 for the AD and
non-AD patients, respectively. For the test set, the AD patients
had an averageMMSE score of 19.5 and the non-AD patients had
an average MMSE score of 28.8. The average years of education
were 12.8 and 13.2 for the AD and non-AD patients, respectively.

2.2. Feature Extraction
2.2.1. Text Features: fastText Word Vectors, BERT

Embeddings, LIWC, and CLAN Features
FastText is an open-source library that is used to classify text
and learn text representations. A fastText model pre-trained
on Common Crawl and Wikipedia was used to extract word
vectors (Grave et al., 2018) from the transcripts of each speaker.
PyLangAcq (Lee et al., 2016), a Python library designed to
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handle CHAT transcripts, was used to extract the sentences from
the CHAT transcript of each participant. A 100-dimensional
word vector was computed for each word in each sentence,
including punctuation. A dimension of 100 was chosen because
this was the value recommended on the fastText website and
100 was compatible with the size of the pre-trained model. The
longest sentence had a total of 47 words. For this reason, every
sentence was padded to a length of 47, resulting in a (47, 100)
representation for each utterance.

Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018) models are text classification models
that have achieved state-of-the-art results on a wide variety of
natural language processing tasks and they provide high-level
language representations called embeddings. Embeddings are
vector representations of words or phrases and are useful for
representing language because the embeddings often capture
information that is universal across different tasks. Keras BERT
was used to load an official, pre-trained BERT model and that
model was used to extract embeddings of shape (x,768) for each
utterance in the transcript of each speaker, where x depends on
the length of the input. After embeddings were extracted for
each utterance, the largest embedding had an x value of 60. For
this reason, the remaining embeddings were padded to be the
same shape, resulting in a (60,768) embedding for each utterance.
For both the word vectors and the BERT embeddings, features
were extracted at the utterance level, resulting in a total of 1,492
embeddings in the training set and 590 embeddings in the test set.

Linguistic Inquiry and Word Count (LIWC) (Tausczik
and Pennebaker, 2010) features were also extracted from the
transcripts of each speaker. The LIWC program takes in a
transcript and outputs a 93-dimensional vector consisting of
word counts for different emotional and psychological categories,
such as emotional tone, authenticity, and clout, to name a few.
The Computerized Language Analysis (CLAN) program was
also used to extract linguistic features from the transcripts of
each speaker. The EVAL function was used to extract summary
data, including duration, percentage of word errors, number
of repetitions, etc. This extraction resulted in a 34-dimensional
vector for each speaker. The CLAN features were used as
linguistic features in the baseline paper (Luz et al., 2020). In
this paper, the CLAN features were combined with the BERT
embeddings to explore whether combining the features improved
performance. Both the LIWC and CLAN features were extracted
at the subject-level, resulting in 108 vectors in the training set and
54 vectors in the test set.

2.2.2. Audio Features: I-Vectors and X-Vectors
VoxCeleb 1 and 2 (Nagrani et al., 2017) are datasets consisting
of speech that was extracted from YouTube videos of interviews
with celebrities. I-vector and x-vector systems (Snyder et al.,
2017, 2018) pre-trained on VoxCeleb 1 and 2 were used to extract
i-vectors and x-vectors from the challenge data. The i-vector and
x-vector systems were built using Kaldi (Povey et al., 2011), which
is a toolkit that is used for speech recognition. The pre-trained
VoxCeleb models were also used to train additional extractors
using the original Kaldi recipes. The original VoxCeleb models
were used to initialize the i-vector and x-vector extractors and

then those extractors were trained on the remaining in-domain
Pitt data. I-vector and x-vector extractors were also trained on
only the in-domain Pitt data to explore whether a small amount
of in-domain data is better for performance than a large amount
of out-of-domain data. For each type of extractor, the normalized
audio chunks provided with the challenge dataset were first
resampled with a sampling rate of 16kHz, a single channel, and
16 bits, to match the configuration of the VoxCeleb data. The
Kaldi toolkit was then used to extract the Mel-frequency cepstral
coefficients (MFCCs), compute the voice activation detection
(VAD) decision, and extract the i-vectors and x-vectors. The x-
vectors had a length of 512, while the i-vectors had a length of
400. There were a total of 2,834 i-vectors and 2,834 x-vectors, one
i-vector and x-vector for each normalized audio chunk.

2.3. Experimental Approach
2.3.1. Classifiers
Five classifiers were trained on the text and audio features
explained in sections 2.2.1 and 2.2.2: linear discriminant analysis
(LDA), the decision tree (DT) classifier, the k-nearest neighbors
classifier with the number of neighbors set to 1 (1NN), a support
vector machine (SVM) with a linear kernel and regularization
parameter set to 0.1, and a random forest (RF) classifier. The
classifiers were implemented in Python using the scikit-learn
library. The word vectors and BERT embeddings were averaged
before being used to train the scikit-learn classifiers, resulting
in utterances represented by 100-dimensional vectors and 768-
dimensional vectors, respectively. When the LIWC and CLAN
features were combined with the averaged BERT embeddings,
the subject-level LIWC/CLAN vector was concatenated with
each utterance-level BERT embedding belonging to that subject.
Standard scaling is commonly applied to data before using
machine learning estimators to avoid the poor performance that
is sometimes seen when the features are not normally distributed
(i.e., Gaussian with a mean of 0 and unit variance). Because
we were combining different types of features with different
data distributions, standard scaling was applied to the features
after the LIWC/CLAN vectors were concatenated with the BERT
embeddings so that the data would be normally distributed before
training and testing.

2.3.2. Regressors
Five regression models were also trained on the text and
audio features explained in sections 2.2.1 and 2.2.2 for the
MMSE prediction task: linear regression (LR), decision tree
(DT) regressor, k-nearest neighbor regressor with the number
of neighbors set to 1 (1NN), support vector machine (SVM),
and a gradient-boosting regressor (grad-boost). The regression
models were implemented in Python using the scikit-learn
library. Just as with the classifiers, the word vectors and BERT
embeddings were averaged before being used to train the
scikit-learn regressors. When the LIWC and CLAN features
were combined with the BERT embeddings, the subject-level
LIWC/CLAN vector was concatenated with each utterance-level
BERT embedding belonging to that subject, and after the features
were concatenated, standard scaling was applied.
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2.3.3. Dimensionality Reduction
The classifiers and regressors mentioned in sections 2.3.1
and 2.3.2 were trained with different dimensionality reduction
techniques to see if applying dimensionality reduction improves
performance. Feature sets were created with no dimensionality
reduction, with LDA, and with principal component analysis
(PCA), and each classifier was trained on each feature set to
see what effect dimensionality reduction had on performance.
The dimensionality reduction techniques were applied to all
of the audio and text features. When LDA was applied, the
features were reduced to 1 dimension for the classification
task and 23 dimensions for the regression task. With PCA,
different dimension values were selected manually. The best
results and corresponding dimension values can be seen in the
Results section.

2.3.4. Neural Networks
A bidirectional long short-term memory (LSTM) network and
a convolutional neural network (CNN) were also trained on the
word vectors to see if the neural networks could extract some
temporal information that would lead to better performance
compared to the classifiers mentioned in section 2.3.1. The
topologies of the two networks are shown in Figure 1. The LSTM
model had one bidirectional LSTM layer with eight units, a
dropout rate of 0.2, and a recurrent dropout rate of 0.2. The CNN
model had the following layers: three 2D convolution layers with
32, 64, and 128 filters, respectively, rectified linear unit (ReLu)
activation and a kernel size of 3, one 2D max pooling layer with
a pool size of 3, one dropout layer with a rate of 0.5, and one
2D global max pooling layer. For both models, the output was
passed into a dense layer with sigmoid activation. Both models
were implemented in Python using Keras and were trained with
an Adam optimizer. The CNN was trained with a learning rate of
0.001, and the LSTM was trained with a learning rate of 0.01.

3. RESULTS

3.1. Classification
3.1.1. Cross-Validation
In order to stay consistent with the baseline paper, each of the
classifiers and neural networks were evaluated on the challenge
training set using leave-one-subject-out (LOSO) cross-validation,
where there was no speaker overlap between the training and
test sets for each split. Each model was trained and tested at the
utterance level, where each utterance was classified as belonging
to a patient with or without AD. Then majority vote (MV)
classification was used to assign a label to each speaker based on
the label that was assigned most to the speaker’s utterances.

The MV classification accuracy (the number of correctly
classified speakers divided by the total number of speakers), for
each feature type can be seen in Table 3. The accuracies are
presented as decimals and are rounded to 3 decimal places to
match the form of the accuracies in the baseline paper. For all of
the features, the LDA classifier trained on LDA-reduced features
performed the same as the LDA classifier trained on features with
no dimensionality reduction. Although there was no difference in
performance, results are included for completeness.

The LSTM model trained on word vectors had an average
accuracy of 0.787, while the CNN model had an average
accuracy of 0.704. The highest-performing classifier trained on
text features was the SVM classifier trained on a combination of
BERT embeddings and CLAN features with PCA dimensionality
reduction applied, which had an average accuracy of 0.898. The
highest-performing classifier trained on audio features was the
LDA classifier trained on x-vectors that were extracted using a
system that was pre-trained on VoxCeleb and in-domain Pitt
data. PCA dimensionality reduction was applied and the classifier
had an average accuracy of 0.657.

The highest-performing classifiers for each feature type,
except for the classifiers trained on x-vectors that were extracted
from a system trained on just Pitt data, performed better than the
highest-performing audio and text baseline classifiers that were
evaluated using LOSO on the training set, which had an average
accuracy of 0.565 and 0.768, respectively (Luz et al., 2020).

3.1.2. Held-Out Test Set
The MV classification accuracies on the test set for each of
the classifiers can be seen in Table 4. The highest-performing
text classifiers were the SVM classifier with no dimensionality
reduction and the RF classifier with PCA dimensionality
reduction, both trained on BERT embeddings. Both classifiers
had an average accuracy of 0.854. The highest-performing audio
classifier was the 1NN classifier trained on i-vectors that were
extracted using systems pre-trained on VoxCeleb with PCA
dimensionality reduction applied, which had an average accuracy
of 0.563.

The highest-performing text classifiers outperformed the
baseline text classifier, which was an LDA classifier trained
on CLAN features with an average accuracy of 0.75. The
highest-performing audio classifiers did not outperform the
baseline audio classifier, which was an LDA classifier trained
on ComParE openSMILE features with an average accuracy
of 0.625.

3.2. MMSE Prediction
3.2.1. Cross-Validation
For theMMSE prediction task, one of the speakers in the training
set did not have an MMSE score and was excluded from training.
Each of the regressors was evaluated on the challenge training
set using LOSO cross-validation, where there was no speaker
overlap between the training and test sets for each split. Each
model was trained and tested at the utterance level, where
an MMSE score was predicted for each utterance. Then the
predicted MMSE scores of the utterances belonging to a patient
were averaged to assign one MMSE score to that patient. Lastly,
the RMSE between the predicted and ground truth MMSE scores
was computed.

The average RMSE scores for each feature type can be seen
in Table 5. For all of the features, the LR regressor trained on
LDA-reduced features performed the same as the LR regressor
trained on features with no dimensionality reduction. Although
there was no difference in performance, results are included
for completeness.
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FIGURE 1 | Diagrams of the network topology for the LSTM model (left) and the CNN model (right).

The best-performing regressor trained on text features
was the LR regressor trained on BERT embeddings
combined with LIWC and CLAN features with PCA
dimensionality reduction applied, which had an RMSE
score of 3.774. The best-performing regressor trained on
audio features was the DT regressor trained on x-vectors
that were extracted using a system pre-trained on Pitt. LDA

dimensionality reduction was applied and the RMSE score
was 6.073.

The best-performing text regressors for every feature type,
except for BERT embeddings and word vectors, performed
better than the baseline text regressor that was evaluated using
LOSO on the training set, which had an RMSE score of 4.38.
The best-performing audio regressors for every feature type

Frontiers in Psychology | www.frontiersin.org 6 January 2021 | Volume 11 | Article 624137

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Haulcy and Glass Classifying Alzheimer’s Disease From Speech

TABLE 3 | LOSO accuracies for each of the classifiers. The best-performing

models for each feature type are red.

Features Dim. Red.

(n_comp)

LDA DT 1NN SVM RF

LIWC

None 0.741 0.593 0.620 0.833 0.778

LDA (1) 0.741 0.750 0.750 0.731 0.750

PCA (20) 0.778 0.620 0.704 0.787 0.759

BERT

None 0.713 0.676 0.787 0.796 0.769

LDA (1) 0.713 0.657 0.667 0.713 0.657

PCA (2) 0.630 0.648 0.602 0.546 0.694

PCA (20) 0.750 0.713 0.722 0.769 0.796

BERT + LIWC

None 0.750 0.657 0.667 0.824 0.806

LDA (1) 0.750 0.731 0.731 0.741 0.731

PCA (20) 0.824 0.620 0.657 0.824 0.796

BERT + CLAN

None 0.778 0.657 0.759 0.824 0.750

LDA (1) 0.778 0.769 0.769 0.787 0.769

PCA (20) 0.824 0.630 0.657 0.898 0.778

BERT + LIWC + CLAN

None 0.593 0.731 0.713 0.815 0.806

LDA (1) 0.593 0.611 0.611 0.593 0.611

PCA (20) 0.833 0.731 0.713 0.815 0.787

word vectors

None 0.759 0.731 0.694 0.259 0.694

LDA (1) 0.759 0.741 0.731 0.759 0.759

PCA (2) 0.676 0.620 0.565 0.259 0.620

PCA (70) 0.796 0.648 0.759 0.796 0.787

i-vectors (VoxCeleb)

None 0.574 0.423 0.454 0.574 0.500

LDA (1) 0.574 0.500 0.500 0.574 0.500

PCA (2) 0.491 0.500 0.602 0.519 0.491

PCA (10) 0.528 0.556 0.546 0.491 0.528

i-vectors (Pitt)

None 0.528 0.491 0.500 0.509 0.593

LDA (1) 0.528 0.537 0.537 0.537 0.537

PCA (2) 0.463 0.500 0.528 0.343 0.546

PCA (20) 0.565 0.537 0.528 0.565 0.565

i-vectors (VoxCeleb + Pitt)

None 0.528 0.509 0.500 0.528 0.556

LDA (1) 0.528 0.519 0.519 0.528 0.519

PCA (20) 0.519 0.528 0.574 0.472 0.620

x-vectors (VoxCeleb)

None 0.583 0.620 0.509 0.546 0.574

LDA (1) 0.583 0.593 0.593 0.583 0.593

PCA (2) 0.472 0.537 0.491 0.454 0.491

PCA (40) 0.639 0.583 0.528 0.639 0.583

x-vectors (Pitt)

None 0.546 0.546 0.472 0.528 0.481

LDA (1) 0.546 0.500 0.500 0.537 0.500

PCA (40) 0.537 0.481 0.435 0.528 0.491

x-vectors (VoxCeleb + Pitt)

None 0.639 0.602 0.519 0.620 0.509

LDA (1) 0.639 0.509 0.509 0.630 0.509

PCA (40) 0.657 0.574 0.546 0.593 0.593

performed better than the baseline audio regressor that was
evaluated using LOSO on the training set, which had an RMSE
score of 7.28.

3.2.2. Held-Out Test Set
The RMSE scores on the test set for each of the regressors can
be seen in Table 6. The best-performing text regressor was the

TABLE 4 | Accuracies for classifiers evaluated on the test set. The test set results

for the best-performing models during cross-validation are red.

Features Dim. Red.

(n_comp)

LDA DT 1NN SVM RF

LIWC

None 0.583 0.708 0.583 0.688 0.812

LDA (1) 0.583 0.583 0.583 0.583 0.583

PCA (20) 0.771 0.646 0.583 0.792 0.667

BERT

None 0.604 0.708 0.771 0.854 0.750

LDA (1) 0.604 0.604 0.646 0.604 0.604

PCA (2) 0.688 0.562 0.542 0.729 0.625

PCA (20) 0.833 0.646 0.750 0.812 0.854

BERT + LIWC

None 0.583 0.667 0.688 0.729 0.812

LDA (1) 0.583 0.583 0.583 0.583 0.583

PCA (20) 0.792 0.708 0.771 0.771 0.792

BERT + CLAN

None 0.729 0.750 0.771 0.812 0.812

LDA (1) 0.729 0.708 0.708 0.708 0.708

PCA (20) 0.729 0.708 0.667 0.771 0.792

BERT + LIWC + CLAN

None 0.625 0.688 0.750 0.750 0.812

LDA (1) 0.625 0.667 0.667 0.625 0.667

PCA (20) 0.812 0.604 0.729 0.812 0.812

word vectors

None 0.813 0.688 0.667 0.500 0.833

LDA (1) 0.813 0.750 0.771 0.813 0.750

PCA (2) 0.729 0.542 0.500 0.500 0.667

PCA (70) 0.812 0.562 0.688 0.500 0.771

i-vectors (VoxCeleb)

None 0.542 0.563 0.521 0.625 0.625

LDA (1) 0.542 0.521 0.521 0.542 0.521

PCA (2) 0.750 0.625 0.563 0.708 0.729

PCA (10) 0.562 0.542 0.438 0.583 0.562

i-vectors (Pitt)

None 0.417 0.521 0.521 0.438 0.542

LDA (1) 0.417 0.542 0.542 0.417 0.542

PCA (2) 0.667 0.583 0.708 0.604 0.646

PCA (20) 0.583 0.542 0.583 0.521 0.479

i-vectors (VoxCeleb + Pitt)

None 0.458 0.521 0.500 0.500 0.563

LDA (1) 0.458 0.542 0.542 0.458 0.542

PCA (20) 0.458 0.563 0.604 0.458 0.479

x-vectors (VoxCeleb)

None 0.604 0.500 0.500 0.563 0.521

LDA (1) 0.604 0.604 0.604 0.604 0.604

PCA (2) 0.625 0.563 0.563 0.625 0.542

PCA (40) 0.479 0.417 0.562 0.458 0.479

x-vectors (Pitt)

None 0.500 0.479 0.417 0.563 0.583

LDA (1) 0.500 0.542 0.542 0.500 0.542

PCA (40) 0.521 0.563 0.521 0.458 0.542

x-vectors (VoxCeleb + Pitt)

None 0.563 0.604 0.479 0.521 0.583

LDA (1) 0.563 0.521 0.521 0.563 0.521

PCA (40) 0.500 0.458 0.646 0.479 0.563

grad-boost regressor trained on BERT embeddings combined
with CLAN features with PCA dimensionality reduction applied,
which had an RMSE score of 4.560. The best-performing audio
regressor was the 1NN regressor trained on i-vectors extracted
using a system pre-trained on VoxCeleb and Pitt with LDA
dimensionality reduction applied, which had an RMSE score
of 5.694.
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TABLE 5 | LOSO RMSE scores for each of the classifiers. The results for the

best-performing models for each feature type are red.

Features Dim. Red.

(n_comp)

LR DT 1NN SVM GradBoost

LIWC

None 10.067 5.766 5.626 6.083 4.014

LDA (23) 8.928 8.738 5.224 6.195 7.654

PCA (20) 4.436 5.383 5.364 6.057 4.640

BERT

None 5.111 5.984 4.953 6.111 5.407

LDA (23) 5.111 6.571 5.805 6.275 6.701

PCA (2) 6.304 5.628 5.851 6.187 6.034

BERT + LIWC

None 9.475 4.956 4.752 5.919 4.050

LDA (23) 8.515 8.038 5.285 6.821 7.234

PCA (20) 4.574 5.228 5.680 5.165 4.509

BERT + CLAN

None 4.810 6.265 4.728 6.009 4.100

LDA (23) 4.810 5.700 4.988 6.173 5.447

PCA (20) 3.991 5.459 4.842 5.254 3.969

BERT + LIWC + CLAN

None 13.877 5.533 4.420 5.846 4.190

LDA (23) 5.243 5.398 5.482 6.477 5.031

PCA (20) 3.774 5.701 5.023 4.966 4.201

word vectors

None 5.294 5.467 5.204 6.146 5.684

LDA (23) 5.294 5.158 4.967 5.936 5.228

PCA (2) 6.359 6.061 5.958 6.148 6.241

PCA (70) 5.419 5.561 4.981 6.177 5.516

i-vectors (VoxCeleb)

None 6.323 6.477 6.612 6.444 6.461

LDA (23) 6.323 6.366 6.384 6.279 6.443

PCA (2) 6.576 6.431 6.361 6.290 6.421

PCA (10) 6.412 6.507 6.524 6.265 6.264

i-vectors (Pitt)

None 6.545 6.850 6.239 6.281 6.513

LDA (23) 6.545 6.524 6.307 6.244 6.499

PCA (2) 6.624 6.606 6.484 6.323 6.598

PCA (20) 6.523 6.575 6.577 6.207 6.511

i-vectors (VoxCeleb + Pitt)

None 6.298 6.363 6.545 6.243 6.445

LDA (23) 6.298 6.399 6.110 6.231 6.459

PCA (20) 6.502 6.558 6.655 6.256 6.475

x-vectors (VoxCeleb)

None 6.424 6.400 6.208 6.400 6.369

LDA (23) 6.424 6.478 6.493 6.162 6.413

PCA (2) 6.618 6.767 6.531 6.381 6.634

PCA (40) 6.246 6.320 6.517 6.329 6.378

x-vectors (Pitt)

None 6.310 6.534 6.445 6.405 6.504

LDA (23) 6.310 6.073 6.403 6.245 6.318

PCA (40) 6.471 6.456 6.181 6.369 6.474

x-vectors (VoxCeleb + Pitt)

None 6.385 6.268 6.394 6.401 6.386

LDA (23) 6.385 6.379 6.230 6.170 6.442

PCA (40) 6.296 6.433 6.411 6.288 6.467

The highest-performing text regressor outperformed the
baseline text regressor, which was a DT regressor trained on
CLAN features with an RMSE score of 5.20. The highest-
performing audio regressor outperformed the baseline audio
regressor, which was a DT regressor trained on Multi-resolution
Cochleagram (MRCG) openSMILE features that had an RMSE
score of 6.14.

TABLE 6 | RMSE scores for classifiers evaluated on the test set. The results for

the best-performing models during cross-validation are red.

Features Dim. Red.

(n_comp)

LR DT 1NN SVM GradBoost

LIWC

None 36.974 7.303 6.403 6.465 4.862

LDA (23) 12.286 9.657 7.388 6.313 8.365

PCA (20) 4.422 5.967 5.990 6.431 4.383

BERT

None 5.365 5.640 4.923 6.169 4.883

LDA (23) 5.365 7.515 6.017 6.253 7.373

PCA (2) 5.661 5.858 6.287 6.067 5.691

BERT + LIWC

None 34.420 7.127 5.021 6.103 5.037

LDA (23) 14.905 8.624 5.742 7.189 6.561

PCA (20) 4.872 7.078 5.159 4.895 4.404

BERT + CLAN

None 4.991 7.218 4.515 6.097 4.901

LDA (23) 4.991 6.523 5.600 6.422 6.660

PCA (20) 4.764 7.577 6.413 5.218 4.560

BERT + LIWC + CLAN

None 15.465 6.112 4.811 6.023 4.724

LDA (23) 8.110 6.500 5.753 6.887 6.021

PCA (20) 4.800 6.196 5.532 4.794 5.087

word vectors

None 4.714 5.280 5.129 6.147 5.361

LDA (23) 4.714 5.111 5.344 6.063 4.955

PCA (2) 5.732 6.452 5.992 6.129 5.803

PCA (70) 4.785 5.700 5.237 6.169 5.271

i-vectors (VoxCeleb)

None 6.600 6.305 6.269 6.161 6.396

LDA (23) 6.600 7.056 6.360 6.461 6.820

PCA (2) 6.194 6.514 6.546 5.999 6.237

PCA (10) 6.335 6.840 6.298 6.110 6.386

i-vectors (Pitt)

None 6.530 6.622 6.758 6.142 6.170

LDA (23) 6.530 6.712 6.133 5.956 6.473

PCA (2) 6.225 6.827 6.370 6.151 6.342

PCA (20) 6.257 6.278 6.110 6.199 6.252

i-vectors (VoxCeleb + Pitt)

None 6.292 6.042 7.391 6.158 6.145

LDA (23) 6.292 6.567 5.694 5.905 6.407

PCA (20) 6.316 6.439 6.607 6.168 6.431

x-vectors (VoxCeleb)

None 6.559 6.665 6.401 6.094 6.309

LDA (23) 6.559 6.289 6.261 6.085 6.312

PCA (2) 6.167 6.669 6.566 6.089 6.164

PCA (40) 6.358 6.058 6.189 6.115 6.160

x-vectors (Pitt)

None 6.428 6.483 6.563 6.287 6.333

LDA (23) 6.428 6.462 6.314 6.097 6.423

PCA (40) 6.424 6.506 6.499 6.322 6.370

x-vectors (VoxCeleb + Pitt)

None 6.644 6.622 6.338 6.096 6.208

LDA (23) 6.644 6.450 6.188 6.059 6.466

PCA (40) 6.173 6.640 6.488 6.123 6.204

3.3. Effects of Education and the Severity
of Cognitive Impairment
In order to explore what effect the severity of cognitive
impairment and education level had on the classification and
MMSE prediction results, the best-performing text and audio
models from both tasks were evaluated on smaller subsets of the
test set that were split based on education level and MMSE score.
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TABLE 7 | Test set accuracies and RMSE scores for different levels of cognitive deficiency and education.

Text Audio

Classification MMSE prediction Classification MMSE prediction

Group (num. patients) SVM RF GradBoost 1NN 1NN

MMSE

Healthy (28) 0.857 0.714 3.234 0.500 4.679

Mild Dementia (8) 0.750 0.750 3.777 0.625 1.801

Moderate Dementia (8) 0.875 0.625 4.563 0.500 6.224

Severe Dementia (4) 1.000 0.500 10.241 0.750 12.323

Education

<12 years (5) 0.800 0.600 7.448 1.000 9.329

12 years (24) 0.792 0.833 4.128 0.458 5.080

>12 years (19) 0.947 0.684 3.885 0.474 5.138

According to the Alzheimer’s Association (2020), an MMSE
score of 20–24 corresponds to mild dementia, 13–20 corresponds
to moderate dementia, and a score <12 is severe dementia.
This information was used to create 4 groups of cognitive
severity: healthy (MMSE score ≥25), mild dementia (MMSE
score of 20–24), moderate dementia (MMSE score of 13–19),
and severe dementia (MMSE score ≤12). The ranges set by the
Alzheimer’s Association were slightly modified to have unique
boundary values.

For education level, the majority of patients had 12 years of
education (likely equivalent to completing high school). Because
the test set is small, we wanted to limit our experiments to a small
number of groups. For the reasons previously mentioned, one
education group was for patients that had 12 years of education,
another group was for patients with <12 years of education, and
the last group included patients that had more than 12 years
of education.

The text and audio models were trained on the full training
set and then evaluated on each MMSE and education group
separately by only testing on patients in the test set that belonged
to a particular group. The classification and MMSE prediction
results can be seen in Table 7. For the MMSE groups, the results
showed that the best classification accuracy achieved using a text
model was 1.000 and that accuracy was achieved when the SVM
classifier was evaluated on patients with severe dementia. The
best RMSE achieved using a text model was 3.234 and that RMSE
was achieved when the GradBoost regressor was evaluated on
healthy patients. For the audio models, the best classification
accuracy was 0.750 and was achieved when the 1NN classifier was
evaluated on patients with severe dementia. The best RMSE was
1.801 and was achieved when the 1NN was evaluated on patients
with mild dementia.

For the education groups, the best classification accuracy
achieved using a text model was 0.947, when the SVM classifier
was evaluated on patients with more than 12 years of education.
The best RMSE was 3.885 and was achieved when the GradBoost
model was evaluated on patients with>12 years of education. For
the audio models, the best classification accuracy is 1.000 and was
achieved when the 1NNwas evaluated on patients with<12 years
of education. The best RMSE was 5.080 and was achieved when
the 1NN was evaluated on patients with 12 years of education.

4. DISCUSSION

The held-out test set results for both tasks show that text
classifiers trained on BERT embeddings and text regressors
trained on BERT embeddings combined with CLAN features
perform better than text classifiers/regressors trained on only
CLAN features (baseline text feature set). The results also show
that audio classifiers trained on x-vectors and i-vectors, extracted
using systems that were pre-trained on VoxCeleb and Pitt data,
do not perform better than audio classifiers trained on ComParE
openSMILE features (baseline audio feature set). However, audio
regressors trained on x-vectors and i-vectors do perform better
than audio regressors trained on MRCG openSMILE features
when (1) the x-vectors are trained on only out-of-domain data
or a combination of in-domain data and out-of-domain data and
(2) when i-vectors are trained on a combination of in-domain
and out-of-domain data.

We also note that we achieved better test set results on
the classification task and equal test set results on the MMSE
prediction task using a pre-trained BERT model as a feature
extractor as opposed to using BERT as a classifier and regressor
as Balagopalan et al. (2020) did. We received classification test set
results equal to the BERT results of Yuan et al. (2020), who also
used a BERT model as a classifier and added encoded pauses to
their training regime. Our results show that BERT embeddings
can be used to achieve the BERT model performance of Yuan
et al. (2020) without using the BERT model itself as a classifier
and without using pause information. However, the results of
Yuan et al. (2020) suggest that we could achieve even greater
performance if we include pause information in our feature set.

4.1. I-Vector and X-Vector Systems
One possible explanation for the poor performance of the i-
vectors and x-vectors on the classification task is the domain-
mismatch between the VoxCeleb datasets and the ADReSS
dataset. While the pre-trained model may have learned some
general representations of speech from the VoxCeleb datasets, it
is possible that the type of representations that the model learned
were not helpful for distinguishing between the speech of AD
and non-AD patients. The VoxCeleb dataset consists of speech
extracted from YouTube videos of celebrities being interviewed.
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While there is variety in the age, race, and accent of the speakers
in the VoxCeleb dataset, which may help improve the ability
of a model to distinguish between speakers that differ in these
qualities, the nature of the recordings (i.e., background noise,
overlapping speech, etc.) varies significantly from the recording
environment of the ADReSS data. There is also less variety in
the types of speakers present in the ADReSS dataset: they are all
within a certain age range and do not seem to have significantly
different accents. Therefore, the benefits of the VoxCeleb datasets
are not likely to help with the AD classification task and
the difference in recording environments likely intensifies the
domain-mismatch problem, leading to lower performance. It is
possible that i-vectors and x-vectors pre-trained on a different
dataset with less of a domain-mismatch would perform better.

The i-vectors extracted from a system that was only trained
on Pitt data did not improve performance on the classification
task compared to the i-vectors extracted from a system that
was trained on VoxCeleb but did improve performance on the
MMSE prediction task. Conversely, the x-vectors extracted from
a system that was only trained on Pitt did improve performance
on the classification task but did not improve performance on
the MMSE prediction task. The i-vector and x-vector extractors
that we pre-trained on a combination of VoxCeleb and Pitt data
led to an improvement in performance on the MMSE prediction
task, compared to the performance for i-vectors and x-vectors
extracted from a system trained on VoxCeleb. The x-vector
performance also improved on the classification task. This shows
that a small amount of in-domain data can improve i-vector
and x-vector performance for the MMSE prediction task. When
choosing between training i-vector and x-vector extractors on
a large amount of out-of-domain data, a small amount of in-
domain data, or a combination of both, the results suggest that
it is best to train on a combination of both.

4.2. Pros and Cons of Linguistic Features
The highest-performing models for both tasks were trained on
linguistic features (BERT embeddings). One benefit of using
linguistic features is that punctuation can be included. This
allows the model to use semantic and syntactical information,
such as how often speakers are asking questions (“?” present
in the transcript). Also, because the BERT model was pre-
trained on BooksCorpus and EnglishWikipedia, the data that the
pre-trained model saw was likely much more general than the
VoxCeleb data and using text data meant that the model did not
face the issue of the recording-environment mismatch.

However, there are some disadvantages associated with
linguistic features. As discussed in the review paper of de la
Fuente Garcia et al. (2020), transcript-free approaches to AD
detection are better for generalizability and for protecting the
privacy of the participants. In order to use linguistic features,
the speech must be transcribed, meaning that linguistic features
are worse for model generalizability and patient privacy. Using
linguistic features depends on the use of automatic speech
recognition (ASR) methods, which often have a low level
of accuracy, or transcription methods, which can be costly
and time-consuming.

Some linguistic features are also content- and language-
dependent. There are linguistic features that are not content-
dependent, such as word frequency measures, but it is difficult
to automate the extraction of content-independent linguistic
features (de la Fuente Garcia et al., 2020). For these reasons, it
is important that future research explore using AD classification
techniques that only require acoustic features.

4.3. Dimensionality Reduction
For the classification task, none of the highest-performingmodels
had LDA dimensionality applied to the feature sets before
training. As previously mentioned, the features were reduced
to one dimension when LDA was applied. The results suggest
that this dimensionality reduction was too extreme for the
classification task and did not allow for enough information to
be retained in the feature set. Conversely, the majority of the
highest-performing classifiers had PCA dimensionality reduction
applied to the feature sets before training. This suggests that
applying PCA dimensionality reduction to the features before
training can be useful for AD classification.

For the MMSE prediction task, the features were reduced to
23 dimensions when LDA was applied. Because the dimension
was larger, LDA was more useful for this task. The best-
performing audio model had LDA dimensionality reduction
applied. PCA dimensionality reduction was also applied for some
of the best-performingmodels, including the top-performing text
model. This suggests that applying LDA and PCA dimensionality
reduction to the features before training can be useful for
MMSE prediction.

4.4. Group Evaluation
The evaluation results for different MMSE and education groups
showed that certain MMSE groups can be classified more
accurately (healthy, moderate dementia, and severe dementia)
while others (mild dementia) are more difficult to classify. This
seems very reasonable, as it is expected that more severe forms
of dementia would be more easily distinguishable from healthy
patients. Also, MMSE scores are predicted least accurately when
evaluated on patients with severe dementia, regardless of the type
of features used (text or audio).

The education results for the best-performing text-based
model showed that patients with more than 12 years of education
can be classified with high accuracy (0.947), while patients with
exactly 12 years (0.792) and <12 years (0.800) of education are
more difficult to classify and are classified with similar accuracy.
The MMSE scores of patients with >12 years of education were
predicted with the most accuracy.

These results provide some insight into which types of features
are best for different levels of dementia and education for
the classification and MMSE prediction tasks. However, it is
important to note that the evaluation set is small, with as little
as four speakers in certain groups (severe dementia). Therefore,
these findings may not translate well to larger datasets.

4.5. Conclusions
In this paper, audio and text-based representations of speech
were extracted from the ADReSS dataset for the AD classification
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and MMSE prediction tasks. Different dimensionality reduction
techniques were applied to the data before training and
testing the classification and regression models to explore
whether applying dimensionality reduction techniques improved
performance on those tasks. LOSO cross-validation was used to
evaluate each of the classifiers and regressors and themodels were
also evaluated on a held-out test set.

The best-performing text models in this paper outperform
the baseline text models on both tasks and the best-performing
audio models outperform the baseline on the MMSE prediction
task. The audio results suggest that, given access to a large
amount of out-of-domain data and a small amount of in-domain
data, it is best to use a combination of both to train i-vector
and x-vector extractors. The comparison of the dimensionality
reduction techniques shows that applying PCA dimensionality
reduction to the features before training a classifier can be
helpful for this particular AD classification task and possibly for
other similar health-related classification tasks. Also, applying
LDA and PCA dimensionality reduction to the features before
training a regressor can be helpful for MMSE prediction tasks.
Lastly, the evaluation results on different MMSE and education
groups show that patients with more severe forms of dementia
(moderate and severe) and healthy patients are easier to classify
than patients with mild dementia, whereas the MMSE scores of
severe dementia patients are the most difficult to predict. Patients
with more than 12 years of education are the easiest to classify
and the MMSE scores of patients with>12 years of education are
the easiest to predict.

For future work, it would be interesting to repeat the
experiments, particularly the evaluation of audio and text
models on MMSE and education groups, on a larger dataset to
see whether the findings translate. Another interesting future
direction would be relating our findings to apathetic symptoms.
Previous research has shown that patients with moderate or

severe forms of AD tend to be apathetic (Lueken et al., 2007).
Signs of apathy include slow speech, long pauses, and changes in
facial expressions (Seidl et al., 2012). These characteristics can be
measured using standardized ratings and we can explore whether
our findings are consistent with the findings related to other
forms of cognitive decline that affect speech.
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