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Log-file data from computer-based assessments can provide useful collateral information

for estimating student abilities. In turn, this can improve traditional approaches that

only consider response accuracy. Based on the amounts of time students spent

on 10 mathematics items from the PISA 2012, this study evaluated the overall

changes in and measurement precision of ability estimates and explored country-level

heterogeneity when combining item responses and time-on-task measurements using

a joint framework. Our findings suggest a notable increase in precision with the

incorporation of response times and indicate differences between countries in how

respondents approached items as well as in their response processes. Results also

showed that additional information could be captured through differences in themodeling

structure when response times were included. However, such information may not reflect

the testing objective.

Keywords: log files, computer-based assessment, time on task, measurement precision, measurement

invariance, PISA

1. INTRODUCTION

Computers have become increasingly common implements used in classroom activities over the
past few decades. As a reflection of this trend, large-scale educational assessments have moved
from paper and pencil based tests to administrated computer assessments. In addition to being
more efficient and reducing human error, computer-based assessments allow for a greater variety of
tasks. Further, interactive computer environments can be used to generate log files, which provide
easy access to information concerning the examinee response process. These log files contain time-
stamped data that provide a complete overview of all communication between the user-interface
and server (OECD, 2019). As such, it is possible to trace how respondents interact with the testing
platform while gathering information about the amount of time spent on each task.

The first computer-based administration of the Programme for International Student
Assessment (PISA) dates back to 2006 (OECD, 2010). However, more extensive studies involving
log files were enabled through the release of the PISA 2009 digital reading assessment (OECD,
2011). In this context, time-on-task and navigating behaviors can be extracted from these log files
as relevant variables. The information derived from variables of this type can help teachers further
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understand the solution strategies used by students while
also enabling a substantive interpretation of respondent-item
interactions (Greiff et al., 2015; Goldhammer and Zehner, 2017).
The variables taken from log files can also be included in
sophisticated models designed to improve student proficiency
estimations (van der Linden, 2007).

While log file data from computer-based assessments have
been available for several years, few studies have investigated
how they can be used to improve the measurement precision
of resulting scores. Using released items from the 2012 PISA
computer-based assessment of mathematics, this study thus
explored the potential benefits of incorporating time-on-task
variables when estimating student proficiency. We specifically
compared three different models to advance the current
understanding of what time-on-task adds to scores resulting from
an international large-scale assessment program.

1.1. Time-On-Task and Item Responses
Several previous studies have investigated the relationship
between time-on-task and item responses. For example,
Goldhammer et al. (2015) studied the relationship between item
responses and response times through a logical reasoning test,
thus finding a non-linear relationship between reasoning skills
and response times. Further, Goldhammer and Klein Entink
(2011) investigated how time-on-task and item interactivity
behaviors were related to item responses using complex
problem-solving items. In addition, Naumann and Goldhammer
(2017) found a non-linear relationship between time on task
and performance on digital reading items from the PISA 2009
assessment. Finally, Goldhammer et al. (2014) studied the
relationship between time-on-task, reading, and problem solving
using PIAAC data. Results indicated that the association between
time-on-task and performance varied from negative to positive
depending on the subject matter and type of task.

In large-scale educational assessments, student proficiency
is mainly estimated through the item response theory
(IRT) framework (von Davier and Sinharay, 2013). Here,
categorical item-response data are considered manifestations
of an underlying latent variable that is interpreted as, for
example, mathematics proficiency. While time-on-task can be
incorporated in several different ways from an IRT perspective
(van der Linden, 2007), the state-of-the-art view considers
them as realizations of random variables, much like actual item
responses (Kyllonen and Zu, 2016). A hierarchical model is most
commonly used with time-on-task data. Specifically, a two-level
structure is used to incorporate time-on-task, item responses,
and latent variables into a single model (van der Linden, 2007).
While the hierarchical modeling framework has the advantage of
considering both response accuracy and response times as latent
variables, it has practical limitations in that it requires specialized
software for fitting the model. Molenaar et al. (2015) illustrated
how the hierarchical model can be slightly simplified such that
standard estimation techniques could be used. This type of
formulation of the model allows the use of both generalized
linear latent variable models (Skrondal and Rabe-Hesketh, 2004)
and non-linear mixed models (Rijmen et al., 2003) with item-
response and time-on-task data. Furthermore, the approach

outlined by Molenaar et al. (2015) encompasses not only the
standard hierarchical model (with the necessary simplification)
but also its extensions which allow for more complex relationship
between time-on-task and ability such as the model of Bolsinova
and Tijmstra (2018). For these reasons, this study pursued the
approach of Molenaar et al. (2015) for its analysis of PISA
2012 data.

1.2. The Present Study
This study investigated the utility of combining item responses
with time-on-task data in the context of a large-scale computer-
based assessment of mathematics. It also evaluated the properties
of the employed model with respect to each participating
country1. Specifically, the framework developed by Molenaar
et al. (2015) was used to investigate how measurement precision
was influenced by incorporating item responses and time-
on-task data into a joint model. We also explored country-
level heterogeneity in the time-on-task measurement model. As
such, the model proposed for this analysis of computer-based
large-scale educational assessments implied a different set of
underlying assumptions than current procedures. Specifically, we
viewed response-time data as comprising an extra information
set that enabled us to gain additional insight regarding the
latent construct of interest. This also implies that any inference
regarding the underlying construct at the country level would
potentially change through the proposed approach as opposed to
current analysis methods, which this study also investigated. The
three following research questions were thus proposed:

• RQ1: What changes occur in the overall ability estimates
and their level of precision regarding PISA 2012 digital
mathematics items when time-on-task data are included in the
analysis?

• RQ2: How do time-on-task model parameters differ across
items and countries?

• RQ3: What changes occur in country-level performance when
time-on-task data are considered in the analysis?

Our findings should add to the current literature on the
relationship between time-on-task and responses to performance
items. Our results also have important implications for
large-scale assessment programs in regard to evaluating the
added measurement precision that is granted by incorporating
additional data sources (e.g., time-on-task). Such investigations
can inform large-scale assessment programs about whether and
how time-on-task data should be included in models designed to
generate operational results reports.

2. DATA AND METHODS

2.1. The 2012 PISA Computer-Based
Assessment of Mathematics
PISA administered its first computer-based mathematics
literacy assessment as part of its fifth program edition.

1We use “country” as a generic term referring to all countries and economies

participating in the PISA study. A list of the countries codes is displayed in the

Supplementary Material.
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TABLE 1 | Sample size, mean score, and variation in student performance on all clusters, as well as sample size, percentage of female, average total time, and

percentage of missing responses for the 10 released and valid log-file data from the PISA 2012 computer-based mathematics by country.

Country
All clusters (41 items) Valid log-file data (10 items)

n Mean S.D. n % Female Average total time (min) % Missing response

SGP 2,873 566.02 98.34 453 49.89 16.13 3.22

QCN 2,409 562.26 93.64 393 49.87 16.13 0.64

KOR 2,675 552.57 90.15 433 44.34 13.92 1.20

HKG 2,714 549.64 86.71 421 45.37 15.37 2.45

MAC 3,147 542.90 82.85 522 50.00 17.92 3.41

JPN 6,351 539.01 87.80 982 46.44 15.65 3.21

TAP 3,063 537.26 88.80 513 51.27 15.13 2.51

CAN 10,817 522.85 91.92 1,527 51.34 14.28 4.16

EST 2,837 516.09 82.13 460 50.00 14.54 2.37

BEL 4,617 512.15 98.60 707 49.50 14.19 4.82

DEU 2,881 509.37 95.50 441 51.02 13.75 2.43

FRA 3,012 508.06 91.95 440 53.18 15.43 4.41

AUS 11,834 507.70 90.94 1,833 48.88 13.55 1.99

AUT 2,731 507.34 88.74 436 50.92 13.42 1.28

ITA 3,089 498.76 83.14 440 45.68 16.54 6.86

USA 2,572 498.03 88.75 402 46.77 14.57 1.89

NOR 2,924 497.56 87.25 413 48.67 13.48 2.20

SVK 3,145 497.34 86.07 505 44.75 16.24 5.88

DNK 4,149 496.19 86.41 629 51.83 13.51 1.43

IRL 2,613 493.08 80.50 389 51.41 14.85 3.26

SWE 2,671 489.93 86.06 423 52.48 13.84 3.62

RUS 3,186 489.15 79.83 531 50.28 16.36 4.24

POL 2,567 489.04 86.01 428 52.10 13.09 1.64

PRT 3,272 489.03 85.09 487 48.05 15.52 3.29

SVN 4,385 486.94 87.83 678 45.87 10.95 0.65

ESP 5,751 475.08 81.99 933 50.38 14.44 3.63

HUN 2,746 469.84 92.58 445 52.81 12.79 1.82

ISR 2,677 446.61 111.28 387 54.78 14.65 2.48

ARE 6,732 434.06 84.28 1057 51.09 14.03 4.07

BRA 3,172 420.74 83.85 480 50.00 16.40 9.92

COL 5,173 396.84 73.33 782 53.58 16.48 8.09

Overall mean 3,961 612 49.77 14.62 3.40

(1) Countries are displayed by the ISO three-letter code. Their correspondence names are available at the Supplementary Material. (2) Countries are sorted by mean scores. (3) Mean

scores and variation were retrieved by OECD (2014c) report, Annex B3. OECD does not provide the overall mean quantities. Remaining statistics were calculated by the authors using

PISA 2012 micro and log-file data.

A total of 32 countries participated in this effort. In
this context, 40 min were allocated for the computer-
based portion of the test, with math items arranged in
20 min clusters that were assembled with digital reading
or problem-solving prompts (OECD, 2014a). A total of
41 math items were selected for this assessment. These
items varied from standard multiple-choice to constructed
response formats.

Table 1 presents the characteristics of the PISA sample by
country (sample size, Math performance, and variation) for the
whole computer-based of mathematics clusters (41 items) as
well as to the subsample with available and valid log-file data
(10 items).

We utilized data from a total of 18,970 students across 31
countries. We excluded data from Chile since log-file data for
two of the analyzed items were unavailable (I20Q1 and I20Q3).
Students with invalid information (e.g., those that did not receive
final scores or had incomplete timing information) were also
excluded from the analysis. On average, the sample size of each
country is around 600 (S.D.= 333), the percentage of female is
50% across all the countries. The average total time on the 10
items varied from 10.95 to 17.92 min. Brazil was the country
with the highest percentage of missing responses (9.92%) on the
analyzed items.

The analyzed log-file data from 10 items were made publicly
available on the OECD website. We thus extracted the time
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TABLE 2 | Characteristics of the released PISA 2012 computer-based of mathematics items.

Item Format % correct
Thresholds - PISA scale

Average response time (min) % Missing response

1 2

I15Q1 MC 59.02 498.51 1.36 0.81

I15Q2 CR 8.43 685.84 700.72 1.87 0.93

I15Q3 CR 29.02 577.18 658.58 1.98 3.25

I20Q1 CR 29.58 562.07 690.91 2.18 1.69

I20Q2 MC 47.42 549.29 0.96 1.93

I20Q3 CR 26.91 644.25 1.33 2.55

I20Q4 MC 44.12 565.73 0.84 3.30

I38Q3 MC 67.13 468.75 1.25 3.94

I38Q5 CR 27.75 641.05 1.82 6.60

I38Q6 CR 23.24 660.45 1.56 8.96

(1) Item are displayed by the position within the cluster. (2) MC = Multiple Choice and CR= Constructed Response item type. (3) The international percent of correct responses, and

thresholds values were retrieved by OECD (2014b) report, Annex A1. Remaining statistics were calculated by the authors using PISA 2012 log-file data. (4) Threshold values in PISA

2012 were defined as the ability at which the probability of achieving that score or higher reaches 0.62 using a partial credit model.

FIGURE 1 | (A) M1: response accuracy only (B) M2: simple-structure hierarchical model (C) M3: Extended hierarchical model with cross-loadings. The parameter’s

sub-indices are: p, person; I, item; c, country.
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students spent on analyzed items and their final responses (i.e.,
response accuracy). All items were allocated in three units (CD
production: items “I15Q1,” “I15Q2,” and “I15Q3”; Star points:
items “I20Q1,” “I20Q2,” “I20Q3,” and “I20Q4”; Body Mass Index:
items “I38Q3,” “I38Q5,” and “I38Q6”) and were administered in
the same cluster.

Table 2 shows the reported item characteristics by OECD
(international percent of correct responses, and thresholds used
for scaling the items in PISA 2012) as well as the average response
time and percentage of missing responses by item.

Although the effects of the item position were likely negligible
due to the length of the computer-based assessment (OECD,
2014b), we were still able to determine that the percentages
of missing data were larger for items located at the end of
the cluster. We used the full information maximum likelihood
approach (FIML) featured in Mplus version 7.3 (Muthén and
Muthén, 2012) to incorporate all available data into our analyses.
Doing this, the missing responses were treated as missing at
random (MAR) and all the available data were incorporated in
the modeling.

2.2. Statistical Analyses
This study compared three measurement models to estimate
student proficiency based on the abovementioned PISA dataset.
All these models can be seen as special cases of the framework of
Molenaar et al. (2015). They are:

• Model 1 (M1): It provided a baseline and thus only included
response accuracy in a unidimensional IRT framework. The

model can be seen as a special case of the framework of
Molenaar et al. (2015) in which it is assumed that there is
no relationship between latent proficiency and response time
data.

• Model 2 (M2): A multidimensional latent variable model for
the response accuracy and response times, where the response
accuracy are related to a latent proficiency and the response
times are related to a latent speed. The latent factors are
assumed to be correlated. This is a variant of the model
described in Molenaar et al. (2015): Here the relationship
between the latent proficiency and response times is specified
through the relationship between the latent proficiency and
latent speed.

• Model 3 (M3): A multidimensional latent variable model for
the response accuracy and response times, where response
accuracy is related to a latent proficiency and the response
times are related to a latent speed and proficiency. This is
also a special case of the approach of Molenaar et al. (2015)

TABLE 5 | Estimated means and variances of students’ abilities, EAP reliability

and average of the standard errors for the three measurement models.

Model Mean (µ̂θ ) Variance (σ̂ 2
θ ) EAP reliability Average SE

M1 0.00 1.00 0.73 0.51

M2 −0.02 1.06 0.77 0.49

M3 −0.02 1.05 0.80 0.45

International results of the PISA 2012 digital math items.

TABLE 3 | Framework for the estimation of international parameters for each analyzed model.

Model µθ σ 2
θ µτc σ 2

τc ais bis ξ is λis σ 2is ρθτ φis

M1 0 1 - - Free Free - - - - -

M2 Free Free 0 1 ais M1 bis M1 Free Free Free Free -

M3 Free Free 0 1 ais M1 bis M1 Free Free Free 0 Free

For M3, the second latent variable (τ ∗) was rotated to obtain the estimates of the transformed factor loadings (i.e., the factor loadings for speed correspond to the relationship between

response time and the latent variable which has the same interpretation as τ in M2).

TABLE 4 | Framework for the estimation of countries’ parameters for each analyzed model.

Model µθc σ 2
θc µτc σ 2

τc ais bis ξ ics λics σ 2
ic
s ρθτc φics

M1_Full Free Free - - ais M1 bis M1 - - - - -

M2_Full Free Free Free Free ais M1 bis M1 ξis M2 λis M2 σ 2
i s M2 Free -

M2_Strong Free Free Free Free ais M1 bis M1 ξis M2 λis M2 Free Free -

M2_Weak Free Free 0 Free ais M1 bis M1 Free λis M2 Free Free -

M2_Struct Free Free 0 1 ais M1 bis M1 Free Free Free Free -

M3_Full Free Free Free Free ais M1 bis M1 ξis M3 λis M3 σ 2
i s M3 Free φis M3

M3_Strong Free Free Free Free ais M1 bis M1 ξis M3 λis M3 Free Free φis M3

M3_Weak Free Free 0 Free ais M1 bis M1 Free λis M3 Free Free φis M3

M3_Struct Free σ 2
θc M1_Full 0 1 ais M1 bis M1 Free Free Free 0 Free

(1) Since φics are not freely estimated in the models M3_Full, M3_Strong, and M3_Weak, the correlation between the latent variables is identified. For the M3_Struct model, however,

we constrained the variance of the latent speed to be the same as the estimates from the M1_Full model to make sure that the correlations between Xis and θ will be the same as in

model 1 and therefore θ will have similar interpretation as M1. (2) After obtaining the parameter estimates in the M3_Struct model, the second latent variable (τ ∗ ) was rotated to match

the latent speed variable in M2, and ρθτc was calculated.
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TABLE 6 | Model fit statistics (BIC) by model and country.

Country
M2 models M3 models

Range BIC Preferred Range BIC Preferred

ARE [29647.12–29774.20] M2_Struct [29537.07–29815.97] M3_Weak

AUS [54700.07–54766.34] M2_Weak [54328.41–54415.99] M3_Full

AUT [13147.99–13240.82] M2_Full [13049.54–13149.53] M3_Full

BEL [20621.68–20670.20] M2_Full [20487.24–20539.84] M3_Weak

BRA [12137.77–12214.90] M2_Weak [12091.05–12181.83] M3_Weak

CAN [43637.52–43803.38] M2_Strong [43440.33–43598.05] M3_Weak

COL [21367.18–21653.93] M2_Weak [21289.22–21653.15] M3_Weak

DEU [13002.93–13065.20] M2_Full [12919.52–13010.30] M3_Full

DNK [18226.95–18269.57] M2_Full [18090.74–18175.80] M3_Full

ESP [27485.45–27588.13] M2_Full [27287.14–27437.58] M3_Full

EST [12629.05–12761.87] M2_Strong [12482.02–12625.00] M3_Strong

FRA [12890.52–12913.41] M2_Weak [12772.27–12824.20] M3_Weak

HKG [13527.25–14034.09] M2_Struct [13479.78–13752.47] M3_Struct

HUN [12181.87–12197.26] M2_Strong [12110.29–12155.05] M3_Strong

IRL [10701.96–10754.46] M2_Strong [10602.46–10685.45] M3_Strong

ISR [12298.66–12436.20] M2_Weak [12229.09–12370.03] M3_Weak

ITA [12674.72–12748.87] M2_Weak [12559.46–12616.12] M3_Full

JPN [30542.91–31258.25] M2_Struct [30320.88–31046.07] M3_Struct

KOR [13060.99–13190.37] M2_Struct [12977.21–13138.38] M3_Weak

MAC [15390.05–15536.21] M2_Weak [15250.20–15396.36] M3_Weak

NOR [12867.52–12905.24] M2_Strong [12784.82–12845.24] M3_Weak

POL [12530.05–12563.72] M2_Full [12444.90–12511.19] M3_Full

PRT [14017.90–14079.03] M2_Full [13934.64–14045.98] M3_Full

QCN [11640.00–11840.43] M2_Weak [11579.94–11665.66] M3_Struct

RUS [15790.27–15843.04] M2_Weak [15683.03–15754.20] M3_Weak

SGP [13129.26–13240.15] M2_Weak [13016.65–13090.06] M3_Strong

SVK [13976.93–14004.75] M2_Struct [13877.89–13903.17] M3_Full

SVN [19994.64–20004.67] M2_Weak [19942.30–19986.59] M3_Strong

SWE [12449.46–12509.05] M2_Full [12325.18–12420.05] M3_Full

TAP [15235.19–15292.96] M2_Struct [15121.61–15158.37] M3_Full

USA [11209.98–11277.11] M2_Weak [11186.89–11239.37] M3_Weak

Total BIC [556031.15–557223.67] M2_Weak [552353.33–555491.33] M3_Weak

(1) The range indicates the minimum and maximum values of the BIC statistic by country. (2) The suffix “_Full” indicates full measurement invariance (fixing all item parameters to be equal

to the international estimates), “_Strong” indicates strong measurement invariance (country-specific residual variances are allowed to be estimated, while time intensity parameters and

factor loadings are fixed to be equal to the international estimates), “_Weak” means weak measurement invariance model (country-specific residual variances and country-time intensity

parameters are freely estimated, while factor loadings are fixed to be equal to the international estimates), and “_Struct,” structural measurement invariance (wholly fitted time-related

parameters, i.e., all time-related parameters are freely estimated in each country).

in which the relationship between latent proficiency and
response times goes not only through the relationship between
latent proficiency and latent speed, but also through the direct
relationship between the ability and individual response times.
For this model we employed a particular rotation approach
described in Bolsinova and Tijmstra (2018).

Figure 1 shows the graphical representation of the models
across PISA countries. For comparability purposes, the items’
parameters for response accuracy were fixed from model 1 into
models 2 and 3. This approach assures that the models are on the
same scale since the relationship between response accuracy and
latent proficiency will be the same across models.

This section discusses the mathematical formulations used in
each model. The steps used to estimate model parameters for use
with the PISA dataset and an analysis of measurement invariance
across countries are discussed later.

2.2.1. Model Specification
Let X = (X1, . . . ,XI) be a random vector of responses on the I
items and T =

(

Tp1, . . . ,TpI

)

be a random vector of response
times on the same items with realizations xp· =

(

xp1, . . . , xpI
)

and tp· =
(

tp1, . . . , tpI
)

, for each person p, respectively.
For response accuracy, we adopted the graded response

model (GRM) used by Samejima (1969). This was done because
some PISA items used a partial scoring method and, unlike
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FIGURE 2 | Estimates of the countries’ time intensity for model 2—Weak measurement invariance.

other IRT models used for polytomous data (e.g., the partial

credit model), the GRM is equivalent to simple factor analytic

models in application to discrete data and can therefore be fitted
using standard factor analysis software and structural equation
models. The differences between the various IRT models used for
polytomous data are usually very small; in our case, only three
items out of 10 allowed partial scoring. The GRM specifies the
conditional probability to obtain each category k ∈ [1 :m], where
m is the highest possible category for the item. The conditional
probability of obtaining this score or higher, given the latent trait
θ , is defined by

Pr
(

Xi ≥ k|θ
)

=
exp[ai

(

θ − bik
)

]

1+ exp[ai
(

θ − bik
)

]
, (1)

where ai is the item factor loading/discrimination parameter, and
bik is the item category threshold parameter2. The probability of
obtaining a particular response category k is then

Pr
(

Xi = k|θ
)

= Pr
(

Xi ≥ k|θ
)

− Pr
(

Xi ≥ k+ 1|θ
)

, (2)

2The logistic function was used here because it is more common than the

cumulative normal function used in IRT applications, including for large-scale

international assessments such as PISA.

where Pr(Xi ≥ 0) = 1 and Pr(Xi ≥ m+1) = 0.Whenm = 2, the
GRM reduces to the two-parameter logistic IRT model used by
Birnbaum (1968), with only one difficulty parameter bi per item
instead of multiple threshold parameters. M1 defined exclusively
by Equation (2).

There are also cases in which both responses and response

times are used to estimate respondent proficiency. Here, instead
of simply specifying the model for response accuracy, we must

specify the full model for the joint distribution of response

accuracy and response times. For Model 2, we thus adopted the
hierarchical modeling approach used by van der Linden (2007),

which requires not only the specification of the measurement

model for response accuracy (in our case, the GRM) but also the
specification of the measurement model for the response times,

and the models for the relationship of the latent variables in the
two measurement models. The model used for the relationship
between item parameters in the two measurement models is
often specified, as well. However, as shown by Molenaar et al.
(2015), excluding this relationship does not substantially change
the parameter estimates, especially when large sample sizes are
involved. Furthermore, the use of standard estimation techniques
is prevented when including a model for the item parameters.
Given the very large sample sizes available in this analysis, we
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thus specified a higher-order relationship on the person side
(i.e., the model for latent variables), but did not do so on the
item side.

The joint distribution of response accuracy and response times
is conditional to both latent proficiency and speed (denoted by
τ ) in the hierarchical model. In this case, it is assumed to be a
product of the marginal distribution of response accuracy, which
only depends on latent proficiency, and the marginal distribution
of response time, which only depends on latent speed.We refer to
this as a simple-structure model because every observed variable
therein is solely related to one latent variable. This differs from
the extension of the hierarchical model used by Bolsinova and
Tijmstra (2018), which includes direct relationships between
response times and latent proficiency in addition to its relation
to latent speed.

A lognormal model with item-specific loadings was used for
the response times (Klein Entink et al., 2009). It is equivalent to
the one-factor model used for log-transformed response times.
The conditional distribution of response time on item i given the
latent speed variable is defined by

Ti ∼ lnN (ξi − λiτ , σ
2
i ), (3)

which is the lognormal distribution in which the mean is
dependent on the item time intensity ξi and the latent speed τ .

The strength of the relationship between the response time and
the latent speed depends on the factor loading λi. Meanwhile, σ 2

i
denotes the item-specific residual variance.

The dependence between the latent proficiency and the latent
speed variables is modeled using a bivariate normal distribution
with correlation parameter ρ. This correlation between the latent
variables specifies the indirect relationship between response
times and latent proficiency. In turn, this allows us to strengthen
the measurement of proficiency (i.e., increase measurement
precision) by using the information contained in the response
times. The magnitude of the improvement in measurement
precision is solely determined by the size of the correlation
between the latent speed and latent proficiency (Ranger, 2013).

M3 employed the same model for response accuracy as that
used in M1 and M2. However, a different model was used for
response times. That is, the mean of the lognormal distribution of
response time was dependent on two latent variables, as follows:

Ti ∼ lnN (ξi − λiτ
∗ + φiθ , σ

2
i ), (4)

where the cross-loading φi specifies the strength of the
relationship between response time and proficiency. Here, an
asterisk is used for the latent variable τ ∗ because it should be
interpreted differently from the simple-structure model (M2).
Since the cross-loadings between latent proficiency and response

FIGURE 3 | Estimates of the countries’ means and their respective confidence intervals for the different models.
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time are freely estimated, the correlation between θ and τ ∗ is
not identified and is instead fixed to zero so that τ ∗ can be
interpreted as a latent variable, thus explaining the covariance of
the response times that cannot be explained by latent proficiency.
However, it is possible to rotate the latent variable τ ∗ to match
the latent speed variable of the simple-structuremodel. Following
Bolsinova and Tijmstra (2018), we will apply a rotation of the
factors such that τ ∗ is the latent variable that explains most
of the variance of response times. In that case, the correlation
between latent proficiency and speed and the corresponding
values for the transformed factor loading in the two dimensions
can be calculated.

2.2.2. Analysis Strategies
We used the LOGAN R package version 1.0 (Reis Costa and
Leoncio, 2019) to extract student response times and accuracy
from the PISA 2012 log file containing data for 10 digital math
items. We then conducted analyses according to two steps.

First, we fitted all three models by combining the sample
consisting of 31 countries to estimate model parameters at an
international level. Then, we analyzed the models across PISA
countries by fixing specific parameters from previous analyses
to allow cross-model comparisons. We also evaluated parameter
invariance in the response time model. All model parameters

were estimated using the restricted maximum likelihood method
in Mplus version 7.3 (Muthén and Muthén, 2012).

Table 3 summarizes the analytical framework used in the first
step. Item discrimination (ais) and threshold parameters (bis)
were freely estimated forModel 1, with the proficiencymean (µθ )
and variance (σ 2

θ ) fixed to 0 and 1, respectively. To enable model
comparisons, the item discrimination and threshold parameters
were not estimated for M2 and M3 but were rather fixed to the
parameter estimates from M1. For these models, the response
time parameters (ξis, λis, σ

2
i s, and φis) and themean and variance

of the proficiency were freely estimated.
All analyses were conducted assuming the same graded

response model for the item-response modeling. We evaluated
the fit of the GRM model for M1 (in which the item
discrimination and threshold parameters were freely estimated)
by calculating two approximate fit statistics [i.e., the Root Mean
Square Error of Approximation (RMSEA) and the Standardized
Root Mean Square Residual (SRMR)] using the complete dataset
in the mirt R package (Chalmers, 2012). As a guideline, cutoff
value close to 0.08 for SRMR and a cutoff value close to 0.06 for
RMSE indicated acceptable fit (Hu and Bentler, 1999).

We conducted country-level analyses in the second step.
Table 4 shows the fixed and freely estimated parameters for each
model. Here, models containing the suffix “_Full” indicate full

FIGURE 4 | EAP reliabilities estimates per country and model.
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measurement invariance. That is, we estimated each country’s
mean and variance for the latent variables (θc, τc, or ρθτ c),
fixing all item parameters (ais, bis, ξics, λics, σ 2

ics, or φics) with
international estimates as derived in step one. Models containing
the suffix “_Strong” indicate strong measurement invariance
in which item-specific residual variances (σ 2

ics) are allowed to
be estimated, instead. Weak measurement invariance models
contain the suffix “_Weak.” Here, both the item-specific residual
variance (σ 2

ics) and item-time intensity parameters (ξics) were
freely estimated. In this case, however, the mean of the latent
speed variable was fixed to 0 for model identification. Lastly,
structural measurement invariance (suffix “_Struct”) indicates
all time-related parameters are freely estimated (ξics, λics, σ 2

ics
or φics). For model identification, we fixed the mean and the
variance of the latent speed variable to 0 and 1, respectively.
We also incorporated a new constraint in model “M3_Struct” to
allow the free estimation of the cross-loading parameter (φics).
In this case, we constrained the variance of the latent speed to
be the same as the estimates from the M1_Full model to make
sure that the correlations between Xis and θ will be the same
as in model 1 and therefore θ will have similar interpretation
as in M1.

We estimated student abilities using the Expected a Posteriori
(EAP) approach (Bock and Mislevy, 1982) and evaluated

measurement precision using the EAP-reliability method
(Adams, 2005) and the average of the standard errors of the
ability estimates. Finally, we computed the Bayesian Information
Criterion (BIC) for model selection (Schwarz, 1978).

3. RESULTS

We addressed our research questions by assessing the results
according to the following three steps: (1) we estimated the
overall ability estimates and their level of precision regarding
PISA 2012 digital math items by the three measurement models,
(2) presented our findings about the invariance of response-
time model parameters across items and countries, and (3)
showed changes in country-level performance when time-on-
task was considered.

3.1. RQ1: Overall Performance
We first investigated the model fit for the graded response
model. This model was assessed as having a good fit
based on its SRMSR (0.036). It also exhibited acceptable
fit according to its RMSEA (0.050). We thus concluded
that our baseline model had sufficiently good overall fit
for continued analyses, including those related to time-on-
task variables.

FIGURE 5 | Average standard errors of abilities’ estimates per country and model.
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FIGURE 6 | Correlations between EAP estimates.

Table 5 shows the overall estimates for student abilities and
the measurement precision of these estimates in relation to
the PISA 2012 digital math items across the different models.
Although there was no substantial difference, M2 and M3 (i.e.,
the simple-structure hierarchical model and the cross-loadings
model, respectively) exhibited increased measurement precision
(as captured by larger EAP reliability estimates and smaller
average standard errors) when response times were included in
the modeling framework.

3.2. RQ2: Measurement Invariance
We investigated measurement invariance of the time-on-task
parameters for each country with both M2 and M3. We also
calculated the BIC for each individual model and summarized
these statistics to identify the level of invariance that best
represented the data overall (Table 6). As such, the assumption
of invariance of the model’s parameters does not hold for
most countries and models. Weak measurement invariance were
preferred in most of the cases (i.e., there was country-specific
heterogeneity in the time intensity (ξi) and residual variance (σ

2
i )

parameters for the time-on-task measurement models).
To illustrate the differences in the time-on-task measurement

model parameters, Figure 2 presents the estimated time-intensity
parameters for each item in each country as applied to the
preferred model in the simple-structure framework (M2). The

graph indicates that students in all analyzed countries placed
the most effort into answering the first item, I20Q1, from Unit
20 (Star Point unit). However, the pattern of estimated time-
intensity between different items varied according to country. For
example, the estimated time intensity of item I38Q06 was larger
than that of item I15Q01 for several countries, but the opposite
was found for about just as many countries.

3.3. RQ3: Country-Level Performance
Figure 3 shows the estimated country means in computer-based
mathematical literacy and the associated confidence intervals
for the three measurement models. The estimated means did
not show substantial discrepancies for the analyzed countries
between the different models.

Figure 4 shows the estimated reliability of the EAP ability
estimates for each country. Measurement precision increased for
all countries when time-on-task variables were included; here,
the model containing cross-loadings had the highest estimated
EAP reliability. As illustrated in Figure 5, there was a decrease in
average standard errors for ability estimates when time-on-task
variables were included.

Figure 6 shows the correlations between EAP ability estimates
from the baseline model and from those including time-on-task
variables. Ability estimates from models that included cross-
loadings generally had lower correlations with the baseline
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model-based ability estimates as compared to models that did not
include cross-loadings. This indicates that the ability estimates
from model 3 captured an additional source of information.
However, this may not have reflected the test objective (i.e.,
estimating student computer-based mathematical literacy).

4. SUMMARY AND DISCUSSION

This study examined the extent to which inferences about ability
in large-scale educational assessments were affected by and
improved by including time-on-task information in the statistical
analyses. This issue was specifically explored using data from
the PISA 2012 Computed-Based Assessment of Mathematics. In
line with statistical theory, model-based measurement precision
(as captured by the EAP reliability estimates) improved when
using the standard hierarchical model as opposed to the response
accuracy only model for each of the 31 considered countries that
participated in the PISA program. This increase was notable for
most countries, with many showing increases in estimated EAP
reliability at or above 0.05. If such a version of the hierarchical
model can adequately capture the data structure, then this
suggests it can also provide a notable increase in precision over
the default response-accuracy only models.

For practically all countries, model-based measurement
precision was further increased when using the extended
version of the hierarchical model, which allowed a direct
link between response times and ability by including cross-
loadings (i.e., rather than using the standard hierarchical model).
This model successfully extended the hierarchical model by
considering overall response speed as relevant to the estimated
ability while also allowing individual item-response times to
be linked to said ability if such patterns were present in
the data. Thus, the model allowed time-on-task to provide
more collateral information when estimating ability than was
possible when using the standard hierarchical model. This
increased precision was also notable for most countries (generally
between 0.02 and 0.03). However, the increase was generally
less sizable than those obtained by using the hierarchical
model instead of a response-accuracy only model. Thus, the
biggest gain in precision was already obtained by using a
simple-structure hierarchical model; extending the model by
incorporating cross-loadings generally only resulted in modest
additional gains.

We investigated the extent to which time-on-task parameters
could be considered invariant across countries for both the
simple-structure hierarchical model and the extension that
included cross-loadings. The results suggested that only weak
measurement invariance existed. As such, full or strong
measurement invariance did not hold. That is, our findings
suggest that countries may differ both in item time-intensity
(capturing howmuch time respondents generally spent on items)
and the item-specific variability of the response times (i.e., the
degree to which respondents differed in the amounts of time

they spent on particular items). This suggests relevant differences
between countries in regard to how respondents approached
items as well as in their response processes.

Measurement precision improved for all countries when using
the selected versions of M2 and M3 (i.e., over the precision
levels obtained using M1). Since changing the model used
to analyse the data may also affect model-based inferences,
we also analyzed the extent to which such inferences would
be affected by these changes. Here, no country showed a
substantial change in estimated mean, thus suggesting that the
overall assessment of proficiency levels for different countries
was not heavily affected by a model change. However, the
estimated correlations between the individual ability estimates
obtained using M1, M2, and M3 showed small deviations
from 1 for many countries, suggesting that the ability being
estimated does not overlap perfectly across the three models.
The differences between M1 and M3 were most notable in
this regard. That is, they generally resulted in the lowest
correlations between ability estimates. It is thus not surprising
that these two models had the lowest correlation; they also
had the largest differences in modeling structure. However,
one should carefully consider which of the models best
operationalizes the specific ability that will be estimated.
Additional validation research is thus needed to determine
whether the inclusion of time-on-task information results in
overall improved measurement quality.
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