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This paper considers how 5- to 11-year-olds’ verbal reasoning about the causality
underlying extended, dynamic natural processes links to various facets of their statistical
thinking. Such continuous processes typically do not provide perceptually distinct
causes and effect, and previous work suggests that spatial–temporal analysis, the ability
to analyze spatial configurations that change over time, is a crucial predictor of reasoning
about causal mechanism in such situations. Work in the Humean tradition to causality
has long emphasized on the importance of statistical thinking for inferring causal links
between distinct cause and effect events, but here we assess whether this is also viable
for causal thinking about continuous processes. Controlling for verbal and non-verbal
ability, two studies (N = 107; N = 124) administered a battery of covariation, probability,
spatial–temporal, and causal measures. Results indicated that spatial–temporal analysis
was the best predictor of causal thinking across both studies, but statistical thinking
supported and informed spatial–temporal analysis: covariation assessment potentially
assists with the identification of variables, while simple probability judgment potentially
assists with thinking about unseen mechanisms. We conclude that the ability to find
out patterns in data is even more widely important for causal analysis than commonly
assumed, from childhood, having a role to play not just when causally linking already
distinct events but also when analyzing the causal process underlying extended dynamic
events without perceptually distinct components.

Keywords: probability, covariation, spatial–temporal thinking, causation, causal processes, development

INTRODUCTION

Hume (1739/1978) argued that we can only know about causality from the “constant conjunction”
of potential causes and effects. Since then, multiple schools of thought have put some form of
statistical analysis of repeated experience at the core of causal thinking, ranging from the causal
attribution literature in social psychology (Kelley, 1967, 1973) to work on associative causal
learning inspired by animal studies (Shanks and Dickinson, 1988). However, although causes
covary with their effects, inferring causation from correlation has many pitfalls. Kantian reasoning
instead focuses on the underlying causal mechanisms that allow causes to generate their effects,
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and modern approaches attempt to integrate such mechanism-
based thinking with statistical analyses (see Waldmann, 2017).

When given a choice, people tend to seek information about
mechanisms (how a process works) rather than covariation
(inferring joint variability of two random variables) to determine
causality (Ahn et al., 1995). People seem to recognize that
statistical information needs to fit with the mechanism,
because it is the latter that generates the covariation of
cause and effect. However, in many situations, the underlying
generative mechanism is unknown. In such cases, statistical
reasoning, forms of analyses based on information about the
frequency of occurrence or co-occurrence of potential causes
and effects, is crucial for causal thinking (e.g., Cheng, 1997;
Griffiths and Tenenbaum, 2009).

Analyses of statistical regularities between events presuppose
that there are separate events to be linked into cause-and-effect
sequences, for instance, when pushing a button is followed by a
light coming on or when a ball is set in motion by collision with
another ball. Most studies of causal thinking have considered
causal sequences with such distinct components.

We do, however, also reason about causality in naturally
continuous processes, without clear segmentation into potential
cause and effect, as when an object sinks, for instance, or dissolves
in water. The observation here is of continuous change, and while
we may think about what causes this change, or what causes
one of its features, for instance, why one object sinks slow, while
another sinks fast, in our perceptual experience, the process has
no naturally distinct components to serve as candidate cause and
effects. One can nevertheless focus, in thought, on aspects of the
process and think about the underlying causal mechanism, of
course, but it is not so clear anymore whether and how statistical
reasoning contributes to causal reasoning here.

We have recently begun to study children’s causal thinking in
these types of dynamic natural processes, taking an individual
difference approach and finding that measures of what we call
spatial–temporal analysis were important predictors of children’s
thinking about the causal mechanisms involved (Dündar-Coecke
et al., 2019, 2020). Spatial–temporal analysis is the ability to
think about how spatial configurations change over time. It is
separate from children’s verbal and non-verbal IQ and from their
spatial ability, which is not predictive of causal thinking. Spatial–
temporal analysis goes beyond purely spatial analysis in that it
includes the ability to work out the temporal order of a series of
spatial states and the ability to project these state transformations
onto past, present, and future experiences. Spatial–temporal
analysis might thus help children find segmentations for
continuous processes, which in turn would be helpful for causal
reasoning about them.

In the present paper, we use a similar individual difference
approach to return to the more Humean question of whether
aspects of children’s statistical thinking also predict their causal
reasoning about continuous processes, and how such statistical
predictors compare to their spatial–temporal predictors. We
present further data from the project reported in Dündar-Coecke
et al. (2019, 2020), which developed a set of novel tasks to look at
children’s causal thinking about continuous processes (sinking,
absorption, and dissolving). It also involved a large battery of

spatial–temporal, spatial, verbal, and non-verbal reasoning tasks,
as previously reported, and in addition, the set of statistical
reasoning tasks that are the focus of the present paper. In
subsequent sections, we discuss in more detail our statistical
thinking measures and their possible links to causal thinking.

ON THE LINK BETWEEN
PROBABILISTIC THINKING AND
CAUSAL PROCESSES

Probabilistic reasoning enables one to estimate of the likelihood
of an event that may or may not occur (mud suggests rain).
In a world where causal processes are induced by complex
set of factors, it is crucial to analyze the degree of certainty
of causal relationships because in most circumstances there
are unobserved latent factors, which allow exceptions (not
all mud suggests rain, but sometimes flooding). In some
circumstances, probabilistic thinking can be used as a tool to
improve the accuracy of our decisions even in the absence of
mechanism knowledge.

Interest in the role of probability has already led to
psychological investigation. In Piaget and Inhelder (1975)
studies, the development of such thinking was seen as a
formal operational achievement. The emphasis in this approach
was on improvements in children’s ability to quantify the
relative proportions of target and non-target events as they
get older. A more recent approach, in contrast, has focused
on children’s intuitive understanding. Multiple studies have
shown that children’s probability judgments conform to the
structure of normative probability concepts, e.g., taking an
appropriate ratio from kindergarten age (e.g., Anderson and
Schlottmann, 1991; Schlottmann and Anderson, 1994; Acredolo
et al., 1989; Schlottmann, 2001, reviewed in Schlottmann
and Wilkening, 2012). Even younger, pre-school children
already have a basic ability to discriminate predictable from
unpredictable event sequence (Kuzmak and Gelman, 1986), and
there have been multiple demonstrations in recent years that
infants have some sensitivity to different sampling processes
(Xu and Denison, 2009). Thus, early capabilities of engaging
in rudimentary probability calculations co-exist with difficult
tasks that are computationally challenging for young children
and have high demand on memory skills (e.g., White, 2014;
McCormack et al., 2015, 2016).

These demonstrations involve elaborate lengthy experimental
tasks that would not be suitable for a correlational study. Here,
we use the abbreviated versions of the probability tasks and
investigate whether probabilistic thinking is relevant to reasoning
of continuous causal processes. We hypothesize that children’s
ability to judge probability may not just index computational
ability, but also sensitivity to definiteness of outcomes in the
world. To test this hypothesis, we first observe children’s
sensitivity to probability along with their computational abilities.
Further, we investigate whether the development of probability
understanding is linked to children’s reasoning about continuous
causal phenomena (sinking, absorption, and solution). Third,
we compare these competences with children’s performances on
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spatial–temporal measures. The predictive tasks – probability,
covariation, spatial–temporal – were presented to elicit whether
children’s computational ability or sensitivity to probability
mattered for the inference of causal processes. This three-stage
investigation helps us to identify how individual differences in
such probability judgments might link with individual differences
in reasoning about temporally extended processes above/beyond
other reasoning types.

The tasks in which children exhibit these abilities typically
involve non-causal models, displaying all outcome possibilities
simultaneously to minimize memory requirements. For example,
in the first probability task (marbles), the child sees a plate with
seven red winner marbles and three blue loser marbles and judges
how easy it is to win in a blind draw. In tasks where probabilities
are experienced sequentially (e.g., the child draws a number of
times from a population with initially unknown proportion of
winner and loser marbles), children do not do so well when
predicting the next outcome, as has long been known from
work on probability learning (Brainerd, 1981) and child variants
of the Iowa Gambling Task (Huizenga et al., 2007). Children’s
difficulties in sequential tasks may reflect memory capacity and
other processing limitations, though, and in any case indicate
problems with cumulative estimation rather than basic grasp of
probability [these two types of tasks address different aspects
of understanding, as discussed in Schlottmann and Wilkening’s
(2012) review].

The marbles task captures children’s sensitivity to probability
rather than their computational ability. It derives appreciation of
uncertainty and likelihood from rational analysis that multiple
outcomes are possible in a given situation and from enumeration
of these outcomes, prior to experiencing instances of the
outcomes themselves. Probability tasks laying out all outcome
possibilities simultaneously for children (e.g., showing them all
the marbles on a plate) provide opportunity for such analysis.
Children typically do well on these.

Another probability task derived probability from sampling –
a distribution of variable outcomes over time, which ostensibly
requires greater attention to the detail of that distribution, where
frequencies of outcomes needed to be observed over many trials.
Sequential probability tasks are modeled on this, conforming to
the way in which probability is often encountered in everyday
life, where we may not have an a priori idea of the likelihood
of an outcome, or indeed even of the fact that the outcome is
variable, until we begin to experience the situation. Even though
children do not do so well on these tasks, due to higher processing
demands, these skills still link to probability understanding
(Bayless and Schlottmann, 2010).

Probability understanding per se comes prior to the ability
to calculate probabilities, which is largely established in early
years (Acredolo et al., 1989; Bryant and Nunes, 2012). Children’s
understanding of how to quantify it may be restricted to simple
relations like “more” or “larger,” as Bryant and Nunes showed
in their large-scale intervention that more refined proportional
reasoning is highly trainable regardless of children’s initial
ability and that training is effective during the elementary
years, indicating that it too is within children’s competence
in this age range.

A task with lower computational demand -appropriate for
the age range- was needed. Therefore, the ‘randomness’ task was
added to the battery to address the fact that sometimes outcomes
are determined and predictable, while in other situations
they may be unpredictable or potentially random (Reyna and
Brainerd, 1994; Bryant and Nunes, 2012). Children seem to
make this distinction from ages 4 or 5, as shown by Kuzmak
and Gelman (1986), who presented children two devices: one
deterministic (marbles lined up in a clear tube, with the first
coming out on each trial) and one a lottery device (a cage full of
spinning marbles). Children understood that in the first device
each outcome is known, but in the second, it is not. Study 1
here employed a similar task, the distribution of target cards
in shuffled and unshuffled decks, with an anticipation that this
would be sensitive even to the youngest children’s abilities.

Altogether, this study included three probability tasks, with
different levels of processing complexity. These tasks may elicit
variation in performance at different ages and clarify which task
might be related to which aspect of thinking about continuous
causal processes, such as relative “definiteness” of effect (e.g.,
stones are very likely to sink, berries and grapes are less likely to)
or, as noted earlier, unobservable causal mechanisms (i.e., some
other factor affects the relative probability of sinking).

ON THE LINK BETWEEN COVARIATION
INFORMATION AND CAUSAL
PROCESSES

Grasping bivariate distributions may be more demanding than
univariate distributions, because children must track variation
in not just one, but two variables, and recognize whether this
indicates a link between them. In probability tasks, instead,
children need to evaluate the likeness of an event, where the
ratio varies between impossibility and certainty. Detection of
such links would clearly be helpful in identifying potentially
causal variables. For instance, in Schulz et al.’s (2008) study,
preschoolers were shown pairs of gears (B and C) operating
with a causal chain and a common cause structure on the basis
of observing interventions between them. Children as early as
4 years old could discriminate between causal chain and common
cause structures (see also Shultz and Mendelson, 1975; Shultz,
1982; Schulz et al., 2008; Sobel et al., 2009).

Considering the Humean regularity and Kantian generative
mechanism approaches, Schulz (1982) worked with 3- to 13-
year-olds. He reported five experiments, where, for instance,
sound, wind, and light transmissions were presented to children
in different procedures to assess the essential meaning of
causation for children. Children received problems on each
of these apparatuses: transmission from source, temporal
contiguity versus generative transmission, spatial contiguity
versus generative transmission, and covariation. Similar to Ahn
et al.’s (1995) findings, he found that children consistently
prefer generative mechanism rather than covariation information
when they see a conflict between them. For instance, children’s
justifications were mostly based on mechanism, but rarely based
on covariation, even when 3-year-olds’ verbal abilities were

Frontiers in Psychology | www.frontiersin.org 3 March 2021 | Volume 12 | Article 525195

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-525195 March 1, 2021 Time: 16:11 # 4

Dündar-Coecke et al. Children’s Statistical and Spatial-Temporal Thinking

TABLE 1 | A typical 2 × 2 contingency table, with cause and effect as the two
variables.

Blossomed Dead

Plant received fertilizer AB A not B

Plant did not receive fertilizer Not AB Not A not B

poorer than the elders at the generative aspects of the problem.
However, contrary to Ahn et al.’s (1995) proposal, Schultz’s results
showed that the tendency to analyze causal mechanism is not
restricted to prior knowledge – whether children were familiar
with the objects or with transmission rules (see also Koslowski
et al.’s (1989), for supporting evidence with college students).
These studies showed that children can grasp causal relations in
the absence of probability or covariation information (see also
Perales et al., 2010).

The interest is typically on whether children grasp the
implications of covariation information about distinct events for
causation. These studies mostly compare the simple case of two
potential causes, one regular and one irregular covariate of the
effect. To reduce processing demands, only minimal information
is given, on whether a cause always co-occurs with the effect (AB
cases), or whether in some instances a cause occurs without the
effect (A not B cases). If both frequencies are considered, one can
derive the probability of the effect, given the cause. This, however,
is only part of true covariation assessment, which also requires
consideration of the base rate, the conditional probability of the
effect occurring in the absence of the cause (i.e., not AB versus
not A not B cases) in terms of a 2 × 2 contingency table, as shown
in Table 1.

The literature focused on covariation (or contingency)
judgment therefore considers how humans utilize information
from all four cells. A well-established approach is based on the
delta p statistic (Jenkins and Ward, 1965; Dennis and Ahn, 2001;
Marsh and Ahn, 2009), which is the difference between the two
probabilities discussed above (the probability of the effect given a
cause and the conditional probability of the effect occurring in
the absence of the cause). Adult covariation judgment is often
studied by providing numerical summaries of the instances in
explicit contingency tables, though the instances can, of course,
also be presented sequentially, as in the real world, which adds
memory demands. To avoid this, and also lower the numerical
requirements of such tasks, pictorial formats are typically used
with children (see, e.g., Shaklee and Mims, 1981). Note that,
as in Table 1, these types of studies still illustrate covariation
information in causal contexts, to attempt to make complex
structured data patterns intuitive and meaningful for children.

Even so, however, children commonly fail to use the delta
p strategy appropriately, but instead employ simpler strategies
that do not consider all four cells of the table or do not
weight them evenly. Using this approach, Shaklee and Mims
(1981) demonstrated four strategies used by children across
development, hierarchically increasing – from the least to the
most sophisticated: judgment of the frequency with which the
target events co-occur (AB), comparison of the number of times
target events do and do not co-occur (AB versus A not B),

comparing frequencies of events confirming and disconfirming
the relationship (AB plus not A not B versus A not B plus not AB),
and optimal assessment of the difference between two conditional
probabilities (delta p).

These patterns suggest a shift from less to more accurate
use of covariation data, where frequency judgment based simply
on positive co-occurrence emerges early, while the conditional
probability strategy does not appear until the 10th grade.
Consistent with this, Shaklee and Paszek (1985) found that, in
elementary school, children were most likely to make judgments
about covariation by comparing frequencies of the target event
and the use of the more advanced strategies identified by
Shaklee and Mims (1981) was rare even in fourth grade.
Similarly, Ferguson et al.’s (1984) data showed that older
children’s impressions were influenced more by fuller covariation
information rather than frequency information per se. In this
study, 5- to 13-year-olds were presented with three scenarios
about a boy displaying harmful behavior. In condition 1, the
harm-doing behavior was low in consistency and also low in
frequency. In condition 2, the harm was high in consistency
and also high in frequency. In the third condition, the harm
was low in consistency but high in frequency. Even preschoolers
showed the sensitivity to the frequencies and to the stability of the
boy’s behavior, but the use of covariation information increased
clearly with age.

We hypothesize that primary age children’s apparent tendency
to focus on frequency over covariation may reflect their
difficulties of understanding, but it may also be influenced to
some extent by the tasks used. When computational demands,
such as ratios and percentages, are minimized, even young
children appreciate the difference between variables that co-
vary perfectly with an effect or are unrelated to it. For instance,
Schulz et al.’s (2008) experimental design with four conditions
showed that children can clearly observe a block hitting another
block causing it to emit either a train or siren noise. Assessment
of imperfect correlation poses more problems, though this is
affected too by the way information is presented. For instance, in
simple symmetrical tasks (asking whether green or red chewing
gum causes bad teeth as illustrated over 10 pictures), even 4-year-
olds could evaluate patterns of covariation (Koerber et al., 2005).

To test this hypothesis, we devised a non-causal covariation
task to assess whether individual differences in covariation
assessment predict children’s causal thinking. We kept the task
as simple as possible, using a pictorial approach, consistent with
the literature, and with our other tasks, we investigated children’s
assessment of simple covariation patterns. The task included four
decks, each consisted eight cards, in which a particular surround
shape (a circle or square) contained a particular symbol inside
(a star or a moon). Attention focused throughout the degree of
co-occurrence between stars and circles. As shown in Figure 1,
in the first deck, the co-occurrence between stars and circles was
75%. In the second deck, co-occurrence was 50% (analogical to A
not B cases). In the third, it was 100% (AB cases). For each deck,
children were requested to answer verbally whether a star went
together with a circle. Further, they were asked to evaluate how
likely a star went with a circle. To answer this question, children
were presented with a paper showing a line starting from “never
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FIGURE 1 | One of the four trials of the covariation task employed in Study 2,
displaying the first deck with 75% co-occurrence between stars and circles,
representing imperfect covariation.

go together” to “always go together.” For each deck, children
ticked on this line where they think the likelihood would be best
represented. They were encouraged to answer the question by
thinking with percentages as well. The focus of this task was
on whether children could extract this relation in a number of
problems differing in the relative frequency of co-occurrence.
We elicited simple verbal and non-verbal responses, but did not
ask children to explain their responses, or question them about
more complex data.

Overall, in the present study, we employed five probability and
covariation tasks, aiming to obtain reliable measures of individual
variation in children’s statistical thinking to map onto variation in
causal inference. Children had to assess frequency relationships
per se, not frequency relations between cause and effect.

STUDY 1

Study 1 tested the above hypotheses by working with 5- to
11-year-old children. The study employed three causal tasks in
relation to continuous processes, one spatial–temporal ability
task, one covariation and three probability tasks, and measures
of verbal and non-verbal ability as controls.

Methods
Design
The study utilized a combined cross-sectional and individual
differences design, employing three groups spanning the English
primary (elementary) school age range. We focus here on 10 tasks
that were given to children in fixed order within a single one-
to-one session: measures of verbal and non-verbal ability, three
mini-experiments focusing on causal thinking, and a spatial–
temporal task, plus the three probability and covariation tasks.

One-way ANOVAs were used to test for differences between
age groups on each task. Fitness of the regression models
initially tested by looking at linear, logarithmic, and quadratic

trends. Pearson and partial correlations (controlling for age)
showed the strength of the associations between the measures.
Estimates of the unique variance explained by each predictor
task in causal measures were tested using hierarchical linear
regressions. Adjusted R2 values showed the variances explained
by the final models. Possible confounds in these estimates were
checked with mediation analyses. Combined patterns were tested
using path analysis.

Participants
The sample comprised of 107 children, recruited with parental
consent from schools in London and Oxford: 35 of them from
year 1 (Y1, Mage = 6.1 years, sd = 4.4 months), 33 from year 3
(Y3, Mage = 8.4 years, sd = 5.9 months), and 39 from year 5 (Y5,
Mage = 10.3 years, sd = 5.9 months). The sample encompassed
wide ethnic and linguistic variation but was skewed toward the
upper range in terms of socioeconomic background.

Materials and Procedure
Testing took place out of class in a quiet area within school and,
for the tasks described here, lasted on average 35 min per child.
Responses were recorded manually on score sheets, but children’s
replies during the causal tasks were also audio-recorded.

The causal tasks were developed by the authors for this
particular project and focused in turn on two contrasting
instances of sinking (a stone and a grape sinking), absorption (a
piece of tissue and blotting paper absorbing water), and solution
(rock and table salt dissolving in water). Comparison between
these instances revealed differences, as one item sank slow,
another fast, which may then be linked to concurrent differences
and commonalities between the objects (e.g., the stone is heavier
than the grape, but they are of similar size), which would not be
salient in an individual instance.

The tasks were administered and scored as described in
Dündar-Coecke et al. (2019). Children were asked to predict
outcomes ahead of witnessing simultaneous demonstration of
the two instances, which they were then asked to describe,
and to explain, as a measure of causal inference assessing
the identification of basic factors, operative variables, and
mechanisms. Two types of measure were computed from these
tasks: totals for accurate prediction from prior knowledge and
description for each of the instances considered (maximum = 6)
and for inference (ascending score for level of response for each
task; maximum = 9); and a total score for causal performance
across these indices (alpha = 0.751), which could range from
0 to 21. Interest centers here on the overall causal measure
and the measure of inference as the key component where
sensitivity to probability and covariation might be anticipated to
have an influence.

Appendices 1, 2 provide the full details of task
administration and scoring. To confirm reliability, two
authors subsequently scored all responses independently
from the audio-recordings. Agreement rate was 93%, and
final scores were assigned following discussion and checking
the audios in the small number of instances where there
was a difference. Examples for response levels can be seen in
Supplementary Table 13 in Supplementary Appendix 2.
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FIGURE 2 | Flasks at the start of the flow of liquid task.

Measure of spatial–temporal analysis
The flow of liquid (FOL) task, adapted from Piaget (1969/2006),
examined children’s ability to analyze the FOL from one
container to another at successive time points and to reconstruct
the sequence of change. It consisted of three stages. At the
first, two flasks were presented one on top of the other with
a tap between (Figure 2). The upper flask (I) was filled with
red-colored water, while the lower (II) was empty. Children
were given a pro forma showing both flasks with a space
between them, and they marked the respective levels in the
flasks by drawing horizontal lines on the pro forma. The liquid
was then allowed to flow from I to II in four further steps,
and the child marked the liquid level on a fresh pro forma
each time, being invited to correct any errors. At stage two,
the five proformas were shuffled and the child put them in
order, again being invited to correct any errors. At the third
stage, each pro forma was cut in two, separating drawings
of I from II, shuffled, and the child attempted to put them
in order again. Children were expected to match the upper
and lower bottles correctly and also put them in the right
sequential order. Scores were based on the number of drawings
in the correct position at this stage and could therefore
range from 0 to 10.

Understanding of probability and covariation
The randomness task was used to explore children’s
understanding of the consequences of a chance mechanism.
Participants were shown two identical decks of 30 cards, five of
which had smiley face stickers, with the remainder blank. The
cards with the stickers were placed at the top of each deck, face
up, so that they were visible. One of the decks was then shuffled
so that the cards with smiley faces were now mixed with the blank
cards. The two decks were then put face down, and participants
were asked: “If you want to make sure to pick a smiley face,
which deck would you pick from, and why?” Children’s choices
were marked as 0 or 1 depending on whether they chose the
shuffled or unshuffled deck, and if they made the correct choice,
their explanations were marked as 0 or 1 according to whether
they were able to identify the predictability of the position of
the cards with the smiley faces as key to making a choice. Scores
could range from 0 to 2.

FIGURE 3 | (a) The four trays for the four trials of the Marbles task, in trial
order; (b) the deck shown in the first trial of the cards task – only one smiley
and one frown were dealt face up, the other two cards were shown face
down.

The marbles task was adopted from Piaget and Inhelder (1975)
to evaluate children’s understanding of proportions without
sampling. Children were shown over four trials four trays with
different numbers of colored marbles (see Figure 3). After being
told that blue marbles were the winners, children had to say how
good each tray was for winning if one marble was picked with
eyes closed. They were also asked to estimate how likely they
would be to pick a winner from each and could express their
answer verbally as either fractions/ratios (as some older children
did spontaneously), or by ticking on a line from “never get one”
to “always get one.” Fully correct answers on both parts of the
question were scored as two points for each tray, and partially
correct scored as one. Participants who gave consistent correct
answers for the second and the fourth tray received an extra
two points for confirming verbally that the proportions were
identical. This yielded an overall score ranging from 0 to 10.

The cards task was developed by the authors to assess
children’s understanding of frequencies based on sampling.
Children saw over four trials four decks comprised of different
numbers of cards with smiley versus sad face stickers: (1) two
smiley, two sad (see Figure 3); (2) two smiley, four sad; (3) four
smiley, two sad; and (4) four smiley, four sad, thus utilizing
the same proportions as in the marbles task, to ensure that any
differences in difficulty between marbles and card tasks did not
just reflect differences between samples presented. On each trial,
they saw half of the cards dealt out face up, selected to represent
the overall proportions, with the others remaining face down.
Children had to say how good each deck was for picking a smiley,
and then like the marbles, estimate the chances of doing so. Scores
were similar as to the marbles task and could range from 0 to 10.
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FIGURE 4 | Practice display of the covariation task.

FIGURE 5 | First display of covariation task representing perfect covariation.

The covariation task was developed by the authors. The
task involved three trials on a laptop, each displaying, in
pseudorandom order, a series of eight pictures, half in a square
and half in a circle frame. Children had to detect whether there
was a relation between frame shape and content of the picture.

The task was started with an introduction, displaying a triangle
together with a flower (Figure 4). Children were told “Now, you
are going to see some shapes appear one by one on the screen
filled with different pictures like this following: a flower goes with
a triangle. I will ask you each time look at the screen carefully and
tell me what shape goes with what picture.”

The first display showed perfect covariation: four pictures of
an ice cream in the square and four of a star in the circle (see
Figure 5). Each figure appeared on the screen one by one, and
children were asked: Which shape goes with the ice cream? Do they
always go together? Which shape goes with the star? Do they always
go together?

The second display showed imperfect covariation (75%
contingency): three pictures of a basketball and one of sunglasses
in the squares, and three of a phone and one of a line in the
circle. Participants were asked: Which picture goes with the circle?
Do they always go together? Which picture goes with the square?
Do they always go together? The third display had no pattern
(zero contingency), the circles and squares all contained different
pictures, and participants were again asked the same questions.
Shapes were kept consistent to provide a common anchor across
displays, but pictures were varied, to avoid carry-over. All trials
consisted of eight figures each. Co-occurrence could be expressed
as fractions/ratios, or by ticking on a line, as for marbles, from
“can’t tell at all” to “definitely.” Each correct answer was marked
as 1 point. Children were expected to identify of the dominant
correlate for displays 1 and 2, and they were supposed to say
“none”/“any” for display 3 based on the appropriate estimation
of the strength of association. Scores could range from 0 to 12.

Measures of verbal and non-verbal ability
The expressive vocabulary and block design subtests from the
Wechsler Abbreviated Scale of Intelligence (WASI) (Wechsler,
2011) were used to provide standard measures of verbal and
non-verbal ability.

The WASI vocabulary is a measure of expressive language,
word knowledge, and verbal concept formation. Children were
required to define the words when the researcher read aloud.
Administration and scoring followed standard procedures.

The WASI Block Design is a subset to explore children’s non-
verbal cognitive abilities. Children were shown nine red and
white square blocks and a book illustrating different patterns
in each page that could be made with the blocks. Children
were asked to arrange the blocks to match each design shown
in the picture, increasing in difficulty. This task aimed to
measure children’s ability to analyze and synthesize abstract
representations within specific time limits for each display.

Results
Analyses utilized data from the 107 participants who completed
testing, except where noted. Age trends on each measure are
presented below, followed by analyses of relationships between
the causal, spatial–temporal, probability, and covariation
measures. All statistical tests were two-sided where the highest
p value was set to 0.05. Employing the F and t test procedures
based on the general linear model of regression, the observed
power for the regression was 0.95, which was calculated using
G∗Power 3.1.9.2 (Erdfelder et al., 2007).

Developmental Trajectories
There were a significant negative skew on total causal score, FOL,
randomness, marbles, and cards and a positive skew on block
design, due to the youngest and oldest age groups, respectively,
exhibiting a longer tail of scores; inference, covariation, and
vocabulary were normally distributed. Figure 6 demonstrates
the developmental trajectory for each measure using scores
standardized to a scale between 0 and 1 for comparability.
Overall, there was a clear upward trend for all tasks, but with
variation in relative difficulty. Block design was in particular
difficult for most children. Significant negative skew indicated
that most children failed to gain higher scores in this task,
while FOL was easier (hence the difference in direction of skew),
with causal total lying in between. Comparing the trends, the
steepest gradients were seen for blocks and covariation, followed
by randomness, cards, and marbles.

Means and standard deviations on the original scales are
shown in the Table 2 (study 1). In terms of differences between
age groups, marbles, FOL, causal total, and vocabulary tasks
showed a similar pattern: the steepest increase was between Y1
and Y3, with a slow down subsequently. For the rest, the steepest
gradient was between Y3 and Y5, except randomness where
growth was linear. One-way ANOVAs by school year found
highly significant increases with age on all variables, using the
Welch robust statistic, p < 0.001 in each case. The majority of
inference responses on all three causal tasks focused solely on
relevant factors or variables (scores of 1 or 2), though mechanism
responses were more evident among older children: 2.9% of
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FIGURE 6 | Developmental trajectories of all variables computed using standardized measures across the three year groups.

children in Y1 gave one or more mechanism response, 24.2%
in Y3, and 30.8% in Y5 (cf. Dündar-Coecke et al., 2019, for the
response profiles of the causal tasks).

Relationships Between Causal Performance and
Spatial–Temporal Analysis, Probability, and
Covariation
Correlations between variables
The relationship of the predictor variables to the causal measures
was linear, apart from block design, where it was logarithmic (R2

for linear fit = 0.263; while it was 0.368 for logarithmic trend).
Zero-order Pearson correlations between the different measures
showed overall causal performance and inference was strongly
positively associated with all the potential predictors, which were
themselves all positively correlated with each other (Table 3,
study 1 correlations). The high correlations between causal total
and inference were plausible, as causal total contained prediction,
description, and inference scores across the three tasks.

When age in months and verbal (vocabulary) and non-verbal
ability (log block design) were controlled for, only FOL, marbles,
cards, and covariation remained significantly associated with
total causal performance. The same set of variables was also
related to inference, with the exception of cards. FOL was related
to both cards and marbles and to covariation to a lesser extent.
The probability and covariation measures were predominantly
related to each other, though marbles and cards were the most
closely related measures, with covariation – and randomness –
more distinct from these. Randomness had little relation to the
causal measures, possibly because its narrow scoring range made
it less discriminating. It did not affect the beta values of other
variables and remained non-significant in each regression model
and was therefore discounted from further consideration.

Hierarchical regression models
Hierarchical regression was used to examine the unique
variance accounted for by the remaining predictors. Taking
total causal score and inference in turn as the dependent
variable, age in months and vocabulary were entered in the
first stage of the analysis. Marbles, cards, and covariation
were entered after the control variables, but with marbles
first, since it related best to the causal indices; this made it
possible to assess its specific impact before including cards
and covariation. Log block design was entered at the fourth
stage, in order to assess the influence of verbal and non-
verbal ability separately and to examine the predictive power
of the statistical measures before and after non-verbal ability
was controlled for. The spatial–temporal measure, FOL, was
entered at the fifth stage, since it appeared to be the most
robust predictor overall. Analyses for prior knowledge and
description with the same order of entering predictors are
presented in Appendix 5.

For total causal score, the analysis (Table 4, study 1
regressions) produced significant 1R2 at each stage except the
third. Age and vocabulary were significant predictors at the
first stage, but the beta for vocabulary dropped and age was
superseded by marbles when that was entered. Vocabulary and
marbles dropped out when cards and covariation were added,
but neither of the latter was significant, indicating that all four
predictors shared variance. The beta for cards was smaller than
that for covariation, which was marginally the largest remaining
predictor. Log block design was a significant predictor when
added at the fourth stage, and produced further drops in the betas
for all the other variables, with a bigger impact on covariation
than marbles or cards. FOL joined log block design as a further
predictor at the final stage, without substantially affecting the
betas for the other variables, except marbles.
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TABLE 2 | Study 1 mean scores (with standard deviations) on total causal performance (max = 21), inference (max = 9), vocabulary (max = 43), block design (max = 58),
flow of liquid (FOL; max = 10), randomness (max = 2), marbles, cards (max = 10), and covariation (max = 12).

Y1 Y3 Y5 Total

Causal total 10.63 (4.44) 14.42 (2.96) 15.97 (2.44) 13.75 (4.04)

Inference 3.34 (1.89) 5.06 (1.54) 5.54 (1.54) 4.67 (1.90)

Vocabulary 22.89 (5.29) 30.76 (5.86) 35.62 (5.20) 29.95 (7.59)

Blocks 11.91 (6.08) 19.15 (9.52) 34.10 (13.25) 22.23 (13.86)

FOL 7.03 (3.27) 8.61 (2.09) 9.59 (1.31) 8.45 (2.55)

Randomness 1.09 (0.89) 1.42 (0.79) 1.90 (0.38) 1.49 (0.78)

Marbles 4.51 (3.08) 7.45 (2.95) 9.26 (1.82) 7.15 (3.29)

Cards 4.69 (3.56) 7.15 (2.76) 9.10 (1.59) 7.06 (3.27)

Covariation 4.83 (2.18) 6.61 (3.29) 9.82 (2.81) 7.20 (3.48)

Study 2 mean scores (standard deviation) on total causal performance (max = 33), inference (max = 12), flow of liquid (FOL, max = 12), DTV (max = 18), marbles
(max = 10), covariation (max = 8), block design (max = 45), and vocabulary (max = 43).

Causal total 15.33 (4.76) 16.20 (4.47) 18.72 (2.95) 16.82 (4.31)

Inference 5.03 (2.36) 5.69 (2.56) 6.63 (1.75) 5.82 (2.32)

Vocabulary 22.48 (5.39) 29.05 (5.01) 34.01 (4.56) 28.86 (6.77)

Blocks 12.43 (5.62) 16.45 (7.12) 24.01 (8.97) 17.91 (8.78)

FOL 8.33 (4.34) 9.24 (3.79) 11.16 (2.40) 9.65 (3.72)

DTV 12.58 (3.50) 13.33 (3.08) 14.56 (2.77) 13.54 (3.18)

Marbles 3.76 (2.99) 5.39 (3.05) 7.41 (2.95) 5.61 (3.31)

Covariation 4.48 (1.96) 5.34 (2.35) 6.34 (1.96) 5.44 (2.22)

TABLE 3 | Study 1 zero-order and partial correlations between measures (zero-order correlations above diagonal, N = 107; partial correlations below diagonal,
controlling for age in months, verbal and non-verbal ability, N = 106 due to missing date of birth data for one participant; significant values in bold, *p < 0.05, **p < 0.01,
and ***p < 0.001).

Causal total Inference Vocabulary Log blocks FOL Randomness Marbles Cards Covariation

Causal total 1 0.90*** 0.54*** 0.61*** 0.52*** 0.39*** 0.55*** 0.52*** 0.56***

Prior 0.69*** 0.53*** 0.47*** 0.56*** 0.46*** 0.27** 0.42*** 0.42*** 0.47***

Description 0.79*** 0.70*** 0.44*** 0.48*** 0.45*** 0.40*** 0.42*** 0.49*** 0.43***

Inference 0.85*** 1 0.47*** 0.52*** 0.42*** 0.34*** 0.53*** 0.43*** 0.51***

Vocabulary – – 1 0.68*** 0.44*** 0.44*** 0.52*** 0.53*** 0.64***

Log blocks – – – 1 0.43*** 0.41*** 0.56*** 0.54*** 0.62***

FOL 0.30** 0.20* – – 1 0.35*** 0.55*** 0.56*** 0.47***

Randomness 0.13 0.10 – – 0.16 1 0.49*** 0.54*** 0.43***

Marbles 0.25* 0.28** – – 0.38*** 0.28** 1 0.76*** 0.63***

Cards 0.21* 0.13 – – 0.38*** 0.36*** 0.61*** 1 0.60***

Covariation 0.20* 0.21* – – 0.20* 0.15 0.37*** 0.32** 1

Study 2 zero-order and partial correlations between measures (zero-order correlations above diagonal, partial correlations below diagonal, controlling for age in months,
verbal and non-verbal ability, N = 124; significant values in bold, *p < 0.05, **p < 0.01, and ***p < 0.001).

Causal total Inference Vocabulary Log blocks expFOL DTV Marbles Covariation

Causal total 1 0.89*** 0.53*** 0.48*** 0.60*** 0.44*** 0.39*** 0.43***

Inference 0.82*** 1 0.55*** 0.49*** 0.61*** 0.49*** 0.42*** 0.41***

Vocabulary – – 1 0.53*** 0.49*** 0.39*** 0.48*** 0.43***

Log blocks – – 0.53** 1 0.50*** 0.42*** 0.55*** 0.34***

expFOL 0.41*** 0.41*** – – 1 0.54*** 0.52*** 0.43***

DTV 0.23* 0.30** – – 0.38*** 1 0.44*** 0.39***

Marbles 0.10 0.14 – – 0.29** 0.23* 1 0.40***

Covariation 0.24** 0.20* – – 0.25** 0.25** 0.20* 1
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TABLE 4 | Study 1 hierarchical regression analysis with total causal score as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5

Predictor B

Age in months 0.332** 0.207 0.176 0.115 0.109

WASI vocabulary 0.310** 0.231* 0.154 0.059 0.044

Marbles 0.310** 0.172 0.145 0.096

Cards 0.104 0.086 0.033

Covariation 0.184 0.131 0.121

Log blocks 0.284* 0.273*

Flow of liquid 0.203*

AdjR2 = 0.454; 1R2 = 0.347*** for M1; 0.061** for M2; 0.022 for M3; 0.035* for M4; and 0.026* for M5. *p < 0.05.**p < 0.01.***p < 0.001.

Study 2 hierarchical regression analysis with total causal score as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5 M6

Predictor β

Age in months −0.136 −0.171 −0.174 −0.249* −0.230* −0.218*

WASI vocabulary 0.624*** 0.551*** 0.483*** 0.434*** 0.408*** 0.349**

Marbles 0.202* 0.147 0.050 0.017 −0.053

Covariation 0.221** 0.209* 0.176* 0.130

Log blocks 0.284** 0.250* 0.197*

DTV total 0.160 0.062

Expflow of liquid 0.349***

AdjR2 = 0.459; 1R2 = 0.292*** for M1; 0.031* for M2; 0.037** for M3; 0.046** for M4; 0.018 for M5; and 0.066*** for M6. *p < 0.05.**p < 0.01.***p < 0.001.

The analysis for inference produced similar outcomes at
the first two stages (Table 5, study 1 regression), except age
and vocabulary that were both superseded by marbles. In
this case, however, the addition of cards and covariation
had little appreciable impact on marbles. Covariation
had the second largest beta, but was not significant. The
inclusion of log block design had little impact on marbles,
cards, and covariation. The addition of FOL had somewhat
more impact on marbles, but the latter remained the sole
significant predictor.

Overall, the regression analyses revealed clear overlaps
between the influence of all the predictors on causal
performance. However, the relative impact of including
FOL and log block design in the models indicates marbles
and cards were somewhat more closely related to the former
and covariation to the latter. Probability and covariation
therefore appeared to capture somewhat different dimensions,
in line with the partial correlations. In particular, while
spatial–temporal and non-verbal ability were the strongest
predictors of overall causal thinking, for inference, the effects of
probability were stronger.

Nature of shared variances between predictors
Factor analysis with varimax rotation was used to explore
in more depth the nature of the relationship between
FOL, log block design, marbles, cards, and covariation,
given their shared influence on the causal indices. The
Kaiser–Meyer–Olkin (KMO = 0.834) measure of sampling
adequacy was well within acceptable limits. The KMO

identified a four-factor solution that explained 95% of
the shared variance between the five measures, which
confirmed separable components relating to marbles/cards,
covariation, FOL, and log block design (Table 6, study 1 rotated
component matrix).

In view of this, maximum likelihood path analysis was
used to examine whether there were specific directional
relationships between the predictors that would explain the
observed patterns of overlap in their influence on the causal
indices. For both causal measures, the best fit was provided
by an extended mediation model, which was assessed by
the chi-squared and probability values penalized by the
Akaike information criterion (AIC), where the fitness of the
model improved as the AIC value lowered. The best fit was
χ2 = 3.891, p = 0.273 for total causal and χ2 = 3.887,
p = 0.274 for inference, with df = 3 for both. Figure 7
illustrates the model and path coefficients obtained for total
causal score. Black and gray paths were used to distinguish
between subsidiary and major path coefficients. The model
illustrated a stable pattern of effects in which non-verbal
ability, awareness of covariation, and probability (as indexed
by marbles) support spatial–temporal analysis, but with each
also influencing aspects of causal reasoning to different
degrees. For overall causal performance, non-verbal and spatial–
temporal ability have the largest direct effects, with the effects
of probability and covariation smaller by comparison; for
inference, the direct effect of probability, 0.219, is stronger
than non-verbal and spatial–temporal ability, 0.190 and 0.101,
respectively. Age and vocabulary have little or no direct
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TABLE 5 | Study 1 hierarchical regression analysis with inference as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5

Predictor β

Age in months 0.285* 0.144 0.127 0.083 0.080

WASI vocabulary 0.272* 0.182 0.126 0.060 0.050

Marbles 0.351** 0.321* 0.301* 0.273*

Cards −0.068 −0.081 −0.111

Covariation 0.190 0.153 0.147

Log blocks 0.201 0.194

Flow of liquid 0.118

AdjR2 = 0.339; 1R2 = 0.262*** for M1; 0.078** for M2; 0.017 for M3; 0.018 for M4; and 0.009 for M5. *p < 0.05.**p < 0.01.***p < 0.001.

Study 2 hierarchical regression analysis with inference as dependent variable (significant predictors in bold).

Model M1 M2 M3 M4 M5 M6

Predictor β

Age in months −0.174 −0.215* −0.217* −0.291** −0.265** −0.253**

WASI vocabulary 0.667*** 0.583*** 0.531*** 0.482*** 0.445*** 0.392***

Marbles 0.237** 0.195* 0.100 0.053 −0.010

Covariation 0.169* 0.157 0.110 0.069

Block design (log) 0.280** 0.233* 0.184*

DTV total 0.224** 0.135

Expflow of liquid 0.317***

AdjR2 = 0.488; 1R2 = 0.318*** for M1; 0.042** for M2; 0.022* for M3; 0.044** for M4; 0.035** for M5; and 0.054∗∗∗for M6. *p < 0.05.**p < 0.01.***p < 0.001.

TABLE 6 | Study 1 four-factor model for flow of liquid, log blocks, marbles, cards, and covariation (significant predictors in bold).

Factor 1 Factor 2 Factor 3 Factor 4

FOL 0.292 0.927 0.163 0.168

Log blocks 0.281 0.172 0.907 0.264

Marbles 0.821 0.233 0.234 0.298

Cards 0.856 0.257 0.223 0.208

Covariation 0.335 0.189 0.287 0.876

Study 2 three factor solution for exponential flow of liquid, DTV, log block design, marbles, and covariation.

Factor 1 Factor 2 Factor 3

Exp FOL 0.461 0.648 0.252

DTV total 0.191 0.915 0.152

Log blocks 0.857 0.228 0.080

Marbles 0.794 0.233 0.246

Covariation 0.194 0.213 0.951

impact on causal thinking in these models and act as
background variables, influencing the main predictors to
different degrees.

Further moderation analyses confirmed there were no
interaction effects between log block design, marbles, covariation,
or FOL in predicting causal scores.

Discussion
This study confirmed developmental trends in the ability
to analyze probability, covariation, and spatial–temporal
information, with clear increases across the age groups,

though the statistical indices used here showed later growth
than the spatial–temporal indices, with children approaching
ceiling by Y5 on FOL.

Performance on FOL remained discriminating, but the use
of statistical information consistently correlated with both
overall causal thinking and inferential level causal analysis.
Factor analysis confirmed these are distinct competences, though
classical and frequentist probability was found to be closely
related. Probability, covariation, and spatial–temporal analysis
had, in part, independent effects on causal inference, but also,
in part, interrelated influence connected to non-verbal ability.
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FIGURE 7 | Extended mediation model for the effects of log block design, covariation, marbles and flow of liquid on total causal score (subsidiary effects in gray).

Marbles performance was a significant predictor to begin with
in both regression analyses, but for overall causal thinking, it
dropped substantially with the inclusion of cards and covariation,
and then again when FOL was added. For inference, however,
it remained a significant predictor once included, though it
was again affected by FOL. Covariation was never a significant
predictor. This might be partly attributable to the limited
number of steps involved in the task we used affecting its
sensitivity – but it nevertheless had a sizeable beta until log
block design was included, and it interacted with FOL at lower
levels. Although verbal ability had no impact on any aspect of
causal performance, this may have been due to the relatively
narrow social range of the sample; there were nevertheless clear
indications that statistical ability in particular overlapped in part
with verbal ability.

The findings suggested that only spatial–temporal analysis and
non-verbal form of cognitive ability significantly associated with
causal thinking; neither statistical inference nor verbal ability had
significant explanatory power. However, we need to consider the
sample and task characteristics before arriving at conclusions.
Thus, the next study refined the task battery and examined the
replicability of findings among a wide range of population.

STUDY 2

The modified causal tasks followed the structure of a scientific
investigation, the FOL task was extended, an additional
spatial–temporal measure was derived from an adaptation of

Wilkening’s (1981) distance/time/velocity integration tasks, and
a more socially representative sample within the same age
range was employed.

The marbles task remained to assess children’s probability
judgments. Another covariation task, which was a revision of that
used in study 1, utilized physical materials in the form of decks of
cards rather than a computer display, in keeping with most of the
other test materials. The tasks were selected on the basis of their
relative predictive strength in study 1. Therefore, the cards task
was dropped, in view of its overlap with marbles in study 1, and
randomness was dropped because of its lack of predictive power.

Methods
Design
The design, age groups, task order, and administration were all
equivalent to study 1. We focus on nine tasks given in fixed order
within a single one-to-one session: WASI expressive vocabulary
and block design (Wechsler, 2011), three causal experiments, and
two spatial–temporal tasks, plus the probability and covariation
tasks at the end.

Participants
The sample comprised 124 children, recruited with parental
consent from three schools in Oxford: 36 from Y1, mean
age = 5 years, 11 months, sd = 3.8 months; 45 from Y3, mean
age = 7 years, 11 months, sd = 3.6 months; and 43 from Y5, mean
age = 9 years, 9 months, sd = 5.1 months. Children’s ethnic and
linguistic background was similar to study 1 but covered a more
broadly representative range of socioeconomic backgrounds.
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Materials and Procedure
Testing for the tasks took an average of approximately 42 min per
child (min = 29, max = 57). Responses were recorded in the same
way as for study 1.

The scientific method causal tasks were developed by the
authors and administered and scored as described for study
2 in Dündar-Coecke et al. (2020). The tasks followed a more
realistic scientific procedure, with a sequence of observation,
description, prediction, justification, and explanation. Full
details of this protocol can be found in Appendix 3. Briefly,
the tasks again focused in turn on contrasting instances of
sinking, absorption, and solution, but in this case, children
first observed and described two instances before being asked
to predict. They then justified their predictions by judging
the outcomes of further three items. Children then explained
the influences at work across all five instances. Two types
of measure were computed from these tasks: totals of each
task for accurate description (maximum = 3), prediction and
justification (each maximum = 9), and level of explanation
(again, assessing identification of basic factors, operative
variables, relationships between variables, and mechanisms;
maximum = 12). The second measure was the total score for
causal performance across all indices, 0–33, alpha = 0.724.
Interest again centered on the overall score for causal
performance and that for inference.

Appendices 3, 4 provide the details of the scripts and scoring
systems. As in the first study, children’s responses were scored
independently by two authors based on the criteria shown in
Supplemenatry Tables 14, 15 in Supplementary Appendix 4.
The independent scores were compared for interrater reliability.
Any difference in the independent scores was followed by further
checking of the audio records, with a discussion to get a 100%
agreement on the final scores.

The measures of verbal and non-verbal ability and the FOL
were all similar as described for study 1, except that six stages
were employed for FOL rather than five, and scores could
therefore range from 0 to 12. The distance–time–velocity (DTV)
measure required children to make estimates of each of distance,
time, and velocity in turn, by integrating information about
the other two variables. Each task utilized scenarios akin to
those employed by Wilkening (1981), displayed on PowerPoint
slides. For distance, children judged how far three animals
varying in speed (cat, mouse, and turtle) would run in a
fixed time, counted out by the experimenter, to escape from
a barking dog. For time, they had to estimate, by counting
themselves, how long an animal (cat, bunny, and turtle) would
take to run to a fixed point, with the second half of the run
concealed behind a wall. For velocity, they had to judge which
of seven animals (deer, horse, cat, bunny, mouse turtle, and
snail) would make it to a fixed destination in a given period
of time, counted out by the experimenter. Children’s judgments
relied entirely on mental projection based on information
provided, and no actual motion was observed to support the
key elements of these. Each task consisted of three trials, with
responses on each trial scored 0–2 in terms of degree of
accuracy. The total score across the three tasks could therefore
range from 0 to 18.

Measure of probability
The marbles task followed exactly the same procedure for
administration and scoring as in study 1.

Measure of covariation
The covariation task was developed by the authors to provide an
alternative approach to the previous computer-based covariation
task. The task utilized cards showing one of four images: a
circle containing a star, a circle containing a crescent moon,
a square with a star, and a square with a moon. Attention
focused throughout on the degree of co-occurrence between
stars and circles, with the squares as distractors. Children saw
four decks in turn consisting of eight cards. In the first deck
(Figure 1), three of the circles contained stars and one a moon;
co-occurrence between stars and circles was therefore 75%. In the
second deck, co-occurrence was 50%: half of the circles contained
stars and half contained moons. In the third, it was 100%: all
circles contained stars. In the fourth, it was 0%: all the circles
contained moons.

In each case, the cards were laid out face up before the child in
random order, and they were asked to say from what they saw in
front of them how often stars and circles went together. As in the
marbles task, they made a verbal judgment first of all (e.g., “three
times,” “always”), and then provided an estimate of frequency by
ticking on a line, one end marked “never” and the other “always.”
Correct answers on both responses were scored as two points for
each deck, allowing for some lack of exact precision in the tick
responses. Partially correct responses were scored as one. Scores
therefore varied between 0 and 8.

Results
Analyses utilized data from all 124 participants. Age trends are
presented first, followed by analyses of relationships between
causal, spatial–temporal, probability, and covariation measures.
All statistical tests were two-sided. The highest p value was set
to 0.05. Using the G*Power 3.1.9.2 (Erdfelder et al., 2007), the
observed power for the regression was 0.97.

Age Profiles
Mean scores on each measure are shown in Figure 8, using
standardized measures, as in study 1. There were a significant
negative skew on FOL, DTV, and vocabulary and a positive
skew on block design; the remaining variables were normally
distributed. Again, the developmental trend was clear, with tasks
varying in difficulty. Blocks task was in particular difficult for
children, while FOL was easier. The causal task was also more
difficult than in study 1.

Comparing the increase in scores across year groups, the
steepest gradients were apparent for blocks, FOL, and causal
total, with the greatest growth between Y3 and Y5 (see Table 2,
study 2 mean scores). The remaining measures showed a linear
trend with marbles exhibiting the steepest gradient. One-way
ANOVAs by school year found significant increases with age
on all variables, using the Welch robust statistic, p < 0.01 in
each case, except DTV, p < 0.05. For all measures, there were
significant increases in scores from Y1 to Y5. Performance on
FOL was similar to study 1, again approaching ceiling by Y5,
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FIGURE 8 | Developmental trajectories of all variables computed using standardized measures across the three year groups.

despite the extra step in the procedure; the later growth on
this and the causal indices more probably reflected the mixed
sample of study 2 lagging behind the higher socioeconomic
status (SES) sample of study 1. In line with this, these children
exhibited marginally lower mean scores for vocabulary (albeit
with lower variance) and notably lower scores on block design,
marbles, and – even allowing for the change in task – covariation.
Mechanism responses were also less common – 4.6% of responses
in Y1 were at this level, but only 11.1% in Y3, and 17.8% in Y5.

Relationships Between Causal Performance and
Spatial–Temporal Analysis, Probability, and
Covariation
Correlations between variables
The fitness tests assessing the trends between the predictor
and causal variables showed that block design was again
logarithmically related to the causal measures [R2 for linear
fit = 0.194 (F(1, 122) = 29.375, p = 0.000); R2 for logarithmic
fit = 0.232 (F(1, 122) = 36.849, p = 0.000], and FOL was marginally
exponential [R2 for linear fit = 0.342 (F(1, 122) = 63.546,
p = 0.000); R2 for exponential fit = 0.357 (F(1, 122) = 67.810,
p = 0.000]; relationships for the other predictors were linear.
As in study 1, zero-order Pearson correlations showed the
causal indices were strongly positively associated with all the
potential predictors, and the predictors were themselves all
positively correlated with each other, as shown in Table 3,
study 2 correlations.

Controlling for age in months, vocabulary, and log block
design, only FOL, DTV, and covariation remained significantly
associated with total causal score and inference. In contrast
to study 1, marbles was unrelated to either causal measure.

Marbles and covariation were more weakly related than in
study 1, possibly reflecting the revised measure of the latter
and the lower SES sample, and there was a more equivalent
relationship between each and the spatial–temporal measures;
the strongest relationship was between the spatial–temporal
measures, FOL, and DTV.

Hierarchical regression models
The predictors were entered into regression analyses for both
of the causal indices in equivalent order to study 1; the
additional spatial–temporal measure, DTV, was entered in an
extra step ahead of FOL. Analyses for description, prediction,
and justification with the same order of entering predictors are
presented in Appendix 5.

For total causal score, the analysis produced significant 1R2

at each stage except for the fifth (Table 4, study 2 regressions).
Vocabulary was a significant predictor throughout, with a
substantially higher beta than in study 1, although this dropped
at each successive stage. Marbles was a significant predictor when
it was entered at the second stage, but it dropped out when
covariation was added. Covariation was significant and remained
so until the inclusion of exponential FOL. Log block design
was a significant predictor when added at the fourth stage, and
produced a further drop in the beta of marbles. Age became
a significant negative predictor at this stage, possibly due to
influence of residual variance. When DTV was included, this led
to drops in the betas for covariation and log block design, but
it was not significant itself. Exponential FOL joined vocabulary
and log block design as a positive predictor at the final stage, and
the betas for the other predictors dropped further. This suggested
that two cognitive ability measures (vocabulary and block design)
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FIGURE 9 | Further extended mediation model for the effects of log block design, covariation, marbles and flow of liquid on overall causal performance (subsidiary
effects in gray).

and one spatial–temporal measure played a significant role in
predicting total causal score.

The analysis for inference (Table 5, study 2 regression)
produced similar outcomes to that for total causal score, except
that marbles stayed significant when covariation was entered at
the third stage, as in study 1, albeit with a lower beta than there.
Both dropped out with the inclusion of log block design. The
addition of DTV reduced the beta for all three of these variables,
and it was itself significant. FOL was again a significant positive
predictor, and its inclusion reduced the betas for the other
variables, most notably DTV, which became non-significant.

Overall, the regression analyses revealed clear overlaps
between the influence of all the predictors on causal reasoning.
In contrast to study 1, covariation was the strongest of the two
statistical measures for total causal performance, but marbles
nevertheless remained stronger for inference. As in study 1, there
were significant differences in marbles score between children
giving differing levels of inference response for sinking, F = 4.728,
p = 0.001; absorption, F = 2.701, p = 0.034; and solution, F = 5.371,
p = 0.001, with df = 4, 119 for each, with effects again restricted
to differences between those with lower (0, 1, or 2 here) and
higher (3 or 4) inference scores. In this study, however, marbles
appeared to be more related to non-verbal ability than to the
spatial–temporal measures, while covariation was closer to the
latter – as if marbles and covariation had swapped status. Neither
of the statistical measures survived to the final models in study
2, and their impact was more noticeable here for overall causal
performance than for inference.

In contrast to study 1, verbal ability was consistently a
strong predictor, alongside non-verbal and FOL in the final

model. The impact of the other spatial–temporal measure,
DTV, was relatively modest, with FOL substantially reducing
the beta of DTV in both analyses. Further regression analysis
with all variables confirmed that only FOL was a significant
predictor of total causal score (β = 0.356, p = 0.000) when
both cognitive ability measures – vocabulary and block design –
were controlled for.

Nature of shared variances between predictors
Factor analysis with varimax rotation, KMO = 0.827, was run as
before, to clarify the nature of the shared variances between exp
FOL, DTV, log block design, marbles, and covariation. A three-
factor model provided the clearest solution, with the first factor
explaining 33% of variance, the second 28%, and the third 21%
(Table 6, study 2 rotated component matrix). This confirmed log
block design as being most closely related to marbles, and FOL to
DTV, but covariation as being distinct.

Taking exponential FOL as standing for both spatial–temporal
measures, maximum likelihood path analysis was used to
examine whether either the extended mediation model identified
in study 1 or a reversed version of this (i.e., with covariation
and marbles swapping position) provided an adequate fit to the
data. These models were contrasted with a further extension
of this, in which log block design and marbles fed directly
into FOL alongside covariation, reflecting the somewhat more
balanced influence of the two statistical measures. For both causal
indices, the further extended model provided the best fit to the
data: in each case, χ2 = 0.315, p = 0.575, df = 1. Figure 9
illustrates the model plus path coefficients obtained for overall
causal performance.
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Again, there was a stable pattern of effects in which non-verbal
ability, covariation, and probability all support spatial–temporal
analysis, but with each also influencing specific aspects of causal
thinking directly. In this sample, FOL and vocabulary have the
strongest effects for both causal measures: for inference, the
effects of FOL and vocabulary are 0.36 and 0.41, and those of non-
verbal ability, probability, and covariation, 0.20, 0.01, and 0.09.

As in study 1, further moderation analyses indicated no
interaction effect between log block design, marbles, and FOL in
predicting causal performance.

Discussion
Despite differences in the sample, study 2 confirmed the
developmental trends observed in study 1 in the ability to analyze
probability, covariation, and spatial–temporal information, with
if anything clearer increases across the age groups. Once again,
the use of all these kinds of information was consistently
associated with both overall causal performance and inference,
and as before, they appeared to have interrelated influence that
was also connected to non-verbal ability.

Marbles was again a significant predictor to begin with in
both regression analyses, but its influence dropped with the
inclusion of covariation and – in contrast to study 1 – again when
block design was added. Covariation was marginally the stronger
predictor here and more related to spatial–temporal ability –
possibly reflecting the revised measure we used. However, neither
statistical measure was a significant predictor in either of the final
models, being overtaken in both cases by the spatial–temporal
measures, especially FOL. The reduced influence of probability
and covariation here is plausibly a reflection of the less developed
nature of both competences – and causal inference in this sample.
FOL subsumed the influence of DTV, to which it was clearly
related, and was the strongest predictor of causal reasoning,
alongside verbal and non-verbal ability. The clear impact of
verbal ability in this study seems most obviously to be attributable
to the more mixed sample, though it cannot in fact be a function
of a greater spread of ability, since the variance was actually
less than in study 1. Instead, it seems more likely that it reflects
vocabulary being a greater influence at lower levels of ability.

In spite of these variations, study 2 largely replicated the
results of study 1, while extending them to show that the
network of interrelated influences on both spatial–temporal
analysis and causal reasoning is based on at least partially unique
contributions from probability, covariation, and non-verbal
ability. As before, the implication is that statistical and non-verbal
ability support spatial–temporal analysis by allowing the capture
of patterns of relationship. However, that spatial–temporal ability
was a stronger predictor of causal reasoning when statistical
and non-verbal ability were less developed and had less direct
influence themselves suggests that it is not dependent on
these, but rather that each has an independent developmental
trajectory – consistent with the factor analysis results.

In line with the results from study 1, the stronger influence
of probability on inference and its weak association with
covariation suggest that, even in this lower-performing sample,
understanding of probability plays a distinctive role in thinking

about causal mechanisms, beyond sensitivity to statistical
patterns per se.

GENERAL DISCUSSION

This study aimed to develop a battery of statistical reasoning
tasks, suitable to measure individual differences across a range
of developmental levels. It then compared the predictive role
of statistical and spatial–temporal analysis in children’s causal
thinking about continuous natural processes. Across two studies,
in total, five statistical tasks were employed. Taking into account
the literature, four of them were developed by the authors for
this particular project. Table 7 summarizes the similarities and
differences between the two cohorts.

Developmental Trajectories
Children’s responses showed clear progress with age on all tasks.
The sample characteristics were different in both studies. Study
1 employed higher SES children, while study 2 employed a
mixed SES sample and introduced causal tasks with a scientific
method approach alongside a modified covariation task. In study
1, there was greater growth on the causal and spatial–temporal
tasks between Y1 and Y3 than between Y3 and Y5; in study
2, there were gains on both across the three age groups. On
the causal tasks, in both studies, children’s inference responses
were restricted at all ages, and even in Y5, they seemed to find
it difficult to explain the mechanisms mediating cause-effect
relationships, focusing on more observable and salient factors
and variables. In contrast, performance on the liquid flow task in
particular approached ceiling by Y5 in both the five- and six-step
versions, regardless of sample differences.

Although children showed some different patterns in different
tasks, on the present measures, growth in statistical thinking
appeared to be slower than that in spatial–temporal ability, but
faster than that in causal inference. Past research examining
children’s and adult’s covariation and probabilistic thinking in
causation – Bayesian and causal learning literature – has focused
on the identification of the structure of causal relations between
distinct variables (e.g., the relationship between the use of aspirin
and headache), or the strength of these (e.g., the degree to which
aspirin alleviates headaches; see Lagnado et al., 2007) based
on summaries of repeated observations, or compared children’s
understanding of common cause and causal chain structures
(McCormack et al., 2015, 2016). Although we do not have data
on direct comparability with the more detailed tasks used in
the developmental literature, our mini-statistics tasks showed
sensitivity to differences in children’s statistical thinking that are
largely in line with the results from those in the literature.

On the covariation task, children appeared to progress
with age in their ability to assess co-occurrences, but to still
be refining this further by Y5, especially with respect to
numerical quantification. This is in some ways consistent with
Shaklee and Mims’ (1981) finding, using a causal event-based
approach that children’s strategies for addressing covariation
increased in complexity with age. It appeared that in our
tasks, older children performed better on the computation
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TABLE 7 | Characteristics of the two cohorts.

Study 1 (N = 107) Study 2 (N = 124) Significant effects

Study 1 Study 2

Hypothesis Spatial–temporal analysis provides a bridge between observation of continuous processes and their causal analysis

Sample characteristics Middle and high SES Low and middle SES

Implementation of causal
phenomena

A three-stage implementation
(prediction, description,
explanation)

A five-stage implementation
(observation, prediction,
justification, testing,
explanation)

Spatial–temporal tasks Flow of liquid Flow of liquid � �

Distance, time, velocity (DTV) – X

Probability and covariation tasks Randomness – X –

Marbles Marbles X X

Cards – X –

Covariation (computer-based) Covariation (with cards) X X

Verbal task WASI vocabulary WASI vocabulary X �

Non-verbal task WASI block design WASI block design � �

of estimates of associational strength. Moreover, although
our tasks only focused on co-occurrence (i.e., two cells of
the 2 × 2 contingency table), our data also suggest that
progress may be slower where the focus is on frequency
relationships per se, rather than on frequency relations between
cause and effect, perhaps because the former are in some
sense more abstract.

On both versions of the covariation tasks, one item provided
participants with a hundred percent co-occurrence information,
which made the interpretation of stimuli unambiguous;
the remainder presented incomplete information which
increased the ambiguity from 75% in study 2 to 50%, and
to 0%. Children mostly seemed to deal well with hundred
percent co-occurrence (AB cases, perfect covariation), but
less well with the zero correlation, and they had greater
difficulty still interpreting degrees of co-occurrence in
between with any precision, especially in the youngest age
group. This is consistent with Koerber et al.’s (2005) finding
that even older children show difficulties in interpreting
instances of non-covariation between two distinct events.
However, unlike that study, our tasks did not include
a conflict between previous beliefs and causal evidence
requiring children to test their hypotheses, only to interpret
imperfect covariation patterns in a non-causal context. The
consistent difficulty in interpreting non-covariation data in both
approaches suggests a more fundamental problem that requires
further investigation.

In the probability tasks, young children did not show a
clear numerical grasp of probability. They did show some
understanding of possibilities and their thinking on these
tasks seemed to be binary: the majority focused on whether
there was a good chance of winning or losing, rather than
the degree of that chance. This study therefore agrees with
Piaget and Inhelder (1975), White’s (2014), and McCormack
et al.’s (2015, 2016) findings, adding to those that thinking
with numbers and computing probabilities appeared to start
from Y3 onward, consistent with the covariation findings,

but in neither case did children begin to approach ceiling
performance, even by Y5.

There were also departures from past findings. In particular,
many of the younger children in the higher performing study
1 sample did not find it easy to make the distinction between
predictable and random events, contrary to Kuzmak and Gelman
(1986), with our randomness task showing substantial variation
around the mean of 1 (with a high standard deviation, it
indicates that majority of children were scoring zero) in
Y1, and growth coming predominantly between Y3 and Y5.
Conversely, they did not find it harder to deal with frequentist
probability task which required sampling (assessed by cards
task) neither with other probability task (assessed with marbles),
as suggested by work on probability learning (e.g., Brainerd,
1981). The cards task exhibited more or less exactly the
same developmental profile as the marbles task – though
the use of summary presentations may have helped – and
the two were strongly correlated. On both tasks, there was
a general improvement of probabilistic thinking through the
elementary age range from awareness of variation in likelihood
to numerically precise calculation of this. While recent cognitive-
developmental work has focused on tasks sensitive even to the
youngest children’s level of skill (Schlottmann and Wilkening,
2011), our tasks stretched even the oldest children in the
sample, as intended, especially with respect to proportional
calculations – ratios and decimals – as opposed to more
basic judgments.

Relationships Between Causal
Reasoning, Spatial–Temporal,
Covariation, and Probabilistic Thinking
Despite the covariation and probability tasks drawing on related
types of frequency information, a distinction between our key
predictors was confirmed by both correlational and factor
analyses in both studies. In study 1, frequentist cards and other
probability tasks (marbles) were closely related as compared
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with covariation and randomness tasks, and the covariation task
appeared to demand a more distinct competence. In study 2,
both spatial–temporal measures (liquid flow and DTV) loaded
onto the same factor, while marbles and covariation again
remained independent, albeit with marbles being associated
with block design, once more suggesting that the ability to
utilize covariation, probability, and spatial–temporal information
requires different competences.

Most people would agree that forms of statistical reasoning,
as emphasized by Humean approaches to causality, are useful
for causal thinking about discrete events, which lend themselves
easily to frequency-based analyses, but the present study
showed that this form of thinking also relates to causal
thinking about extended processes, which have no perceptually
distinct components. One basic possibility is that the role of
statistical sensitivity and non-verbal ability is primarily one of
enabling forms of pattern detection. Block design assesses the
ability to analyze and reconstruct perceptual patterns, which
facilitates the detection and representation of causal effects;
covariation assesses the ability to track connections, which
facilitates the identification of relationships between variables
and outcomes; and probability assesses the ability to track
the “definiteness” of outcomes, which facilitates awareness of
strength of effect, e.g., the relative impact of a variable, in this
case on speed of effect. The integration of Kantian mechanism-
based and Humean statistical thinking highlighted by our
results echoes recent theoretical debates in the literature on
causal thinking about discrete events (see Waldmann, 2017).
However, our novel contribution is not just the application
to continuous processes, but to the correlational, individual
difference approach. The same approach might also be useful in
the future to study how children’s thinking about discrete causal
events develops.

While the statistical variables were largely not significant
predictors in the regressions, the path analyses, however,
found that probability and covariation formed a network of
interrelated competences influencing causal reasoning, along
with non-verbal and verbal ability. It should be noted
that regression models portray the relations from the raw
data and cannot provide more sensitive statistics as to, for
instance, what is the nature of residuals after each step.
We can observe the effects of each variable by assessing
the change in beta values after each step. Thus, even if
a variable remains non-significant in the final model, the
chance in the beta values shows us whether the variable
contributed to the model one way or another. In both
studies, we captured these widespread interactions with the
path analyses. It is the nature of this network that needs
to be explained.

Naturally, our interpretations are limited to the task
characteristics and statistical methods. We cannot conclude
whether or not the basic understanding of, for instance,
randomness assists causal inference in continuous processes.
Similarly, it is not clear why marbles was a stronger predictor
than covariation in both studies. Although we have an idea
about the possibilities drawing marbles to lose its predictive
power for both causal indices in study 2 (e.g., we had a more

powerful covariation task, and there was an additional spatial–
temporal variable involved, which reduced the variance explained
by both marbles and covariation), these do not analyze the unique
nature of the tasks. Moreover, differences between the samples in
terms of relative developmental level across the various indices
may have played a role. That the spatial–temporal predictors
trumped statistical predictors fits with the notion that temporal
information overrides covariation when a causal structure needs
to be inferred, as in the event literature with adults (see also
Waldmann and Holyoak, 1992; Cheng, 1993; Waldmann et al.,
1995; Cheng et al., 1996) and with children (see Siegler, 1975;
Mendelson and Schulz, 1976; Bullock et al., 1982). Although our
focus is on continuity rather than contiguity, the data from both
studies show similar outcomes: statistical thinking appears to be
promising in terms of supporting reasoning about mechanisms.

Understanding of probability seems to do something more
than is captured by this proposed indirect influence on causal
thinking. The relationship of performance on the marbles task
in both studies to inference of mechanisms and its more distinct
predictive power, especially in the higher performing study 1
sample, both suggest that it promotes some other additional
insight. A cross-check between probability and causal task
performance shows that in both studies children who had perfect
marbles scores were more likely to provide high-level inference
scores and make reference to mechanisms (n = 21 in study 1;
n = 19 in study 2). Probabilistic thinking seems therefore to be
important not only for the identification of the strength of the
effects of variables, but for considering unseen elements of causal
processes. It is plausible that awareness of probability drives a
general heightening of sensitivity to the operation of unseen
factors, as argued in the introduction. This would be consistent
with children exhibiting similar limitations in probability scores
and references to mechanism.

However, construction of a dynamic mental representation
tying spatial–temporal information together to envisage the
operation of specific mechanisms still requires in addition a time-
based analytical and constructive ability, as captured by the
FOL tasks. In other words, non-verbal ability, probability, and
covariation help by enabling children to identify variables and
to sense that there is more to be explained about how these
operate, but as the data suggest, it remains primarily spatial–
temporal ability that takes them beyond this to coordination of
actual information and ideas of mechanism.

Verbal ability also appears to be necessary to get all of this
off the ground, given its influence among the lower-performing
sample in study 2. However, all these competences seem to have
distinct developmental trajectories and converge on support of
causal inference. The nature of the growth of this convergence –
and how far it can and possibly needs to be deliberately
promoted – requires further investigation.

Two lines of inquiry can investigate this convergence between
causal reasoning and distinct competences, one empirical,
e.g., experimental studies aiming to elaborate on the aspects
of statistical and spatial–temporal thinking, and another
methodological, e.g., studies investigating the nature of the causal
tasks in relation to intelligence tests. Regarding the first line
of inquiry, the present study provided the first dataset, using
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intelligence measures as controls. It should be noted that these
measures have high statistical reliability and explanatory power,
and they challenge substantially other tasks present in the same
model. One can expect statistical form of thinking to be more
predictive in different models when intelligence measures are
excluded. In fact, when we did so, the covariation task explained
a unique variance in causal thinking (β = 0.178, p = 0.034) along
with age and FOL. The increase in beta values of flow liquid
was also substantial. This highlights the above interpretation
taking into account the nature of shared variances in models,
i.e., how the strongest predictor subsumes the beta of others in
regression models.

In line with the methodological inquiry, a follow-up study
employed three intelligence measures and investigated their
relevance to the above causal tasks. The data were analyzed based
on the Tucker-Drob (2009) model, which is constructed based on
an integration of Horn–Cattell’s theory of fluid and crystallized
intelligence (Horn and Cattell, 1966). The study found very high
correlations between the measures, where general intelligence
factor explained about 62% of the variance in causal tasks. This
effect was independent of age and the model was able to analyze
the nature of the residuals (Dündar-Coecke, under review). This
result suggests that there may also be a strong link between
spatial–temporal reasoning and intelligence types, which clearly
merits further investigations.

CONCLUSION

An important contributor to causal reasoning about continuous
processes is spatial–temporal analysis. When its influence is
compared with that of statistical reasoning, it remains as the
strongest predictor. However, statistical reasoning made both
direct contributions and exerted an indirect influence via spatial–
temporal analysis. The findings here highlight the multiple and
complex determinants involved in such thinking. This is the first
investigation employing process-based causal tasks to examine
the role of covariation and probability alongside spatial–temporal
ability. Further studies can explore the unique nature of the tasks
and their relations to other forms of reasoning.
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