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In the present paper we empirically investigate the psychometric properties of some of
the most famous statistical and logical cognitive illusions from the “heuristics and biases”
research program by Daniel Kahneman and Amos Tversky, who nearly 50 years ago
introduced fascinating brain teasers such as the famous Linda problem, the Wason card
selection task, and so-called Bayesian reasoning problems (e.g., the mammography
task). In the meantime, a great number of articles has been published that empirically
examine single cognitive illusions, theoretically explaining people’s faulty thinking, or
proposing and experimentally implementing measures to foster insight and to make
these problems accessible to the human mind. Yet these problems have thus far
usually been empirically analyzed on an individual-item level only (e.g., by experimentally
comparing participants’ performance on various versions of one of these problems).
In this paper, by contrast, we examine these illusions as a group and look at the
ability to solve them as a psychological construct. Based on an sample of N = 2,643
Luxembourgian school students of age 16–18 we investigate the internal psychometric
structure of these illusions (i.e., Are they substantially correlated? Do they form a
reflexive or a formative construct?), their connection to related constructs (e.g., Are
they distinguishable from intelligence or mathematical competence in a confirmatory
factor analysis?), and the question of which of a person’s abilities can predict the correct
solution of these brain teasers (by means of a regression analysis).

Keywords: statistical reasoning, logical thinking, cognitive illusion, Monty Hall problem, Wason task, Linda
problem, hospital problem, Bayesian reasoning

INTRODUCTION

Daniel Kahneman and Amos Tversky demonstrated with numerous examples of what are known
as “cognitive illusions” the psychologically, linguistically, and mathematically possible explanations
for human error in statistical and logical judgment (Tversky and Kahneman, 1974; Kahneman
et al., 1982). The cognitive illusions that they introduced then delivered empirical evidence that
people’s reasoning abilities are deficient with respect to the laws of logic and probability. Empirically
examined and at this point well-known brain teasers are, for instance, the Linda problem, the
hospital problem, the Wason selection task, or typical Bayesian Reasoning problems. Newer cognitive

Frontiers in Psychology | www.frontiersin.org 1 April 2021 | Volume 12 | Article 584689

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.584689
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2021.584689
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.584689&domain=pdf&date_stamp=2021-04-12
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.584689/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-584689 April 5, 2021 Time: 10:32 # 2

Bruckmaier et al. Tversky and Kahneman’s Cognitive Illusions

illusions like the Monty Hall problem appeared on the stage at
a later date, adding further empirical evidence demonstrating
people’s faulty reasoning strategies. The heuristics and biases
program attracted the attention of many researchers from various
disciplines (e.g., psychology, mathematics [education], logic,
and philosophy) and also greatly influenced important applied
domains such as medicine, jurisprudence, and economics as it
became clear that even experts in those fields are capable of such
logical and statistical fallacies even in their own domains (e.g.,
in medicine: Garcia-Retamero and Hoffrage, 2013; Binder et al.,
2018; in economy: Kahneman and Tversky, 1979; Thaler, 1994; or
in law: Hoffrage et al., 2000; Schneps and Colmez, 2013).

In the 1990s a countermovement to the heuristics and biases
program was started, which was mainly initiated by the German
psychologist Gerd Gigerenzer. In the framework of his research
groups’ “enlightening program,” cognitive tools were developed
in order to equip people to understand cognitive illusions and
statistical brain teasers. The idea behind this research was not to
train people in problem-solving prior to presenting a problem but
simply to change the representation of the presented information.
The most famous example of that is to replace probabilities in
Bayesian reasoning problems (e.g., “80%”) by so-called natural
frequencies (e.g., “8 out of 10”), which leads to substantially
better performance by participants (McDowell and Jacobs, 2017).
This countermovement eventually led to the formation of two
“camps,” one of them developing and implementing “facilitated
versions” of cognitive illusions and arguing for the importance of
problem representation (e.g., Hoffrage et al., 2002; Hertwig et al.,
2008; McDowell et al., 2018), and the other insisting on people’s
general deficiencies regarding statistical and logical reasoning
(e.g., Kahneman and Tversky, 1996; Pighin et al., 2016).

Notably, all of the above-mentioned famous cognitive illusions
are usually studied experimentally on just an individual-item
level by cognitive researchers. This was true in the program of
Kahneman and Tversky (e.g., Kahneman et al., 1982), but also
holds for nearly all authors addressing these brain teasers ever
since. Furthermore, this seems to be true regardless of which of
the two camps a scholar belongs to. Interestingly, experimental
researchers from both camps have yet to investigate whether these
cognitive illusions form a (reflexive or formative) psychometric
construct (in the following: cogIll) in either structure.

At least from a theoretical point of view, there are
already approaches for considering such problems together.
For instance, Stanovich and West (2000) developed the
framework CART (Comprehensive Assessment of Rational
Thinking; e.g., Stanovich, 2016), which describes different
types of tasks and aims to comprehensively assess rational
thinking as clearly distinct from intelligence or corresponding
established constructs. CART includes, for example, items of
probabilistic and statistical reasoning, scientific reasoning, and
probabilistic numeracy. However, it is still “only” a systematic,
theoretically based compilation of (several hundred) items to
capture reasoning; comprehensive results based on their joint
empirical measurement are not yet published—in Stanovich’s
words: “Now, that we have the CART, we could, in theory,
begin to assess rationality as systematically as we do IQ.”
(Stanovich, 2016, p. 32).

In the present study we empirically examine the internal
structure of some prominent cognitive illusions (i.e., the most
famous ones) when they are considered and implemented
simultaneously in one study. The tasks chosen for the present
study (see Figure 1) furthermore have the advantage of
representing a wide range of problem types and thus entailing a
variety of aspects of statistical thinking and logical reasoning.

For example, by means of psychometry we try to answer
the question of whether there is a general ability in humans
to master such brain teasers or whether the (very few) correct
answers given for these problems are rather “random” responses
by participants. In addition, we try to explore the relationship of
such a supposed ability to seemingly similar competencies like
mathematical capacity or general intelligence, and furthermore,
whether (and which of) such related capabilities might predict the
understanding of statistical and logical brain teasers in regression
analyses. By doing so, we will look for possible interactions with
respect to the facilitating representations of cognitive illusions
mentioned above.

To answer our research questions, we use the data of the large-
scale study PISA 2009 in Luxembourg. PISA regularly includes
the assessment of mathematics literacy, reading literacy, and
intelligence, and in Luxembourg in the year 2009, we were able
to supplement tasks in these areas with numerous brain teasers
from Tversky and Kahneman’s heuristics and biases program.
Thus we not only merge distinguished single cognitive illusions
empirically, but also three research traditions theoretically,
namely cognitive psychology (here: judgment under uncertainty),
teaching of mathematics (here: education of probability theory
and statistics), and intelligence research (here: logical and
deductive reasoning).

THEORETICAL BACKGROUND

We first unfold the world of Tversky and Kahneman’s heuristics
and biases program by presenting examples of concrete illusions
(section “Cognitive Illusions From the “Heuristics and Biases”
Program (cogIll)”), and then theoretically shed light on some
established constructs that might come close to cogIll, such as
mathematical ability or intelligence (section “Person-Related and
Task-Related Characteristics Associated With the Ability to Solve
Cognitive Illusions”).

Cognitive Illusions From the “Heuristics
and Biases” Program (cogIll)
In the following, we present the “traditional” versions of five
famous brain teasers that were also addressed in our study (the
versions finally implemented in the present study can be found
in Figure 1). The names of the problems in the headings will
each be followed by the respective logical or statistical concept
(in parentheses) that was identified as being difficult to grasp
with human intuitive thinking. Regarding each single cognitive
illusion, we present and explain the correct solution (including
reporting typical solution rates), describe the underlying faulty
heuristic that most people follow (according to Kahneman
and Tversky), summarize corresponding subsequent research
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Traditional versions
(by Tversky and Kahneman)

Facilitated versions

1a) Wason task (classic version: 
letters and numbers)

Check the following rule: If there is
a vowel on one side of the card,
there is an even number on the
other side.
You see four cards now:

Which of these cards must in any
case be turned over to check the
rule? (In other words: which cards
could violate the rule above?)
E □ K □ 4 □ 7 □

1b) Wason task (context version: franked letters and stamps)

Imagine that you are working for the post office. You are responsible for
checking whether the right stamp is affixed to a letter. The following rule
applies:
If a letter is sent to the USA, at least one 90-cent stamp must be affixed
to it.
There are four letters in front of you, of which you can see either the front
or the back.

Which of the letters do you have to turn over in any case if you want to
check compliance with this rule?
letter 1 □ letter 2 □ letter 3 □ letter 4 □

2a) AIDS test 
(probability version)

The probability that someone is
infected with HIV is 0.01%. The test
recognizes HIV virus with almost
100% probability if it is present. So,
the test is positive. The probability
of getting a positive test result
when you don’t really have the
virus is only 0.01%.
The following diagram illustrates
the information to the probability
specifications.

The test result for your friend is 
positive.
The probability that your friend is 
infected with the HIV virus is 
therefore: _______ %

2b) & c): AIDS test (frequency version with b) tree diagram or c) 
double-tree diagram)

This task involves an assessment of the results of the AIDS test.
It is known that HIV can cause AIDS. Now imagine the following: A friend
of yours gave blood at the hospital. It will then be checked to see if HIV is
present in the blood. The test result is positive. How likely is it that your
friend is actually infected with the HIV?

To answer this question, you will need the following information:
Out of 10,000 people, 1 person is infected with HIV. If the person is
infected with the HIV, the test detects HIV. So the test is positive. Only 1
of the 9,999 people who are not infected with HIV have a positive test.

The following diagram illustrates the information again.

The test result for your friend is positive. How many people who have
received a positive test result are actually infected with HIV?
_______ from _______.

E K 4 7

1 
person

99.99%
test is

negative

99.99%
not infected

with HIV

0.01%
infected
with HIV

100%
test is

positive

0.01%
test is

positive

letter 1

Italy USA

letter 2 letter 3 letter 4

50 
cents

90 
cents

b) (solid lines) or c) 
(solid and dashed lines) 10,000 

people

10,000 
people

9,999
people, not

infected with HIV

1
person, test  
is positive

2
people, test  
is positive

9,998 
people, test  
is negative

9,998 
people, test  
is negative

1
person, test  
is positive

1
person, infected

with HIV

FIGURE 1 | Continued
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FIGURE 1 | All items of cogIll.
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findings, and introduce—if available—didactic tools that can be
used to make the original tasks easier to understand.

Wason Task (Logical Implication)
The “Wason selection task” is a logical problem containing four
cards and one rule. Its traditional version reads as follows (cf.
Wason, 1968; for the versions implemented see Figure 1):

You see four cards showing the signs or symbols A, K, 4, and 7 on
the front side of the cards. The experimenter claims: “If there is a
vowel on one side of the card, then there is an even number on the
other side.”

The experimenter then asks: “Which card(s) must be turned over to
check whether the rule applies?”

In order to check the rule, the cards showing the A and the 7
(but not the 4) have to be turned, since only these cards have the
potential to violate the rule (see below). Originally introduced by
Wason (1966), his selection task—also called the “Wason card-
sorting problem”—has been the subject of dozens of empirical
studies since then (e.g., Cosmides, 1989; Evans and Over, 1996;
Johnson-Laird, 1999; West et al., 2008; Fiddick and Erlich, 2010;
Fitelson and Hawthorne, 2010).

The reason for the enormous interest in this task is that barely
10% of Wason’s participants came up with the right solution to
this seemingly simple problem. Of the 128 students to whom
Wason first posed this problem, only five gave the correct answer.
46% of the students wanted to turn A and 4, and 33% gave just A
as the answer. Indeed, it is usually clear to everyone that the card
showing A has to be turned: if there were an odd number on the
other side, the rule would be violated. Turning the 4, however, is
unnecessary, since even a consonant on the other side would not
violate the rule (note that the rule says nothing about the back
side of consonants). Yet it is crucial to look at the back side of the
card with the 7 because, if there were a vowel on the other side,
the rule would be violated, too.

The problem involves reasoning as to how an “if-A-then-B”
statement can be falsified (cf. West et al., 2008). Logically, this
rule corresponds to the so-called contraposition law, meaning that
the implications “If A, then B” and “If not B, then not A” are
equivalent to each other (and thus, only the conditions “A” and
“not B” have the capacity to violate the rule). Not only is the
correct response to Wason’s selection task usually given by very
few participants, but Wason (1968) noticed that when he tried to
convince participants of their errors, he encountered unexpected
resistance. Interestingly, even when he asked them to turn the
card with the 7, and they discovered an A on the other side, they
claimed that choosing the 7 was unnecessary.

One cognitive explanation for this error is that most people
tend to want to confirm their assumptions with new information
rather than try to refute them. Whoever turns card A has
the possibility of confirming the rule “if vowel, then even
number,” while whoever turns card 7 can at most refute it. There
are multiple instances of confirmation biases in the literature,
according to which such tendencies are deeply human. Since
then, these tendencies have even been proposed to be responsible
for belief in pseudosciences and conspiracy theories (cf. Shermer,
2002; Majima, 2015).

The solution rate for the Wason task can be significantly
increased, however, by replacing the abstract signs or symbols
on the cards with real-world contextualizations, for example by
displaying franked letters with different destinations where it is
necessary to find out whether a specific franking rule is correctly
applied (see Figure 1, right-hand side above). With respect to
the contraposition law, it becomes intuitively evident when, for
instance, considering the following true, real-world implication:
“If I am standing on the Tower Bridge, I must be in London.”
The corresponding reverse (and also true) implication is then: “If
I am not in London, I cannot be on the Tower Bridge.” Such
concrete contextualizations allow even very young students to
intuitively grasp the logic behind the rule and to solve analog
tasks correctly (e.g., compare the “cheating detection paradigm”;
Fiddick et al., 2000; Gummerum and Keller, 2008).

Bayesian Reasoning Problems (Inversion of
Conditional Probability)
So-called “Bayesian reasoning” problems deal with the inversion
of conditional probabilities (well-known examples are, e.g., the
cab problem, the AIDS task, or the economics problem). The
most famous Bayesian reasoning task is certainly what is known
as the “mammography problem” (adapted from Eddy, 1982):

The probability of breast cancer is 1% for a woman of a particular
age group who participates in a routine screening. If a woman who
participates in a routine screening has breast cancer, the probability
is 80% that she will have a positive mammogram. If a woman who
participates in a routine screening does not have breast cancer, the
probability is 10% that she will have a false-positive mammogram.

What is the probability that a woman of this age group who
participates in a routine screening and has a positive mammogram
actually has breast cancer?

The correct answer to the question above—about 8%—
requires Bayesian reasoning, that is, mathematically inverting the
given conditional probabilities in accordance with the formula
of Bayes. According to Bayes’ theorem, the resulting a posteriori
probability p(B| M+) is:

p (B|M+) =
p (M + |B) · p(B)

p (M + |B) · p(B)+ p (M + |¬B) · p(¬B)

=
80% · 1%

80% · 1% + 9.6% · 99%
≈ 7.8%

The correct result is much lower than most people, even
physicians, would expect (Eddy, 1982). The mathematical reason
for the counterintuitive low positive predictive value here is the
extreme base rate (1%) of the disease that might be neglected by
participants (“base-rate neglect”; for alternative explanations see,
e.g., Binder et al., 2018; Weber et al., 2018).

Faulty Bayesian reasoning is of high practical relevance.
For example, several studies show that even medical doctors
(Hoffrage and Gigerenzer, 1998), but patients as well (Garcia-
Retamero and Hoffrage, 2013) have difficulties with similar
situations. Also, most AIDS counselors, for instance, operate
under an illusory belief that positive HIV test results indicate
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certainty (see Gigerenzer et al., 1998; Ellis and Brase, 2015;
Prinz et al., 2015). But in fact, a positive medical test result
usually cannot “prove” the presence of a disease. Because sound
Bayesian reasoning is not only crucial in the medical domain—
inversions of conditional probabilities, for example, are also of
relevance in the courts or in the economy—articles on Bayesian
reasoning even appear repeatedly in the highly distinguished
journals Science (Tversky and Kahneman, 1974; Hoffrage et al.,
2000; Spiegelhalter et al., 2011; Operskalski and Barbey, 2016) and
Nature (Goodie and Fantino, 1996).

There are at least two effective strategies that can foster
insight into such Bayesian problem situations: (1) translating
the statistical information from probabilities (“80%”)
into natural frequencies (e.g., “8 out of 10”; Gigerenzer
and Hoffrage, 1995; see also Figure 1, right), and/or (2)
visualizing the statistical information (for both tools see section
“Visualizations”). Meta-analyses confirm the beneficial effect
of both measures (McDowell and Jacobs, 2017). A detailed
theoretical (psychological and mathematical) discussion on
both Bayesian reasoning and natural frequencies can be
found in Krauss et al. (2020).

Hospital Problem (Empirical Law of Large Numbers)
The so-called “hospital problem” (e.g., Tversky and Kahneman,
1974) is mathematically based on the law of large numbers and
reads as follows (cf. Kahneman et al., 1982):

A certain town is served by two hospitals. In the larger hospital
about 45 babies are born each day, and in the smaller hospital about
15 babies are born each day. As you know, about 50 percent of all
babies are boys. However, the exact percentage varies from day to
day. Sometimes it may be higher than 50 percent, sometimes lower.

For a period of 1 year, each hospital recorded the days on which
more than 60 percent of the babies born were boys. Which hospital
do you think recorded more such days?

The larger hospital

The smaller hospital

About the same (that is, within 5 percent of each other)

Sampling theory entails that the expected number of days on
which more than 60 percent of the babies are boys in general is
(much) greater in a small hospital than in a large one because a
large sample is less likely to stray from 50 percent. More precisely,
it follows from the law of large numbers that a big sample is more
suitable than a small to estimate the parameters of the population
(cf. Sedlmeier and Gigerenzer, 1997; West et al., 2008)—although
the absolute deviation from the expected value increases the
larger the sample is. Interestingly, the mathematician Jacob
Bernoulli claimed in 1736 that the law of large numbers is a rule
that “even the stupidest man knows by some instinct of nature
per se and by no previous instruction” (see Gigerenzer et al.,
1989, p. 29).

According to Tversky and Kahneman (1974), this fundamental
notion of statistics is not a part of people’s repertoire of intuitions.
In order to evaluate the probability of obtaining a particular
result in a sample drawn from a specified population, people
typically rather apply the “representativeness heuristic.” That is,

they assess the likelihood of a sample result, for example that the
average height in a random sample of ten men will be six feet
(183 centimeters), using only the “similarity” of this result to the
corresponding parameter (that is, to the average height of, e.g.,
180 centimeters in the population of men). Because this similarity
does not depend on the size of the sample, people following
the representativeness heuristic will ignore sample size. Indeed,
when Tversky and Kahneman’s (1974) participants assessed the
distributions of average height for samples of various sizes, they
produced identical distributions. For example, the probability of
obtaining an average height greater than six feet was assigned the
same value for samples of 1000, 100, and 10 men. Moreover, their
participants failed to appreciate the role of sample size even when
it was emphasized in the formulation of the problem.

With respect to the hospital problem, most of Tversky and
Kahneman’s participants judged the probability of obtaining
more than 60 percent boys to be the same in the small and in
the large hospital, presumably because these events are described
by the same statistic and are therefore equally representative
of the general population (Tversky and Kahneman call it
“insensitivity to sample size”). However, surprisingly, the solution
rates for the hospital problem have been very different since
then. According to Weixler et al. (2019), performances range
between 0% (Fischbein and Schnarch, 1997) and 85% (Evans
and Dusoir, 1977), the authors attributing the wide range of
solution rates to the fact that the tasks used usually varied in
one or more features and that the groups of people investigated
were different. In disentangling the effects of concrete task and
participant characteristics (see below; e.g., grades: Roth et al.,
2015; gender: Watson, 2000; see also section “Person-Related
and Task-Related Characteristics Associated With the Ability to
Solve Cognitive Illusions”), Weixler et al. (2019) found that, for
example, problem-solving is facilitated in particular when the
deviation from the expected relative frequency is maximal (cf.
Lem, 2015), the ratio between the large and the small sample
is large (cf. Murray et al., 1987), and/or the order of presented
options is “first large, then small sample” (for smaller first: Rubel,
2009, in contrast to the order in Kahneman and Tversky’s, 1972;
for other contexts: Fischbein and Schnarch, 1997; Watson and
Callingham, 2013). These differences in performance eventually
led to contradictory explanations and interpretations of people’s
reasoning (in this regard, e.g., Lem et al., 2011).

Linda Task (Conjunction Rule for Multiplying
Probabilities)
The so-called “Linda task” is based on the conjunction rule for
probabilities (cf. Tversky and Kahneman, 1983; Fiedler, 1988;
Hertwig and Gigerenzer, 1999):

Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

Which statement is more probable?

(a) Linda is a bank teller (B).
(b) Linda is a bank teller (B) and is active in the feminist

movement (F).
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The probability of the simultaneous occurrence of two
events—for example, p(B∩F)—can be mathematically obtained
by multiplying the two involved single probabilities, that is,
p(B) · p(F), or—in the case of the stochastical dependency of B
and F—p(B) · p(F|B). However, the product of two numbers
between 0 and 1 always becomes smaller than each of both
factors, which is why (a) is the correct option. The description
of Linda turns out to be irrelevant here, since it is always
more unlikely that two events will happen simultaneously than
that only one of both constituents will (thus the content of
the events is irrelevant here, too). All that counts are the
terms “probability” and “and,” which the conjunction rule
interprets, respectively, as mathematical probability and the
logical operator “and” (Hertwig, 1995; Gigerenzer and Regier,
1996; Hertwig et al., 2008).

Yet Tversky and Kahneman (1983) found that about 80–90%
of participants judged the second option (B∩F) to be more
probable than the first option (B). In terms of the heuristics
and biases program, the Linda problem is another instance
of the representativeness heuristic, since the second option
seems to be more representative of Linda than the first. The
so-called “conjunction fallacy” in the form of the Linda task
or similar problems has also been examined extensively since
then (e.g., Fiedler, 1988; Reeves and Lockhart, 1993; Donovan
and Epstein, 1997; Hertwig et al., 2008; Wedell and Moro,
2008; Charness et al., 2010). Hertwig and Chase (1998), for
instance, found that the proportion of conjunction fallacies could
be substantially reduced (from 78% to 42%) by changing the
response format from ranking to concrete probability estimation.
Interestingly, although there is no concrete probability given, the
Linda problem can also be understood more easily using the
natural frequency concept introduced in the context of Bayesian
reasoning problems (see above). When participants are simply
instructed to imagine 200 women who fit Linda’s description, they
realize that there must be more women who are bank tellers than
women who are both bank tellers and feminists (for details see,
e.g., Fiedler, 1988; Hertwig and Gigerenzer, 1999).

Monty Hall Problem (Inversion of Conditional
Probabilities; Extended Bayesian Reasoning)
The Monty Hall problem (or “three-door problem” or “goat
problem”), which had not yet been formulated at the time of
Tversky and Kahneman’s first publications but today is one of the
most famous examples of a cognitive illusion, is sometimes even
considered the “queen” of statistical brain teasers (e.g., Gilovich
et al., 2002; Krauss and Wang, 2003; Risen and Gilovich, 2007;
Tubau et al., 2015). The traditional formulation of the Monty
Hall problem (in the real TV game show, the host Monty Hall
played several variations of this setting; see Friedman, 1998) reads
as follows:

Suppose you’re on a game show and you’re given the choice of three
doors. Behind one door is a car; behind the others, goats. You pick
a door, say Number 1, and the host, who knows what’s behind the
doors, opens another door, say, Number 3, which has a goat.

He then says to you, “Do you want to switch to Door Number 2?” Is
it to your advantage to switch your choice?

The intended rules and conditions of the problem are (e.g.,
Krauss and Wang, 2003): After the candidate has chosen a
door, this door stays locked for the time being. The game show
host, who knows behind which door the car is, then opens
one of the two remaining doors, which has a goat behind it.
Afterward, he offers the player the option of either sticking with
his original choice or changing his decision and switching to the
other closed door.

Most people think it does not matter whether the candidate
changes to the last remaining door or stays with his/her first
choice because s/he still has two equally good alternatives to
choose from. However, this reasoning ignores the information
provided by the open door. Indeed, the probability of winning
the car by sticking with the original choice is only 1/3, while the
probability of winning by switching to the last remaining door is
2/3. In fact, the mathematical solution to the Monty Hall problem
turns out to be a (very) special case of Bayesian reasoning, since
the probability that the car is behind Door 2 can be expressed
in terms of Bayes’ rule as follows (assuming that the player first
chooses Door 1 and that Monty Hall then opens Door 3, which is
the standard version):

p (C2|M3) =

p (M3|C2) · p (C2)

p (M3|C1) · p (C1)+ p (M3|C2) · p (C2)+ p (M3|C3) · p (C3)
=

1 · 1
3

1
2 ·

1
3 + 1 · 1

3 + 0 · 1
3
=

2
3

where Ci = car is located behind door i, i = 1, 2, 3, and M3 = Monty
opens Door 3. Note that the solution of course holds regardless of
the door specifications given in the standard version.

As with the illusions (1–4) presented thus far, not only do most
people misjudge this assessment, but the wrong intuition—“both
remaining alternatives have a 50% chance of winning”—often
appears to them to be “obvious” (Paley, 2005), and they even dare
to offer a higher wager as a result of that belief (vos Savant, 1997).

Many researchers have explored possible reasons for this
cognitive fallacy and proposed didactical strategies that could
help people to realize the underlying mathematical structure of
this situation. For instance, Krauss and Wang (2003) added a
frequency question in order to exploit the natural frequency
concept, and subsequently Krauss and Atmaca (2004) made the
option of a frequency algorithm even more salient by clearly
depicting the three possible car-goat constellations (see Figure 1,
right). For a recent review of literature addressing why humans
systematically fail to react optimally to the Monty Hall problem,
see Saenen et al. (2018).

While problems 2–5 theoretically belong to probability
theory, problem 1 (the Wason selection task) belongs to the
world of logic (note, however, that logic can be considered a
restriction of probability theory to the values 0 and 1). In the
next section (“Person-Related and Task-Related Characteristics
Associated With the Ability to Solve Cognitive Illusions”),
we will take a closer look at both individual and task-
related characteristics as possible predictors for solving such
cognitive illusions.
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Person-Related and Task-Related
Characteristics Associated With the
Ability to Solve Cognitive Illusions
When research on cognitive illusions began, their generality and
their independence from higher education were both praised
(e.g., Slovic et al., 1976; Thaler, 1985). For example, Gould (1992)
says, “Tversky and Kahneman argue, correctly, I think, that our
minds are not built (for whatever reason) to work by the rules of
probability” (Gould, 1992, p. 469). And Piattelli-Palmarini (1991)
summarizes, “We are a species that is uniformly probability-
blind, from the humble janitor to the Surgeon General [. . . ].
We should not wait until Tversky and Kahneman receive a
Nobel prize1 for economics. Our self-deliberation from cognitive
illusions ought to start even sooner.”

Yet since then, these considerations and analyses have
become more differentiated, and constructs such as numeracy
or intelligence have come to be considered covariates in
the framework of cognitive illusions. In the following
we will discuss factors that might influence performance
on statistical and logical cognitive illusions, first at the
individual level of participants (sections “Mathematical
Competence” to “Further Individual Prerequisites”) and
second at the level of the task (sections “Contextualization” to
“Visualizations”).

Person-Related Prerequisites
Stanovich (2012), for instance, claims that individual differences
have largely been ignored in the rationality debate opened up
by the heuristics and biases program (also see Evans et al.,
1993; Stanovich and West, 1998, 2008). The following individual
preconditions have thus far been considered as producing
variability in responding to brain teasers.

Mathematical Competence
Obviously, it is reasonable to assume that mathematical
competence might play an essential role in solving cognitive
illusions of this kind. And indeed, the relevance of mathematical
skills in solving individual brain teasers has already been
documented in several studies. For example, Inglis and Simpson
(2004, 2005) administered a version of the Wason selection
task to three groups, mathematics undergraduates, mathematics
academic staff, and history undergraduates (whom Inglis and
Simpson chose to represent the general population), finding
that both mathematics staff and students were significantly
more likely to make the correct selection (and significantly less
likely to make the standard mistake). The authors conclude
that there is a significant difference between mathematical and
non-mathematical cognition. Regarding tasks about the law of
large numbers (cf. the hospital problem), even Kahneman and
Frederick (2002, p. 50) state that the “mathematical psychologists
who participated in the survey not only should have known
better—they did know better.”

1In 2002, Daniel Kahneman was indeed awarded with the Nobel prize in
economics.

Regarding Bayesian reasoning, Hill and Brase (2012)
examined whether a basic level of numeracy is needed (the
so-called “threshold hypothesis”). Although the highly numerate
tend to perform better across formats, results are mixed
regarding the interaction of the effect of numeracy and the
effect of information format (Chapman and Liu, 2009; Hill
and Brase, 2012; Johnson and Tubau, 2013). Moreover, Galesic
et al. (2009) found that natural frequencies, for instance, can
facilitate performance even for individuals with low numerical
ability. Finally, regarding the Monty Hall problem, there is
evidence that high numeracy level is helpful for recognizing
the correct solution after the problem is simulated many times
(Lee and Burns, 2015).

Reading Competence
Understanding and solving cognitive illusions could also require
a certain degree of reading competence. Especially for text-
heavy tasks such as typical Bayesian reasoning problems, reading
skills might be essential for correctly interpreting the given
information. Also, the understanding of logical operators (such
as the correct mathematical meaning of “and” in the Linda
task; see, e.g., Hertwig et al., 2008) or statements (such as
the “if-then structure” in the Wason task; Liu et al., 1996)
requires linguistic skills. At the same time, there have also been
numerous empirical findings on the influence of text complexity
and the tasks’ exact linguistic formulations on solution rates.
For example, it has been shown that the complexity and
length of the text (Macchi, 2000) and the use of implicit or
explicit questions (Böcherer-Linder et al., 2018) can substantially
impact solution rates (see also Gigerenzer and Hoffrage, 1999;
Mellers and McGraw, 1999; Girotto and Gonzalez, 2002;
Johnson and Tubau, 2013).

Moreover, many studies have of course investigated with
school students the role of reading skills on mathematics ability
in general, where empirical findings also show that students’
mathematical performance is significantly related to general
language competence and text comprehension ability (Duarte
et al., 2011; Vukovic and Lesaux, 2013; Prediger et al., 2015;
Paetsch et al., 2016; Plath and Leiss, 2018). In particular, reading
and understanding the text of the task poses problems for
many students and can lead to difficulties and errors in the
subsequent mathematical task work (Clarkson, 1991; Mayer
and Hegarty, 1996; Wijaya et al., 2014). Aside from the basic
requirements of the subject of mathematics (i.e., technical terms
and academic language), increased verbal complexity in problem
presentation was shown to reduce performance (Johnson and
Tubau, 2013), suggesting a role for basic text comprehension
abilities in performance on Bayesian reasoning problems as well.
In an overview, Schleppegrell (2007) synthesizes research by
linguists and mathematics educators to highlight the linguistic
challenges of mathematics.

General Intelligence (Reasoning)
It is very plausible that correctly solving cognitive illusions
may depend on general cognitive skills (i.e., g). A number of
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studies—especially from the research group around Stanovich—
have shown that individual differences in g have been associated
with the ability to find normatively correct solutions across a
range of decision-making tasks (e.g., Stanovich and West, 2000;
Kokis et al., 2002). Some researchers have argued that this
is just further evidence of the consistent positive correlations
found across diverse measures of abstract cognitive ability (e.g.,
Hunt, 2000), whereas other researchers (e.g., Stanovich and
West, 1998) have suggested that g will play the strongest role
in abstract or decontextualized forms of reasoning (cf. Kaufman
et al., 2011; see also section “Contextualization”). Regarding
cognitive illusions in general, Stanovich (2012) argues that there
are few consistent individual differences in intuitive, heuristic
reasoning, while explicit, knowledge-based reasoning about
such tasks may be connected to both crystallized intelligence
(i.e., learned knowledge) and fluid intelligence (which is close
to g). In sum, Stanovich (2012) claims that one should
expect a correlation between intelligence and solving cognitive
illusions because mindware gaps most often arise from lack of
education or experience.

Also, specifically with respect to Bayesian reasoning,
empirical evidence is mixed, especially concerning interactions
with information format (for details see section “Natural
Frequencies”). Regarding tasks in probability format, Stanovich
and West (2000) did not find any systematic correlations with
cognitive capacity measures (cf. Barbey and Sloman, 2007). On
Bayesian tasks in natural frequency format, a higher proportion
of correct responses was observed in experiments that selected
participants with a higher level of general intelligence as indexed
by the academic selectivity of the university the participant
attended (Cosmides and Tooby, 1996; Brase et al., 2006).
Along the same lines, Sirota et al. (2014) empirically found
that cognitive abilities indeed predicted Bayesian performance,
especially in the natural frequency format. However, there is
also evidence that with respect to Bayesian reasoning tasks,
higher general intelligence is linked to improved performance
across formats (Sirota and Juanchich, 2011; Lesage et al., 2013;
McNair, 2015).

According to Stanovich (2012), fluid intelligence reflects
reasoning abilities operating across a variety of domains—in
particular novel ones. Since it is measured by tasks of abstract
reasoning, fluid intelligence will, of course, in some way be
related to rationality (here: mastering cognitive illusions) because
it indexes the computational power of the algorithmic mind to
sustain decoupling. He also argues that individual differences
in fluid intelligence are a key indicator of the variability across
individuals in the ability to sustain decoupling operations
(Stanovich, 2009, p. 353).

Regarding the Monty Hall problem, De Neys and Verschueren
(2006) examined whether the notorious difficulty of this
special Bayesian task is associated with limitations in working
memory resources (which some researchers again equate with
g). They found that participants who solved the Monty Hall
problem correctly had a significantly higher working memory
capacity than those who responded erroneously. In addition,
correct responding decreased under the mental load of a
second parallel task.

Further Individual Prerequisites
Other possible personality traits that might also be considered
in this context are, for instance, gender, age, educational
background (which for students, e.g., is usually measured by
the socioeconomic status, SES), and prior experience. The
role of gender in mathematics ability has been discussed for
decades. Now there are arguments that similarities between
the sexes take precedence over differences (e.g., Hyde, 2014).
For instance, a meta-analysis shows a large variability in both
the size and the direction of gender effects in mathematics
performance (Else-Quest et al., 2010; but see Brunner et al.,
2008). Concerning stochastics in particular, Engel and Sedlmeier
(2005) found no gender difference. Regarding the hospital
problem, however, where only a few studies report data on
gender at all (e.g., Rasfeld, 2004; Watson and Callingham,
2013), only Watson (2000) explicitly considered gender
effects and found very few differences between females and
males (in favor of males). Thus there is still a necessity
for investigating possible gender differences regarding
stochastic tasks in general or cognitive illusions specifically
(Roth et al., 2015).

Empirical studies so far provide mixed findings on whether
greater age or prior stochastics education (Reagan, 1989)
increases solution rates in statistical reasoning in general (e.g.,
Batanero et al., 1996; Rasfeld, 2004; Brase, 2014; Siegrist and
Keller, 2011). However, it was found that the closer the data
presented in the task were to self-reported experiences, the more
accurate people’s answers were, indicating that the subjective
a priori estimate (of the probability of a certain event) developed
through lived experience had a substantial impact on the
reasoning process (Reani et al., 2019).

Task-Related Features
In addition to individual factors, of course, characteristics of
the task play a role with respect to performance as well.
In the following, we will explain in detail some “didactical
simplifications” of specific cognitive illusions (already briefly
addressed above).

Contextualization (Wason Selection Task)
Cosmides and Tooby (1992) showed that a change of the
abstract rule (i.e., “p → q”) in a problem accommodated in a
more natural and familiar context than the mere card-checking
setup significantly increases the number of correct answers of
participants (cf. Besold, 2013). To date, many different modified
versions have been used along with the classical abstract problem
formulation (e.g., Gigerenzer and Hug, 1992; also see Figure 1,
right), for example:

Imagine you are working for the post office. You are responsible for
checking whether the right stamp is stuck on a letter. The following
rule applies: If a letter is sent to the United States, at least one 90-
cent stamp must be stuck on it. There are four letters in front of
you, of which you can see either the front or the back (front of
letter with “50 cent” and “90 cent,” back of letter with “Italy” and
“United States”).

Which of the letters do you have to turn over if you want to check
compliance with this rule?
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As Gigerenzer and colleagues were able to demonstrate,
the solution rate increased substantially with the use of this
representation, even though, from the point of view of logic, the
situation was unchanged from the original version (Gigerenzer
and Hug, 1992; Fiddick et al., 2000). In similar scenarios, even
very young people can understand the logic behind a puzzle
based on real contexts in the sense of a “cheating detection
paradigm” (e.g., “If Maxi cleans up her room, she is allowed to
go to the playground,” cf. Gummerum and Keller, 2008). The
same holds true in an analogous way for other cognitive illusions.
In this respect, the solution rate for Bayesian reasoning tasks,
for example, would be even lower if the context were removed
and replaced by abstract letters (instead of concrete events) and
mathematical symbols, such as “p(A),” etc.

It should be noted that such contextualization in mathematics
education research corresponds to the aspect of modeling (i.e.,
considering problems formulated in a real-world context; e.g.,
Kaiser and Sriraman, 2006). Within this framework, sometimes
even previously purely inner-mathematical, abstract tasks are
consciously enriched by being related to a reality that is as close
as possible to the student’s everyday life in order to make them
more accessible and appealing to students (for an overview, see
Niss and Blum, 2020).

Natural Frequencies (Bayesian Reasoning Tasks)
In a seminal paper, Gigerenzer and Hoffrage (1995) translated
the numbers in the breast-cancer screening problem (see section
“Cognitive Illusions From the “Heuristics and Biases” Program
(cogIll)”) into natural frequencies:

Mammography problem (natural frequency format):

100 out of 10,000 women of a particular age group who participate
in a routine screening have breast cancer. 80 out of 100 women who
participate in a routine screening and have breast cancer will have
a positive mammogram. 950 out of 9,900 women who participate
in a routine screening and have no breast cancer will have a false-
positive mammogram.

How many of the women who participate in a routine screening and
receive positive mammograms have breast cancer?

This mode of representation of the statistical information
makes it possible to imagine concrete persons; the nested-
set relations become transparent, and thus the solution
algorithm becomes simpler. Given the natural frequency version,
significantly more people are able to make the correct inference
(Gigerenzer and Hoffrage, 1995; Siegrist and Keller, 2011)
because only the proportion of women with breast cancer
among those who have a positive mammogram (i.e., “80 out of
80 + 950” = “80 out of 1,030” = 7.8%) has to be calculated.
A meta-analysis by McDowell and Jacobs (2017) summarized
35 studies that implemented natural frequencies and found
an average performance increase in such versions of Bayesian
reasoning problems of about 24%, compared to only 4% in
probability versions.

The concept of natural frequencies can be extended to
diagnostic situations with more than one medical test available
(Krauss et al., 1999), but it is also applicable to other
statistical problems (regarding the Linda problem, e.g., see

Fiedler, 1988). In the context of the Monty Hall problem, for
instance, a frequency algorithm can be applied to the three
possible car-goat constellations (see Figure 1, right-hand side;
Krauss and Wang, 2003).

Visualizations
Pagin (2019), for instance, investigated the Linda problem by
using a task version in which the situation was presented with
a Venn diagram. As a consequence, the rate of the conjunction
fallacy in a group of participants was substantially lower.

With respect to the Wason task and the corresponding
visualizations (see Figure 1 left or right, respectively),
Gummerum and Keller (2008) have also successfully worked with
pictures of, for example, the (un)tidy room of their protagonist
“Maxi” to offer a visualization of the corresponding context.

There are many types of visualizations that can improve
Bayesian reasoning, for example, 2 × 2 tables (e.g., Steckelberg
et al., 2004; Binder et al., 2015), tree diagrams (e.g., Sedlmeier and
Gigerenzer, 2001; Budgett et al., 2016; Bruckmaier et al., 2019),
double-trees (Khan et al., 2015; Böcherer-Linder and Eichler,
2019), icon arrays (e.g., Zikmund-Fisher et al., 2014; contrary
findings by Reani et al., 2018), different kinds of set diagrams
(e.g., Euler diagram, or Venn diagram; e.g., Reani et al., 2018),
roulette-wheel diagrams (e.g., Brase, 2014), frequency grids (e.g.,
Garcia-Retamero et al., 2015), Eikosograms (also called unit
squares or mosaic plots; e.g., Böcherer-Linder and Eichler, 2017),
and frequency nets (Binder et al., 2020); for an overview see, for
example, Binder et al. (2015).

Regarding the specific Bayesian situation of the Monty Hall
problem, the triggering of a counting algorithm by a frequency
question (Krauss and Wang, 2003) can be supported by explicitly
depicting the three possible car-goat constellations (Krauss and
Atmaca, 2004), and thus combining didactic simplifications (see
sections “Natural Frequencies” and “Visualizations”) is possible
in this case as well.

THE CURRENT STUDY AND RESEARCH
QUESTIONS

In the present study we initially examine, on the basis of
the responses of Luxembourgian school students of age 16–18,
whether various cognitive illusions (cogIll) from Tversky and
Kahneman’s heuristics and biases program form a (reflexive
or formative) construct in a psychometric sense (RQ 1a). In
addition, by means of confirmatory factor analysis, we investigate
how such a supposed competence is related to mathematical
literacy (ml) and intelligence (g) and whether these three abilities
are distinct constructs (RQ 1b). Finally, we explore by means
of regression models (including Bayesian models) which student
abilities and which task characteristics can predict the mastering
of cognitive illusions, both at the construct level and in terms of
the singular illusions (besides ml and g, we here include further
possible predictors such as reading literacy (rl), RQ2). In sum:

Research question 1a (reliability and correlational analysis):
Do the tasks of the heuristics and biases program (cogIll)

form a reflexive or a formative construct? What intercorrelations
do individual tasks have and what causes can be found for
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differential correlations (e.g., What role do facilitations of
cognitive illusions play with respect to their mutual correlations)?

Research question 1b (latent confirmatory factor analysis):
Is cogIll unidimensional? What is the relationship (i.e.,

the latent correlations) between cogIll, ml, and g? Can three
correlated yet still distinct constructs be corroborated by means
of this method?

Research question 2 (regression analysis):
Which abilities and/or task characteristics can predict cogIll

(or the individual brain teasers)? In addition to the constructs
considered in RQ 1b, we will add further predictors like reading
literacy here.

METHOD

Design
PROLOG was a study conducted as an accompanying study of the
Luxembourgian PISA 2009 study (cf. Organisation for Economic
Co-operation and Development [OECD], 2010). The key idea
was to add famous brain teasers to the PISA scales in order to
analyze probabilistic (“PRO”) and logical (“LOG”) thinking as
well as their determinants by using a large and representative
sample of school students of age 16 (and older).

Note that due to the size of Luxembourg, PISA is a mandatory
complete survey for all 15-year-old students in the country.
Therefore, all 15-year-old students from grade nine and ten must
participate, while their younger or older classmates do not have
to (the older students usually have no required activity while
PISA is administered). Making use of this special situation in
Luxembourg, PROLOG was administered to both ninth- and
tenth-graders above the age of 15 (N = 2,643) while their 15-
year-old classmates were working on PISA 2009. Note that in
order not to endanger the integrity of the actual PISA 2009 study,
we implemented items from the PISA 2000 mathematics and
reading test in PROLOG.

Instruments
In the following we describe the items of all constructs
implemented.

Cognitive Illusions (cogIll)
Figure 1 displays all eight cognitive illusions implemented by
PROLOG: (1) two versions of the Wason task: (1a) classic
version and (1b) facilitated version; (2) three different versions
of a Bayesian reasoning problem, namely the AIDS task: (2a)
probability version, (2b) frequency version with tree diagram, and
(2c) frequency version with double-tree diagram as delineated
in Figure 1); (3) the hospital problem; (4) the Linda problem;
and (5) the Monty Hall problem. While both versions of the
Wason task were provided to the participants simultaneously
(i.e., first traditional and then facilitated), only one of the three
versions of the AIDS task was presented to each student. The
reason for this was that both versions of the Wason task (see
Figure 1 on the left for the original and on the right for the
contextualized version) seem distinctly different at first sight, in
other words, because of the different context not immediately
recognizable as basically identical tasks. For the AIDS task,

however, the contexts of all three versions are the same, so that
it makes no sense to deliver the same task more than once
(the only difference being information format). The hospital
problem, the Monty Hall problem, and the Linda problem were
only presented in one version in general. Figure 1 displays the
traditional versions implemented on the left and the facilitated
versions on the right.

All traditional versions (Wason, AIDS, Linda, hospital
problem) were only slightly modified in order to avoid guessing
on the one hand and floor effects on the other. In the Wason
task, for instance, we adjusted the wording (i.e., minor linguistic
changes) of both well-known versions (i.e., the classic, context-
free version with letters and numbers, and the contextualized
version with stamped letters) in order to make the problem
more easily understandable to students. Regarding the Bayesian
reasoning task, we replaced the famous mammography context
(which is usually not of relevance for 16-year-old students) by
a context dealing with HIV tests. In addition, we added a tree
diagram, which school students are familiar with (because in the
probability version without a visualization, floor effects would be
expected; Gigerenzer, 2004; Eichler and Vogel, 2015).

For the hospital problem, we changed the numerical values
slightly and somewhat adapted the answer options to the question
(students were instructed to check the boxes of three statements
as to whether they were right or wrong). For the Linda task, in
deviation from the traditional version, the students in our sample
were asked to rank three available statements (instead of just
naming the more probable statement out of two) and tick the
boxes accordingly; this somewhat diminished the 50% probability
of guessing the right answer.

However, we do not consider these changes systematic
theoretical facilitations, which is why the Wason task
(traditional), the hospital problem, and the Linda task are
still displayed in Figure 1 on the left. In contrast, the reason for
only presenting a facilitated version of the Monty Hall problem
(right side of Figure 1) was that the original problem was
simply too difficult and would probably yield floor effects (e.g.,
Krauss and Wang, 2003; Saenen et al., 2015). Instead, all three
possible constellations (namely, where the main prize could
be) were visualized according to Krauss and Atmaca (2004)
and the cognitive illusion was further mitigated by specifying
intermediate cognitive steps (e.g., in front of and to the right
of the visualization) in which participants were explicitly
asked for the number of constellations for which it would be
worthwhile to change the door selection (i.e., thus triggering a
frequency algorithm).

The order of the cogIll items in the questionnaire was as
follows: First all four traditional (i.e., not facilitated) tasks
were given, namely Wason classical, AIDS probability version
(optional), hospital, and Linda, then the four simplified tasks,
namely Monty Hall, Wason context, and AIDS frequency
version 1 or 2 (if AIDS probability version was not provided).
Since the implemented cognitive illusions, with the exception
of the two Wason tasks (which were clearly separated from
each other in the test booklet), differ substantially from
each other in terms of mathematical structure and solution
strategy, we refrained from randomizing the tasks for test
economic reasons.
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Mathematical Literacy (ml)
Mathematical competence was assessed using items from
the mathematical literacy test (ml) originally implemented
in PISA 2000 (Organisation for Economic Co-operation and
Development (OECD), 2003). In more detail, ml was covered
by items from the four areas of algebra (12 items), arithmetics
(8 items), geometry (10 items), and stochastics (7 items) (see
Figure 2 for a sample item). A complete compilation of all
items covering ml can be found in the electronic Supplementary
Material (ESM). For statistical analyses, four parcels (i.e., sum
scores) of algebra, arithmetics, geometry, and stochastics form
the manifest indicators for ml.

Intelligence (g)
To cover general intelligence (g), we implemented established
reasoning items from the “Berliner Intelligence Structure test”

(BIS; Jäger et al., 1997). Three different statements concerning
different topics were provided (Vacations, Traffic, and Smoking;
see Figure 3 for a sample statement). Then four possible
conclusions were presented, each of which tested whether the
statement was understood logically (i.e., there were four items per
scenario). The three resulting sum scores regarding each of the
three topics form the respective manifest parcels that were used
as indicators for g. A complete compilation of all items covering
g can be found in the ESM.

Reading Literacy (rl)
Since some of the brain teasers are formulated in a linguistically
demanding way, reading literacy (rl) was also included in the
present study. Four situations from the PISA 2000 reading
test including a question and possible answer options in each
scenario were implemented, resulting in 18 corresponding items

FIGURE 2 | Mathematical task “Speed of Racing Car” [with one out of five questions; subscale “algebra”; from Organisation for Economic Co-operation and
Development (OECD), 2003].
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FIGURE 3 | General intelligence items on the topic “Vacations” (from parcel 1; from Jäger et al., 1997).

altogether (for a sample scenario, see Figure 4). In more detail,
rl was covered by items regarding the four descriptive texts Lake
Tchad (three items), Flu (three items), Labor (eight items), and
Police (four items). Unlike g, the items on rl require reading
and in-depth comprehension of longer and more complex texts.
A complete compilation of all items covering rl can be found in
the ESM. For statistical analyses, four parcels (i.e., sum scores)
of the items belonging to each of the four situations form the
manifest indicators for rl.

Further Individual Covariates
In addition, further individual student characteristics were
collected. They included sociodemographic background features
(gender, age, etc.), learning motivation (e.g., interests and self-
image), life goals, and life satisfaction.

Participants
PROLOG was administered to Luxembourgian school students
of age 16–18 in grades nine or ten who did not take part in
the PISA study in 2009. In more detail, a total of 2,643 pupils
(56% girls) from 19 different Luxembourgian schools participated
in PROLOG. The average age M (SD) of the students was
16.31 (0.57) years. About half of the students completed the
Enseignement Secondaire Technique (“EST”; the Luxembourgian
non-academic vocational track), and the other half of the students
the Enseignement Secondaire (“ES”; the Luxembourgian academic
track required for university studies). 68% of the students
attended grade nine (63% EST, 37% ES), while the other 32%

attended grade ten (34% EST, 66% ES). Note that only the
AIDS task (see section “Cognitive Illusions”), which was applied
in three different versions, is an exception in terms of sample
size. Each of the three AIDS versions was processed by only
approximately 880 students of the total sample.

Procedure
PROLOG took place in April and May 2009 during regular
school hours. In the run-up to PROLOG, the research program
was presented to all Luxembourgian secondary schools (i.e., the
principals) in the form of a letter and the schools were encouraged
to allow their students to participate. However, participation was
not compulsory and remained optional for the schools on a
voluntary basis.

In addition to the cognitive illusions and demographic
questions, the PROLOG study included some scales of PISA 2000
and in total lasted about three and a quarter hours (test duration:
2 h 40 min, exclusive of an initial briefing of 15 min and two
breaks, one 5 min and the other 15 min, during the test). The
students were assured that the evaluation of the questionnaire
would be anonymous and that the results of the study would in
no way influence the grades of the individual student.

All measuring instruments were distributed in the form of
one test booklet. PROLOG was conducted by teachers whose 15-
year-old students were participating in PISA and who therefore
were not teaching at the time. Those teachers distributed the test
material, read out standardized instructions on how to fill in the
PROLOG instruments, kept the students quiet during the test,
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FIGURE 4 | Reading task “Police” [with one out of 4 questions; from Organisation for Economic Co-operation and Development (OECD), 2003].
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and finally collected the PROLOG materials and handed it over
to the PISA school coordinators for return.

Statistical Analysis
While ml, g, and rl were treated as reflexive constructs based
on manifest indicators (which in turn were parcels consisting of
single items, see above), in the following, cogIll will be treated as a
construct, but will also be considered at the individual item level.

All analyses were conducted using the open statistical
software R (R Development Core Team, 2020). Regarding RQ
2, an unconditional random effects model (UREM) was used
to estimate the between-task-type, between-participant, and
between-school variances of the binary task results of the cogIll
items, and to compare these three sources within class variance.
Subsequently, to take nesting into account, the “lme4” package
(Bates et al., 2015) and the “blme” package (Chung et al.,
2013) were used to create separate frequentist and Bayesian
generalized mixed regression models. More specifically, mixed
logistic regressions were modeled, which used the following
(logistic) link function to relate the linear term η to the
probability of solving a task (meaning a result of X = 1):

P(X = 1) = eη/(1 + eη)

All models allowed for random intercepts, and the following
indicators of model fit were estimated: R2

Marginal represents the
variance explained by the fixed effects, and R2

Conditional represents
the variance explained by both fixed and random effects as
estimated using the “MuMIn” package (Barton, 2016).

Regarding RQ 2, four predictors were included in all models to
predict outcomes concerning cogIll: ml, g, rl, and “task difficulty”
d (i.e., facilitated or not), which was dummy-coded (0: facilitated;
1: traditional version).

A first model included these predictors in additive fashion
within the linear term γ00 as intercept:

η = γ00 + ml + g + rl + d + Mixed Error Terms

Possible interaction effects between d (task difficulty) and
the other three predictors were modeled via the inclusion
of additional multiplication terms of the form Predictor x
Difficulty. For a detailed description of the interpretation of
such error terms with dummy-coded binary predictors in mixed
models, see Hilbert et al. (2019). Type-I error probabilities for
the significance of the regression estimates were corrected for
sevenfold multiple testing according to Bonferroni, as a maximum
of seven predictors was used for the models, meaning that
p < 0.05/7 = 0.007 was regarded as statistically significant.

RESULTS

In the following, the results are presented according to the three
research questions RQ 1a, RQ 1b, and RQ 2.

Descriptives of cogIll and Reliability
Analysis (RQ 1a)
All items of cogIll were coded dichotomously (0 = wrong;
1 = correct). Overall, the traditional versions (Figure 1, on the
left) of the cognitive illusions, which were processed by N = 2,643
students, yielded expectedly low solution rates (Table 1). The
four “original” items (i.e., without substantial facilitation) were
only correctly solved by 8–16% of the students, specifically
the Wason task (based on letters and numbers) by 14%, the
hospital problem by 10%, the Linda task by 16%, and, finally,
the AIDS task in probability format—despite the additional tree
diagram—by only 2% (note that each of the three AIDS task
versions was only handled by N ≈ 880 students). Regarding
the “facilitated” versions (Figure 1, on the right), both natural
frequency versions of the AIDS task were solved at a significantly
higher rate (yet with solution rates still not over 10% or 11%).
The facilitated Wason task (with the letter-stamp context) was
solved by 29% and the Monty Hall problem, including various
facilitations, by 67%.

TABLE 1 | # correct solutions (in percent), standard deviations, and manifest intercorrelations of cogIll items including Cronbach’s alpha if item deleted.

Traditional versions Facilitated versions

Correlation
N = 2.643
α = 0.21

M (SD) Wason
task

(class.)

AIDS
(prob.

version)

Hospital
problem

Linda
problem

Monty
Hall

problem

Wason
task

(cont.)

AIDS problem
(frequency
version 1)

AIDS problem
(frequency
version 2)

Cronbach’s
α if item
deleted

Wason problem (class.) 0.14 (0.34) – 0.16

AIDS (prob. version) 0.02 (0.15) −0.01 – –a

Hospital problem 0.10 (0.30) 0.03 0.01 – 0.21

Linda problem 0.16 (0.37) 0.01 −0.03 0.01 – 0.27

Monty Hall problem 0.67 (0.47) 0.06** 0.00 0.04 0.00 – 0.16

Wason task (cont.) 0.29 (0.45) 0.14** −0.06 0.02 −0.01 0.10** – 0.12

AIDS (frequ. vs. 1) 0.10 (0.30) 0.04 – 0.11** 0.03 0.13** 0.13** – –a

AIDS (frequ. vs. 2) 0.11 (0.31) 0.07* – 0.01 −0.06 0.10** 0.19** – – –a

*indicates p < 0.05; **indicates p < 0.01. Correlations of facilitated items (cf. Figure 1) with each other are gray-shaded.
The three AIDS versions as an exception were each only processed by ≈ 880 students.
aCronbach’s α if item deleted of all versions of the AIDS task combined is 0.18.
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According to RQ 1a, the statistical analysis of the data showed
a reliability of Cronbach’s α = 0.21 of cogIll (Table 1). The low
value means that the individual brain teasers are only weakly
related to each other, and there seems to be no distinguished
general ability to “see through cognitive illusions.” Although
the internal consistency could be increased up to an alpha of
0.27 by, for instance, deleting the Linda task, there is no way
to arrive at the satisfying reliability level usually requested for
reflexive constructs (e.g., Bühner and Ziegler, 2017). However,
keep in mind that the chosen famous brain teasers cover different
contents, require cognitively varying solution strategies, and
tempt to different traps.

Table 1 (in which all items are listed according to the
administration order) shows that the correlations between the
cogIll items are at a very low level and in some cases even
show—at least descriptively—negative values. The significant, but
small correlation effect between the two versions of the Wason
task of r = 0.14 indicates that it was reasonable to implement
both tasks simultaneously (note that due to the large sample
size, small correlations can also become significant). No mutual
intercorrelations between the three AIDS task variants can be
obtained because each participant only had to solve one of them
(also see legend of Table 1).

A closer inspection of Table 1 reveals a remarkable result:
Facilitated items show substantial correlations to each other.
Separating both problem modes yields the corresponding
reliabilities αcogIll orig. = −0.01 compared to αcogIll facilit. = 0.30.
Thus, interestingly, while the original problems indeed seem
to be solved only randomly, the facilitations are what make
the problems somehow accessible to consistent cognitive
processing. This result is strengthened by the fact that while the
natural frequency versions of the AIDS task display substantial
correlations to other facilitated items, the corresponding AIDS
probability version does not.

Relationship and Confirmatory Factor
Analysis of cogIll, ml, and g (RQ 1b)
In order to address the relationship between cogIll, ml, g, and
rl, we first present the descriptive results on the four constructs,
including their manifest mutual intercorrelations. Although it
will not be part of the confirmatory factor analysis, we include rl
here because it will be used later as an additional predictor in the
regression analyses with respect to RQ 2. Student performance
regarding the three constructs ml, g, and rl (see Table 2) lies,
as expected and in contrast to cogIll, at an average level (i.e.,
students solved about half of the items concerning all three
abilities). The internal consistencies were—except for intelligence
g—satisfactory (and all clearly above the reliability of cogIll).
However, αg = 0.43 for g also corresponds to an acceptable value
given the fact that it is a rather broad scale including three
completely different scenarios and statements. As is abundantly
clear from many PISA cycles, ml and rl are strongly correlated
(r = 0.69), and each is also correlated with g, though less
strongly (Table 2).

TABLE 2 | Descriptives (M, SD, α) of and mutual (manifest) intercorrelations r
(according to Spearman) between the constructs cogIll, ml, g, and rl.

Competence Theory
max.

M (SD) α cogIll ml g rl

cogIll 6 1.41 (0.99) 0.21 –

Mathematical
literacy (ml)

34 14.16 (6.10) 0.82 0.42** –

General
intelligence (g)

12 4.82 (1.73) 0.43 0.16** 0.25** –

Reading literacy (rl) 14 7.01 (3.17) 0.74 0.36** 0.69** 0.23** –

**indicates p < 0.01.

Most importantly, despite the low internal consistency of
cogIll, taken as a construct it displays significant (manifest)
correlations with the other three constructs (the highest with ml,
the lowest with g). Interestingly, ml and rl relate approximately
equally to cogIll. However, since cogIll is not a homogeneous
scale (cf. RQ 1a), correlations with cogIll cannot be generalized
to individual tasks (see also next paragraph; Cohen, 1992).
Considering the small reliability of cogIll (αcogIll = 0.21), it
is rather informative to consider in addition the differential
relationships of ml, g, and rl to each individual item of cogIll.

Regarding Table 3, the following three results are interesting:
First, each single item of cogIll correlates very similarly with ml
and with rl (only the hospital problem clearly depends more on
ml than on rl). Second, for most (but not all) items of cogIll,
the correlation with g lies below the correlations with ml and rl
(which can only partly be explained with the medium reliability
of g). And third (and most importantly), the facilitated versions
correlate more strongly not only with each other (RQ1a), but also
with the three constructs ml, g, and rl.

This third—and most intriguing—result means that
mathematical and reading skills (and also, to a lesser extent,
intelligence) can only help when cognitive illusions are simplified
with didactic measures and thereby made more accessible to
those abilities. Regarding the cogIll items presented in their
traditional versions, there are weaker and mostly not significant
correlations throughout (r = −0.05–0.11), meaning that neither
ml nor g nor rl can be effective here. This is in line with the
provocative statements from Piattelli-Palmarini (1991) and
Gould (1992; see section “Person-Related and Task-Related
Characteristics Associated With the Ability to Solve Cognitive
Illusions”) but contradicts, for instance, the threshold hypothesis
regarding numeracy (Hill and Brase, 2012) and related findings
from Stanovich (2012), who reported correlations between
probabilistic reasoning abilities (even though not specifically
concerning cognitive illusions) and cognitive ability (g) to be
roughly in the range of 0.20–0.35.

With these results in mind, we now turn to the inspection of
the dimensionality of cogIll, ml, and g with a latent confirmatory
factor analysis (CFA, RQ1b). Note that rl was only intended
as a moderator in the study, since according to the literature,
statistical and logical reasoning is much more closely related
to intelligence and mathematics abilities (thus rl was not of
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TABLE 3 | Correlations of individual items from cogIll with ml, g, and rl.

Correlations Traditional versions Facilitated versions

Task
Competence

Wason
(class.)

AIDS prob.
vs.

Hospital
problem

Linda
problem

Wason
(cont.)

AIDS frequ.
vs. 1

AIDS frequ.
vs. 2

Monty Hall

ml 0.11** 0.01 0.09** −0.01 0.30** 0.22** 0.21** 0.33**

g 0.03 −0.02 0.05* 0.03 0.11** 0.09** 0.13** 0.12**

rl 0.08** −0.03 0.00 −0.05* 0.27** 0.18** 0.20** 0.32**

*indicates p < 0.05; **indicates p < 0.01.

theoretical interest with respect to a common model2). The three
included constructs (Figure 5) were formed from the manifest
values of the six single items of cogIll (Wason classic, Wason
context, Monty Hall problem, AIDS task, hospital problem, and
Linda task), the four facets of ml (parcels: algebra, arithmetics,
geometry, and stochastics) and the three facets of g (parcels:
Vacations, Traffic, and Smoking). The CFA revealed adequate
local and global fit [χ2(2,508, 51) = 103.796, p = 0.001,
CFI = 0.990, TLI = 0.987, RMSEA = 0.017, SRMR = 0.084].

As can be seen in Figure 5, cogIll and ml display a strong latent
correlation (r = 0.64), while the other two latent correlations
are substantially lower. The magnitude of the individual factor
loadings of cogIll illustrate that again it is mainly the simplified
tasks that contribute to the construct, while the loadings for ml
and g are consistently high or moderate, respectively. Note that
the fit indices remain pretty much the same if the Linda task were
excluded from the model [model fit: N = 2,508, T (χ2) = 120.786,

2Furthermore, including rl in the latent CFA would also lead to convergence
problems due to its strong correlation with ml.

df = 51, p = 0.000, CFI = 0.986, TLI = 0.982, RMSEA = 0.023,
SRMR = 0.036; see Appendix Figure A1].

Predicting the Ability to Solve Brain
Teasers (RQ 2)
Finally, we will predict the solution of the brain teasers of
cogIll—each as a construct and individually—by means of
regression models. In contrast to the correlational analyses
(section “Relationship and Confirmatory Factor Analysis of
cogIll, ml, and g”), the modeled predictors can now statistically
control for each other.

Preliminary Models
First, an unconditional random effects model (UREM) was
estimated to compare the degrees of variance of the three nesting
levels (task difficulty, participant, and school). The highest
variance accounted for was difficulty d (σ2 = 1.23), followed
by participant-specific differences (σ2 = 0.18) and differences
between the schools (σ2 = 0.09), with R2

Conditional = 0.38. This
means that the most significant factor explaining differences
in performance regarding cognitive illusions relates to the

FIGURE 5 | Three-factor measurement model of cogIll, ml, and g. Model fit: N = 2,508, T [χ2] = 103.796, df = 51, p = 0.001, CFI = 0.990, TLI = 0.987,
RMSEA = 0.017, SRMR = 0.084. The values display latent correlation or standardized coefficients, respectively. Values of χ2

≤ 3df (df = degrees of freedom),
p ≥ 0.01, CFI (Comparative Fit Index) ≥ 0.95, TLI (Tucker-Lewis Index) ≥ 0.95, RMSEA (Root-Mean-Square Error of Approximation) ≤ 0.05, and SRMR
(Standardized Root Mean Residual) ≤ 0.05 indicate a good model fit. cogIll: cognitive illusions, ml: mathematical literacy, g: general intelligence. *indicates p < 0.05;
**indicates p < 0.01.

Frontiers in Psychology | www.frontiersin.org 17 April 2021 | Volume 12 | Article 584689

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-584689 April 5, 2021 Time: 10:32 # 18

Bruckmaier et al. Tversky and Kahneman’s Cognitive Illusions

“facilitation factor” d (separating between traditional and
facilitated versions), which is why we include this dummy
variable into the following models in addition to ml, g,
and rl.

Direct Effect of Change Factors on cogIll
We then investigated the direct influence of ml, g, rl, and
d on the solution of cognitive illusions using several models
(see Table 4). Because standard frequentist regression models
showed convergence problems, the standard optimizer was
exchanged for the “bobyqa” optimizer, and the convergence
tolerance was set to 0.01. These convergence problems usually
stem from multicollinearity and are likely to be due to the
strong correlation of the covariates ml and rl (see Table 2).
To double-check the results obtained from these models,
additional Bayesian mixed regression models with Wishart
priors for the covariance distributions were estimated, using
the same sets of predictor variables. As can be seen in Table 4
and Appendix Table A1 (where the corresponding Bayesian
models can be found), both types of regression models show
identical patterns of significant predictors for performance in
cogIll.

The results in Table 4 show three significant factors of
influence for cogIll: specifically, the models using only the
additive linear term (i.e., without interaction effects) show that
ml, rl, and g significantly predicted the probability of solving
a cognitive illusion, while the item difficulty d interestingly
showed no significant impact. Additionally, the models including
the interaction terms showed a significant negative interaction
effect of both ml x d and rl x d (whereas also due to the
interaction effect of rl x d, the direct effect of rl is no longer
predictive). This means that higher mathematical and reading
skills were associated with less of an influence of task difficulty
or, in other words, the facilitating measures taken to help
the participants to solve the brain teasers were more helpful
for (or needed by) those students with lower mathematical
and reading skills.

To check the possible influence of the exclusion or inclusion
of the Linda task, we also calculated the identical regression
models (i.e., with and without interaction terms) without the
Linda task (cf. Appendix Table A2). In the linear model, both ml
and g (but not rl) were significant predictors of the probability of
solving cognitive illusions. In the model with interaction terms,
all effects except for the interaction effect ml x d, which was no
longer predictive, remained the same compared to the models
including the Linda task.

Because of the low correlations of the cognitive illusions
with each other (see Table 1), it is reasonable to consider the
prediction of solving the individual brain teasers in addition.
Corresponding regression models (not depicted in Table 4)
revealed differential regression coefficients, especially regarding
reading literacy rl. While rl had almost no effect on, for instance,
performance on the hospital task, it was a relatively strong
predictor on text-intensive or context-rich problem formulations
like the Monty Hall problem or the Wason selection task (with
the letter-stamp context).

TABLE 4 | Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the
criterion cogIll in two different frequentist models (with and without interactions).

Frequentist Model Estimate SE p Explained variance

Without Interactions R2
Marginal = 0.054;

R2
Conditional = 0.040

γ00 −2.2 0.575 <0.001

ml 0.067 0.006 <0.001

g 0.039 0.012 0.001

rl −0.028 0.014 0.04

d −1.074 0.804 0.182

With Interactions R2
Marginal = 0.107;

R2
Conditional = 0.348

γ00 −3.039 0.615 <0.001

ml 0.087 0.008 <0.001

g 0.046 0.016 0.005

rl 0.022 0.018 0.234

d 0.822 0.867 0.343

ml × d −0.042 0.012 <0.001

g × d −0.015 0.024 0.536

rl × d −0.124 0.027 <0.001

Model fit: CFI: 0.990, RMSEA: 0.017.
Estimate, Estimated unstandardized parameter value; SE, Standard error of the
parameter estimate; df, Degrees of freedom; p, Probability of committing a Type I
Error; γ00, Intercept of the additive predictor term; R2

Marginal , Variance explained by
fixed effects; R2

Conditional , Variance explained by both fixed and random effects.
Significant (direct or interaction) effects (p < 0.05) are written in bold.
Corresponding Bayesian models as well as models without the Linda task can
be found in Appendix Tables A1, A2.

DISCUSSION

In this paper we inspect famous statistical and logical cognitive
illusions from the heuristics and biases research program of
Daniel Kahneman and Amos Tversky from a psychometrical
perspective. With a sample of N = 2,643 Luxembourgian
students of age 16 to 18, we implemented the Wason card
selection task (on the understanding of logical implication and
its reversion), the hospital problem (on the empirical law of
large numbers), the Linda task (on the conjunction rule for
multiplying probabilities), the AIDS task (a Bayesian reasoning
problem analogous to the famous mammography task), and the
Monty Hall problem (a special case of a Bayesian reasoning
problem, which was not part of the heuristics and biases program
by Kahneman and Tversky).

Over the last few decades, many researchers (especially from
the research group of the German psychologist Gerd Gigerenzer)
have made attempts to modify information representation and
in that way make these kinds of brain teasers more accessible to
human thinking processes. These variations were acknowledged
as an experimental factor, meaning that some of the brain
teasers were implemented in a version very close to their original
formulations (e.g., the Linda and the hospital problem), and
some in a facilitated way, in order to avoid both guessing and
floor effects (e.g., the Monty Hall problem). Because the contexts
of the classical Wason task (based on numbers and letters)
and the corresponding facilitated version (based on stamps and
letters) substantially differ in the present study, it was possible
to implement both versions simultaneously for all participants.
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Regarding the Bayesian AIDS task, a traditional version (based
on probability format) and two facilitated versions (based on
frequency format) were implemented, yet (in contrast to the
Wason task) only one of these versions was presented to
each participant.

So far, these cognitive illusions have been described
together within the theoretical framework of the heuristics
and biases program (and explained, e.g., by representativeness
or confirmation bias) or the more comprehensive framework
CART. Yet, experiments astoundingly have usually only
implemented one of these brain teasers empirically at the same
time. Explicitly addressing this research desideratum, our design
included all mentioned illusions simultaneously.

Based on our sample of Luxembourgian students of age 16–
18, we found that these brain teasers were only moderately
correlated to each other, yielding a low reliability of an assumed
reflexive construct cogIll (α = 0.21, or a maximum of 0.27 without
the Linda task). Interestingly, this (small) amount of shared
variance was exclusively due to the facilitated versions, while
the reliability of the remaining traditional versions was almost
zero. Analyses of manifest correlations revealed that cogIll was
substantially correlated to intelligence (g) and mathematical and
reading competence (the correlations to the two latter ones, ml
and rl, which were operationalized by parts of the corresponding
PISA tests, were even higher than for g). On the individual
item level, these correlations were again much higher for the
facilitated versions, giving a first hint that the above-mentioned
literacies (ml and rl) and the general cognitive ability (g) cannot
be applied properly to the traditional versions. In a subsequent
confirmatory factor analysis (where rl was excluded because of
multicollinearity), a latent construct cogIll could be modeled and
distinguished from g and ml, yet still displaying a high latent
correlation to ml.

Finally, we ran a series of frequentist and Bayesian regression
models (both with and without interaction terms) in order
to predict the correct solving of the brain teasers both on
construct and on individual item level. The best predictor
across all implemented models was mathematical competence,
followed by intelligence. Interestingly, the (negative) interaction
effect of rl x d (with d being the dummy variable indicating
whether the problem representation was facilitated or not)
suggests that the systematic facilitating measures taken to help
the participants to solve the brain teasers were more helpful
for (or needed by) those students with lower reading skills.
Since the original versions of the cognitive illusions obviously
make it very difficult to extract the relevant information
and then to infer the correct answer, it seems that these
traditional formulations (and not the tasks or the underlying
mathematical structure per se) in a way trigger cognitive
bias. Thus “facilitation” is about translating information into
a more accessible form, which partially “disarms the trap”
and thus makes it easier for people to apply their general or

content-specific skills to the tasks. Furthermore, considering the
individual item level of cogIll, reading literacy was particularly
necessary for text-intensive and context-rich problems such as
the Monty Hall problem.

Of course, the present study can only shed a first light
on psychometric properties of the brain teasers, on their
mutual correlations, and on connections to related constructs.
Empirically examining some of these brain teasers together,
however, the study goes beyond comprehensive but more
theoretical compilations of reasoning items (cf. CART; Stanovich,
2016). Future studies could (1) implement further cognitive
illusions of the heuristics and biases program, (2) vary the
facilitation manipulation more systematically, (3) use additional
constructs for both confirmatory factor and regression analyses,
or (4) administer similar studies with adult samples. However,
we hope to have opened a path toward the consideration and
empirical investigation of statistical and logical cognitive illusions
not only at an individual item level, but also at the level of a
psychometric construct.
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APPENDIX

FIGURE A1 | Three-factor measurement model of cogIll, ml, and g. Model fit: N = 2,508, T [χ2] = 120.786, df = 51, p = 0.000, CFI = 0.986, TLI = 0.982,
RMSEA = 0.023, SRMR = 0.036. The values display latent correlation or standardized coefficients, respectively. Values of χ2

≤ 3df (df = degrees of freedom),
p ≥ 0.01, CFI (Comparative Fit Index) ≥ 0.95, TLI (Tucker-Lewis Index) ≥ 0.95, RMSEA (Root-Mean-Square Error of Approximation) ≤ 0.05, and SRMR
(Standardized Root Mean Residual) ≤ 0.05 indicate a good model fit. cogIll: cognitive illusions, ml: mathematical literacy, g: general intelligence. *indicates p < 0.05;
**indicates p < 0.01.

TABLE A1 | Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in two different Bayesian models (with and without interactions) including
the Linda task.

Bayesian Model Estimate SE p Explained variance

Without Interactions /

γ00 −2.205 0.664 0.001

ml 0.067 0.006 <0.001

g 0.039 0.012 0.002

rl −0.028 0.014 0.042

d −1.077 0.93 0.247

With Interactions /

γ00 −3.045 0.71 <0.001

ml 0.087 0.008 <0.001

g 0.046 0.016 0.005

rl 0.022 0.018 0.23

d 0.825 1.002 0.411

ml × d −0.042 0.012 <0.001

g × d −0.015 0.024 0.534

rl × d −0.124 0.027 <0.001

Estimate, Estimated unstandardized parameter value; SE, Standard error of the parameter estimate; df, Degrees of freedom; p, Probability of committing a Type I Error;
γ00, Intercept of the additive predictor term; R2

Marginal , Variance explained by fixed effects; R2
Conditional , Variance explained by both fixed and random effects.

Significant (direct or interaction) effects (p < 0.05) are written in bold.
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TABLE A2 | Predictiveness of different factors (i.e., ml, g, rl, and d) regarding the criterion cogIll in four different models (frequentist and Bayesian, both with and without
interactions) without the Linda task.

Frequentist Model Estimate SE p Explained variance

Without Interactions R2
Marginal = 0.131; R2

Conditional = 0.391

γ00 −2.533 0.65 −3.9

ml 0.078 0.007 11.53

g 0.038 0.014 2.767

rl −0.016 0.015 −1.026

d −1.252 1.014 −1.234

With Interactions R2
Marginal = 0.123; R2

Conditional = 0.403

γ00 −3.047 0.679 −4.486

ml 0.086 0.008 1.489

g 0.046 0.017 2.786

rl 0.022 0.019 1.182

d 0.325 1.07 0.304

ml × d −0.02 0.013 −1.508

g × d −0.023 0.028 −0.815

rl × d −0.13 0.031 −4.141

Bayesian Model

Without Interactions /

γ00 −2.539 0.773 −3.285

ml 0.078 0.007 11.365

g 0.038 0.014 2.735

rl −0.016 0.016 −1.004

d −1.255 1.206 −1.04

With Interactions /

γ00 −3.054 0.81 −3.769

ml 0.086 0.008 1.451

g 0.046 0.017 2.783

rl 0.022 0.019 1.188

d 0.328 1.28 0.256

ml × d −0.021 0.013 −1.521

g × d −0.023 0.028 −0.82

rl × d −0.13 0.031 −4.146

Model Fit (Frequentist Model): CFI: 0.990, RMSEA: 0.017.
Estimate, Estimated parameter value; SE, Standard error of the parameter estimate; df, Degrees of freedom; z, z-value; p, Probability of committing a Type I Error; γ00,
Intercept of the additive predictor term; R2

Marginal , Variance explained by fixed effects; R2
Conditional , Variance explained by both fixed and random effects.

Significant (direct or interaction) effects (p < 0.05) are written in bold.
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