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Compositional items – a form of forced-choice items – require respondents to allocate
a fixed total number of points to a set of statements. To describe the responses to
these items, the Thurstonian item response theory (IRT) model was developed. Despite
its prominence, the model requires that items composed of parts of statements result
in a factor loading matrix with full rank. Without this requirement, the model cannot
be identified, and the latent trait estimates would be seriously biased. Besides, the
estimation of the Thurstonian IRT model often results in convergence problems. To
address these issues, this study developed a new version of the Thurstonian IRT model
for analyzing compositional items – the lognormal ipsative model (LIM) – that would
be sufficient for tests using items with all statements positively phrased and with equal
factor loadings. We developed an online value test following Schwartz’s values theory
using compositional items and collected response data from a sample size of N = 512
participants with ages from 13 to 51 years. The results showed that our LIM had an
acceptable fit to the data, and that the reliabilities exceeded 0.85. A simulation study
resulted in good parameter recovery, high convergence rate, and the sufficient precision
of estimation in the various conditions of covariance matrices between traits, test lengths
and sample sizes. Overall, our results indicate that the proposed model can overcome
the problems of the Thurstonian IRT model when all statements are positively phrased
and factor loadings are similar.

Keywords: item response model, ipsative data, forced-choice items, Rasch models, compositional items

INTRODUCTION

Compositional Items in Educational and Psychological Tests
Test of non-cognitive constructs, such as personality traits (McCrae et al., 2005), attitudes (Brown
and Holtzman, 1955), values (Inglehart et al., 1998), and interest (Holland, 1978), have been widely
used in psychology and education and are mainly comprised of self-report items. Typical self-report
items have two kinds of formats: single-stimulus and forced-choice (Vasilopoulos et al., 2006). In
the single-stimulus format, respondents are asked to rate a series of items one by one according
to instructions and pre-specified options. A typical options format is the Likert-type scale. In the
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forced-choice format, several statements are provided for each
item, and respondents are asked to rank all statements (full
ranking) or choose some of the statements and rank them (partial
ranking) according to instructions.

Most self-report questionnaires use the single-stimulus
format to assess multidimensional, non-cognitive, latent traits.
For example, the NEO Personality Inventories measure five
personality traits using 240 items, each of which contains five
response options that range from strongly disagree to strongly
agree (McCrae et al., 2005). Unfortunately, using the single-
stimulus format in self-reports, tests of non-cognitive skills
have several disadvantages: First, biases such as response styles
(Baumgartner and Steenkamp, 2001), social desirability (Paulhus,
1991), and faking a good response (Cheung and Chan, 2002)
may arise. These biases may reduce the reliability and validity
of the measurement (Ganster et al., 1983). A recruitment system
relying on tests might result in erroneous hiring decisions by
favoring candidates who display one or more of these biases.
Furthermore, the differentiation of within-person latent traits is
low in the single-stimulus format (van Herk et al., 2004). For
example, in a career interest test designed to provide guidance on
career choices to students according to their expressed interests, a
student may easily choose a constant point (e.g., the middle point
of the response scale) for all items measuring different career
interests. Low differentiation among different career options does
not yield sufficient career choice information for the career
counselor to offer any helpful advice, and further consultation
may be needed as a result. Therefore, to overcome the problems
of social desirability and low differentiation, implementing the
forced-choice format is advisable (Nederhof, 1985; Meade, 2004;
Vasilopoulos et al., 2006).

The classical scoring of forced-choice format yields ipsative
scores (Brown and Maydeu-Olivares, 2011). The term “ipsative,”
which means “himself ” in Latin, was coined by Cattell (1944).
The main feature of ipsative scores is that the sum of scores is
constant (Hicks, 1970). By contrast, the single-stimulus format
yields normative scores. Normative scores are mathematically
independent scales; thus, a score on one scale is not the
effect of a score on another scale. Normative scores enable
the interpretation of scores in reference to the distribution of
the population (e.g., the scores relative to the mean score for
the population).

The fundamental differences between normative and ipsative
scores are the referenced criterion and the explanation of the
scores (Chan, 2003). For normative scores (yielded by single-
stimulus format), a person’s score uses the population norm
as the frame of reference (i.e., norm-referenced). The score
can be explained through the comparison between individuals
according to the population norm. On the contrary, ipsative
scores are self-referenced in the forced-choice format. The
explanation of the scores is conducted through a comparison
of traits within the person. This is because, for the ipsative
scale, a respondent’s score is measured relative to his/her scores
on other traits.

Several types of forced-choice items have been described in the
literature, such as pairwise comparison (Stark et al., 2005; Wang
et al., 2017), ranking (Brown, 2016a; Wang et al., 2016), partial

FIGURE 1 | Example of compositional items.

ranking (Hicks, 1970; Hontangas et al., 2015), and compositional
items (Brown, 2016b). In pairwise comparison, respondents
must choose one of two statements that best describes them or
that they prefer. In ranking, respondents must rank the order
of three or more statements. In partial ranking, respondents
must partially order the statements rather than ordering them
completely (i.e., order some rather than all of statements; Hicks,
1970). In compositional items, respondents must distribute a
fixed number of points among several statements according to
the extent of their latent traits (Brown, 2016b). Figure 1 shows
an example of compositional items. The italicized numbers in
Figure 1 are examples of responses. Apparently, compositional
items result in ipsative (fixed total score of 100 in Figure 1) and
continuous response data. Among the above four forced-choice
formats, pairwise comparison, ranking, and partial ranking items
yielded discrete response data, whereas compositional items
yielded continuous response data.

An empirical example of using compositional items in
the social sciences is the Organizational Culture Assessment
Instrument (OCAI), through which respondents are asked to
allocate 100 points to four statements in each of the six
items. Each statement in an item is designed to measure a
distinct dimension of organizational culture (i.e., clan, adhocracy,
hierarchy, and market). Aside from its popularity in assessing
organizational culture, the OCAI has been revised for assessing
classroom culture (Quinn et al., 2014) and school culture
(Müthing, 2013; Berkemeyer et al., 2015). To develop a good
instrument, developers need a proper measurement model
that is sufficient for describing the full response process
(Wilson, 2005). Therefore, psychometric models with good
measurement properties are needed to develop multidimensional
compositional questionnaires that can provide explainable latent
traits of respondents.

Modeling Ipsative Response Data
Several models have been developed to analyze ipsative tests
with categorical data, including the Thurstonian item response
theory models for forced-choice items (Thurstonian IRT models;
Brown and Maydeu-Olivares, 2011; Brown, 2016a), the Rasch
ranking model (Wang et al., 2016), and the Rasch ipsative
model (Wang et al., 2017) for dominance response and the
multi-unidimensional pairwise–preference model (Stark et al.,
2005) for unfolding response. Nevertheless, only Brown’s (2016b)
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Thurstonian model for compositional items (TMC) has been
proposed for analyzing ipsative tests with continuous data.

Although the TMC (Brown, 2016b) was demonstrated to
successfully recover the parameters in Brown’s simulation study,
and the latent traits can be explained as the normative scores
that enable between person comparisons, as a family member
of Thurstonian IRT models, TMC met one problem. That is,
Thurstonian IRT models require the factor loading matrix of
the pairwise comparisons to have full rank (Brown, 2016a) –
otherwise, convergence issues in the parameter estimation may
arise (Bürkner et al., 2019). In practice, to achieve the full
rank of factor loadings, one strategy is to design a combination
of statements with factor loadings that are largely different
from each other. Brown (2016a) proved mathematically how
this strategy can solve the non-full rank problem. When the
factor loadings are close to each other within ipsative items,
the product of the design matrix and the matrix of factor
loadings is a degenerate matrix (i.e., a matrix with columns
summing to 0), because the design matrix of ipsative items
is of reduced rank (Böckenholt, 2004), and the scales of the
latent variables cannot be identified otherwise. Only when factor
loadings are considerably different from each other in ipsative
items, the product of the design matrix and the matrix of factor
loadings has full rank, and then the factor covariance matrix
can be identifiable. To implement this strategy empirically,
item contents should be written carefully for manipulating the
factor loadings. For example, an item can be composed of a
negatively keyed statement (negative loading) and a positive
keyed statement (positive loading). Another example is to use a
number of “distractor” items with zero loadings on traits to be
measured when the negative keyed statements are not desired.
Although there are psychometric tests with all positive statements
(matched on social desirability) that produce normative factor
scores using Thurstonian IRT successfully, for instance, OPQ32r
assessing millions of candidates per year since 2009 (e.g., Joubert
et al., 2015), forced-choice tests with all positive loadings may not
necessarily satisfy the full-rank criterion of the loading matrix.

One way for test developers to overcome the non-full rank
of loading matrix problem in Thurstonian IRT is to increase the
number of latent traits measured in the test (Bürkner et al., 2019).
However, when researchers do not collect data by themselves,
they have to rely on the assessment data and the framework
underlying it – in such scenarios, it is often impossible to increase
the number of traits in the test. For example, the Programme for
International Student Assessment (PISA; OECD, 2014) measured
students’ mathematics intentions by forced-choice items with
only three traits in 2012.

Including the negative keyed statements in forced-choice
items is another way to satisfy the full-rank requirement.
However, it is still a risk to meet the identification problem when
the number of dimensions is low. Bürkner et al. (2019) found
that only half of the iterations in simulations of Thurstonian
IRT models converged when tests included the unequally keyed
statements in the design and measured only five traits. The failure
of convergence is unacceptable in practical testing, especially in
the time-consuming test construction procedure and in high-
stakes situations. On the other hand, the unequally keyed

statement design would undermine the purpose of forced-choice
tests that are meant to reduce the social desirability bias that
occurs when the negative keyed statement can be easily identified.

In contrast, the Rasch ipsative model (RIM; Wang et al.,
2017) does not suffer from the problem of bias estimation when
using equally keyed statements or the problem of convergence.
RIM essentially assumes all statements have the same key over
the test and always converge regardless the true values of
parameters. Mathematically, the RIM can be considered as a
special case of Thurstonian IRT models with all factor loadings
fixed to one and ipsative constraints in latent variables. The
limitation of RIM is that the normative scores were no longer
produced, and the scores in RIM can only be interpreted in
the ipsative way. Additional benefit of RIM is that it satisfies
the good measurement property of specific objectivity (Rasch,
1977). Wang et al. (2017) have demonstrated that the sample-
free and test-free properties (i.e., specific objectivity) cannot be
satisfied by the models for force-choice items in the Thurstonian
framework. The RIM works for only the discrete ipsative
data. A measurement model for continuous ipsative data (i.e.,
compositional data) overcoming the non-full rank loadings
problem of TMC is a knowledge gap in the literature.

The Present Study
In the present study, we mimic the works of RIM study but
for the compositional data. More specifically, this study is
aimed at developing a measurement model for multidimensional
compositional items as an alternative version of Thurstonian
IRT models. The new model is mathematically nested in
the TMC (Brown, 2016b), but has fundamentally different
measurement properties. The new model resolves the non-full
rank loading matrix problems of the TMC. We show that
the new model has good properties with regards to specific
objectivity, parameter recovery in equally keyed statements
situations (i.e., the factor loadings all equal to one), and
model convergence in the analysis of both the real and the
simulated data. In this study, the analysis of the real data
illustrates the interpretation of item parameters and latent traits,
and the simulation study demonstrates the model performance
with respect to parameter recovery and model convergence.
For simplicity, all the compositional items mentioned in this
article indicate multidimensional compositional items rather
than unidimensional compositional items.

The remainder of this article is organized as follows: We
first discuss the theoretical background and introduce the
compositional analysis, along with Brown’s (2016b) TMC. Then,
we explain the proposed compositional model and its specific
objectivity. Comparisons are made between the proposed model
and the TMC. The methods used to evaluate the model fit of the
compositional data and used in the analysis of the empirical data
are presented. We further present the empirical study to illustrate
the application and implications of the model in practice, using
real data. The subsequent section describes the simulation studies
that were conducted to demonstrate the parameter recovery of
the proposed model compared to the TMC. Finally, we discuss
our findings and elaborate on their practical implications.
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BACKGROUND

Compositional Data Analysis
Compositional data are defined as a vector of D positive
continuous numbers X = [X1, . . ., XD], where the sum of the
components is a constant C (Aitchison, 1986). The practice
of requiring components to sum to a constant, especially the
components measured in percentages (i.e., summing to 100%),
is widespread in the geosciences, geology, and other disciplines
(e.g., Stephens and Diesing, 2015).

To parametrically model compositional data, Aitchison (1986)
introduced the additive log ratio transformation to simply
transfer the compositional data to a normal distribution. The
additive log ratio is used for transferring the D dimensional
components of X = [X1, . . ., XD] to the logarithm of the
remaining D–1 components by dividing each of them by the
Dth reference component before taking the log. The process is
expressed as follows:

Additive log ratio (X1, . . . ,XD) =

[
ln

X1

XD
, · · · , ln

XD−1

XD

]
(1)

In psychological measurements, Brown (2016b) also used
the Thurstonian IRT model framework to function the additive
log ratio transformed data. In this research, we propose
the item response theory (IRT) model for multidimensional
compositional items that fall under the additive log ratio
framework as well.

Thurstonian Model for Compositional
Items
As mentioned, the TMC (Brown, 2016b) is the only IRT model
that has been developed for compositional items. To illustrate
Brown’s (2016b) model, let a multidimensional compositional
item have D statements. The dth statement (d = 1, . . ., D)
measures the latent trait θd. Let X1, . . ., XD denote the responses
to statements 1, . . ., D, respectively. For simplicity, we do not
index the persons and items unless necessary. With one statement
(e.g., statement D arbitrarily) in the item taken as a reference, the
log ratio of the responses Xk (k = 1, . . ., D − 1) to response XD
can be written as follows:

YkD ≡ log(Xk/XD) = log(Xk)− log(XD) (2)

where YkD is the additive log ratio transformation and is assumed
to follow a multivariate normal distribution (Aitchison and
Shen, 1980). Brown (2016b) proposed the accounting for YkD as
follows:

YkD = log(Xk)− log(XD) = δk_D + βkθk − βDθD + εk_D (3)

where δk_D is the utility (location) of statement k relative to
the reference statement D; βk and βD are the discrimination
(slope) of statement k and statement D, respectively; θk and θD
are the latent traits in dimension k and D, respectively; and εk_D
is the error term.

Essential to the analysis of ipsative data is that only within-
person comparisons, rather than between-persons comparisons,

can be concluded from the scores (Hicks, 1970). Brown (2016b)
claimed that the TMC could overcome this limitation and
pointed out the following feature of her model: “Thus, ipsative
data do not arise, and interpersonal comparisons can be
made.” To confirm this feature, she worked on obtaining a
good parameter recovery of the models in a simulation study.
Even if the controversy of whether the ipsative nature was
maintained is overlooked, Brown’s study using the TMC aimed
to make comparisons between measures. The comparison of
scores between individuals is attractive to the practitioners using
non-cognitive tests with forced-choice items for the purpose of
evaluating work performance and career development (Joubert
et al., 2015; Merk et al., 2017; Guenole et al., 2018).

The models in the Thurstonian IRT model framework (Brown,
2016b) cannot satisfy the property of specific objectivity (Wang
et al., 2017). Theoretically, a measurement model without
specific objectivity fundamentally does not allow meaningful
comparisons to be made between measures. RIMs do enable
such comparisons to be made, however, it is not a sufficient
reason to prefer the use of RIMs over Thurstonian models.
There are dozens of very important measurement models out
there that do not embrace specific objectivity. It does not
mean they have not considered specific objectivity. Instead, they
have emphasized reasons for not taking it, such as Brown’s
(2016b) TMC that has a measurement goal of producing ipsative
data as normative scores for making individual comparison.
Therefore, when doing the ipsative response data analysis we
have a dilemma – do we want specific objectivity, or do we
want normative data? If the purpose of measurement is obtaining
within-person preferences with good control of item properties,
then the specific objective model (i.e., RIM) might be preferred. If
the purpose is establishing normative scores for people on traits,
then the specific-objective model cannot deliver, and one needs
to use Thurstonian IRT models.

DEVELOPING THE LOGNORMAL
IPSATIVE MODEL (LIM) FOR
COMPOSITIONAL ITEMS

The RIM is only used for analyzing discrete ipsative response
data. In this section, a new model for the analysis of
compositional items under the RIM framework is introduced.
The model, that is, the lognormal ipsative model (LIM),
the parameter estimation method, and the calculation of the
approximate standard error, and the Fisher information function
are all described. Point estimates (ipsative explanation) are then
explained. Subsequently, we compare the new model and the
Thurstonian model and present a method for evaluating the fit
of the new model.

The Lognormal Ipsative Model
According to the additive log ratio transformation (Aitchison,
1982), the compositional response X = [X1, . . ., XD] with D
elements can be transferred to Y =

[
log X1

XD
, · · · , log XD−1

XD

]
with

D − 1 elements, where the reference response XD is arbitrarily
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FIGURE 2 | Expected log ratio of X1 to X2 across different levels of θ1–θ2 and
δ1–δ2 in the LIM.

selected from X1, . . ., XD. We can express Y as the following log
ratio function as Eq. 2 where k (k = 1, . . ., D–1) indexes any of the
dimensions other than the reference dimension D. The log ratio
Y works on the assumption of a multivariate normal distribution.
Conceptually, in the context of multidimensional compositional
items, the responses Xk and XD should be decided by the three
effects of a person’s latent trait θ in the corresponding dimension,
statement utility δ, and random error ε. For simplicity, we do
not index the persons and items until necessary. Following the
argument above, the LIM decomposes log(X) as follows:

log(Xk) = θk + δk + εk, log(XD) = θD + δD + εD (4)

Thus,
YkD = log(Xk)− log(XD)

= (θk + δk + εk)− (θD + δD + εD)

= (θk + δk)− (θD + δD)+ εkD,

(5)

where θk and θD are a person’s latent traits on dimensions k and
D, respectively; δk and δD are the utilities of statements k and
D, respectively; and εkD is the error term following a normal
distribution with a mean of zero and variance of σ2

ε .
To illustrate this model simply, let us take the item composed

of statements 1 and 2 (i.e., D = 2) as an example. Figure 2 presents
the monotonically increasing response function of the LIM. The
horizontal axis is the difference of θ1 and θ2, which represents a
person’s pattern of latent traits. Specifically, a larger θ1–θ2 leads to
a higher expected value of the log ratio of X1 to X2 (the positive
slope in Figure 2). As a result, a respondent having larger θ1–
θ2 is expected to give a higher value to X1 than to X2 across
the different δ levels. Thus, the between-persons comparison is
enabled on the pattern of θs. Moreover, a larger δ1–δ2 (the higher
line in Figure 2) leads to a higher expected value of log(X1/X2),
which is also monotonically increasing. The item with a positive
δ1–δ2 enables persons to give a higher value to X1 than to X2
across θ levels.

The LIM yields the unique utility for each individual statement
that is different from the Thurstonian model yielding utilities
(location parameters) for pairs of statements. As can be seen in
Eq. 5, δk and δD are obtained as the utility for the statements

k and D regardless which compositional items. The amount of
unique utility for either statement k or statement D is modeled
so the statements are allowed to be used repeatedly among items.
The repetition of using common statements shared among items
does not violate the assumption of local independence in the
parameter estimation.

For the model identification, the following two constraints are
necessary. The first one is

∑D
d=1 θd = 0 for every person, which

also considers the ipsative nature that
∑D

d=1 Xd = C for every
person. The second one is

∑I
i=1 δid = 0 for every dimension d

(d = 1, . . ., D), where δ stands for the statement utility, i indexes
the items, and I is the total number of items. In other words, the
sum of the statement utilities across items should be fixed to zero
for each dimension.

The LIM has the property of specific objectivity. The
sample-free and item-free properties of specific objectivity for
compositional data analysis can be found in Appendix A.
Suppose persons n and m respond to the identical item i with D
statement. For them, the expected log ratio of YkD following from
Eq. 5 is as follows:

E(Yni(kD)) = (θn(k) + δi(k))− (θn(D) + δi(D)) and

E(Ymi(kD)) = (θm(k) + δi(k))− (θm(D) + δi(D)) (6)

The test-free measurement is demonstrated by comparing two
persons such that

log
[

Xni(k)/Xni(D)

Xmi(k)/Xmi(D)

]
= E(Yni(kD))− E(Ymi(kD))

= (θn(k) − θn(D))− (θm(k) − θm(D)) (7)

This expression is independent of the item parameters δi(k)
and δi(D), which is the requirement of test-free property for
compositional data. The measurement satisfies the test-free
property. Similarly, to demonstrate the sample-free of the LIM,
when person n responds to two items, i and j, the expected log
ratio follows from Eq. 5:

E(Yni(kD)) = (θn(k) + δi(k))− (θn(D) + δi(D)) and

E(Ynj(kD)) = (θn(k) + δj(k))− (θn(D) + δj(D)) (8)

Then,

log

[
Xni(k)/Xni(D)

Xnj(k)/Xnj(D)

]
= E(Yni(kD))− E(Ynj(kD))

= (δi(k) − δi(D))− (δj(k) − δj(D)) (9)

This expression is independent of the person parameters
θn(k) and θn(D), which is the requirement of sample-free for
compositional data. Therefore, the LIM is a sample-free model
and satisfies the property of specific objectivity. Conceptually,
specific objectivity in the LIM implies that the comparison
between persons’ patterns of the latent traits (i.e., comparison
between person n’s profile θn(k)–θn(l) and person m’s profile
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θm(k)–θm(l)) is under a scale with the measurement property
of test-free (see Appendix A), and that the comparison between
statement utilities (i.e., comparison between statement k’s utility
δ(k) and statement l’s utility δ(l)) remains stable even when
different persons take the test.

Parameter Estimation
This study used the Bayesian approach of the Markov chain
Monte Carlo (MCMC) algorithm for parameter estimation in the
analysis of the empirical data. The method of posterior predictive
model checking (PPMC) was adopted in the evaluation of model–
data fit, and it was administered effectively in the MCMC
iterations (Levy et al., 2009). The existing model – data fit for IRT
model such as Yen’s Q1 (Yen, 1981), S-χ2 (Orlando and Thissen,
2000), and M2 statistic (Maydeu-Olivares and Joe, 2006) are not
adopted in this study because they are used to examine model-
misspecification for dichotomous or polytomous items and not
to examine model–data fit with continuous response data.

The MCMC estimation utilized the Bayesian framework
and was sampled from the joint posterior distribution of the
parameters. To make it applicable to the new model, the joint
posterior distribution, given the whole data set X, is written as
follows:

P(θ, δ|X) ∝ L(X|θ, δ)P(θ|µ,6)P(µ|6)P(6)P(δ) (10)

where θn is the person’s latent traits vector with D–1 elements
following a multivariate normal distribution with mean µ and
variance 6, and δ is the utility vector of statements. L(X|θ, δ)
is the likelihood function based on the fitting model, given
the assumptions of local independence and independence of
responses between persons. The P(θ|µ,6) is the conditional
probability for person’s latent traits θ, and P(µ| 6), P(6), and
P(δ) are the prior distributions for µ,6, and δ.

For the LIM, the likelihood function is

L(X|θ, δ) =
N∏

n=1

I∏
i=1

D−1∏
d=1

1√
2πσ2

ε

exp

{
−

[
ln
(
Xd
/

XD
)
− (θnd + δid)+ (θnD + δiD)

]2

2σ2
ε

}
(11)

Using the Metropolis-Hastings algorithm with the Gibbs
sampling procedure allows for the sampling and the obtaining
of the full conditional distributions of parameters θ and δ.
In the estimation of θ, only D–1 elements (denoted as θ−D
for convenience) need to be estimated because of the ipsative
constraint. The prior distributions were set the same with the
RIM study by Wang et al. (2017). The prior distribution of
δ follows standard normal distribution. The prior distribution
of θ−D follows a multivariate normal distribution with a mean
µ = [µ1, . . ., µD−1]T and a covariance matrix6. The hyperprior
distribution of elements in µ is N(0, 1), and the hyperprior
distribution of 6 is the inverse Wishart distribution [R, K], with
R = I and the hyperparameter K = D−1. The prior for the error
variance σ2

ε is an inverse gamma distribution with shape and rate
parameters both equal to one.

A popular use of the expectation-maximization algorithm
(EM algorithm) for the IRT model (Muthén and Muthén, 1998–
2012) was not adopted because as the number of dimensions in
the model increases, the EM algorithm becomes more difficult
computationally in the application. Unfortunately, non-cognitive
tests usually involve multidimensionality. Furthermore, this
approach does not incorporate the uncertainty of item estimates
into the estimation of person parameters (Patz and Junker, 1999).
The reason is that the EM algorithm is first used to estimate the
item parameters by the marginal distribution of persons’ latent
traits. Then, the person estimates are obtained by fixing the item
estimates in the iterations of the algorithm. The standard error
of the item estimates does not take into account the person
estimates. Conversely, using MCMC to jointly estimate the
person and item parameters does not suffer from this problem.

Approximate Standard Error and Fisher
Information
In Bayesian estimation, the standard error of estimates can be
obtained by calculating the variance of posterior distribution.
In maximum likelihood estimation the diagonal elements of
the square root of the inverse Fisher information represent
the approximate standard error of the multidimensional
estimates (Fisher, 1922). This section describes the calculation
of the approximate standard error and the Fisher information
functions for the LIM.

Given the response vector X, person’s θ, and statement δ, the
log-likelihood of a person answering I items can be expressed as
follows:

ln L(θ;X) = −
1
2

I∑
i

D−1∑
d=1

[
ln σ2
+ ln(2π)

+
(
yid_D − ŷid_D

)2
/

σ2
]

(12)

where D is the reference dimension; d is any dimension other
than D; yid_D = ln(Xid/XiD) is the log ratio of response Xid to
response XiD in item i; ŷid_D = (θd + δid)− (θD + δiD); θd and
θD are latent traits in dimensions d and D, respectively; δid and
δiD are the utilities of d and D statements in item i, respectively;
and σ2 is the residual variance. The second derivative of the log-
likelihood for the kth latent trait θk is formed as ∂2 ln L

∂θ2
k
=
−I
σ2 ,

which is a function that only involves the residual variance σ2

and the current test length I. The Fisher information matrix of
the LIM for each item is written as

I (θ) = −E
[
∂2 ln L
∂θ∂θ′

]
=

[
1
/
σ2 0

0 1
/
σ2

]
(13)

Note that the 2× 2 matrix in D-dimensional model represents
the reference dimension D and any dimension d other than D
for the expression of a multidimensional model rather than for a
model only including two dimensions. After administering a set

Frontiers in Psychology | www.frontiersin.org 6 October 2021 | Volume 12 | Article 573252

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-573252 October 6, 2021 Time: 17:1 # 7

Chen et al. Lognormal Ipsative Model

FIGURE 3 | The 1,000 replications of a single person’s responses to the two
compositional items, δA = [0, −1.5,−1.5] and δB = [1.5, 0, 0], under the
lognormal framework.

of S items, the test information matrix takes the following form:

IS (θ) =
∑
i∈S

Ii (θ) =

[
I
/
σ2 0

0 I
/
σ2

]
(14)

where I is the test length, implying that a longer test length
results in higher test information. This expression corresponds
to the assumption of linear regression that the residual variance
is independent of the predictors (which can be latent or observed)
and is only related to the number of observations.

The approximate standard error of the estimate is the diagonal
elements of the square root of the inverse Fisher information:

σ̂θk =
{
−E

[
∂2 ln L

/
∂θ2

k
]}− 1

2 =

√
σ2
/

I (15)

The standard error is constant regardless the values of θ and δ.
To illustrate the standard error in the compositional responses,
Figure 3 shows 1,000 replicated responses of a single person
with θ = [0, 0, 0] answering item A (left) with δ = [0, −1.5,
−1.5] and item B (right) with δ = [1.5, 0, 0]. For both items, the
parameter of the first statement is 1.5 larger than the parameters
of the second and third statements. The closer the dot is to the
statement (e.g., statement A1), the higher the score given by
the person to the statement. For both items, the first statement
(A1 or B1) has higher utility than the other two statements.
Therefore, the first statement is generally more attractive and
is endorsed more often than the other two statements, and the
person tends to give a higher expected score to the first statement
than to the second or third statement. As expected, the numerous
replicated responses are close to the first statement (Figure 3).
In addition, the standard error is constant over items in the
LIM, so that the distribution of the replicated responses is similar
for items A and B.

Explanation of Point Estimates
The proposed model retains the nature of ipsative scores, that is,
the sum of scores within persons is constant. The comparison
between persons can be made in terms of aspects of the profile or
of differentiation, and not of individual traits. The profile aspect
means that the explanation is in terms of the pattern of latent
traits for each person. The differentiation aspect means that the

explanation is made in terms of the range of latent traits for each
person. For example, one person’s personality scores may have a
range of 3.0, which is larger than a range of 0.5 in another person’s
personality scores.

As the explanation of compositional data is based on a
person’s profile, that is, how the dimensions for the person
are differentiated, the scores are measured at a ratio level. The
zero point of the ratio scale in the compositional data should
represent the non-differentiation across dimensions, and in this
case, the scores for all dimensions are identical. For example, in
the four-dimensional tests, a person has four equal raw scores,
such as [0.25, 0.25, 0.25, 0.25]. This means that the differentiation
between the four scores for this person is zero. In the LIM, the
non-differentiation gives the latent traits of [0, 0, 0, 0] because
the within-person mean is constrained to zero. A positive value
indicates that the latent trait is higher than the within-person
mean, and a negative value indicates that the latent trait is lower
than the within-person mean.

Imputation for Zero Response
Note that a zero response causes the convergence problem
in parameter estimations. In the LIM, the log ratio YkD,
including zeros, yields either negative infinity (when Xk = 0,
log(Xk/XD) = −∞) or positive infinity (when XD = 0,
log(Xk/XD) =∞). One effective solution to the problem of zero
responses is to use the imputation method (Martín-Fernández
et al., 2003), through which any zero can be replaced with a fixed
imputed value κ, which is a pre-specified value smaller than the
possible smallest response value. For example, when C = 100 and
the smallest point that can be responded to any one statement is
1.0, the imputation method can be used to replace all of the zero
responses with a constant value of κ and 0 < κ < 1.0 (e.g., κ can
be 0.5). Note that the replacement of zero distorts the fixed sum
of C. In an item, a replacement of zero with κ changes C into
C+κ. Therefore, nonzero responses must be adjusted to preserve
the fixed sum of C. The imputation method with adjustment is as
follows:

Xk =

{
κ , if Xk = 0

Xk

(
1− 1

C
∑

Xk′=0 κ
)
, if Xk 6= 0

(16)

Martín-Fernández et al. (2003) suggested that the imputed value
κ = 0.65 of the smallest possible response performs best when
the proportion of zero in the data is below 10% of the total
number of elements in the data set (Martín-Fernández et al.,
2003). Brown (2016b) recommended using κ = 0.5 to achieve the
minimum mean square Aitchison distance for psychological and
educational data. The current study adopted the suggestion of
κ = 0.5.

Model Comparison: Lognormal Ipsative
Model Versus Thurstonian Model for
Compositional Items
Both the TMC (Brown, 2016b) and the LIM employ the additive
log ratio transformation (Aitchison, 1982), in which D raw
compositional data are transferred to D−1 log ratio data (i.e.,
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D−1 components divided by the reference component and
logarithms taken). Comparing Eqs. 3 and 5, the TMC is a two-
parameter model with a slope parameter for each statement,
whereas the LIM is a one-parameter model that only considers
the statement utility (location parameter). Mathematically, LIM
is a special case of the TMC. Nevertheless, this section presents
the fundamental differences between them.

The LIM and the TMC serve different measurement purposes.
The TMC aims to recover person parameters that represent
normative latent traits that can be compared (i.e., a single trait
by a single trait) between persons. By contrast, the LIM aims
to obtain the measures with the property of specific objectivity,
to recover the person parameters always when all statements
using positive keys, and to converge all the time. A model with
the good parameter-recovery in equally keyed statement design
and achieves a perfect convergency rate would be highly desired
characteristics for practitioners who may face the convergence
problem in the application of TMC.

The TMC yields utilities (location parameters) for pairs of
statements, whereas the LIM yields the unique utility for each
individual statement. As can be seen in Eq. 3 for TMC, only δk_D
is obtained as the utility for the pair of statements k and D. The
LIM has the unique utility δk and δD (Eq. 5) regardless of the use
of compositional items.

The drawback of using the LIM is that it maintains the ipsative
nature of the constant sum of latent traits such that the test
users must explain the test scores using the ipsative way (see
the section of “Explanation of Point Estimates”). The between-
person comparison of scores on a single dimension could not be
made. With the TMC, although test user can explain the scores
in the normative way, there is always the risk of bias in the latent
trait estimates in the condition of equally keyed statement design
and the difficulty of the convergence problem, even when the
response data perfectly follows the TMC (Bürkner et al., 2019).

Evaluation of Model Fit
This section introduces the model fit diagnostic methods used
to examine the data fit for the LIM. The PPMC method for
compositional data was adopted in the data analysis. PPMC
works under the Bayesian theorem. Let π denote the parameters
in the model, that is, either person ability or statement utility.
P(π) is the prior distribution for parameter π. The posterior
distribution combines the information of the P(π) and the
information in the observed data yobs, which can be obtained
using Bayesian probability:

P(π|yobs) = P(yobs|π)× P(π)
/

P(yobs) ∝ P(yobs|π)× P(π)
(17)

where P(π | yobs) is the posterior distribution of the parameter
π given the observed data yobs, and P(yobs | π) is the likelihood
function of the fitted model. In PPMC, the posterior can be used
to draw the replicated data, yrep. As yrep is generated based on
the parameter π of the fitted model, it implies a prediction of the
response data if the model is true. To assess the model fit, the
discrepancy statistic ξ , which is a function of the data set y, is
chosen. ξ (yobs) is the discrepancy statistic of the observed data,
and ξ (yrep) is that of the replicated data. PPMC demonstrates a

poor model–data fit when the value of ξ (yobs) is out of the credible
interval of ξ (yrep) distribution, whereas it shows a good model–
data fit when the value of ξ (yobs) is within the credible interval
of ξ (yrep) distribution (Meng, 1994). Therefore, to measure the
model fit, Prob[ξ(yrep) > ξ(yobs)]is calculated, denoted by pr.
The estimate pr can be obtained as follows:

pr =
1
T

T∑
t=1

I(ξ(y(t)rep) ≥ ξ(yobs)) (18)

where T is the number of replications, ξ(y(t)rep) is the tested statistic
computed from the tth replication of yrep; and I(.) is an indicator
function, which is equal to 1 when ξ (yrep) ≥ ξ (yobs) is true, and 0
otherwise. Generally, a pr smaller than 0.025 or larger than 0.975
suggests a model misfit (i.e., nominal type I error rate equal to
0.05; Meng, 1994).

The sum of the profile differentiation can be chosen as
the discrepancy statistics in this study because the purpose of
compositional items is to measure the profile distribution of
the traits within persons. A person n’s profile differentiation is
defined as the absolute difference between his/her highest and
lowest raw scores (O’Neil, 1977) and is expressed as follows:

Differentiation = max (1Y)−min (1Y) (19)

where Y is a I × D matrix indicating person n’s D-dimensional
observed scores to I items, and 1 is a 1 × I row-vector with
all elements equal to one. The observed profile differentiation
across persons located within the 95% credible interval of
the replicated profile differentiation based on the posterior
distribution represents an acceptable model–data fit.

EMPIRICAL STUDY USING AN ONLINE
VALUE TEST IN A COMPOSITIONAL
FORMAT

To illustrate the application and implication of LIM, we created
an online test using compositional items to collect real responses
and analyzed the collected compositional data using both the LIM
and the TMC. This empirical study included the development
of an online value test using compositional items, real data
collection, and data analysis.

Materials
An online value test based on Schwartz’s values theory with
compositional items was developed. A total of 32 statements
were modified from the World Values Survey Online (Inglehart
et al., 1998), the contents of which I rewrote to suit the
compositional format. According to Schwartz’s value theory
(Schwartz, 1994; Schwartz and Boehnke, 2004), these statements
measure four different dimensions of values: Self-transcendence,
Conservation, Self-enhancement, and Openness to Change.
According to Schwartz’s (1994) framework, Self-transcendence
emphasized the acceptance of others as equal and concern for
their welfare; Conservation indicates the extent of a person’s
stance toward classical liberalism; Self-enhancement is related
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to persons who emphasize the pursuit of their own relative
success and dominance over others; Openness to Change is
related to people who emphasize independent thought and action
and favor change.

Each of the four dimensions was measured by 8 of
the 32 statements. Statement numbers 1–8 measure Self-
Transcendence, 9–16 measure Conservation, 17–24 measure
Self-Enhancement, and 25–32 measure Openness to Change.
Based on the partial linkage design, we developed 40
compositional items. The linkage design (assignment of
statements to items) of this survey is presented in Table 1. The
instructions in the items stated the following: “Please allocate 100
points to indicate how important the descriptions of these values
are in your life. Give a higher number of points to the statement
that is more important to you.” Besides the values measured in
the online value test, demographic variables were collected in the
survey, including gender, age, education level, and religion. The
contents of the test are given in the Appendix B. The items were
uploaded to the online survey service QuestionPro1.

Participants and Sampling
Convenience sampling was used to administer the surveys. We
requested student helpers to complete the test and distribute the
survey website link to their peers. Seven student helpers who were
enrolled in an undergraduate degree program at the Education
University of Hong Kong at the time of the study were hired. Each
helper was requested to distribute the survey link to at least 60

1www.questionpro.com

TABLE 1 | Statement numbers in the online value test with compositional items.

Item number ST CS SE OC Item number ST CS SE OC

1 1 9 17 25 21 2 9 24 31

2 2 10 18 26 22 7 10 17 32

3 3 11 19 27 23 8 15 18 25

4 4 12 20 28 24 1 16 23 26

5 1 10 19 28 25 1 11 21 31

6 2 11 20 25 26 3 13 23 25

7 3 12 17 26 27 5 15 17 27

8 4 9 18 27 28 7 9 19 29

9 5 13 21 29 29 2 12 22 32

10 6 14 22 30 30 4 14 24 26

11 7 15 23 31 31 6 16 18 28

12 8 16 24 32 32 8 10 20 30

13 5 14 23 32 33 1 12 23 26

14 6 15 24 29 34 2 13 24 27

15 7 16 21 30 35 3 14 17 28

16 8 13 22 31 36 4 15 18 29

17 6 13 20 27 37 5 16 19 30

18 3 14 21 28 38 6 9 20 31

19 4 11 22 29 39 7 10 21 32

20 5 12 19 30 40 8 11 22 25

ST, Self-Transcendence; CS, Conservation; SE, Self-Enhancement; and OC,
Openness to change.

friends. The total number of participants was 577 persons aged
12–52 years. The sample comprised 190 males and 387 females.

Data Analysis
In the data preprocessing, zero responses were assigned a
constant value of 0.65 in accordance with Martín-Fernández
et al.’s (2003) recommendation. We ensured that all the responses
were reasonable by screening and reflecting upon each returned
survey. For example, nonsense responses, such as allocating 100
points to the first statement in all items, were eliminated from the
data set (65 cases). Further, we found that several respondents
had completed the survey very quickly, which might indicate a
low motivation to complete the survey. Randomly responding to
items without paying attention to the item contents translated
to a survey completion time of about 250 s. By removing from
the sample those that had response times below 300 s (too fast)
or the aforementioned nonsense responses, the remaining data
set for further analysis comprised a sample of 512 respondents.
The distributions of the respondents’ demographic variables are
presented in Table 2.

After data cleaning, the real data collected from the survey
were fitted to the LIM and the TMC. To apply the TMC
approach and replicate Brown’s (2016b) work, we fitted the TMC
using maximum likelihood estimation in the software package
Mplus (Muthén and Muthén, 1998–2012). Unfortunately, Mplus
reported the massage of “The standard errors of the model
parameter estimates could not be computed. The model may
not be identified.” Apparently, the TMC was not identified
when the matrix of factor loadings was not fully ranked. This
observation is consistent with the notes by Brown (2016a). We
then fitted the LIM and TMC by using MCMC algorithm that
proposed in this study.

The MCMC algorithm was used for parameter estimation and
implemented using the JAGS software (Plummer, 2017). The
JAGS syntax for LIM can be found in Appendix C. The prior
distribution of the statement utilities was set to N(0, 1). The prior
for the latent traits was specified to follow the multivariate normal
distribution with a mean of zero and a variance of one. The prior

TABLE 2 | Demographic variables of the respondents in the analyzed samples.

Gender Religion

Male 167 Catholic 98

Female 345 Islam 5

Hinduism 7

Chinese tradition 24

Age Buddhism 15

11∼15 4 No Religion 361

16∼20 232 Other 2

21∼25 255

26∼30 13 Education Level

31∼35 3 Elementary 3

36∼40 1 High School 24

41∼45 1 Undergraduate 462

46∼50 2 Postgraduate 15

51∼ 1 Other 8

Frontiers in Psychology | www.frontiersin.org 9 October 2021 | Volume 12 | Article 573252

http://www.questionpro.com
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-573252 October 6, 2021 Time: 17:1 # 10

Chen et al. Lognormal Ipsative Model

for the covariance between latent traits was set as an inverse
Wishart distribution [R, K] with R = I and hyperparameter K = 3.
All prior distributions were set the same with the descriptions in
the section of parameter estimation. Two chains of the MCMC
were generated. The mean of the samples from the posterior
distribution in the 10,000 iterations after the 10,000 burn-in
iterations in the MCMC was defined as the point estimate. The
estimation of the MCMC facilitated the analysis of the PPMC, as
the samples in the MCMC could be directly used as the replicated
data yrep.

The convergence of the MCMC estimation was examined by
tracing the posterior sampling of the parameters. We calculated
the potential scale reduction factor (PSR; Gelman and Rubin,
1992), which is the typical index used to assess the convergence
of the MCMC. This index is the ratio of the credible interval
between the total sequence and the mean of the within-sequence
in the MCMC sampling. A PSR value that is closer to one means
that the model estimation converges well (Gelman and Rubin,
1992). We expected that the TMC couldn’t obtain the converged
result because the non-full rank of factor loading problem should
not be resolved by changing the estimator from the maximum
likelihood method to the MCMC algorithm.

One purpose of the empirical study is to present an example
of the practical interpretations of the results under the proposed
model. To achieve this, the descriptive analysis of the estimates
of a person’s latent traits and statement utilities for the proposed
model are presented first, and then the correlations between the
raw scores and the latent trait estimates in the LIM are shown
to give an idea of the latent traits from the proposed model. We
selected two persons to illustrate the values of the latent traits and
their meanings in practice.

The reliability statistics were calculated. The variance of
the latent trait estimates and their standard errors were used
to calculate reliability. The population error variance of each
dimension was obtained by the squared standard error. In
accordance with the classic definition that the proportions of
variance in the intended traits are accounted for by the true score,
reliability was calculated as follows:

ρ = var(θ)/var(θ̂) = [var(θ̂)− SE2(θ̂)]
/

var(θ̂) (20)

The LIM was expected to have reliabilities above the
acceptable level of 0.7.

Results of the Empirical Study
Four aspects of the results are presented and discussed in
this section: (1) convergence of the MCMC, (2) estimates of
the statement utilities, (3) correlation between the latent trait
estimates and the raw scores, and (4) model–data fit statistics of
the new model. The convergence of the MCMC was evaluated
first. Figure 4 presents the trace of the posterior sampling for
person estimates (upper) and utility estimates (lower) in both
the LIM (left) and the TMC (right). To the LIM, the values of
each estimate for the sampling sequences stabilized at a small
range. This result indicates that the MCMC estimation converges
well. Similar results were observed for the PSR index, with values
of around 1. The PSR result for each parameter was within

the range of 0.998–1.002 in the LIM. The TMC, unfortunately,
failed to converge when fitting to this dataset (see the trace of
posterior sampling in Figure 4). Consequently, the results below
are only for the LIM.

The results of the statement utility estimates are reported.
Figure 5 shows the 32 statement utility estimates. Statement
numbers 12 (“To be polite to other people all the time. Never
disturb or irritate others”) and 30 (“I really want to enjoy life.
Having a good time is very important to me”) have the highest
utilities, whereas statement numbers 10 (“It is best to do things in
traditional ways. To follow the customs or religions that we have”)
and 31 (“I like to take risks. I am always looking for adventure”)
have the lowest utilities.

The correlations between the latent trait estimates and the raw
scores are 0.92 for Self-Transcendence, 0.95 for Conservation,
0.94 for Self-Enhancement, and 0.96 for Openness to Change
(Figure 6). A person with higher raw scores also generally has
higher latent traits in the LIM. However, the raw scores and the
latent traits in the LIM obviously lie on different scales (a non-
linear relationship). The LIM uses the log ratio transformation
and makes a person’s θs sufficient for specific objectivity, which
the raw scores do not satisfy.

Table 3 shows the means, standard deviations, and
correlations between the four measures in the raw score
and in the LIM. The raw scores range from 0 to 1 by its
definition. The four measures have the means of [0.27, 0.22,
0.21, 0.30] and the standard deviations of [0.06, 0.06, 0.07, 0.07].
The inter-trait correlation ranges from −0.60 to −0.01. In the
LIM, the means of the four latent traits are [0.13, −0.13, −0.26,
0.26], and the standard deviations are [0.34, 0.36, 0.51, 0.37].
The correlation between the four traits ranges from −0.74 to
−0.05 in the LIM. As expected, the compositional data yield
negative correlations on the person traits because of the ipsative
constraint (i.e., the sum of the responses within an item is set to
equal a constant). The inter-trait correlation in the lognormal
ipsative model is similar to that in the raw score, implying that
the factor structure does not change when using the LIM. One
controversy is that practitioners can even use raw scores for this
purpose without the need of fitting a complex IRT model in the
presence of similar simple structure between traits. However,
raw scores do not satisfy the specific objectivity and do not
reference the item parameters. The LIM established the scores on
the scales, regardless of the change of statements in the test, as a
measurement property in Rasch model.

To illustrate the meaning of the latent traits, we took
person no. 003 as an example. Using the estimates in the
LIM, person no. 003 has the highest estimated value (1.22)
for Self-Transcendence among the four traits. This means that
he/she prefers to help others, loves nature, and believes in
protecting the weakest members of society. However, he/she
has the lowest estimated value (−1.52) for Self-Enhancement
among the four traits. This finding indicates that he/she
places less importance on emphasizing his/her success and
dominance over others.

By contrast, person no. 410 is an example of low
differentiation. His/her four trait values are close to each
other. In the LIM, person no. 410 has the vector of latent
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FIGURE 4 | Trace of posterior sampling for the two models in MCMC.

FIGURE 5 | Utility estimates of the statements at the 97.5 and 2.5% quantiles.

traits θ = [−0.08, 0.16, −0.21, 0.13]. Although he/she values
Conservation the highest (0.16) and Self-Enhancement the
lowest (−0.21), both latent traits are close to zero (the range

TABLE 3 | Summary of the means, standard deviations, and correlations of the
four measures in the raw score and in the lognormal ipsative model.

Correlations

Measure Mean SD 1 2 3

Raw Score

1. Self-Transcendence 0.27 0.06 −

2. Conservation 0.22 0.06 −0.01 −

3. Self-Enhancement 0.21 0.07 −0.60 −0.20 −

4. Openness to change 0.30 0.07 −0.21 −0.59 −0.35

Lognormal ipsative model

1. Self-Transcendence 0.13 0.34 −

2. Conservation −0.13 0.36 −0.05 −

3. Self-Enhancement −0.26 0.51 −0.74 −0.27 −

4. Openness to Change 0.26 0.37 −0.16 −0.56 −0.44

between the two values is 0.37). This result indicates that all four
values are equally important to him/her.

To assess the model–data fit, the PPMC method was
employed. The results show that the model provides a good
model–data fit. The observed sum of the profile differentiation
across persons located at the 30.7th percentile of the replicated
sum of the profile differentiation. It is located within the
95% credible interval; therefore, the proposed model has a
good model–data fit according to the criterion established
in the methodology section. The error variance estimates
is 0.087. The reliabilities of the four dimensions in the
LIM are 0.85, 0.86, 0.93, and 0.96. All reliabilities are
higher than 0.85.

SIMULATION STUDIES

The simulation study aims to investigate the precision of the
parameter estimation for both the LIM and the TMC when
the response data followed the LIM, which is a special case
of the TMC with all factor loadings fixed to one and ipsative
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FIGURE 6 | Relationship between a person’s raw score and trait estimate in the lognormal ipsative model.

FIGURE 7 | Convergence rate obtained by fitting the lognormal ipsative model and the Thurstonian model to simulated data. The types of lines indicate the test
lengths. Cov = the covariance between latent traits. Cov = Real indicates the variance-covariance matrix followed the empirical result in literature.
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FIGURE 8 | Average bias of item parameters obtained by fitting the LIM and the Thurstonian model to simulated data. The types of lines indicate the test lengths.
Cov = the covariance between latent trait. Cov = Real indicates the variance-covariance matrix followed the empirical result in literature.

FIGURE 9 | Average RMSE of item parameters obtained by fitting the lognormal ipsative model and the Thurstonian model to simulated data. RMSE is root mean
square errors. The types of lines indicate the test lengths. Cov = the covariance between latent trait. Cov = Real indicates the variance-covariance matrix followed
the empirical result in literature.

constraints. It means the TMC definitely met the non-full rank
of factor loading problem in our simulation. Since the TMC
often fails to converge in this special case, the comparison of
convergency rate between the two models is also presented in the
simulation results.

Parameter Generation
A four-dimensional test using compositional items with four
statements in different dimensions was conducted. The statement
utility parameters were generated from −1.2 to +1.2 following
a uniform distribution. The distribution of statement utilities
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FIGURE 10 | Bias of person parameters obtained by fitting the lognormal ipsative model and the Thurstonian model to simulated data. Cov = the covariance
between latent trait. Cov = Real indicates the variance-covariance matrix followed the empirical result in literature.

FIGURE 11 | RMSE of person parameters obtained by fitting the lognormal ipsative model and the Thurstonian model to simulated data. RMSE is root mean square
errors. Cov = the covariance between latent trait. Cov = Real indicates the variance-covariance matrix followed the empirical result in literature.

corresponded to the result of empirical data analysis in this study.
For identification, the sum of the utilities within the items was
set to zero. The test length was manipulated in three different
conditions, 10 items, 20 items, and 40 items.

To evaluate the effect of the sample size, we manipulated
the sample sizes of 250, 500, and 1,000 persons. The persons

were generated with four normative latent traits [θ1, θ2, θ3,
θ4] following a multivariate normal distribution with means
of [0, 0, 0, 0], and all standard deviations set to equal one.
The correlation between latent traits was manipulated into
six conditions: all correlations set to (1) 0.8, (2) 0.5, (3)
0.2, (4) 0, (5)–0.2, and (6) a real-world correlation matrix
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FIGURE 12 | Average relative absolute bias of variance-covariance estimation obtained by fitting the lognormal ipsative model to simulated data. Cov = the
covariance between latent trait. Cov = Real indicates the variance-covariance matrix followed the empirical result in literature.

(Bürkner et al., 2019). The real-world correlation matrix is [1,
−0.33, −0.43, −0.37; −0.33, 1, −0.30, 0.32; −0.43, 0.30, 1,
0.27; −0.37, 0.32, 0.27, 1]. The conditions of correlations to
0.8, 0.5, and 0.2 represents the strong, mediate, weak positive
intercorrelations. The two conditions of correlations to 0 and
−0.2 represent no intercorrelation and negative intercorrelation,
respectively. To create the ipsative scores from the normative
scores (i.e., constraint of θ1 + θ2 + θ3 + θ4 = 0 for each person),
we subtracted the within-person mean of the latent traits from
the person’s generated latent traits as the true person parameters.

The response data sets were generated by the LIM and
replicated 100 times using the R2jags package (Su, 2015) in R
software. The TMC and LIM were used to fit to the corresponding
data sets. An MCMC estimator the same to the empirical study
was used as the estimation method in the simulation study.

To evaluate the recovery of item and person parameters, bias
and the root mean square error (RMSE) of the estimates were
employed and computed as follows:

Bias =
T∑

t=1

(π̂t − πt)
/

T, and RMSE =

√√√√ T∑
t=1

(π̂t − πt)2
/

T

(21)
where T is the number of replications (T = 100), π̂ is the estimates
of the parameters, and π is the true value of the parameters.
All estimates of the statement and person parameters (δ and θ)
could have bias and RMSE across replications. The estimation
of correlation between latent traits σθdθd′ which represents the
structural framework between the measures was evaluated by
the relative bias

∑T
t=1 (π̂t − πt)

/
(T × |πt|) and relative absolute

bias
∑T

t=1
∣∣(π̂t − πt)

/
(T × πt )

∣∣ .

In summary, this simulation experiment had 3 × 3 × 6 = 54
unique conditions across three test length conditions (i.e., 10, 20,
and 40 items), four sample-size conditions (i.e., 250, 500, and
1,000 persons), and six intercorrelation conditions (i.e., 8, 0.5, 0.2,
0,−0.2, and a real-world correlation matrix). The bias and RMSE
in Eq. 21 were averaged within the conditions, so that the means
of the bias and RMSE were compared between conditions.

Results of Simulation Study
In simulation study, tests with different test lengths and sample
sizes, and the covariances between latent traits following different
scenario were manipulated to form different conditions. Figure 7
shows the convergence rate of the LIM (upper plots) and the
TMC (lower plots) in the different conditions. During the 100
replications, the LIM converged well across conditions with
convergence rates of greater than 97%, whereas the TMC failed
to converge especially under the condition of 40 items (long
test length) and 250 persons (low sample size). The higher
covariance matrix between traits increased the convergence
rate for the TMC.

Figure 8 shows the average biases of item parameter
estimation averaged over all items in all conditions for both
models. The LIM (upper plots in Figure 8) had bias close to
zero in all conditions, whereas the TMC (lower plot in Figure 8)
had serious biases in all conditions. The extent of the bias seems
not to be related to test length, sample size, and covariance
between latent traits. Figure 9 shows the average RMSEs of
item parameters estimation in the different conditions for both
models. In the LIM (upper plots in Figure 9), the larger the
sample size the lower the RMSE obtained. The different test
lengths and the covariances between latent traits did not change
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the RMSE of item estimation. The TMC (lower plots in Figure 9)
always had the a higher RMSE than the LIM across all the
conditions. Increasing sample size leads generally to a decline
in the RMSE. The change of RMSEs seems not related to the
conditions of test lengths and covariances between traits.

Figure 10 shows the biases of latent traits estimation by the
trait levels (x-axis) in various covariance matrices for both models
when the condition is 40 items and 1,000 persons. The different
test lengths and sample size did not change the shape of the
scatter plots so for the reasons of simplicity, we do not show
plots for them. LIM (upper plots in Figure 10) had negative
biases in high trait-level persons and positive biases in low
trait-level persons. This shrinkage of person estimation probably
resulted from the prior distribution in Bayesian estimation. The
TMC (lower plots in Figure 10) had a large range of bias
across trait-levels. Figure 11 shows the RMSEs of latent traits
estimation by trait-levels for both models. The TMC (lower plots
in Figure 11) produced huge RMSEs indicating that the standard
error of the person estimation was extremely large, especially
when the variance-covariance matrix followed the real matrix.
On the contrary, the LIM (upper plots in Figure 11) produced
reasonable RMSEs.

To evaluate whether the structure among traits change when
fitting the models, the relative biases and relative absolute biases
of variance-covariance estimation for both models was observed.
For the TMC, the relative bias ranged from−505.901 to 434.817,
and the relative absolute bias ranged from 9.431 to 525.972.
This implies that (1) the TMC converges to extremely wrong
values and (2) TMC fails to recover the structure between traits.
For the LIM, the relative bias ranged from −0.013 to 0.008
across all conditions. The relative absolute bias decreased when
sample size increased, test length increased, and covariance was
close to zero (see Figure 12). All relative absolute bias across
conditions were lower than 0.12. The structure among traits in
the LIM were recovered.

DISCUSSION AND CONCLUSION

In this study, we developed a new model called the LIM for
analyzing compositional items, overcoming the limitations of
TMC (Brown, 2016b), which is the only model having been
used in IRT to examine compositional items, but even TMC has
not considered the model’s violation of specific objectivity. Most
importantly, parameter estimates in the TMC are strongly biased
in the condition of all equally keyed statements. In that case,
this model suffers from convergence problems because of the
failure of the model identification. The current study addresses
this problem directly by developing a new IRT model that satisfies
the conditions of specific objectivity, unbiased estimation in
test design with equally keyed statements, and a convergence
rate close to 100% for the analysis of compositional items. The
simulation studies showed that the parameters in the proposed
model could recover well the values in the simulated data using
MCMC estimation.

This research made use of an online value survey comprising
40 compositional items that were developed according to

Schwartz’s value theory to ascertain the applicability of the
LIM, newly developed for the analysis of compositional data in
empirical settings. The response data set used a sample size of
512 individuals, whose responses were analyzed by the proposed
model since the TMC failed to be converged. The examination
of the model–data fit through the PPMC method showed that
the LIM had an acceptable model–data fit. The reliabilities were
greater than 0.85 in the model.

When response data generated from LIM in which all items
have equal keyed statements, the TMC had worse convergence
rate than the LIM, especially in the condition of small sample
size (250 persons) and short test length (10 items). The item
parameters and person parameters were biased estimated in
TMC. The LIM had the convergence rate close to 100% across
conditions of different test lengths, sample sizes, and covariance
between traits. It implies that using TMC in an all-equal-keys
situation takes the risk of non-converged result in the model
estimation which has been concluded by Bürkner et al. (2019).
The LIM successes to overcome this problem.

The precision of item parameter estimation increases as
the sample size increases. The precision of person parameter
estimation increases as the test length increases. The precision of
covariance between traits rises when the test length and sample
size increase. Those findings corroborate the previous results in
IRT modeling for ipsative data (Brown and Maydeu-Olivares,
2011; Wang et al., 2017).

The high precision of parameter estimates obtained in the
simulation study has demonstrated that the proposed model
allows the practitioners to develop a compositional test with an
equally keyed statement design which cannot be allowed in using
TMC because of the biased estimation and convergency problem.
Using tests containing equally keyed statements will help avoid
many of the problems encountered when using negatively keyed
statements. The first problem is the dimensionality problem,
in which the two oppositely keyed statements (positively and
negatively) imply different underlining factors (Dueber et al.,
2018). The second issue concerns how the negatively keyed
statement undermines the forced-choice items’ advantage in the
resisting the problems of faking good responses and the social
desirability effect (Bürkner et al., 2019). Furthermore, using the
negatively keyed statement might increase the cognitive load
placed on the test taker. It implies that the test result might rely on
the test taker’s working memory capability and limit the potential
construct validity of the test. Therefore, the LIM enables test
developers to avoid the use of negatively keyed statements and
circumvents the associated problems.

Compared with the existing TMC by which the test takers
can obtain their scores on a normative scale, the drawback of
the new model is that it yields scores in an ipsative way, where
the sum of scores across traits within persons is constrained to
zero. Practitioners would prefer not to obtain test scores that only
represent the differentiation or the relative locations between
traits (i.e., explanation of ipsative scores) when they need to rank
test takers by their scores for individual traits (i.e., explanation
of normative scores). The between-person comparison in using
ipsative scores, if required by practitioners, should be based on
the person’s differentiation rather than scores on a single trait.
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In other words, in using the LIM, ranking test takers is only
allowed in terms of the differentiation among traits. In choosing
between the TMC and the LIM for analyzing compositional item
response data there is a trade-off between avoiding the problems
associated with the TMC, vis-à-vis convergence and estimation
biases (in equal keys design tests), and the challenge associated
with explaining ipsative scores in the LIM. At least, when the
TMC has failed to converge in fitting a data, the LIM provides
a solution for practitioners.

The LIM sacrificed the chance of generating the normative
scores as the TMC did, but had specific objectivity. Of course,
specific objectivity is not the “Holy Grail” of scale properties
and, in fact, is inappropriate for the measurement purpose of
Thurstonian IRT models when creating the normative scores for
ipsative tests with forced-choice items. Specific objectivity would
not be a big issue in using the TMC for compositional response
data. This study does not reject using TMC – instead, it provided
an alternative of the measurement model for compositional items
other than the TMC as an option for practitioners.

In summary, key advantages of the LIM are the feature
of specific objectivity and the possibilities to overcome
the convergence problem in modeling compositional data.
Nevertheless, several limitations of the LIM should be noted
here: First, LIM does not allow a unidimensional structure. This
limitation matches Brown’s conclusion that when the number of
the dimension is one (D = 1) and all factor loadings are constant,
the latent variable is not informative. Second, the LIM did not
generate the normative scores that TMC did. Practitioners might
wish to obtain the normative scores from the ipsative data
structure – however, the LIM did not generate these scores.

Moreover, our study has some limitations: First, no
psychological theory has yet been proposed that supports
the necessity for using compositional items in tests. The
issue of whether a forced-choice format can avoid the effect
of social desirability has been explored and reported in the
literature (Meade, 2004). Nevertheless, ranking items and the
pairwise comparison of items are easier to apply in practice
than compositional items because responding to categorical
options for these items is easy in paper-and-pencil tests.
Even with the rapid development of computerized tests, a
continuous response format is expected to gain more popularity
in the future, as there is a lack of theoretical reasons to use
compositional items in psychological tests. Second, the data
sample that I analyzed might not be representative of humans
in general. My convenience sample was drawn only from people
in Hong Kong who were friends with undergraduate students
enrolled at The Education University of Hong Kong. The
relatively restricted sample may limit the generalizability of the
results of this study.

As a recommendation for future studies, the application of
multilevel models is useful in educational research. The multilevel
model takes into account the nested data structure in the
modeling process. For example, the method of the Program
for International Student Assessment is to sample the first the
schools and then the students nested within the schools. Skrondal
and Rabe-Hesketh (2003) proposed a framework for multilevel
modeling of ranking data engaging the covariates at the different

levels. Future research can explore the application of the LIM to
the multilevel structure of tests involving compositional data.

The proposed LIM is a dominance model. As of today,
probabilistic models for unfolded ipsative and continuous data
have not yet been reported in the IRT literature. Unfolded
response means that the respondents are expected to have higher
scores for statements in which their latent trait values are closer to
the utility. To model the continuous ipsative response data in the
future, we suggest that, given the LIM, the ideal point concept for
the probability of the response to statement k in a D-dimensional
compositional item can be written as

Yk_D = (θD − δD)
2
− (θk − δk)

2
+ εk_D (22)

where Yk_D is the log ratio of Xk to XD (the response to statement
k and the response to statement D); θk and θD are the person’s
latent traits on dimensions k and D, respectively; δk and δD are the
utilities of statements k and D, respectively; and εkD is the error
term following the normal distribution with a mean of 0. The
smaller the distance between θk and δk is, the higher the expected
value of Xk obtained in the function. This model is expected
to have the same constraints as the LIM. Furthermore, the
parameter estimation of the MCMC algorithm can be adopted.
In future research, the parameter recovery of this new model
will be evaluated using a simulation approach similar to that
reported in this study.
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