
fpsyg-12-572877 June 15, 2021 Time: 17:47 # 1

ORIGINAL RESEARCH
published: 21 June 2021

doi: 10.3389/fpsyg.2021.572877

Edited by:
Carina Soledad González

González,
University of La Laguna, Spain

Reviewed by:
Anna Pribilova,

Slovak Academy of Sciences (SAS),
Slovakia

Jan David Smeddinck,
Newcastle University, United Kingdom

*Correspondence:
Anna Lisa Martin-Niedecken

anna.martin@zhdk.ch
Alexandra Schättin

alexandra.schaettin@hest.ethz.ch

Specialty section:
This article was submitted to

Human-Media Interaction,
a section of the journal
Frontiers in Psychology

Received: 15 June 2020
Accepted: 05 March 2021
Published: 21 June 2021

Citation:
Martin-Niedecken AL, Schwarz T
and Schättin A (2021) Comparing

the Impact of Heart Rate-Based
In-Game Adaptations in an

Exergame-Based Functional
High-Intensity Interval Training on
Training Intensity and Experience

in Healthy Young Adults.
Front. Psychol. 12:572877.

doi: 10.3389/fpsyg.2021.572877

Comparing the Impact of Heart
Rate-Based In-Game Adaptations in
an Exergame-Based Functional
High-Intensity Interval Training on
Training Intensity and Experience in
Healthy Young Adults
Anna Lisa Martin-Niedecken1* , Tiziana Schwarz2 and Alexandra Schättin2*

1 Subject Area in Game Design, Department of Design, Zurich University of the Arts, Zurich, Switzerland, 2 Motor Control
and Learning, Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH
Zürich, Zurich, Switzerland

Physical inactivity remains one of the biggest societal challenges of the 21st century.
The gaming industry and the fitness sector have responded to this alarming fact with
game-based or gamified training scenarios and thus established the promising trend
of exergaming. Exergames—games played with the (whole) body as physical input—
have been extolled as potential attractive and effective training tools. Simultaneously,
researchers and designers are still exploring new approaches to exploit the full
potential of this innovative and enjoyable training method. One way to boost the
attractiveness and effectiveness of an exergame is to individualize it with game
adaptations. A physiological parameter that is often used to balance the physical
challenge and intensity of exergames to the player’s fitness skills is the heart rate (HR).
Therefore, researchers and designers often rely on age-based, maximum HR (HRmax)
formulas originating from performance diagnostics. In combination with the player’s
assessed real-time HR during an exergame session, the pre-determined HRmax is used
to adapt the game’s challenge to reach a pre-defined HR and physical intensity level
(in-exergame adaptations), respectively. Although the validity and reliability of these
age-based HRmax formulas were proven in heterogeneous target populations, their
use is still often criticized as HR is an individual parameter that is affected by various
internal and external factors. So far, no study has investigated whether the formula-
based pre-calculated HRmax compared to a standardized individually pre-assessed
HRmax elicits different training intensities, training experiences, and flow feelings in an
exergame. Therefore, we compared both variants for in-exergame adaptation with the
ExerCube – a functional high-intensity interval training exergame – in healthy young
adults. Comparing the results of the two conditions, no significant differences were
found for HR parameters and perceived physical and cognitive exertion, nor for overall
flow feelings and physical activity enjoyment. Thus, the formula-based in-exergame
adaptation approach was suitable in the presented study population, and the ExerCube
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provided an equally reliable in-exergame adaptation and comparable exergame play
experiences. We discuss our findings in the context of related work on exergame
adaptation approaches and draw out some implications for future adaptive exergame
design and research topics.

Keywords: exergame, game balancing, heart rate, effectiveness, attractiveness, assessement, ExerCube, in-
game adaptation

INTRODUCTION

Numerous guidelines preach the urgent necessity of regular
physical activity to maintain a physically and mentally healthy
lifestyle at all ages. According to the American College of
Sports Medicine, a program of regular exercise, including
cardiorespiratory, resistance, flexibility, and neuromotor training
in addition to the activities of daily living, is essential for most
adults to improve and maintain their physical fitness and health
(Garber et al., 2011). However, surveys by the World Health
Organization continuously reveal that physical inactivity remains
the greatest public health problem of the 21st century (Trost et al.,
2014). In addition to a lack of motivation and time, changing
behavioral and environmental factors as well as a number of
common exercise barriers are the main reasons for this persisting
problem (Trost et al., 2002). Therefore, stakeholders from various
fields have called for new concepts for attractive and effective
training alternatives to reduce entry barriers and help to maintain
training adherence for a wide range of people over a period of
several years (Marshall and Linehan, 2020).

Exergames, which require physical effort and are controlled
by (whole) body movements (Oh and Yang, 2010), have been
promoted as suitable tools for providing attractive and effective
training alternatives or supplements by the interdisciplinary
research and development (R&D) community. In more than 10
years, R&D work has proved that exergames have the potential to
be training tools that are both effective (i.e., increasing physical-
cognitive fitness, endurance, strength, and coordination) (Staiano
and Calvert, 2011a,b; Sween et al., 2014; Best, 2015; Benzing et al.,
2016; Kari, 2017; Mura et al., 2018; Stojan and Voelcker-Rehage,
2019; Xiong et al., 2019) and attractive (e.g., increasing training
adherence, motivation, flow, and engagement) (McRae et al.,
2012; Valenzuela et al., 2018; Martin-Niedecken et al., 2019b;
Tondello et al., 2019). Furthremore, exergamging promotes
physical activity and training in different target populations (Lu
et al., 2013; Kappen et al., 2019; Martin-Niedecken and Schättin,
2020). However, the majority of the evaluated exergames, which
were not necessarily specifically designed for the purpose of
obtaining certain training results or to be used as a motivating
alternative to traditional training methods, did not meet the
required intensity or effectiveness, nor did they induce the
intended training adherence or long-term motivation (e.g.,
Marshall and Linehan, 2020).

A promising approach towards boosting the effectiveness
(e.g., training intensity and outcomes) and attractiveness (e.g.,

Abbreviations: HR, heart rate; R&D, research and development; HRmax,
maximum heart rate; HRavg, average heart rate; fHIIT, functional high-intensity
interval training; HCI, human-computer interaction; min, minutes; sec, seconds.

flow, immersion, enjoyment, and motivation) of exergames is
the personalization through system adaptations, also known
as dynamic game balancing (Mueller et al., 2012; Altimira
et al., 2016), game difficulty adjustment (Adams, 2010), dynamic
difficulty adjustments (Hunicke, 2005), or multiplayer game
balancing (Gerling et al., 2014). Besides various pre-exergame
and real-time in-exergame adaptation parameters (e.g., game
speed, frequency of in-game tasks, and increasing input-
movement intensity and range), in-exergame adaptations based
on the player’s heart rate (HR) have been proposed and explored
by various researchers and designers. These HR-based concepts
were proven to be feasible and beneficial approaches to balance
the player’s abilities and the challenges of the exergame (Sinclair
et al., 2009; Stach et al., 2009; Mueller et al., 2012; Hoffmann et al.,
2015; Ketcheson et al., 2015; Martin-Niedecken and Götz, 2016,
2017; Martin-Niedecken, 2018; Martin-Niedecken and Mekler,
2018; Muñoz et al., 2018; Martin-Niedecken et al., 2019a,b). At
the same time, these formulas are often criticized because HR
is an individual parameter that is influenced by various internal
and external factors (Stach et al., 2009; Mueller et al., 2012;
Hoffmann et al., 2015; Ketcheson et al., 2015). However, no study
has yet investigated whether the formula-based pre-calculated
maximum HR (HRmax) compared to a standardized individually
pre-assessed HRmax elicits different training intensities, training
experiences, and flow feelings in an exergame. Furthermore,
exergames and their underlying technologies have the potential to
serve as assessment tools for in-exergame adaptation parameters,
and could thus replace strenuous and unmotivating traditional
test procedures with playful assessments (e.g., Konstantinidis
et al., 2015). Nonetheless, this has not yet been explored in
much detail. To sum up, further interdisciplinary R&D work
is needed to fill these gaps and to further explore the full
potential of (adaptive) exergames as an innovative training and
assessment tool.

Our work explores these R&D gaps, with the goal of better
understanding the design requirements and potential of attractive
and effective exergames. Based on an overview of different
pre- and in-exergame adaptation approaches, we present a
study that compares two different play conditions of a newly
developed, adaptive functional high-intensity interval training
(fHIIT) exergame, the so-called ExerCube, using objective
and subjective measures for training intensity (effectiveness)
and experience (attractiveness) in healthy young adults. The
ExerCube automatically adapted to the targeted HR range
(defined as percentage of HRmax) by either (i) the individually
pre-assessed HRmax or (ii) the formula-based pre-calculated
HRmax. Furthermore, we explored the potential utility of the
ExerCube as a HRmax assessment tool by comparing the
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ExerCube procedure to a standard ergometer protocol. Based on
our results, we discuss how individual in-exergame adaptation
can influence the effectiveness and attractiveness of exergames.

RELATED WORK

During the last few years, interdisciplinary researchers and
designers have started exploring different exergame adaptation
approaches in various target populations. These approaches were
based on theories and models from disciplines such as human
movement science, human–computer interaction (HCI), game
research, and psychology.

Multi-Level Pre-exergame Adaptations
Pre-exergame adaptations based on various design levels of an
exergame have so far been considered only by a limited number
of R&D studies. Following, we present selected studies that used
pre-exergame adaptations in different application areas.

Hardy et al. (2014) tested the dependence of motivation,
perceived difficulty, and performance on specific level features
as well as goal-setting in a balance exergame to find out
whether the effectiveness of the training can be increased
intentionally by changing level features or setting personal
goals. They found a significant influence of single features
on psychological (motivation and diffculty) and physiological
constructs (performance and play time).

Altimira et al. (2013, 2014) investigated how two traditional
balancing approaches (i.e., playing with the non-dominant hand
and using a pre-determined head-start) affect players’ experiences
in traditional table tennis and in game-based table tennis with
the Nintendo Wii, respectively. Their studies showed that playing
with the non-dominant hand discouraged players in traditional
table tennis and that having a score disadvantage discouraged
them in the digital version. Building on this, Altimira et al.
(2017) studied how digital technology (i.e., altering the sports
equipment: playing with a smaller bat-head or a smaller table)
can be used as a resource for game balancing in an augmented
table tennis exergame. They showed that dynamic adjustments
enhanced engagement more than static adjustments.

Jensen and Grønbæk (2016) developed and evaluated the
effects of three balancing schemes based on a physical, an
implicit-digital, and an explicit-digital approach, implemented
into a ball-controlled exergame. They demonstrated that all three
game balancing approaches were feasible and gave equal chances
to win while all players enjoyed the balanced gameplay.

Gerling et al. (2014) examined different game adjustments
such as score multipliers, the precision of the input movements,
and the number of movements implemented in a dancing game.
They found that obvious game balancing can reduce players’ self-
esteem in comparison to hidden game balancing. Score balancing
reduced the appearance of extreme performance gaps between
players. The adjustment of input movement precision reduced
small differences in players’ performances and in asymmetric
physical input, e.g., a player in a wheelchair.

Siegel and Smeddinck (2012) examined an approach to
dynamic difficulty adjustments in an exergame for Parkinson’s

disease using patients’ range of motion as well as movement
speed and accuracy as adaptation parameters. They found that
this approach was viable and appreciated by therapists. However,
the system might benefit from increased flexibility.

HR-Based In-Exergame Adaptations
Considerably more widespread is R&D work in the area of in-
exergame adaptations, especially focusing on the player’s HR.

Mueller et al. (2012) presented an urban jogging system that
used HR data and spatialized sound to create an equitable,
balanced experience between joggers of different fitness levels
and geographical locations. They demonstrated that real-time
HR-based balancing positively affected players’ experiences in a
remote jogging application because they performed in their own
training zone, while still engaging with another person.

Stach et al. (2009) used HR scaling in a multiplayer cycling
exergame. Players’ in-exergame performances were based on
their effort relative to their fitness level. They demonstrated that
HR scaling reduced the performance gap of different fitness
levels. Moreover, engagement was not significantly affected
during gameplay.

Ketcheson et al. (2015) evaluated HR power-ups to encourage
vigorous training intensities in a cycling exergame intervention.
This real-time game mechanism provided in-exergame rewards
when players reached the targeted HR level (e.g., the avatar may
be more powerful). The pedaling was used to control the avatar’s
movement while a standard controller was used to navigate the
avatar in different directions and to release in-game actions.
Researchers concluded that HR power-ups enhanced exertion
levels while also increasing players’ enjoyment levels.

Hoffmann et al. (2015) implemented and tested an algorithm
that controlled the physical load of an endurance cycling
exergame to approach and maintain a pre-defined HR. They
used the pedaling frequency (cadence) as a game-controlling
parameter and the resistance (Watt) as an adaptive control
mechanism. The evaluation indicated that the developed
algorithm was a feasible approach for controlling an individual
adaptive training load in the cycling exergame.

Muñoz et al. (2018) investigated the effectiveness and
attractiveness of a Pong-like floor-projected exergame in older
adults. They showed that real-time HR-based in-exergame
adaptations (e.g., speed and training zone) increased the time
the older adults spent in the recommended exertion level
by approximately 40% compared to conventional functional
training. Furthermore, this exergame training provided a
controlled, safe, joyful, and effective cardiovascular training
in older adults.

Physical–Cognitive In-Exergame
Adaptations
There are two exergame approaches that extend the HR-based
approach by exploring HR-based (physical) and performance-
related (cognitive) in-exergame adaptations. Sinclair et al.’s (2007,
2009) dual flow model proposes certain design strategies to
balance players’ gaming (cognitive) and fitness (physical) abilities
with the actual required skills to successfully play and enjoy an
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exergame in real-time. Based on this model, Martin-Niedecken
and Götz (2016, 2017), Martin-Niedecken (2018) designed
and evaluated the adaptive fitness game environments Plunder
Planet for children and ExerCube for adults (Martin-Niedecken
and Mekler, 2018; Martin-Niedecken et al., 2019b). Among
other things, they experimented with performance-related
and physiologically-based real-time in-exergame adaptation
mechanics and implemented them as algorithms.

Plunder Planet (Martin-Niedecken and Götz, 2016, 2017;
Martin-Niedecken, 2018) is a single- and two-player exergame
that can be played in two versions. One variation includes
a full-body motion controller providing physical guidance via
six big buttons distributed on two racks (height and weight
adjustable) on the player’s left- and right-hand side, requiring
cognitive and coordinative skills as well as haptic interactions.
The other variation includes the gesture-based Kinect sensor,
which allows more natural and intuitive input movements and
more freedom of movement. In both variations, the player
navigates a flying pirate ship along a deserted racing track and
has to overcome virtual obstacles and avoid collisions with
sandworms. The player’s HR is tracked via a chest strap. The
exergame can be manually or automatically adapted in real-
time to the player’s physical and cognitive performance. Thus,
the speed of the ship and the frequency of virtual obstacles
(physical challenge) are increased or decreased based on the
player’s HR. The track characteristics (e.g., flatter or curved)
and the number of options for overcoming an obstacle (one
to three option(s), i.e., hard to easy, respectively) are adapted
to the player’s performance (cognitive challenge). A study in
children proved the fundamental functionality and usability
(attractiveness and effectiveness) of Plunder Planet (Martin-
Niedecken and Götz, 2016). Martin-Niedecken and Götz (2017)
found that the implementation of adaptive game mechanics
provided players with an enjoyable and effective (moderate
intensity) exergame experience, and that playing the game with
the different controllers resulted in different spatial presence
and gameplay experiences depending on the player’s preferences
as well as play and sports skills. An advanced study (Martin-
Niedecken and Götz, 2017) demonstrated that the adaptive
Plunder Planet version was significantly better than the non-
adaptive one in relation to game flow, dual flow, motivation,
enjoyment, and spatial presence, as well as the children’s
physiological responses.

The ExerCube (Figure 1; Martin-Niedecken and Mekler,
2018; Martin-Niedecken et al., 2019a,b) is an immersive mixed-
reality fitness game for single or multiple players. The player is
surrounded by three walls that serve as projection screens and
haptic interfaces for energetic bodily interactions. A customized
motion-tracking system tracks players’ movements via HTC Vive
trackers (attached to their wrists and ankles). In the functional
fitness game scenario Sphery Racer, which is projected onto the
walls of the ExerCube, the player races along a fast-paced sci-fi
underwater race track via an avatar on a hoverboard. The motion-
tracking system transfers the executed movements (based on a
functional workout) onto the avatar and thus onto the virtual
racing track. Along the race, players are challenged by functional
whole body exercises (e.g., squats, lunges, and burpees) and

FIGURE 1 | Functional high-intensity interval training in the ExerCube.

by an additional cognitive challenge as players have to quickly
process track information and react accordingly (i.e., reaction,
planning, and coordination challenges). To ensure an attractive
and effective workout experience for a wide spectrum of players
with different skill sets, this fitness game continuously adapts
game difficulty to players’ individual fitness and cognitive skills.
Training intensity is measured via continuous HR tracking (i.e.,
players wear a HR-sensor chest strap). Depending on the targeted
training intensity (e.g., moderate or high), tracking is set to
an individually pre-defined HR range, defined as a percentage
of HRmax, where HRmax is manually inserted or automatically
calculated based on the following formula (Nes et al., 2013):

HRmax = 211− age× 0.64 (1)

Based on this training range and the player’s HR, the
exercise difficulty, gaming speed, frequency of obstacles, and
track characteristics are increased or decreased within the
training session. Cognitive skills are measured by in-exergame
performance (reacting to visual stimuli at the right time) and
are balanced by the display timing of the next movement
direction. In a previous empirical study, the first early stage
prototype was found to be on par with personal training in terms
of immersion, motivation, and flow (Martin-Niedecken et al.,
2019b). A second study with the redesigned prototype aimed
to compare the objective and subjective physiological training
intensity in the ExerCube to that induced by conventional fHIIT
(Martin-Niedecken et al., 2020). This study demonstrated that
the ExerCube is a feasible tool for inducing fHIIT intensity.
While the average HR was significantly lower than in the
conventional functional HIIT condition, maximal HR was at the
same high level for both trainings, and the percentage of HRmax
calculation (based on Nes et al., 2013) showed medium to high
training intensities. Furthermore, the ExerCube training yielded
significantly better results for flow, enjoyment, and motivation.
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Formula-Based In-Exergame
Adaptations
In addition to some relatively unexplored parameters for
pre- and in-exergame adaptations (e.g., controller adaptations),
the player’s HR has been proposed and explored by various
researchers and designers. HR-based adaptation was proved
to be a feasible and beneficial approach to balance player’s
physical abilities and the exergame challenge and thus to enhance
training experience (e.g., engagement, perceived effectiveness,
and motivation) and training effects (e.g., performance and
outcomes) (Sinclair et al., 2009; Stach et al., 2009; Mueller
et al., 2012; Hoffmann et al., 2015; Ketcheson et al., 2015;
Martin-Niedecken and Götz, 2016, 2017; Martin-Niedecken,
2018; Martin-Niedecken and Mekler, 2018; Muñoz et al., 2018;
Martin-Niedecken et al., 2019a,b). This can be attributed to the
fact that in the area of sports and fitness training, HR has already
been thoroughly investigated (Ludwig et al., 2018). Furthermore,
HR is relatively easy to implement technically in an exergame by
means of various wearable devices that allow sending real-time
HR data via Bluetooth to the game engine.

So far, only some studies have explored the feasibility of
implemented HR prediction models to incorporate HR-based
adaptation mechanisms into an exergame (Hoffmann et al.,
2015, 2016; Hoffmann and Wiemeyer, 2017b). However, most
researchers and designers still rely on age-based formulas to
calculate HRmax with which to approach and maintain a pre-
defined HR range and physical load in exergames. Two examples
are given by Robergs and Landwehr (2002) and Nes et al. (2013):

HRmax = 220− age (2)

HRmax = 211− age× 0.64 (3)

These formulas are then implemented in combination
with a targeted HR range (defined as percentage of
HRmax) to set the training intensity of an exergame (e.g.,
beyond 80% of HRmax corresponds to high-intensity levels
(MacInnis and Gibala, 2017)).

Although numerous validation studies are available (e.g., Nes
et al., 2013), these formulas are often criticized because HR and
HRmax are highly individual parameters that, besides age, can be
influenced by various internal (e.g., gender, training status (Nes
et al., 2013), genetics (Wang et al., 2009), and mood (Petrov
et al., 2014)) and external factors (e.g., environmental conditions,
nutrition, and water supply) (Ludwig et al., 2018). Thus, some
researchers pre-assessed the individual HRmax and targeted range
of HR of players with standardized ergometer tests and used
this in combination with pre-defined cycling training protocols
to implement a pre-defined physical load in a cycling exergame
(Barathi et al., 2018; Farrow et al., 2019).

Exergame-Based Assessments
Another promising approach is the application of exergames
as assessment tools (Konstantinidis et al., 2015). This could be
another interesting step towards user-friendly and motivating
training scenarios and exploiting further in-exergame adaptation

mechanisms and strategies. There are hardly any exergame-
based assessments to measure cognitive and physical fitness or
mental state. Such assessments, although, would allow a more
holistic classification of the personal skills, deficits, and mood,
and thus would provide a more individualized and detailed
default setting of in-exergame adaptation parameters. So far,
traditional assessment batteries are still performed manually
and outside the (exer)game setting. Thinking about HRmax
standardized assessments, these testing protocols often involve
a player going right up to or even beyond their limits in a
way that is not necessarily a pleasant situation to experience.
Integrated into an exergame, HRmax assessments might become
more pleasant since it is known from related work that the
immersive and motivating nature of a game helps to shift the
focus from one’s own body and the physical strain to the gaming
experience and the cognitive level (Martin-Niedecken et al.,
2019b). Furthermore, this could increase the overall usability of
exergames as attractive and effective training tools on the market,
and support trainers and therapists.

MATERIALS AND METHODS

To fill the aforementioned gaps, we conducted a comparative
study aiming to explore whether there are objective and
subjective differences in training intensity (effectiveness) and
experience (attractiveness) when the ExerCube is automatically
adapted to the targeted HR range (defined as percentage of
HRmax) by either the individually pre-assessed or the formula-
based pre-calculated HRmax. Furthermore, this study aimed to
gain some early indications about the usage of the ExerCube to
determine individual HRmax by comparing the procedure to a
standardized ergometer protocol (Maier et al., 2016).

Because of these objectives, the project consisted of two
parts to investigate both study questions (Figure 2). The study
ran from November 2019 to February 2020. Measurements
were made either at the research group laboratory (ETH
Zürich, Hönggerberg, Zurich, Switzerland) or at the Sphery
gym (Asylstrasse 64, Zurich, Switzerland). All measurements
were made by one investigator who was familiar with the
study set-up. Participants were continuously supervised by the
experienced investigator and the instructions were provided in a
standardized manner for each participant. The ethics committee
of the ETH Zürich, Switzerland (EK 2019-N-137), approved the
study protocol. Before any measurements were carried out, all
eligible participants had to sign a form giving their informed
consent according to the Declaration of Helsinki.

Participants
For this study, the minimal intended sample size of 20 healthy
(self-reported by health questionnaire) young adults aged 18–
35 years was based on a previous study that examined similar
parameters (e.g., HR) (Martin-Niedecken et al., 2020) in the same
training setting, as well as on the possibility of losses or refusals.
Participants were excluded from the study if one of the following
exclusion criteria was presented: (1) history of cardiovascular
issues that would prevent training participation, (2) asthma (not
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FIGURE 2 | Study procedure. (A) Testing sessions to assess individual maximal heart rate. (B) Comparison of in-exergame adaptation. In-between (A) and (B) are
2–14 days.

controllable), (3) musculoskeletal injuries that would prevent
training participation, (4) pain that would be reinforced by
sports activities, and (5) pregnancy. For recruitment, different
methods were used, such as word-of-mouth and emailing (ETH
and company Sphery Ltd, Zurich, Switzerland), without offering
any financial compensation for attendance. Prior to the first
measurement, all participants were fully informed about the
procedure, benefits, and risks of the study.

Procedure
Testing Sessions to Assess Individual Maximal Heart
Rate
Two separate testing appointments were carried out to assess the
individual HRmax via an ergometer and an ExerCube protocol.
Both testing protocols are presented in Figure 3. At the beginning
of the ergometer and the ExerCube session, the resting HR
was assessed in a sitting position for 5 minutes (min). HR
measurements were continued during the HRmax testing sessions.
At the end of each session, participants rated their physically
and cognitively perceived exertion. The sequence of the testing
sessions was randomized to minimize subsequent effects and an
intervening period of 2–14 days was set.

Comparison of In-Exergame Adaptations
The last appointment included two ExerCube sessions. At the
beginning of the appointment, resting HR was assessed in a
sitting position for 5 min. HR measurements were continued
during both ExerCube sessions. Participants performed the “dual
flow protocol” of the Sphery Racer for 11 min (20 seconds (sec)
onboarding and calibration scene, 10 min training, and 40 sec pit
stops) at a training intensity of 80% HRmax. The respective HRmax
of the sessions was defined in two different ways:

• Individual: higher value of both testing sessions

• Formula-based (Nes et al., 2013):

HRmax = 211− age× 0.64 (4)

The ExerCube training protocol started with a short onboarding
and calibration scene (20 sec) and contained five exercise
intervals on the virtual racing-track, each accessed from an
intermediate short pit stop (10 sec).

• Interval 1 (1 min): Touch, Touch low, Touch high (left (L)
/right(R))

• Interval 2 (2 min):+ Squat, Jumping, Punch (L/R)
• Interval 3 (2 min):+ Lunge (L/R)
• Interval 4 (2 min):+ Skipping
• Interval 5 (3 min):+ Burpee

Exercises started with low-to-moderate intensity (in terms
of both physical and cognitive load) and gradually increased
over time to high-intensity. The physical and cognitive challenge
were gradually adapted independently over the whole training
session on a 10-point difficulty scale, where one level was defined
as one step on the 10-point scale (e.g., from 5 to 6). In both
ExerCube sessions, the game aimed to keep players at 80%
HRmax. A lower HR led to an increase in physical challenge,
i.e., speed and exercise frequency (one level per check), while a
higher HR led to a decrease (once 100% HRmax was reached, this
decrease was sped up by three levels to ensure players’ safety).
The system employed a strategy for increasing players’ HR, i.e.,
when 80% HRmax has not been reached, it checked actual HR
every 20 sec and every 10 sec when HR was above 90% HRmax.
The cognitive challenge increased by one level (resulting in a
delayed display of the direction of the next exercise) if the player
performed error-free for 20 sec. If the player made three mistakes
within 20 sec, the difficulty decreased by one level (resulting in
an earlier display of the direction of the next exercise). Thus,
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FIGURE 3 | Comparison of the different protocols to determine individual maximal heart-rate. Reference for Swiss Olympic protocol (Maier et al., 2016).

physical and cognitive game challenges were controlled each by
an independent algorithm. Nevertheless, physical and cognitive
load controls were interconnected in the gameplay. For example,
when the HR decreased (physical algorithm), the game sped up
and the acceleration of the game speed increased the number of
exercises and therefore increased the probability of mistakes on
the game track (cognitive algorithm).

Both ExerCube sessions were carried out at one appointment.
The sequence of the sessions was randomized to balance pre-
fatigue effects and minimize subsequent effects. The break
in-between lasted as long as the participant needed to rest
(self-evaluated) and at least for as long as they needed to
answer the questionnaires (about 8 min). After each ExerCube
session, the participants rated their general, physically, and
cognitively perceived exertion and answered questions about
their training experience.

Assessment
Heart rate data recordings were performed in the resting state,
during HRmax assessment (ergometer and ExerCube), and during
the ExerCube sessions (formula and individual HRmax) to
measure the average HR (HRavg) and/or HRmax. Resting HR was
determined using the average over the three measurements. For
each measurement, resting HR was the average over 5 min under
the condition of a steady state being reached before starting the

measurement. Participants wore a HR-receiving chest belt of the
brand Wahoo (Wahoo Fitness 2014, Atlanta, GA, United States)
for HR data collection. The chest belt was either connected (via
Bluetooth) to the ExerCube, or the compatible “Wahoo Fitness”
App (installed on an android mobile phone).

The Borg 6- to 20-point (6 = very, very light, 20 = very,
very hard) and modified 10-point (1 = very weak, 10 = very,
very strong) rating scales were selected to assess perceived
exertion (Borg, 1982). The 6- to 20-point scale was used to
assess the general perceived exertion (Borg) and the 10-point
scale was used to assess both physically (Borgphysical) and
cognitively (Borgcognitive) perceived exertion. Training experience
was assessed by three questionnaires: (a) Flow Short Scale (FSS),
(b) Flow State Scale (FStS), and (c) Physical Activity Enjoyment
Scale (PACES). The FSS and the FStS assessed participants’ flow
experience (Jackson and Marsh, 1996; Rheinberg et al., 2003). The
FSS consists of 13 items and the FStS consists of nine items (short
version). In the FSS, the flow experience is measured overall and
as three factors: fluency of performance, absorption by activity,
and perceived importance. The FStS measures flow experiences
during physical activity. Further, participants’ enjoyment of the
training was assessed via the PACES, consisting of 18 items
(Kendzierski and DeCarlo, 1991; Motl et al., 2001). The FSS
and PACES questionnaires were rated on a 7-point Likert scale
(FSS: 1 = not at all, 7 = very much; PACES: bipolar statements,
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TABLE 1 | Baseline characteristics.

Age (years) 25.3 ± 1.5

Gender Men: n = 12, Women: n = 9

Years of education 17.4 ± 1.1

Fitness status (self-rated)1 3.8 ± 1.0

Activity (hours per week) 3.9 ± 2.8

Resting heart-rate (bpm) 76.5 ± 11.8

Exergame experience 61.9% (yes), 38.1% (no)

ExerCube experience 23.8% (yes), 76.2% (no)

N = 21. Data are mean values (standard deviation) as indicated. 1Fitness status
(self-rated): 1 = poor, 2 = satisfactory, 3 = average, 4 = good, 5 = very good,
6 = competitive sports level.

1 = disagree a lot, 7 = agree a lot) and the FStS was rated on
5-point Likert scale (1 = not at all, 5 = very much).

Analysis
Statistical analysis was conducted in SPSS (IBM SPSS 26).
Since the criteria for a parametric analysis were not given,
comparisons of the HR values, rating scales, and questionnaires
were performed using the Wilcoxon signed-rank test. The level
of significance was set at p < 0.05. Effect sizes were calculated
using the formula (Cohen, 2013):

r =
z
√

N
(5)

where z = z-score and N = number of participants.
An effect size 0.1 ≤ r < 0.3 is considered a small effect,

0.3 ≤ r < 0.5 a medium effect, and r ≥ 0.5 a large effect.

RESULTS

The study was performed with 21 participants (9 women, 12 men)
aged 25.3 ± 1.5 years. The participants’ baseline characteristics,
fitness status, and exergame experience are presented in Table 1.

Assessment of Maximal Heart Rate
Results of the testing sessions are presented in Table 2. No
significant difference was measured between the ergometer and
the ExerCube testing sessions for HRmax (z = -0.444, p = 0.657,
r = 0.07). Significant higher values for the ExerCube testing
session were measured for HRavg (z = -4.017, p < 0.001, r = 0.62),
time to HRmax (z = -3.563, p < 0.001, r = 0.55) and Borgcognitive
(z =-3.984, p < 0.001, r = 0.61). The average training level of the
ExerCube was between 8.6 ± 0.5 (mean ± standard deviation)
over all participants. The ExerCube testing session was finished
by 20 of 21 participants.

Training Experience Comparing
Individual Versus Formula HRmax
One participant had to be excluded from the analysis
due to technical difficulties. No significant differences
were measured for HR and perceived exertion parameters
(Table 3). For the questionnaire data, a significant difference
resulted for the item “unambiguous feedback” in favor of

the individual HRmax condition (z = -2.121, p = 0.034,
r = 0.34). All the other questionnaire data showed no significant
differences. Results of the questionnaire data are presented
in Table 4. Table 5 shows an overview of the perceived
feelings between the formula and the individual HR-based
ExerCube sessions.

DISCUSSION

The aim of this study was to explore whether there are objective
and subjective differences in training intensity (effectiveness) and
experience (attractiveness) when the ExerCube is automatically
adapted to the targeted HR range (defined as percentage
of HRmax) by the individually pre-assessed or formula-based
pre-calculated HRmax. Furthermore, this study aimed to gain
some early indications about the usage of the ExerCube to
determine individual HRmax by comparing the procedure to a
standardized ergometer protocol. The following sections discuss
the results in the context of related work and knowledge
in the area of (individualized) in-exergame adaptations and
exergame-based assessment using HR. Furthermore, implications
are illustrated for future adaptive exergame design and
research topics.

In-Exergame Adaptations: Training
Experience and Intensity Comparing
Individual and Formula Based HRmax
Comparing the individual and formula-based HRmax ExerCube
conditions, one significant difference was assessed for the
item “unambiguous feedback” in favor of the individual
HRmax condition. This significant difference, however, must
be considered with caution since a significant difference does
not always imply a (clinically) relevant difference (Page, 2014).
Furthermore, this questionnaire item was already at a high level
for both conditions.

All the other questionnaire items, the short survey on
player’s feelings, and the assessed subjective and objective
training intensity showed favorable values independently of
the HRmax condition. The reason for this might be that the
comparison of the pre-defined individual HRmax values (formula
and individual), used for defining the training intensity in the
ExerCube, revealed no significant difference, indicating that the
ExerCube allowed a reliable in-exergame adaptation as well
as gameplay experience. These positive experiences, including
high feelings of flow and enjoyment, as well as the favorable
training intensity are in line with previous ExerCube studies
(Martin-Niedecken and Mekler, 2018; Martin-Niedecken et al.,
2019a,b). Thus, in-exergame adaptations via HR seem to be
feasible for triggering an individually attractive and effective
gameplay experience, as demonstrated in previous studies (Stach
et al., 2009; Mueller et al., 2012; Hoffmann et al., 2015; Martin-
Niedecken and Götz, 2016, 2017; Martin-Niedecken, 2018;
Muñoz et al., 2018).

Furthermore, findings of this study indicate that the formula
concept may be a good alternative to the individually determined
HRmax for in-exergame adaptation. Nevertheless, the presented
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TABLE 2 | Comparison of maximal heart rate testing.

Ergometer ExerCube z p r

HRmax (bpm) 192.0 (185.0, 196.0) 189.0 (184.0, 199.0) –0.444 0.657 0.07

HRavg (bpm) 149.0 (142.0, 156.0) 172.0 (165.0, 181.0) –4.017 <0.001* 0.62

Time to HRmax (min) 19.1 (17.2, 24.7) 16.1 (15.2, 19.1) –3.563 <0.001* 0.55

Borg cognitive (1–10) 2.0 (1.0, 2.5) 6.0 (5.0, 6.0) –3.984 <0.001* 0.61

Borg physical (1–10) 8.0 (8.0, 9.0) 8.0 (7.0, 9.0) –1.067 0.286 0.16

N = 21. Data are median (interquartile range) as indicated. Data comparison was analyzed using Wilcoxon-signed rank test. *p < 0.05, p-values are two tailed. Effect size
r: 0.1 ≤ r < 0.3 small effect, 0.3 ≤ r < 0.5 medium effect, r ≥ 0.5 large effect. HRmax = maximal heart rate, HRavg = average heart rate.

TABLE 3 | Comparison of ExerCube conditions (formula vs. individual) for heart rate and perceived exertion.

Formula Individual z p r

Pre-defined HRmax (bpm) 195.0 (194.5, 195.6) 193.0 (186.8, 200.8) –0.766 0.444 0.12

HRmax (bpm) 178.0 (170.5, 187.5) 181.0 (171.0, 185.0) –0.065 0.948 0.01

HRavg (bpm) 151.0 (141.3, 157.3) 150 (139.3, 163.0) –0.497 0.619 0.08

Borg (6–20) 14.0 (13.0, 15.0) 15.0 (13.0, 15.0) –1.035 0.301 0.16

Borg cognitive (1–10) 4.0 (3.0, 5.0) 4.0 (3.0, 5.0) –1.071 0.284 0.17

Borg physical (1–10) 5.0 (4.3, 6.0) 5.5 (5.0, 6.0) –0.263 0.793 0.04

N = 20. Pre-defined HRmax was used to determine training intensity (defined as percentage of HRmax) for in-exergame adaptation. Data are median (interquartile range)
as indicated. Data comparison was analyzed using Wilcoxon-signed rank test. *p < 0.05. p-values are two tailed. Effect size r: 0.1 ≤ r < 0.3 small effect, 0.3 ≤ r < 0.5
medium effect, r ≥ 0.5 large effect. HR = heart rate, HRmax = maximal heart rate, HRavg = average heart rate.

TABLE 4 | Comparison of ExerCube conditions (formula vs. individual) for enjoyment and flow.

Formula Individual z p r

PACES 6.0 (5.3, 6.3) 5.9 (5.3, 6.4) –0.047 0.962 0.01

FSS 5.6 (4.9, 6.2) 5.9 (5.2, 6.1) –0.468 0.640 0.07

Absorption 5.5 (5.3, 6.3) 5.6 (5.3, 6.0) –0.263 0.793 0.04

Fluency 5.6 (4.8, 6.1) 5.8 (5.3, 6.3) –0.787 0.431 0.12

Perceived importance 2.5 (2.0, 3.3) 2.3 (1.8, 3.6) –0.682 0.495 0.11

FStS 4.3 (3.9, 4.5) 4.3 (4.0, 4.6) –0.969 0.333 0.15

Challenge-skill balance 5.0 (4.3, 5.0) 5.0 (5.0, 5.0) –1.414 0.157 0.22

Action-awareness merging 4.5 (3.0, 5.0) 4.0 (4.0, 5.0) –0.758 0.449 0.12

Clear goals 5.0 (4.0, 5.0) 5.0 (5.0, 5.0) –1.150 0.132 0.18

Unambiguous feedback 4.0 (3.0, 5.0) 4.0 (4.0, 5.0) –2.121 0.034* 0.34

Concentration on the task 5.0 (4.0, 5.0) 5.0 (4.0, 5.0) –1.134 0.257 0.18

Sense of control 4.0 (3.0, 4.8) 4.0 (3.0, 4.0) –0.535 0.539 0.08

Loss of self-control 5.0 (5.0, 5.0) 5.0 (5.0, 5.0) –1.414 0.157 0.22

Transformation of time 4.0 (4.0, 5.0) 4.0 (3.3, 5.0) –1.732 0.083 0.27

Autotelic experience 4.0 (3.3, 5.0) 4.0 (3.0, 5.0) –0.905 0.366 0.14

N = 20. Data are median (interquartile range) as indicated. Data comparison was analyzed using Wilcoxon-signed rank test. *p < 0.05. p-values are two tailed. Effect size
r: 0.1 ≤ r < 0.3 small effect, 0.3 ≤ r < 0.5 medium effect, r ≥ 0.5 large effect.

study included a rather homogeneous group of young adults,
resulting in an individual HRmax that was well covered by
the formula. A huge fitness study, however, showed that the
implemented formula adequately explained HRmax by age,
considering an age range of 19–89 years (Nes et al., 2013).
Thus, the formula concept might also be suitable for older
age groups. Nontheless, one must consider that the formula
is an approximation of the real value and (maximal) HR
can (daily) be influenced by various internal and external

factors such as gender, circadian cycle, blood pressure, lifestyle
factors, physical activity, and mental status (Londeree and
Moeschberger, 1984; Valentini and Parati, 2009). Therefore,
this study provided some early indications that have to be
substantiated with more studies considering different player
attributes (e.g., activity levels and mental status). Furthermore,
it might be interesting to explore which application area (e.g.,
rehabilitation, fitness, and prevention) might benefit the most
from a HR-based training.
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TABLE 5 | Survey of different perceived feelings between formula and
individual session.

Formula Individual No difference

Which session was
more exhausting?

n = 11 (55%) n = 7 (35%) n = 2 (10%)

Which session felt more
pleasant?

n = 9 (45%) n = 8 (40%) n = 3 (15%)

N = 20.

Exergame-Based Assessment: ExerCube
as a HRmax Assessment Tool
In terms of HRmax assessment, results demonstrated that both
testing protocols triggered comparable HRmax as no significant
difference was present. This result gave a first impression that it
seems feasible to assess individual HRmax using the ExerCube. To
our best knowledge, this study is one of the first investigations
that assessed individual HRmax using an exergame.

Furthermore, results showed a significantly higher HRavg and
significantly shorter time to reach HRmax for the ExerCube
assessment protocol. This might be explained by the fact that
both protocols had different design attributes. The ExerCube
started directly with a fast increase of the intensity and the warm-
up was not part of the testing protocol. Interestingly, 20 out
of 21 participants finished the whole ExerCube session lasting
21 min, even if the HRmax was reached before the protocol ended.
This circumstance might be due to the fact that the ExerCube
was not only a physical challenge, but also stimulated cognitive
processes that presented in a significantly higher cognitive
load for the ExerCube training protocol. In combination with
the previously decribed game flow and enjoyment, this higher
cognitive engagement might have distracted the player’s focus
away from their physical exhaustion and therefore let participants
perform longer on a high intensity (Bertollo et al., 2015;
Bigliassi et al., 2016). It may be that the participants could
have done their testing in the ExerCube even longer at this
high level as no participant was stopped because of continuous
performance errors.

Overall, the results of this comparison led to several
observations that might be useful concerning exergaming
as HRmax assessment. A familiarization phase seems to be
mandatory for exergames, as conventional HRmax assessments
usually have a less complex environment, exercise performance,
and/or movement patterns, respectively. This familiarization is
an important control process to ensure that overexertion is not
caused by incorrect performance or misunderstanding of the
performance. The length of this phase should be determined
depending on the complexity of the exergame, ensuring that
the participant has understood the exergame control and play
mechanism. A warm-up phase could be used for familiarization,
and therefore precede the testing session. Still, a warm-up phase
can also be included in the assessment, as is usually the case
for conventional HRmax testing protocols, by starting at a low-
intensity level. Regarding termination criteria, overexertion can
be determined by the participant (subjective), as in conventional
performance tests or, particularly for exergames, by a pre-defined

number of failures, movement precision, accuracy, and power
(objective) or by performance worsening (subjective). Moreover,
these overexertion parameters as well as the familiarization and
warm-up phase are important precautions to ensure the safety
of participants.

A special feature of exergames is the unique combination of
physical, cognitive, and mental load. The nature of HRmax testing
protocols is to increase the HR via high physical load. In the
ExerCube protocol, the physical load was increased by exercise
frequency (racing speed) and physically intensive exercises (e.g.,
skipping). Furthermore, the ExerCube included cognitive stimuli
via information processing of the virtual track and the required
in-game actions (e.g., reaction, planning, and coordination). In
this study, the cognitive load of the ExerCube was more or
less at the same level throughout the testing session. Cognitive
stimulation, as mentioned before, could be supportive as it
might distract from the physical exhaustion (Bertollo et al.,
2015; Bigliassi et al., 2016). However, an overloaded cognitive
stimulation could have opposite effects as fewer resources might
be available for the physical performance (MacMahon et al.,
2014). On the other hand, an increasing cognitive load could
also be a part of a HRmax testing protocol as a high cognitive
load seems to increase HR (Mehler et al., 2009; Rudolf et al.,
2016). Next to physical and cognitive load, mental load can also
have an effect on the HR as excitement and stress can initiate
biological responses (Valentini and Parati, 2009). Nevertheless,
how physical, cognitive, and mental load should be combined in
a HRmax testing protocol is part of future studies because further
research is needed to understand, strengthen, and complement
the interaction of these loads.

Parameters for Real-Time In-Exergame
Adaptations
These study results initiate the discussion of how HR or
further parameters (e.g., insights from eye tracking) could
be used (exclusively or in combination) for real-time in-
exergame adaptation, allowing an individually tailored exergame
experience. Individual training and game adaptations based
on user requirements may increase training/gaming motivation
(attractiveness) and success (effectiveness) (Sinclair et al.,
2007, 2009; Martin-Niedecken and Götz, 2016, 2017; Martin-
Niedecken, 2018; Martin-Niedecken and Mekler, 2018; Martin-
Niedecken et al., 2019a,b).

Knowledge from different research fields and disciplines (e.g.,
sport science and HCI) should be used to examine different
parameters assessing physical (Wallace et al., 2014; Burgess, 2017;
Coyne et al., 2018; McLaren et al., 2018), cognitive (Solovey
et al., 2014; Grassmann et al., 2016; Oschlies-Strobel et al., 2017;
He et al., 2019; Hughes et al., 2019; Zhou et al., 2020), and
mental (Schrader et al., 2017; Mostefai et al., 2019) load. Objective
parameters could be defined by physiological and performance-
related factors (Vasilyev et al., 2019). Physiological parameters
could be measurements, outcomes, and variables related to
HR (e.g., heart rate variability), respiration, eye tracking,
facial expression, skin conductance, and brain (e.g., functional
near-infrared spectroscopy and electroencephalogram) and
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muscle (e.g., electromyography) activity. Performance-related
parameters could be reaction time and failure rate as well as
movement execution, acceleration, deceleration, and accuracy.
In addition to the objective parameters, subjective parameters
(e.g., rating scales) could be used to determine the different loads
(Smith et al., 2014; Saw et al., 2016; Meckel et al., 2018).

An essential starting point is that the parameters should
suit the exergame mechanics, components, and (training) goal.
Exergames could record performance-related data but also
integrate devices or game mechanics that measure and assess
objective (e.g., physiological and performance-related factors)
and subjective (e.g., rating scales) parameters to determine the
player’s physical, cognitive, and mental load. In real-time in-
exergame adaptations, the parameters can be implemented at
different levels of the exergame such as controller (e.g., sensitivity
of tracking), game (e.g., audio-visual appearance) and player (e.g.,
range of motion) (Martin-Niedecken and Götz, 2017; Martin-
Niedecken, 2018; Martin-Niedecken et al., 2019a; Wiemeyer,
2019). However, due to the complex combination of physical,
cognitive, and mental components, further conceptual thoughts
have to be considered in future studies.

Studies that look at the individual components of an exergame
and their interdependencies seem promising to determine the
influence of the above-mentioned loads and thus to support the
integration of suitable objective and subjective parameters for
real-time in-exergame adaptations (Gutjahr et al., 2019; Martin-
Niedecken et al., 2020). For example, one should keep in mind
whether the game scenario, and thus the processed information,
is coupled (e.g., running in an engaging environment and
catching a robber) or uncoupled (e.g., running and solving
calculation tasks) to the player’s physically performed movements
because this further affects the interplay of the exergame
components (Herold et al., 2018; Martin-Niedecken et al., 2019a).

Exergame-based assessments might support the
determination of parameter(s) under a maximal (e.g.,
HRmax), optimal or standardized testing situation. Result(s)
of performance tests can then be used to individually determine
the starting load and/or the individually targeted training
intensity (e.g., 80% HRmax), and that in turn can be used to
control real-time in-exergame adaptations (Hardy et al., 2015).
These individual in-exergame adaptations can be controlled
by specific algorithms and may even be improved by the
inclusion of artificial intelligence. By requiring and storing
player information in internal models, AI might allow dynamic
modeling and prediction of an exergame track (Wenger, 2014;
Streicher and Smeddinck, 2016; Hoffmann and Wiemeyer,
2017a; Ludwig et al., 2018; Gang et al., 2019).

Overall, the usability and feasibility of these parameters have
to be considered in proportion to the potential gain for the
exergame’s attractiveness and effectiveness.

Limitations
In the context of this study, some limitations have to be
mentioned. One is the homogeneous study population of fairly
fit younger adults, allowing only a limited generalization of the
study results as HR in particular is an individual parameter
that depends on several internal and external factors. Therefore,
future studies should consider including participants from

different age ranges and different fitness levels to check whether
these results can be replicated or if different considerations or
further adjustments have to be made for different conditions.

Furthermore, two limitations in the context of the HRmax
testing session should be mentioned. The testing protocols
used differed in their structure and this might have influenced
the study results. Nevertheless, the study results gave early
indications of how far the ExerCube could already be used to
determine HRmax in its existing design. Moreover, the speed
of the ExerCube during the HRmax testings was subjectively
regulated (maximal performance for each participant) by the
observing study investigator, allowing maximal speed adaptation
that would not otherwise be possible due to automatic in-
exergame adaptation of the ExerCube. A next step would be to
elaborate standardized testing protocol(s) for the ExerCube to
regulate the subjective components down to a minimum.

In addition, the use of a treadmill instead of a bicycle
might be even more appropriate since the movements in the
ExerCube were performed in a standing position. Nevertheless,
the difference of HRmax between bicycle and treadmill ergometer
tend to be small at young ages but become larger with increasing
age (Londeree and Moeschberger, 1984). Furthermore, this
testing protocol already gave an early indication of how the
ExerCube can be used to assess HRmax.

CONCLUSION

Given the urgent demand for attractive and effective training
tools, exergames represent a promising and innovative approach.
Nonetheless, exergames need to fulfill certain design and
training aspects to be a real alternative to conventional
training methods. A promising approach towards boosting
the effectiveness and attractiveness of exergames is the
personalization through in-exergame adaptations. Among
other things, HR has often been used to balance the physical
load and training intensity of exergames with the player’s
fitness skills. The most common way was to implement
an age-based HRmax formula into the exergame, allowing
the exergame to reach a targeted training intensity (e.g.,
percentage of HRmax). To contribute to this promising
topic, we explored different HR conditions (a standardized
individually pre-assessed HRmax and a formula-based pre-
calculated HRmax) in the exergame ExerCube in healthy young
adults and compared the impact on training intensity and
experience. Comparing the results of the two conditions,
no significant differences were found for HR parameters
and perceived exertion (physical and cognitive), nor for
overall flow feelings and enjoyment. Thus, the formula-
based in-exergame adaptation approach was suitable in the
presented study population, and the ExerCube provided
an equally reliable in-exergame adaptation and comparable
exergame play experience. Furthermore, we investigated
the usage of an ExerCube protocol to determine HRmax by
comparing the procedure to a standard ergometer protocol.
Results indicated that the ExerCube seems to be a feasible
tool for assessing individual HRmax. Finally, we derived
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some implications for future adaptive exergame design and
research topics.
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