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This paper discusses the utilization of pilots’ physiological indications such as

electroencephalographic (EEG) signals, ocular parameters, and pilot performance-based

quantitative metrics to estimate cognitive workload. The study aims to derive a

non-invasive technique to estimate pilot’s cognitive workload and study their correlation

with standard physiological parameters. Initially, we conducted a set of user trials

using well-established psychometric tests for evaluating the effectiveness of pupil and

gaze-based ocular metrics for estimating cognitive workload at different levels of task

difficulty and lighting conditions. Later, we conducted user trials with the NALSim flight

simulator using a business class Learjet aircraft model. We analyzed participants’ ocular

parameters, power levels of different EEG frequency bands, and flight parameters

for estimating variations in cognitive workload. Results indicate that introduction of

secondary task increases pilot’s cognitive workload significantly. The beta frequency

band of EEG, nearest neighborhood index specifying distribution of gaze fixation, L1

Norm of power spectral density of pupil diameter, and the duty cycle metric indicated

variations in cognitive workload.

Keywords: flight simulator, EEG, ocular parameters, pupil dilation, saccades, cognitive load

INTRODUCTION

It is well-known that pilot’s cognitive workload has an impact on performance and, in turn, on flight
safety. When workload is high, pilots pay less attention to the task at hand and their performance
deteriorates due to narrowing of attention (Wanyan et al., 2011). Sufficiently low workload causes
boredom, resulting in degradation in performance (Yerkes and Dodson, 1908). Designers need to
consider these constraints for optimizing any pilot vehicle interface (PVI) designs. This is possible
with an automatic estimation of pilot’s cognitive workload. Other potential areas where pilot’s
cognitive workload estimation could be beneficial are:

a. to design adaptive automation strategies based on human performance envelope (Thomas et al.,
2015; Biella et al., 2017).

b. to provide a basis for ergonomic design evaluation of aircraft cockpit display interface (Zongmin
et al., 2014).

c. to reason the causes of performance degradation for certain flight demands (Lee, 2010).
d. to establish the performance limits for an aircraft with poor handling qualities (Harper and

Cooper, 1986).
e. to assist instructors in creating a sophisticated pilot assessment methodology (Ryffel et al., 2019;

Rudi et al., 2020).
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However, as flying an aircraft is a complex task, we need to
consider innumerable physiological and psychological factors
while evaluating pilot’s cognitive workload. Even though
subjective methods like NASA TLX questionnaire or Cooper
Harper ratings are more prevalent in practice, researchers
have proven that physiological variables are more sensitive
for estimating cognitive workload (Causse et al., 2015; Trejo
et al., 2015; Li et al., 2016). Several researchers have been
exploring different physiological measures to quantify pilot’s
cognitive workload. Sharma et al. (2012) estimated pilot’s
cognitive workload using a spatial disorientation simulator and
measured heart rate, respiratory rate, and galvanic skin responses.
The study shows that physiological measures provide more
valuable instantaneous information than subjective measures.
Another finding of the study is that cardiac activity is a useful
measure of cognitive processes. In another study, Othman
and Romli (2015) employed multi-index evaluation to estimate
cognitive workload, where the percentage of mean pupil dilation
was evaluated along with subjective methods. According to a
recent study by Mohanavelu et al. (2020), the effect of varying
visibility conditions on pilots’ cognitive demands could be
evaluated through HRV features, pilot performance measures,
and subjective assessment methods. It was found that even
though pilots’ performance scores were similar, the physiological
measures were statistically significant. A comparative study by
Gentili et al. (2014) revealed that when compared to EEG, HRV
was less sensitive to variations in cognitive workload.

Hence, it is evident that researchers have extensively
explored various psychophysiological measures such as brain-
related measures (ERP, EEG, MEG, and brain metabolism),
ocular measures (fixations, scan path, blinks, and pupil
diameter), cardiac measures (HRV), and facial expression
measures. However, there are few studies that correlate the
different independent physiological and pilot performance-
based parameters. There are even fewer studies that
examine multiple measurement methods in a controlled
experimental environment. This research work broadly covers
the following objectives:

1. To ascertain the robustness of the proposed ocular parameters
to distinguish variations in cognitive workload.

2. To design and conduct a realistic user experimental study
using a flight simulator that simulates real-life flight
environment as encountered by pilots.

3. To study various modalities of cognitive workload estimation
and understand the significance of secondary tasks on pilot’s
cognitive workload.

4. To find relation among physiological measures such as eye
gaze and EEG-based measurement and flying performance-
based measures, and report differences among them.

We conducted two different user studies with the help of
participants from our university. Ethical approval was taken
from the Institute’s Ethics committee for undertaking eye gaze
tracking-based user studies. Written informed consent was
also obtained from the participants for the publication of any
potentially identifiable images and data used in this study.
Our first study investigated differences in values of ocular
metrics for standard psychometric tests in the laboratory to

establish the robustness of the metrics to differentiate cognitive
workload. In the second study, we conducted 36 flight simulator
experiments with 12 participants. These trials were conducted
for three different task scenarios. Participants’ ocular parameters,
EEG band power variations, and their flying performance
parameters were recorded and analyzed. In total, we investigated
11 independent metrics to measure cognitive workload. This
includes two pupil dilation-based ocular metrics, two gaze-
based ocular metrics, variations in the median values of five
different EEG frequency bands, and two pilot performance-based
metrics. However, due to the limited resources available, other
physiological measures such as heart rate variability and facial
expression recognition could not be evaluated.

The choice of flight scenario was based on the recent incident
and accident survey. A recent study by Boeing (2018)shows that
taxing, climbing, approach, and landing are critical phases of
civil aircraft flight. We have developed flight scenarios for taxing,
take-off, and climb segments in the experimental flight simulator
study reported in this paper. As the participants were non-pilots,
scenarios were designed to increase task difficulty levels, starting
from simple take-off, then with more monitoring and control
requirements and additional secondary tasks. Results suggest
that introducing the secondary task causes a significant increase
in pilot’s cognitive workload. This is observed in all the three
estimated metrics, namely, EEG, ocular, and pilot performance-
based metrics. Correlation between different parameters is
explained in detail in section EEG Signal Analysis. Analysis
results indicate a positive correlation among the three metrics.

This paper is organized as follows: The next section gives
details of the literature survey of relevant research work in
the field of cognitive workload estimation. Section User Study
on Psychometric Tests presents the results of the comparison
of ocular parameters for psychometric tests. Section Flight
Simulator Study discusses the structure of the flight simulation
experiments, followed by analysis of results. Section General
Discussions deliberates on the results and the implications
thereof. Section Conclusions concludes the results and discusses
the future course of action.

RELATED RESEARCH

There is a plethora of research articles that discuss cognitive
workload measurement methodologies. In this study, we have
dealt with three types of cognitive workload measures: EEG-
based, ocular parameter-based, and flying performance-based
metrics. Accordingly, our discussion in this section has been
limited to the above methods only.

Electroencephalogram (EEG) Signals
EEG is the measurement of brain’s electrical activity. EEG
signals are recorded through the EEG electrodes placed on the
participant’s scalp surface. Several studies validate that EEG
power in different frequency bands is sensitive to changes in
cognitive demand (Gevins et al., 1997; Petkar et al., 2009;
Antonenko et al., 2010; Pavlov and Kotchoubey, 2017; Friedman
et al., 2019). In a similar study, Cheng and Hsu (2011) estimated
workers’ fatigued state using EEG signal measurement. The study
found out that an increased EEG activity in the theta band
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indicates decreased levels of attention. Borghini et al. (2012)
introduced an EEG-based cerebral workload index to detect
the driver’s mental efforts during different levels of difficulty.
This method was based on the estimation of increase in EEG
power spectra. Schrauf et al. (2011) described EEG alpha spindles
and alpha band power to be indicators of the driver’s task
performance during secondary auditory tasks. These findings in
general suggest that EEG signal power levels are strong indicators
of variations in cognitive workload.

Ocular Parameters
Eye-tracking is a well-researched area of study for measuring
cognitive workload (Hess, 1975; Kramer, 1991; Hyönä
et al., 2003; Palinko et al., 2010; Babu et al., 2019).
Ocular parameter-based measures for cognitive workload
measurement can be categorized as pupil dynamics-based and
fixation-based measures.

Studies suggest that the pupil dilates more with increase in
cognitive workload (Marshall, 2007; Biswas and Langdon, 2015).
Demberg and Sayeed (2016) study provides evidence of higher
rates of rapid pupil dilations for more difficult task conditions.
Prabhakar and Biswas (2018) study discussed evidence of using
velocity of saccadic intrusion (SI) to detect the distraction of
automobile drivers. The study also discussed the application
of pupil dilation and fixation duration metrics for estimating
cognitive workload. In a similar study, Abadi and Gowen
(2004) used SI and micro-saccade rates to estimate cognitive
workload. In another study, Xu et al. (2011) used non-intrusive
remotely mounted eye trackers to measure variations of pupillary
responses with cognitive workload. The study proved that pupil
tracking is effective even with varying luminance conditions.

The distribution pattern of eye fixations is another proven
cognitive load measure (Di Nocera et al., 2007). The visual
scanning patterns in nominal environments tend to be
deterministic and repetitive at regular intervals. The order of
visual scanning tends to be more random with increase in
cognitive workload. De Nocera suggested a widely used distance
indicator called Nearest Neighbor Index (NNI) as a sensitive
measure to perceive cognitive workload.

Performance-Based Methods
Performance-based methods are indirect measures of cognitive
workload. They are based on the assumption that an increase
in task difficulty results in deterioration of performance,
which increases the pilot’s cognitive workload (or reduces the
working memory capacity) (Wei et al., 2014). The simplest
of these methods is the time domain statistical methods such
as root mean squared error (RMSE), standard deviation of
error, number of deviations outside tolerance, and computation
of reaction time (Reising et al., 1995). For example, Smith
and Caldwell (2004) conducted exhaustive simulated flight
experiments to study pilot fatigue using RMSE. According to
Ebbatson et al. (2007) how a pilot operates his/her control is also
an indication of workload. Authors used power spectral density
and autocorrelation coefficient of the control column data to infer
pilots’ control strategy.

Cognitive workload experienced by the participants is also
indicated through his/her inceptor control strategy. Two such

measures of pilots’ efforts are the duty cycle (DC) and
aggressiveness (Shepherd et al., 2009). Aggressiveness is the
rate of change of inceptor control movements. DC indicates
the percentage of time a participant controls his/her input
on the inceptor. Hanson et al. (2014) have observed that an
increase in aggressiveness and DC is an indicator of increased
pilot workload.

To summarize, a variety of physiological and performance-
based methods have been defined, tested, and validated to
quantify pilot’s cognitive workload. Correlation between different
methods has also been reported in the literature. Bodala et al.
(2016) inferred a positive correlation between pupil saccadic
velocity and EEG theta frequency amplitude with increasing task
difficulty. In another interesting study conducted by Scharinger
et al. (2015) on investigation of working memory on reading
comprehension, the authors concluded that pupil dilation
dynamics functions as a global workload measure that includes
motivational cognitive workload aspects. However, as per the
authors, EEG band power is a more promising measure for
identifying variations in cognitive processes. However, in another
study by Borys et al. (2017), the authors reveal eye movement
measures to be a good indicator of cognitive workload. The
authors could not establish a significant relation between EEG
and cognitive measures.

Hence, there have been such initial studies reporting the
correlation between EEG and pupil dilation data analysis in basic
research. However, to the best of the author’s knowledge, there is
limited published research carried out to investigate the relation
between physiological parameters with flying performance-
based parameters such as aggressiveness and DC. One of the
aims of this study is to derive a correlation between the
abovementioned parameters.

USER STUDY ON PSYCHOMETRIC TESTS

In this section, we describe a user study that was conducted to
validate if L1 Norm of Spectrum (L1NS), Standard Deviation
of Pupil (STDP), Low Pass Filter (LPF) of pupil diameter
saccade rate, fixation rate, and median SI velocity can distinguish
between different cognitive workloads of participants caused
by task difficulty. Detailed description of metrics and their
implementation can be found in Prabhakar et al. (2020). We used
psychometric tests like the N-back test and arithmetic questions
to assess the increase in participants’ cognitive workload with
increased task difficulty. We chose these tests as they were
associated with working memory load (Marshall, 2007; Tokuda
et al., 2011). Since the pupil dilation is sensitive (Beatty
and Lucero-Wagoner, 2000; Vrzakova and Bednarik, 2012) to
ambient light variation, we evaluated both the N-back test and
arithmetic test in dark rooms as well as varying light conditions
in the same room. While we evaluated the N-back test in
both auditory and visual presentations, an arithmetic test was
conducted only in auditory presentation.

We hypothesized that L1NS, STDP, LPF, saccade rate, fixation
rate, and median SI velocity

1. are robust to ambient light variations
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2. can be used to distinguish different levels of cognitive
workload with respect to change in task difficulty of visual and
auditory tasks.

Participants
We collected data from 21 participants (16 male and 5 female)
with an average age of 26 years from our university. We chose
participants randomly such that the group had a mixture of
people wearing and not wearing prescription lenses. Participants
wearing lenses had either spherical or cylindrical or both types
of powers.

Materials
We collected data using Tobii Pro Glasses 2. We affixed two
ambient light sensor modules, one sensor on either side of the
glass frame, to capture illumination variations on both eyes
independently (Figure 1). We used a Dell 17′′ monitor to display
numbers for visual N-Back and a Logitech keyboard to press
the space bar to respond to the N-back test. We also used a
Bose SoundLink speaker for an auditory cue in the auditory
N-back test.

Design
We undertook the following three tests:

1. Auditory N-back Test
2. Visual N-back Test
3. Auditory Arithmetic Test

The auditory tests were carried out in the dark as well as in
dynamically varying light conditions. The room illuminance was
varied from 0 to 150 lux by turning on and off a set of lights. The
variation of illuminance was randomized.

N-Back Test
The N-back test had three levels of difficulties, viz., 1-back, 2-
back, and 3-back. Participants were shown/spelled one stimulus
(sequence of one-digit numbers from 1 to 9) in intervals of 2 s
and had to press the space bar if the current stimulus matches
the previous one (1-back), or second previous (2-back), or third
previous (3-back). The N-back test levels were randomized to
avoid the order effect. We developed software (Bjäreholt, 2014)

FIGURE 1 | Participant performing the visual N-back test.

to spell out/visually display numbers in N-back and to log the
response from participants with a local time stamp.

Arithmetic Test
The arithmetic test had three levels, viz., easy, medium, and
difficult. We developed a tool using python to read out questions
using the Text-to-Speech engine in an arithmetic test. We
recorded participants’ response using the following steps:

1. Software read out all questions loudly.
2. Participant answered to questions loudly.
3. Instructor checked the answer and pressed the right/wrong

key to log the event.

The difficulty levels were randomized to avoid the order effect.

Procedure
Participants were asked to wear the Tobii glass affixed with light
sensor modules. They were instructed to look at a poster pasted
on the wall in front of them and to concentrate on the auditory
task given to them. They were asked neither to close their eyes
and nor to look around during answering the questions such
that the tracker always detected eyes. Participants were explained
about the N-back task and arithmetic task. They could practice
the 1-back test before the actual trial in order to avoid the
learning effect. The time stamps from logged events were used
to synchronize the pupil/gaze data corresponding to the start and
stop of N-back tests and arithmetic tests. We calculated L1NS,
STDP, LPF, saccade rate, fixation rate, and median SI velocity
corresponding to events. We checked if these metrics were high
for 3-back compared to 2-back and to 1-back. We also checked if
these metrics were high for difficult compared to medium and to
easy arithmetic levels.

Result
Performance of Tests
We measured performance of the tests as accuracy calculated
from the confusion matrix as described in Table 1. The accuracy
of the N-back test is calculated as

Accuracy =
correct + avoid

correct + wrong + avoid +missed

TABLE 1 | Performance of the N-back test in terms of accuracy.

1-Back/Easy 2-Back/Medium 3-Back/Difficult

Auditory N-back

dark room

0.961 (0.073) 0.962 (0.059) 0.874 (0.122)

Auditory N-back

dynamic light room

0.972 (0.084) 0.948 (0.090) 0.889 (0.121)

Visual N-back 0.985 (0.041) 0.942 (0.071) 0.891 (0.132)

Auditory Arithmetic

dark room

0.992 (0.036) 0.905 (0.135) 0.770 (0.207)

Auditory Arithmetic

dynamic light room

0.968 (0.067) 0.937 (0.134) 0.730 (0.318)
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and accuracy of the arithmetic test is calculated as

Accuracy =
correct

correct + wrong

As the groups did not follow normality, we performed signed-
rank test for each pair and found that accuracy of 3-Back/Difficult
was significantly (p < 0.05) less than that of 1-Back/Easy for all
the tests. The accuracy of 3-back/Difficult was significantly (p
< 0.05) less than 2-Back/Medium for the auditory N-back dark
room and both arithmetic tests. Accuracy of 2-back/Medium was
significantly (p < 0.05) less than 1-back/Easy for visual N-back
and auditory arithmetic dark room.

TABLE 2 | Repeated measure one-way ANOVA for each metric with effect size.

L1NS Right eye F (2,19) = 6.419, p < 0.05, η
2 = 0.403

L1NS Left eye F (2,19) = 33.964, p < 0.05, η
2 = 0.781

STDP Right eye F (2,19) = 7.849, p < 0.05, η
2 = 0.452

STDP Left eye F (2,19) = 29.408, p < 0.05, η
2 = 0.756

LPF Left eye F (2,19) = 30.718, p < 0.05, η
2 = 0.764

Visual N-Back (Pupil Dilation)
A repeated measure one-way ANOVA for metrics in Visual
N-back is described in Table 2.

We found that L1NS and STDP of both eyes were significantly
(t-test: p < 0.05) higher for 3-back than for 1-back. Similarly,
3-back was significantly (t-test: p < 0.05) higher than 2-back.
We also found that LPF of the left eye was significantly (t-
test: p < 0.05) higher for 3-back than for 1-back and higher
for 3-back than for 2-back. We did not find any significant
difference for saccade rate, fixation rate, and median SI velocity.
A comparison graph of L1NS for visual N-back is given
in Figure 2.

Auditory N-Back Dark Room (Pupil Dilation)
A repeated measure one-way ANOVA for metrics in Auditory
N-back darkroom is described in Table 3.

We found that L1NS and STDP of both eyes, as well as LPF
of the left eye, were significantly (t-test: p < 0.05) higher for 3-
back than for 1-back. We did not find significant difference in
saccade rate, fixation rate, and median SI velocity. A comparison
graph of L1NS for auditory N-back in the darkroom is shown
in Figure 2.

FIGURE 2 | L1NS of the right eye for (from top left) visual N-back, auditory N-Back dark room, auditory N-back dynamic lightroom, auditory arithmetic dark room, and

auditory arithmetic dynamic lightroom.
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Auditory N-Back Dynamic Light Room (Pupil Dilation)
A repeated measure one-way ANOVA for metrics in Auditory
N-back dynamic lightroom is described in Table 4.

We found that L1NS, STDP, and LPF of both eyes were
significantly (t-test: p < 0.05) higher for 3-back than for 1-back.
Similarly, 3-back was significantly (t-test: p < 0.05) higher than
2-back. We did not find a significant difference for saccade rate,
fixation rate, and median SI velocity. A comparison graph of
L1NS for auditory N-back in the dynamically lit room is shown
in Figure 2.

Auditory Arithmetic Dark Room (Pupil Dilation)
A repeated measure one-way ANOVA for metrics in Arithmetic
darkroom is described in Table 5.

We found no significant differences for L1NS and STDP
of both eyes. LPF of both eyes were significantly (t-test: p <

0.05) higher for 3-back than for 1-back. Similarly, 3-back was
significantly (t-test: p < 0.05) higher than 2-back. We did not
find a significant difference for saccade rate, fixation rate, and
median SI velocity. We showed a comparison graph of L1NS for
the auditory arithmetic test in the darkroom in Figure 2.

Auditory Arithmetic Dynamic Light Room (Pupil

Dilation)
A repeated measure one-way ANOVA for metrics for Arithmetic
test in dynamic lightroom is described in Table 6.

We found that L1NS and STDP of both eyes were significantly
(t-test: p < 0.05) higher for 2-back than for 1-back. We also
found that the LPF of both eyes was significantly (t-test: p <

0.05) higher for 3-back than for 1-back. We did not find a
significant difference for saccade rate, fixation rate, and median
SI velocity. We showed a comparison graph of L1NS for the
auditory arithmetic test in the dynamic lightroom in Figure 2.

Interaction Effect
We performed a repeated measure two-way ANOVA on metric
values for factors like light, presentation, task type, and task
difficulty and reported the metrics that showed a significant
interaction effect between respective factors in Table 7 (tests
of within-subjects effects) and Table 8 (multivariate tests). The
factors and their levels are listed below.

1. Darkroom vs. dynamic lightroom (factors: light
and task difficulty)

a. Darkroom (Auditory N-back) vs. dynamic lightroom
(Auditory N-back)

b. Darkroom (Auditory Arithmetic) vs. dynamic lightroom
(Auditory Arithmetic)

2. Auditory Arithmetic vs. Auditory N-back (factors: task type
and task difficulty)

a. Auditory Arithmetic (Darkroom) vs. Auditory
N-back (Darkroom)

b. Auditory Arithmetic (Dynamic lightroom) vs. Auditory
N-back (Dynamic lightroom)

3. Auditory N-back vs. Visual N-back (factors: presentation and
task difficulty)

TABLE 3 | Repeated measure one-way ANOVA for each metric with an effect size.

L1NS Right eye F (2,19) = 8.155, p < 0.05, η
2 = 0.462

L1NS Left eye F (2,19) = 7.813, p < 0.05, η
2 = 0.451

STDP Right eye F (2,19) = 5.91, p < 0.05, η
2 = 0.384

STDP Left eye F (2,19) = 15.842, p < 0.05, η
2 = 0.625

LPF Left eye F (2,19) = 18.088, p < 0.05, η
2 = 0.656

TABLE 4 | Repeated measure one-way ANOVA for each metric with an effect size.

L1NS Right eye F (2,19) = 24.961, p < 0.05, η
2 = 0.724

L1NS Left eye F (2,19) = 43.017, p < 0.05, η
2 = 0.819

STDP Right eye F (2,19) = 29.461, p < 0.05, η
2 = 0.756

STDP Left eye F (2,19) = 39.767, p < 0.05, η
2 = 0.807

LPF Left eye F (2,19) = 38.847, p < 0.05, η
2 = 0.804

LPF Right eye F (2,19) = 28.797, p < 0.05, η
2 = 0.752

TABLE 5 | Repeated measure one-way ANOVA for each metric with effect size.

LPF Left eye F (2,19) = 7.657, p < 0.05, η
2 = 0.446

LPF Right eye F (2,19) = 6.280, p < 0.05, η
2 = 0.398

TABLE 6 | Repeated measure one-way ANOVA for each metric with effect size.

L1NS Right eye F (2,18) = 4.928, p < 0.05, η
2 = 0.354

L1NS Left eye F (2,19) = 5.966, p < 0.05, η
2 = 0.386

STDP Right eye F (2,18) = 4.790, p < 0.05, η
2 = 0.347

STDP Left eye F (2,19) = 4.595, p < 0.05, η
2 = 0.326

LPF Left eye F (2,18) = 7.662, p < 0.05, η
2 = 0.460

LPF Right eye F (2,18) = 6.648, p < 0.05, η
2 = 0.425

a. Auditory N-back (Darkroom) vs. Visual N-back
b. Auditory N-back (Dynamic lightroom) vs. Visual N-back

For Auditory N-back (Dynamic lightroom) vs. Visual N-back,
LPF Right violated sphericity assumption, and we found a
significant interaction between the factors using Greenhouse–
Geisser as F(1.453,29.059) = 5.094, p < 0.05, η2 = 0.203.

Discussion
Our study confirmed the decrease in performance with increase
in task difficulty (Granholm et al., 1996; Tokuda et al., 2011). We
observed that L1NS, STDP, and LPF increased with increase in
task difficulty, consistent with the study reported by Coulacoglou
and Saklofske (2017). In all the cases, we observed that the
parameter corresponding to a difficult task (3-Back and difficult
arithmetic) was significantly higher than that corresponding to
an easy task (1-Back and easy arithmetic). The intermediate task
difficulty did not have a significant effect on all parameters. This
might be because of the overlapping region of cognitive workload
present in the 2-back test due to the transition of difficulty
levels from 1-back to 3-back tests. Some participants would
have found 2-back level as easy, and some would have found
it difficult. Similarly, an overlapping region might be present
in medium-level arithmetic questions. We found relatively large
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TABLE 7 | Tests of within-subjects effects.

Interacting factors Levels of factors Metrics Tests of within-subjects Effects

(sphericity assumed)

Light vs. Task Difficulty Dark room (Auditory N-back) vs. dynamic light room (Auditory

N-back)

STDP Left F (2,40) =19.369, p < 0.05, η
2 = 0.492

STDP Right F (2,40) =28.784, p < 0.05, η
2 = 0.309

L1NS Left F (2,40) =20.654, p < 0.05, η
2 = 0.508

L1NS Right F (2,40) =8.215, p < 0.05, η
2 = 0.291

LPF Left F (2,40) =18.881, p < 0.05, η
2 = 0.486

LPF Right F (2,40) =8.303, p < 0.05, η
2 = 0.293

Dark room (Auditory Arithmetic) vs. dynamic light room

(Auditory Arithmetic)

STDP Left F (2,40) =3.708, p < 0.05, η
2 = 0.156

L1NS Left F (2,40) =3.394, p < 0.05, η
2 = 0.145

Task Type vs. Task Difficulty Auditory Arithmetic (Dynamic light room) vs. Auditory N-back

(Dynamic light room)

STDP Left F (2,40) =18.229, p < 0.05, η
2 = 0.477

STDP Right F (2,38) =13.501, p < 0.05, η
2 = 0.415

L1NS Left F (2,40) =20.832, p < 0.05, η
2 = 0.51

L1NS Right F (2,38) =15.238, p < 0.05, η
2 = 0.445

LPF Left F (2,38) =17.889, p < 0.05, η
2 = 0.485

LPF Right F (2,38) =12.496, p < 0.05, η
2 = 0.397

Presentation vs. Task Difficulty Auditory N-back (Dark room) vs. Visual N-back STDP Left F (2,40) =8.348, p < 0.05, η
2 = 0.294

L1NS Left F (2,40) =9.381, p < 0.05, η
2 = 0.319

LPF Left F (2,40) =8.855, p < 0.05, η
2 = 0.307

Auditory N-back (Dynamic light room) vs. Visual N-back STDP Left F (2,40) =3.719, p < 0.05, η
2 = 0.157

STDP Right F (2,40) =4.979, p < 0.05, η
2 = 0.199

L1NS Left F (2,40) =3.444, p < 0.05, η
2 = 0.147

L1NS Right F (2,40) =4.807, p < 0.05, η
2 = 0.194

LPF Left F (2,40) =4.154, p < 0.05, η
2 = 0.172

TABLE 8 | Multivariate tests.

Interacting factors Levels of factors Metrics Multivariate test (Pillai’s trace)

Light vs. Task Difficulty Dark room (Auditory N-back) vs. dynamic light room (Auditory N-back) STDP Left F (2,19) = 18.634, p < 0.05, η
2 = 0.662

STDP Right F (2,19) = 8.398, p < 0.05, η
2 = 0.469

L1NS Left F (2,19) = 20.084, p < 0.05, η
2 = 0.679

L1NS Right F (2,19) = 7.375, p < 0.05, η
2 = 0.437

LPF Left F (2,19) = 17.182, p < 0.05, η
2 = 0.644

LPF Right F (2,19) = 6.747, p < 0.05, η
2 = 0.415

Dark room (Auditory Arithmetic) vs. dynamic light room (Auditory Arithmetic) STDP Left F (2,19) = 4.073, p < 0.05, η
2 = 0.3

L1NS Left F (2,19) = 4.813, p < 0.05, η
2 = 0.336

Task Type vs. Task Difficulty Auditory Arithmetic (Dynamic light room) vs. Auditory N-back (Dynamic light

room)

STDP Left F (2,19) = 21.436, p < 0.05, η
2 = 0.693

STDP Right F (2,18) = 11.517, p < 0.05, η
2 = 0.561

L1NS Left F (2,19) = 20.509, p < 0.05, η
2 = 0.683

L1NS Right F (2,18) = 12.273, p < 0.05, η
2 = 0.577

LPF Left F (2,18) = 15.759, p < 0.05, η
2 = 0.636

LPF Right F (2,18) = 10.168, p < 0.05, η
2 = 0.53

Presentation vs. Task Difficulty Auditory N-back (Dark room) vs. Visual N-back STDP Left F (2,19) = 10.415, p < 0.05, η
2 = 0.523

L1NS Left F (2,19) = 11.691, p < 0.05, η
2 = 0.552

LPF Left F (2,19) = 10.732, p < 0.05, η
2 = 0.53

Auditory N-back (Dynamic light room) vs. Visual N-back STDP Left F (2,19) = 3.717, p < 0.05, η
2 = 0.281

STDP Right F (2,19) = 4.442, p < 0.05, η
2 = 0.319

L1NS Left F (2,19) = 3.954, p < 0.05, η
2 = 0.294

L1NS Right F (2,19) = 3.781, p < 0.05, η
2 = 0.285

LPF Left F (2,19) = 3.872, p < 0.05, η
2 = 0.29

LPF Right F (2,19) = 3.295, p < 0.05, η
2 = 0.258
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effect sizes in L1NS left eye for Visual N-Back, LPF left eye
for Auditory N-Back Darkroom, L1NS left eye for Auditory N-
Back Dynamic lightroom, LPF left eye for Auditory Arithmetic
Dark room, and LPF left eye for Auditory Arithmetic Dynamic
lightroom. Though STDP left and L1NS left were able to
significantly distinguish between task difficulties in all conditions
except dark room arithmetic, LPF left and LPF right were
able to significantly distinguish between task difficulties in the
darkroom arithmetic test. This infers that each metric performed
significantly in each test condition. We also observed that the
trend of increase in metric values with respect to increase in task
difficulty is the same for changes in light conditions for visual
and auditory presentations. Though we found an interaction
effect between task difficulty and lighting conditions for pupil-
based metrics, t-test results showed that our pupil-based metrics
significantly distinguished between task difficulties in different
lighting conditions. Similarly, a set of pupil-based metrics could
substantially distinguish between task difficulties in different task
types and presentation conditions despite significant interaction
between the factors.

FLIGHT SIMULATOR STUDY

Once the ocular parameters’ robustness was evaluated with
standardmethods, we applied the same for aviation specific tasks.
We conducted user studies in the high-fidelity NALSim flight
simulator that is based on the Learjet aircraft model (Kamali
et al., 2014). The purpose of the user study was to check the
usability of EEG- and ocular parameter-based cognitive workload
estimators and to investigate the effect of secondary tasks on
cognitive workload.

All simulations started with similar initial conditions such as
landing gear down, on ground, and a trim speed of 120 knots. The
airport altitude was 89 0m abovemean sea level. The baseline task
was to conduct a controlled take-off, followed by a climb phase
and a wings level flight (Figure 3).

Participants
Biswas and JeevithaShree (2018) have suggested in their
study that it is advisable to first test any new technology
using participants with little or no knowledge about
the platform. Accordingly, we chose students from our

FIGURE 3 | Test scenario.

university for the flight simulator study. We conducted
36 simulations with 12 participants for three different
task difficulty conditions C1, C2, and C3 mentioned in
Table 9. Participants were aged between 22 and 40 years.
The male-to-female ratio was 3:9. As the participants were
non-pilots and new to the flight simulator environment,
their cognitive workload variations were expected to be
higher than that of experienced pilots (Antonenko et al.,
2010). Hence, this sampling strategy satisfied our aim to
relate different physiological parameters at varying levels of
cognitive workload.

Design
We conducted 36 simulations with 12 participants for three
different task difficulty conditions mentioned in Table 9.

The secondary task in C3 necessitated the participants to select
a randomly positioned button in the secondary display based
on an aural warning. While introducing the secondary task in
C3, participants were instructed to prioritize their primary task,
which was maintaining altitude within limits of±1,000 ft.

Materials
Simulation Setup
Simulation studies were conducted using the NALSim flight
simulator at I3D lab, Indian Institute of Science, Bangalore,
India. NALSim is a cost-effective ground-based variable stability
flight simulator developed for Indian aircraft design programs.
NALSim architecture is being used by a premier flight test
pilot school of Indian Airforce for pilot training on aircraft
handling qualities. The advantage of this simulator is that it is
designed to provide a platform for researchers and aerospace
students to understand aircraft dynamics, conduct aircraft
configuration design studies, and handle quality studies and
PVI studies.

The pilot’s view in the simulator consists of out-of-the-
window visual scenery and a head down display (Figure 4A).

Eye Gaze Tracker
Tobii pro wearable eye tracker (Figure 4B) was used
in the study for recording eye gaze parameters (Eye
tracking for research., 2018). This system measures three-
dimensional gaze direction with an accuracy of 0.4◦

of visual angle. The sampling frequency of the device
is 100 Hz.

TABLE 9 | Task scenarios for Flight simulator study.

C1 C2 C3

Take off: Initial checks,

apply full throttle, take

off at 130 knots speed.

Climb and continue

with a level flight

for 4min.

Similar to C1 till level

segment.

Maintain altitude

between 4,000 and

5,000 ft above MSL

for 4min.

A secondary task was

added in addition to C2

condition. The

secondary task was

defined as pointing and

selection in an adjacent

secondary head down

touchscreen display.
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EEG Headset
A study by Grummett et al. (2015) compares few inexpensive and
wireless EEG systems for such experimental studies. The study
supports the suitability of Emotiv headset for alpha responses
and visual steady-state responses (VSSR). As the experiments
designed in this study are related to VSSR, we have used portable,
low-cost Emotiv Insight 5 channel EEG headset (Figure 4C)
under controlled conditions for recording EEG data (Insight User
Manual., 2018). EEG signals have a useful bandwidth in the range
of the different frequency bands as given in Table 10.

The electrode positions that were studied are AF3 (left
frontal), AF4 (right frontal), T7 (left temporal), T8 (right
temporal), and Pz (central parietal).

Procedure
We instructed participants to wear the EEG headset and the
Tobii-pro eye-tracking glasses for the user trials. The contacts of
the EEG headset were checked, and the eye tracker was calibrated
prior to each simulation. All the participants were instructed
about the procedure of the experiment and given 15min of
practice time to get acquainted with flying. It was ensured that
participants were capable of performing wings level flight with
constant altitude before starting the actual test scenario.

Results
EEG, eye gaze, aircraft performance parameters, and inceptor
control data were analyzed to infer the demand on pilot’s

cognitive workload. This section details the analysis results. We
removed the outliers in the EEG and the gaze data using outer
fencing. Normality in the data was checked using the Anderson–
Darling test. As we found that both EEG and gaze data were
not normally distributed, we used non-parametric tests such as
Friedman test and Wilcoxon pairwise signed-rank test to analyze
the significance of difference in cognitive workload.

EEG Signal Analysis
Figure 5 shows the median of power in each frequency band for
C1, C2, and C3. We found that the median EEG signal power
level increased from C1 through C3 in all the frequency bands.
However, we did not find a significant increase in median power
for the gamma frequency band (p > 0.5). Hence, we have not
considered the gamma band for further discussions. The results
from the statistical tests are summarized in Table 11.

We found that EEG signal power in the LB and theta band
showed a significant increase between C2–C3 and C1–C3 (p <

0.05). Accordingly, C3 has a relatively higher cognitive workload.

Ocular Parameter Analysis
The following ocular parameters were selected for the flight 3
simulator study:

a. Gaze Fixation: We used the fixation classification algorithm
introduced by Tobii, called the Tobii I-VT filter (Olsen,
2012), for extracting fixations. According to Olsen, I-VT filter
classifies eye movements based on the velocity of the eye’s

FIGURE 4 | Apparatus. (A) Flight simulator setup. (B) Eye gaze tracker from Tobii [courtesy (14)]. (C) EEG headset from Emotiv [courtesy (15)].

TABLE 10 | EEG signal bandwidths.

Brain frequency bands Frequency range (Hz) State of mind Changes in band power with increasing

task demand

Theta band 4–8 Sleepy, drowsy, meditative, and dreaming Increases, associated with fatigue (Borghini

et al., 2012) and information retrieval

Alpha band 8–13 Relaxed, calm, lucid state of mind Increases with aural secondary task indicating

increased information processing and reduced

concentration ability (Schrauf et al., 2011)

Low beta (LB) band 13–21 Alert, active concentration, busy, and anxious

state of mind

Increases (Pavlov and Kotchoubey, 2017)

High beta (HB) band 21–30 Focus, quick thinking, working Increases (Pavlov and Kotchoubey, 2017)

Gamma 31–100 Optimal frequency for thinking, active thought,

peak focus

Increases
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directional shifts. Gaze is classified as a saccade if the velocity
is above a particular value of threshold (default−30◦/s),
otherwise, it is classified as a fixation.

We computed fixation rate as the total time of fixations
divided by simulation duration. Figure 6 shows the mean
fixation rate for the three test scenarios. Friedman’s statistics
did not show any significant difference in the fixation
rates between the test conditions. However, we observed an
increasing trend of average fixation rate from C2 to C3 (Z =

1.88, p= 0.058).
b. Distribution patterns of fixation:We used NNI in this study

as an indirect cognitive workload estimator.

We computed NNI as the ratio of the nearest-neighbor distance
(dNN) to the mean random distance (dMRD).

NNI =
dNN

dMRD

Where dNN =
N∑
i=1

min[

√
(f xi−f xj)

2
−(f yi−f yj)

2)

N ]

and dMRD = 0.5
√
Area of interest/N

FIGURE 5 | Median power of different EEG bands.

TABLE 11 | Statistical test results indicating changes in cognitive workload.

Friedman Test

Power levels in EEG Frequency bands

Alpha band χ2 (2) = 8.0, p < 0.05

LB band χ2 (2) = 8.166, p < 0.05

HB band χ2 (2) =10.5, p < 0.01

Theta band χ2 (2) = 10.66, p < 0.01

Wilcoxon signed-rank test

C1–C2 C1–C3 C2–C3

Alpha band – Z = 13, p < 0.05 Z = 16, p = 0.07

LB band – Z = 15, p < 0.05 Z = 13, p < 0.05

HB band – Z = 13, p < 0.05 Z = 10, p < 0.05

Theta band – Z = 1, p < 0.01 Z = 17, p = 0.07

Area of interest is computed as the rectangular area that the
x and y gaze coordinates cover. fx and fy are the x and y eye
coordinates, respectively, and i and j are the successive time
instances in x and y. N is the total number of data points.

The mean of NNI scores for the three test conditions are
shown in Figure 7.

We found that distribution of eye fixations significantly
differs with different test conditions [χ2(2) = 9.50, p <

0.01]. Furthermore, pairwise comparison using signed-rank test
showed that the eye fixations were more randomly distributed in
space for C3 (p < 0.01 for C1–C3 and p < 0.1 for C2–C3).

c. Pupil dilation dynamics: We formulated the following
metrics to extract features from the frequency spectrum of pupil
dilation data. The three-frequency domain-based pupil dilation
metrics discussed in section User Study on Psychometric Tests
are L1NS, STDP, and LPF. In section Discussion, we found that
L1NS shows the ability to significantly distinguish between task
difficulties in all conditions. Hence, we used L1NS in the flight
simulator study.

i. L1 Norm of Spectrum (L1NS): Frequency domain-based L1NS
on pupil dilation was computed based on the algorithm
proposed by Prabhakar and Biswas (2018). Single-sided
spectrum of the left and right pupil dilation time-series data

FIGURE 6 | Fixation rate.

FIGURE 7 | Nearest Neighborhood Index.
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(Yk) was computed using Fast Fourier transform given as:

Ỹj =

N∑

k=1

Yke
(
−2πi
N

)
(k−1)(j−1)

Frequency components from 1 to 5Hz were summed to
compute L1NS. Figure 8 shows the comparison plots for the
left and right pupil diameters.

We found that rate of change of pupil diameter was
significantly different for right pupil for [χ2(2) = 6.17, p <

0.05, η² = 0.2569]. Pairwise comparison showed that C3 had
maximum changes in pupil diameters (p< 0.01 for C2–C3 and
p < 0.1 for C1–C3).

ii. Median of SI velocity in ◦/second: As defined by Abadi and
Gowen (2004), horizontal eye movements within 0.4◦ in the X
axis where eye-gaze returns to the same position between 60
and 870ms are known as SI (Prabhakar and Biswas, 2018). We
used the algorithm described in Biswas and Langdon (2015) to
compute median SI velocity.

Figure 9 shows the median SI velocity for the three
test conditions. Friedman test did not show any significant
change in the rate of change of median SI velocity for the
three conditions.

Table 12 consolidates the inferences of all the gaze measurement
methodologies discussed in this section.

FIGURE 8 | L1NS for left and right pupil diameters.

FIGURE 9 | Median of SI velocity.

Flying Performance Analysis
We used DC and aggressiveness of participants’ inceptor control
columns as an indicator of cognitive workload experienced by the
pilot. DC indicates the percentage of time a participant controls
his/her input on the inceptor. DC is computed as follows:

DC = 100%*
1

tn − t2

n∑

i=2

xi

Here, xi =




0 for δi−δi−1

ti−ti−1
< noise threshold and |δi| < δmax

1 otherwise

Aggressiveness is the rate of change of inceptor control
movements. The formula is as follows:

Aggressiveness =

√√√√ 1

n− 1

n∑

i=2

(
δi − δi−1

ti − ti−1
)
2

t is the simulation time, n is the number of data points, δi
is the inceptor deflection in mm, and δmax is the maximum
stick deflection.

Plotting aggressiveness vs. DC is known as the PIW plot.
Higher aggressiveness relates tomore random control commands
and higher DC infers that more time is required to control. We
used the PIW plot to infer the variations in workload.

Figure 10 shows the PIW plot of mean values of both the
parameters for C1, C2, and C3. We observed that participants’
aggressiveness levels were similar for both C2 and C3. However,
participants had to spend more time controlling the inceptor in
order to maintain level flight in case of C3 [F(4,26) = 2.72, p <

0.1, η²= 0.247]. Furthermore, pairwise comparison using Tukey
Kramer test showed that C3 had statistically higher DC than C2
(p < 0.1).

Participants’ inceptor control strategy, together with his/her
flying performance, indicates his/her cognitive workload
(Hebbar and Pashilkar, 2017). Accordingly, we computed

TABLE 12 | Summary of analysis of ocular parameters.

Friedman Test

Fixation rate –

NNI χ2 (2) = 9.5, p < 0.01

L1NS χ2 (2) = 6.17, p < 0.05

SI –

Wilcoxon signed-rank test

C1–C2 C1–C3 C2–C3

Fixation rate – – Z = 1.88, p = 0.058

NNI – Z = 2.74, p < 0.01 Z = 1.65, p < 0.1

L1NS – Z = 1.8, p = 0.07 Z = 2.5, p < 0.01

SI – – –
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flight performance in terms of RMSE in altitude and airspeed
deviations (Figure 11). We found that errors increased
significantly with additional demand of secondary task (for
airspeed, p < 0.02).

Conformance Among Parameters
Table 13 consolidates the results of cognitive workload
estimation metrics discussed. A level of significance < 0.1
is indicated in green.

In the case of C3, we found comparative similarity (p
< 0.05) between LB and HB bands of EEG power, NNI
and L1NS of ocular parameters, and the DC metric from
flight parameters. Increased task difficulty was observed by the
parameters mentioned above with secondary task (C3). However,
ocular parameters such as SI velocity and fixation rate did not
show a significant increase. This corroborates with the results
from the psychometric study.

Subsequently, we carried out Spearman’s pairwise rank
correlation analysis between the significant parameters given in
Table 13 (Figure 12). Spearman’s rank correlation coefficient (ρ)
is computed as

ρ = 1−
6
∑n

i di

n3 − n

FIGURE 10 | PIW plots.

FIGURE 11 | Percentage RMSE in altitude and airspeed.

Here, di is the difference between the ranks of each observation
and n is the number of observations.

Firstly, we compared the correlation between the EEG
parameters. We observed a consistent positive trend between LB,
HB, alpha, and theta frequency band powers (0.6 < ρ < 0.9, p <

0.001). LB and theta bands showed a very strong association (ρ >

0.8, p < 0.001). When comparing the correlation between ocular
parameters, we found statistically significant (ρ > 0.7, p < 0.001)
positive correlation between NNI and L1NS.

Furthermore, we repeated the correlation analysis between
EEG, ocular parameters, and the DC metric. Figure 12 shows
the correlation plots for the significant parameters. We observed
positive correlation between EEG and L1NS (LB and L1NS: ρ =

0.3791, p < 0.005; and theta and L1NS: ρ = 0.38, p < 0.005) and
between EEG and NNI (LB and NNI: ρ = 0.4038, p < 0.05; theta
and NNI: ρ = 0.4283, p < 0.05). We detected positive correlation
between DC and EEG (DC and theta: ρ = 0.3652, p < 0.05 and
DC and LB: ρ= 0.3338, p< 0.05), and DC and ocular parameters
(DC and L1NS: ρ = 0.4627, p < 0.005; DC and NNI: ρ = 0.3251,
p < 0.05).

Discussions
Flight simulator studies were designed with three task conditions.
The tasks were intended to increase the difficulty levels from C1
to C3. The recorded spectral power in beta and theta bands show
a progressive increase from C1 to C3 and C2 to C3 (Table 14).
These results have physiological significance in terms of human
information processing. As discussed in Table 10, theta activity
is associated with information retrieval. Beta band represents
fast activity and is an indicative of increased thinking and focus
levels. Hence, EEG data suggest that introducing a secondary
task in C3 increased load on the participant’s working memory.
Results from ocular parameters also suggest a similar trend.
NNI and L1NS showed a significant increase in C3. Hence, gaze
fixations were more random and variations in pupil diameter
were more predominant during C3. Data from the participant’s
flying performance and his/her control strategy [F(4,26) = 2.72,
p < 0.0839, η² = 0.247] also indicated increased cognitive
workload with the inclusion of the secondary task.

Correlation analysis between EEG, ocular, and flying
performance data for all the participants indicated positive
correlation among all the parameters. Among the EEG
frequency band power, LB and theta bands were found to
be highly correlated. We also found that EEG theta and LB
power, NNI, L1NS, and DC have a statistically significant
positive correlation.

GENERAL DISCUSSIONS

We presented two studies on validating physiological measures
to estimate pilot’s cognitive workload in demanding scenarios.
In the first study, different task difficulty levels were achieved
through proven psychometric tasks such as N-Back and
arithmetic tasks. As discussed in section Discussion, the
test results confirmed our ocular parameters’ robustness in
estimating cognitive workload for varying task difficulties
and varying illumination conditions. We found that L1NS,
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TABLE 13 | Comparison between parameters.

Alpha band power LB band power HB band power Theta band power SI velocity NNI Fixation rate L1NS DC

C1–C2 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1 p > 0.1

C1–C3 p < 0.05 p = 0.05 p < 0.05 p < 0.01 p > 0.1 p < 0.01 p > 0.1 p = 0.07 p > 0.1

C2–C3 p = 0.07 p < 0.05 p < 0.05 p = 0.07 p > 0.1 p < 0.1 p = 0.058 p < 0.01 p < 0.05

FIGURE 12 | Correlation between EEG, ocular, and flying performance parameters (ρ is the pairwise linear correlation coefficient; p-val is the level of significance).

(From top left) EEG: LB vs. theta, LB vs. HB; Ocular parameters: NNI vs. L1NS, L1NS vs. EEG LB; Flying performance: DC vs. L1NS, DC vs. theta.

STDP, and LPF of pupil diameter were able to distinguish
between different cognitive states corresponding to task
difficulties irrespective of changes in lighting conditions.
The results also proved that increase in task difficulty causes
a decrease in performance. In our flight simulator study,
manipulation of task difficulty was achieved in a controlled
test environment with realistic flight scenarios. We used
NALSim simulator and designed test scenarios that were
representative of the real flight conditions. We used EEG,
ocular, and flying performance parameters to estimate
pilot’s cognitive workload to address our third objective.

We used standard statistical hypothesis methods to report the
comparative results. Results from the user studies concluded
that, in general,

• Distribution pattern of gaze fixations was more random with
increase in task difficulty. This was proven by the NNI
parameter in the flight simulator study.

• Pupil dilation-based L1NS metric showed significant increase
in N-back and arithmetic tasks and aircraft flight task.

• In the case of EEG data, low beta and theta band powers were
consistently more sensitive to task difficulty. Test condition
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with secondary task showed the highest cognitive workload
among all scenarios.

We used participants’ inceptor control strategy and their
flying performance as another indicator for comparison
with the physiological parameters. C3 showed higher DCs
among the three test cases. The higher DC suggests that
participants in the C3 test condition had to use the inceptor
controls more rigorously than for other task conditions.
Our final objective was to find a correlation between the
multiple observations. We found that low beta and theta
EEG band power, the gaze base ocular parameter NNI,
the pupil dilation-based ocular parameter L1NS, and the
performance-based parameter DC are indicators of cognitive
workload variations and have positive correlation (p < 0.05)
among themselves.

The primary aim of this study was to identify and correlate
the different physiological and performance-based metrics as
an indicative measure of pilot’s cognitive workload. However,
it is known that for the same task, novice pilots experience
higher cognitive workload than experienced pilots (Antonenko
et al., 2010). Hence, the results of the study are limited
to understanding the correlation between the measures and
not to compare the cognitive workload of the pilots. Future
research would focus on validating the metrics discussed in
this study with pilot evaluations for the entire flight envelope.
Additionally, based on the available database, we plan to use
machine learning techniques to classify pilots’ cognitive status
in real time.

These findings can also be extended to automotive domain
where the drivers are always engaged in tasks that demand
their attention and increase their cognitive load while
driving. The estimated cognitive load from the proposed
technique can provide necessary information to the car for
making smart decisions when the driver undergoes increase
in cognitive load.

Furthermore, cognitive workload estimation principles may
turn out to be highly relevant for design optimization of
any new product. Innovation starts with user’s need, which is
then fulfilled by creating new solutions or improving existing
solutions. However, the challenge lies in identifying the real
need of the users. Design thinking has been very successful
in adopting a human-centered approach in identifying the
need of the users in society. Hence, estimating a user’s
cognitive status is extremely critical to understand the underlying
factors that govern responses of human mind and human
actions. An accurate understanding of the cognitive processes
can create an efficient design that can create a superior
user experience.

CONCLUSIONS

This paper discussed the application of non-invasive
physiological measures along with task performance-based
metrics to estimate pilot’s cognitive workload. Initially, we
conducted studies to estimate ocular parameters’ ability
to distinguish between variations in cognitive workload

corresponding to differences in task difficulties. We also
evaluated the robustness of our metrics in different ambient
light conditions. In the second study, three different workload
estimation methodologies were validated and compared.
Participants were assigned different dimensions of task levels,
such as primary and secondary tasks and maintaining one or
many flight parameters. It was observed that the introduction
of the secondary task (condition C3) along with flying caused
a significant increase in cognitive workload. Degradation in
performance due to such secondary tasks can be estimated
from the proposed metrics. Thus, results discussed in this study
propose a methodology for estimating pilot’s cognitive workload
based on his/her physiological measures such as EEG, ocular
parameters, and the pilot’s flying performance.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

Ethical review and approval was not required for the study on
human participants in accordance with the local legislation
and institutional requirements. The patients/participants
provided their written informed consent to participate in this
study. Written informed consent was also obtained from the
participants for the publication of any potentially identifiable
images and data used in this study.

AUTHOR CONTRIBUTIONS

PH has contributed in the formulation of the test cases,
conducting the user studies, and analyzing the ocular parameters
of the flight simulator experiments. KB has contributed in the
conducting the user studies data extraction and analyzing the
EEG data of the flight simulator experiments. GP contribution
is the conduct of the psychometric test and analyzing the results.
PB contribution is overall guidance, discussion of the results, and
reasoning and conclusions. AP has provided overall guidance
and support. All authors contributed to the article and approved
the submitted version.

REFERENCES

Abadi, R. V., and Gowen, E. (2004). Characteristics of saccadic intrusions. Vis. Res.
44, 2675–2690. doi: 10.1016/j.visres.2004.05.009

Antonenko, P., Paas, F., Grabner, R., and Gog, T. V. (2010).
Using electroencephalography to measure cognitive load.

Educ. Psychol. Rev. 22, 425–438. doi: 10.1007/s10648-
010-9130-y

Babu, M. D., JeevithaShree, D. V., Prabhakar, G., Saluja, K. P. S., Pashilkar,
A., and Biswas, P. (2019). Estimating pilots cognitive load from ocular
parameters through simulation and inflight studies. J. Eye Mov. Res. 12:3.
doi: 10.16910/jemr.12.3.3

Frontiers in Psychology | www.frontiersin.org 14 April 2021 | Volume 12 | Article 555446

https://doi.org/10.1016/j.visres.2004.05.009
https://doi.org/10.1007/s10648-010-9130-y
https://doi.org/10.16910/jemr.12.3.3
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hebbar et al. Estimating Pilot’s Cognitive Load

Beatty, J., and Lucero-Wagoner, B. (2000). “The pupillar system,” in Handbook

of Psychophysiology, eds J. T. Cacioppo, L. G. Tassinary, and G. G. Berntson,
(Cambridge: Cambridge University Press), 142–162.

Biella, M., Wies, M., Charles, R., Maille, N., Berberian, B., and Nixon, J. (2017).
“How eye tracking data can enhance human performance in tomorrow’s
cockpit. Results from a flight simulation study in FUTURE SKY SAFETY,” in

Proceedings of Joint AIAA and Royal Aeronautical Society Fall Conference on

Modeling and Simulation for ATM (London), 13–15.
Biswas, P., and JeevithaShree, D. V. (2018). “Eye Gaze ControlledMFD forMilitary

Aviation,” in 23rd International Conference on Intelligent User Interfaces

(ACM), 79–89. doi: 10.1145/3172944.3172973
Biswas, P., and Langdon, P. (2015). Multimodal intelligent eye-

gaze tracking system. Int. J. Hum. Comp. Interact. 31, 277–294.
doi: 10.1080/10447318.2014.1001301

Bjäreholt, E. A Simple N-Back game written in Python, compatible with Android.
(2014). Available online at: https://github.com/ErikBjare/N-Back/ (accessed
November 18, 2019).

Bodala, I. P., Li, J., Thakor N. V. and Nashash H. A. (2016). EEG and eye tracking
demonstrate vigilance enhancement with challenge integration. Front. Hum.

Neurosci. 10:273. doi: 10.3389/fnhum.2016.00273
Boeing (2018). Statistical Summary of Commercial Jet Airplane Accidents-

Worldwide Operations−1959-2018, 50th Edn. Washington, DC: Aviation
Safety, Boeing Commercial Airplanes Seattle.

Borghini, G., Vecchiato G., Toppi J., Astolfi L., Maglione A., Isabella R.,
et. al. (2012). “Assessment of mental fatigue during car driving by using

high resolution EEG activity and neurophysiologic indices,” in Proceedings of

34th Annual International Conference of the IEEE EMBS (SanDiego, CA).
doi: 10.1109/EMBC.2012.6347469

Borys, M., Tokovarov, M., Wawrzyk, M., Wesolowska, K., Plechawska,
M., Dmytruk, R., et al. (2017). “An analysis of eye tracking and
electroencephalography data for cognitive loadmeasurement during arithmetic
tasks,” in Proceedings of 10th International Symposium on Advanced Topics in

Electrical Engineering (Bucharest). doi: 10.1109/ATEE.2017.7905130
Causse, M., Fabre, E., Giraudet, L., Gonzalez, M., and Peysakhovich, V. (2015).

“EEG/ERP as a measure of mental workload in a simple piloting task,” in
Proceedings of 6th International Conference on Applied Human Factors and

Ergonomics and Affiliated Conferences, Procedia Manufacturing (Las Vegas,
NV), 5230–5236. doi: 10.1016/j.promfg.2015.07.594

Cheng, S., and Hsu, H. (2011). “Mental fatigue measurement using EEG,” in Risk
Management Trends, ed G. Nota (InTech). doi: 10.5772/16376

Coulacoglou, C., and Saklofske, D. H. (2017). Psychometrics and
psychological assessment: principles and applications. Acad. Press 91–130.
doi: 10.1016/B978-0-12-802219-1.00005-5

Demberg, V., and Sayeed, A. (2016). The frequency of rapid pupil dilations
as a measure of linguistic processing difficulty. PLoS ONE 11:e0146194.
doi: 10.1371/journal.pone.0146194

Di Nocera, F., Camilli, M., and Terenzi, M. (2007). A random glance at the flight

deck: Pilot’s scanning strategies and the real-time assessment of mental workload.
J. Cogn. Eng. Decis. Making 1, 271–285. doi: 10.1518/155534307X255627

Ebbatson, M., Huddlestone, J., Harris, D., and Sears, R. (2007). The application
of frequency analysis based performance measures as an adjunct to flight path
derived measures of pilot performance. Hum. Factors Aerospa. Saf. 6, 383–394.

Eye tracking for research. (2018). Available online at: https://www.tobiipro.com/
product-listing/tobii-pro-glasses-2/ (accessed January 22, 2020).

Friedman, N., Feketa, T., Gal, G., and Shriki, O. (2019). EEG based Prediction
of cognitive load in intelligence tests. Front. Hum. Neurosci. 13:191
doi: 10.3389/fnhum.2019.00191

Gentili, R. J., Rietschel, J. C., Jaquess, K. J., Lo, L. C., Prevost, C. M., Miller, M.
W., et al. (2014). “Brain biomarkers-based assessment of cognitive workload in
pilots under various task demands,” in Proceedings of 36th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society (Chicago,
IL), 5860–5863. doi: 10.1109/EMBC.2014.6944961

Gevins, A., Smith, M. E., McEvoy L., and Yu, D. (1997). High-resolution
EEG mapping of cortical activation related to working memory: effects of
task difficulty, type of processing, and practice. Cereb Cortex. 7, 374–85.
doi: 10.1093/cercor/7.4.374

Granholm, E., Asarnow, R. F., Sarkin, A. J., and Dykes, K. L. (1996). Pupillary
responses index cognitive resource limitations. Psychophysiology 33, 457–461.
doi: 10.1111/j.1469-8986.1996.tb01071.x

Grummett, T. S., Leibbrandt, R. E., Lewis, T. W., DeLosAngeles, D., Powers,
D. M. W., Willoughby, J. O., et al. (2015). Measurement of neural signals
from inexpensive, wireless and dry EEG systems. Physiol. Meas. 36:1469.
doi: 10.1088/0967-3334/36/7/1469

Hanson, C., Schaefer, J., Burken, J. J., Larson, D., and Johnson, M. (2014).
Complexity and Pilot Workload Metrics for the Evaluation of Adaptive Flight

Controls on a Full-Scale Piloted Aircraft. Edwards, CA: NASA Dryden Flight
Research Center.

Harper, R.P. Jr., and Cooper, G. E. (1986). Handling Qualities and Pilot
Evaluation. AIAA J. Guidance. Cont. Dyn. 9, 515–529. doi: 10.2514/
3.20142

Hebbar, P.A., and Pashilkar, A.A. (2017). Pilot performance evaluation
of simulated flight approach and landing maneuvers using quantitative
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