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The results of two experiments are analyzed to find out how artistic expertise influences
visual search. Experiment I comprised survey data of 1,065 students on self-reported
visual memory skills and their ability to find three targets in four images of artwork.
Experiment II comprised eye movement data of 50 Visual Literacy (VL) experts and
non-experts whose eye movements during visual search were analyzed for nine images
of artwork as an external validation of the assessment tasks performed in Sample I.
No time constraint was set for completion of the visual search task. A latent profile
analysis revealed four typical solution patterns for the students in Sample I, including
a mainstream group, a group that completes easy images fast and difficult images
slowly, a fast and erroneous group, and a slow working student group, depending on
task completion time and on the probability of finding all three targets. Eidetic memory,
performance in art education and visual imagination as self-reported visual skills have
significant impact on latent class membership probability. We present a hidden Markov
model (HMM) approach to uncover underlying regions of attraction that result from visual
search eye-movement behavior in Experiment II. VL experts and non-experts did not
significantly differ in task time and number of targets found but they did differ in their
visual search process: compared to non-experts, experts showed greater precision
in fixating specific prime and target regions, assessed through hidden state fixation
overlap. Exploratory analysis of HMMs revealed differences between experts and non-
experts in image locations of attraction (HMM states). Experts seem to focus their
attention on smaller image parts whereas non-experts used wider parts of the image
during their search. Differences between experts and non-experts depend on the relative
saliency of targets embedded in images. HMMs can determine the effect of expertise
on exploratory eye movements executed during visual search tasks. Further research
on HMMs and art expertise is required to confirm exploratory results.

Keywords: visual literacy, assessment, fixation sequence, hidden markov model, eye tracking data, visual search
task, latent profile analysis
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INTRODUCTION

Visual perception is an active process of constructing meaningful
information from external visual stimuli based both on
neurobiological capacities (i.e., laws of perception) and individual
learning history (skill training, memory). Perceptual psychology
describes the cognitive mechanisms employed to transform visual
stimuli into information. The comparison of experts’ and non-
experts’ processing during a challenging visual task can be
used to decipher these cognitive mechanisms. In a broad sense,
visual expertise has been studied in medicine (medical imaging),
engineering (surveillance of technical processes) or education
(learning behavior) and has been defined as a domain-specific
adaptation to the requirements of a visually challenging task
(Gegenfurtner and van Merriënboer, 2017), which has been
coined Visual Literacy (VL). More recently, mostly from authors
in the context of aesthetics and fine arts, this concept has also
been referred to as visual competency (Schönau and Kárpáti,
2019). Other authors (Avgerinou and Pettersson, 2011; Wagner
and Schönau, 2016) used the term VL, which they described as
the ability to inspect and understand images and express oneself
through visual media.

Psychological models of visual expertise have focused on three
major theories (Gegenfurtner et al., 2011; Brams et al., 2019): (1)
the long term working memory theory (Ericsson and Kintsch,
1995) suggests that experts can retrieve more visual information
from long term working memory than novices do, (2) the
information reduction hypothesis (Haider and Frensch, 1996,
1999) proposes that experts selectively focus on important visual
image parts relevant for the task and ignore irrelevant stimuli,
and (3) the holistic model of image perception (Kundel et al.,
2007), which states that experts gain more visual information
from global and para-foveal regions, effectively allowing a
broader grasp of the image to guide their search. Recent studies
find evidence in support of the information-reduction hypothesis
as the most important skill developed in experts across most
domains (Brams et al., 2019).

Restricting the discussion to fine art studies and art education,
differing VL models have been proposed (Kędra, 2018). One
of the broadest conceptual models (ENViL-model, see Wagner
and Schönau, 2016) divides VL into as many as 16 subdomains,
which include “value,” “envision,” “experiment,” or “aesthetic
experience.” Many of these domains show considerable overlap.
As this model was not generated by psychometricians but by
art educators, this model is strictly phenomenological and has
not been empirically tested. Nevertheless, it has received great
attention from applied art education theory (e.g., Groenendijk
et al., 2018). One subdomain, “analyzing,” has been described as
the ability to attentively and accurately focus on visual stimuli
and to identify characteristics of images (Wagner and Schönau,
2016, p. 70) and therefore should be crucial in visual search
tasks. The “analyzing” ability is directly associated with the
information-reduction hypotheses, where experts find important
visual information by focusing on important image features
and ignoring irrelevant features. Experts’ continuous engagement
in art and imagery plausibly should impact on how cognitive
processes differ between VL experts and non-experts. VL experts

thus may serve as best-practice examples to describe effective
cognitive strategies in detecting details in images of artwork.

In a visual search experiment the participant is asked to
look for a target among distractors (Wolfe et al., 2003; Wolfe,
2010). A visual search experiment might be analyzed by either
evaluating the correct solution or by recording task-solving
behavior (e.g., reaction times and eye movements). Thus, visual
search paradigms are oftentimes used to investigate differences
of experts and novices with respect to the participant’s speed
or accuracy in locating targets, for example in medical image
examination (Drew et al., 2013; Sheridan and Reingold, 2017; van
der Gijp et al., 2017) or in sports (Vaeyens et al., 2007; Piras et al.,
2014). The influence of reading literacy on visual search has been
extensively studied (Ferretti et al., 2008; Franceschini et al., 2012;
Olivers et al., 2013). Few studies have considered the influence
of visual literacy and its effects on visual-search performance.
Studies on artistic visual expertise (e.g., Vogt and Magnussen,
2007; Francuz et al., 2018) are typically not conducted with
visual search tasks (finding targets among distractors) but, e.g.,
by judging abstract from realistic paintings or in the context
of visual memory tasks. Expertise-related differences in target
search have been mainly explored in domains other than
the visual arts [e.g., medicine (Kundel et al., 2007) or sports
(Vaeyens et al., 2007)]. To our knowledge, the use of artwork
in a visual search task still remains fairly uncommon (e.g.,
Nodine et al., 1979).

Aesthetic appreciation and a general interest in the visual
arts might amplify a person’s ability to identify specific
details in images of artwork. With respect to art appreciation,
five domains have been put forward: A (attraction), R
(representation and realism), E (emotional expression) S (style
and form), and I (interpretation), denoted as ARESI classification
(van Meel-Jansen, 2006). Visual experts tend to show more
appreciation for images rated high on the “style and form”
and “realism” domain. Evidence from neuroaesthetic research
revealed perceptual processing enhancement at behavioral and
at a neurophysiological level when images are aesthetically
appreciated (Sarasso et al., 2020). Art appreciation might
facilitate visual search performance. Research on the aesthetic
appreciation of art has differentiated between two modes of
perception: pleasure and interest, which are conceptualized
as partly overlapping, partly distinct functions of aesthetic
appreciation (Graf and Landwehr, 2017). Whereas the free
viewing of abstract paintings presumably favors the “pleasure”
mode, a visual search task for a specific detail in paintings
might require a more analytical way of regarding a piece of art
(“interest” mode), depending on the painting style or content of
the artwork. This might also elicit aesthetic appreciation. Thus,
experts would operate more according to the “interest” pathway
to aesthetic appreciation.

Studies of eye movement behavior often are regarded as
a tool to link observed behavior to cognitive mechanisms
(Hollingworth and Bahle, 2020). Previous eye-movement
research has focused on domain-specific differences in visual
expertise with respect to number of fixations and fixation
duration (Gegenfurtner et al., 2011). Studies showed that
professional art viewers were reported to exhibit greater
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saccadic amplitudes than novices, particularly when viewing
abstract paintings (Zangemeister, 1995). Experts also tend to
have more short fixation durations, i.e., direct their attention
on specific areas of paintings (Ylitalo et al., 2016). Novices,
when revisiting previously seen images, exhibit fewer and
longer fixations (Vogt and Magnussen, 2007). Some studies
used eye movement patterns to distinguish artists from
laymen (Kolodziej et al., 2018). Other studies demonstrated
differences between expert and novice artists in how they
looked at particular works of art. Accordingly, experts differ
from novices in the number of fixations and average fixation
duration on specific parts of the image (Kolodziej et al., 2018).
Interestingly, in a study on artists’ free viewing behavior of
abstract paintings, Koide et al. (2015) report that expertise leads
to fewer fixations on salient image regions. The authors suggest
that the artists’ knowledge of art overrides stimulus-driven
guidance of fixations, opening up the possibility of focusing
their attention to less obvious image areas. Even though the
transfer of VL ability across the art domain boundary remains
uncertain, some studies have found differences in visual-spatial
tasks depending on the person’s level of artistic expertise
(Angelone et al., 2016; Chamberlain et al., 2019). In these
studies, visual artists outperform novices through top-down
control over attentional processes and fast and more precise
visual encoding.

As previous studies pointed out differences in fixation
duration or number of fixations, the time dependence of fixation
sequences is rarely taken into account. However, the order of
fixation sequences can be used to deepen our understanding
of expertise-related differences in visual search. Eye-movements
play an important role in visual search behavior, as they can
indicate where and for how long people look at something,
allowing researchers to model attention throughout the given
task (Koochaki and Najafizadeh, 2018; Hollingworth and Bahle,
2020). Heatmaps (Bojko, 2009), for example, can be used
to visualize fixation density (number of fixations) over time.
However, sequences (spatial as well as chronological order) of eye
movements (i.e., scanpaths) are often neglected in the analysis
of saliency or fixation density (Le Meur and Baccino, 2013). The
sequence of eye movements is crucial in understanding not only
where, but in what order people direct their gaze and attention
while inspecting images.

To account for sequence dependent effects in eye movements,
we chose to compare the spatial coordinates of fixations (i.e.,
the series of numbered fixations by index) across VL expert
and non-expert groups. We use Hidden Markov Models [HMM
(Rabiner, 1989)] to analyze the fixation sequence to reveal
latent image areas. Through HMM-analysis we can find and
visualize hidden (i.e., not directly observable) attention states
(for details see “Materials and Methods” section). Combining
eye tracking analysis with statistical approaches such as HMM
leads to further insight into factors underlying scanpaths during
visual search (Borji and Itti, 2013; Coutrot et al., 2018; Koochaki
and Najafizadeh, 2018; Ulutas et al., 2019). HMMs have been
successfully used in combination with eye tracking data to
parse fixations from saccades (Houpt et al., 2018), to depict
processes underlying facial recognition (Chuk et al., 2014, 2019)

or for information retrieval during reading (Simola et al., 2008).
The feasibility of a latent state approach for the analysis of
eye-tracking data has become increasingly popular in applied
research areas such as marketing research (Netzer et al., 2017).

Which parts of the image are closely examined and in
what order are they examined during visual search? Search
effectiveness and the probability of finding pre-defined targets are
only one aspect of visual search performance. The psychometric
assessment of search time and number of correctly identified
targets does not allow for a detailed understanding of the
underlying search process. Using eye-tracking measurements
search processes and differences in expertise strategies can be
examined more closely.

The research reported here is part of a larger study (Rakoczy
et al., 2019) on visual literacy (grant 01JK1606A). A test battery
was constructed to assess various aspects of VL, which was
administered to a large sample of high school students for
psychometric evaluation. The reliable and valid measurement of
VL could serve as a tool for quality management in educational
settings and thus contribute to the improvement of art education.
Two aspects are especially interesting for the study of VL: First,
not much is known about self-reported artistic skills and VL
performance in young students. What influence do self-reported
visual skills have on search time and number of found targets of
students? Self-confidence or interest in visual arts may facilitate
engagement in artistic stimuli. Secondly, cognitive mechanisms
employed to solve visually guided tasks are a necessary link
to translate skill level measurement to didactic improvements
and to sharpen the association between self-perceived visual
competency and art teacher’s feedback. In addition to the
psychometric evaluation of visually guided tasks, we compare
VL experts and non-experts’ visual search process to uncover
expertise-specific modes of search behavior. Eye-tracking is used
to determine the external validity of the assessment items. Do
VL experts differ from non-experts in search time and number
of found targets? The comparison of both a student sample
and a sample of VL-experts and novices can enhance our
understanding of cognitive processes engaged in the visual tasks
going beyond the measurement of performance (i.e., reaction
times and hit rates; effectiveness) to also include information on
order and precision of the search (efficiency).

This study addresses the following hypotheses:

H1a: VL experts identify more targets than
students (Experiment 1).
H1b: VL experts are faster than students in finding the
targets (Experiment 1).

H2a: VL experts identify more targets than
non-experts (Experiment 2).
H2b: VL experts are faster than non-experts in finding the
targets (Experiment 2).

To get insight into the search process we take a closer look
at the participant’s eye-movements during the search: Do VL
experts differ in spatial and/or chronological aspects of their
scanpaths from non-experts? More specifically, do VL experts
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identify more and/or other meaningful regions of interest in
images of artwork than non-experts do?

H3: VL experts show higher precision in target detection,
i.e., exhibit eye movements to targets that differ from those
of non-experts during visual search (Experiment 2).

The eye-tracking research questions are assessed through
exploratory analysis with the help of HMM models to investigate
differences between the search strategies of VL experts and
novices. Differences can be interpreted as empirically derived
hypotheses for future confirmatory analysis. As the use of HMM
in the context of expertise research is relatively new, we give
some examples of how this method can be advantageous over
traditional eye-movement visualization and analysis.

MATERIALS AND METHODS

Subjects
The data reported in this study was acquired as part of a larger
research project on the assessment of Visual Literacy (Rakoczy
et al., 2019) and is comprised of two samples: an assessment
sample (Sample I) involving a large sample of high-school
students and an eye-tracking sample (Sample II) consisting of VL
experts and non-experts.

Sample I comprised 1,065 high-school students from 52
classes (9th to 13th grade) of 29 schools in Germany of which
1,056 worked on the visual search task. Overall, 52% were
female, the average age was 15.27 years (SD = 0.94). Schools
were recruited in the federal states of Hessen, North-Rhine
Westphalia, Schleswig-Holstein, and Rhineland Palatinate via
leaflets, letters and personal recommendations. The test was
conducted in regular classrooms. Up to 30 students were able to
participate in the assessment simultaneously. The visual search
task under investigation was one segment of a longer (duration:
45 min) study on the topic of VL including a sociodemographic
questionnaire (age and gender) and questions regarding the topic
of art and personal experience with art: “Do you regularly attend
an art school or art workshops?” Scale from 1 (never) to 4
(multiple times a week), “Art is important for me personally,”
“My parents are interested in art and artistic subjects,” “In our
family, art is very important,” “We like to talk about art and
artistic subjects in our family” on a scale from 1 (strongly
disagree) to 4 (strongly agree); “How good are you at art theory
(e.g., interpreting pictures, understanding art history)?” “How
well do you perform in arts education generally?” from 1 (very
bad) to 5 (very good) and questions including the grade in art
class and self-reported skills: photographic memory (PM; “I have
a ‘photographic memory”’), spatial orientation (SO; “When I see
a photographed geometric object, I can imagine what it looks
like from behind”), long-term memory (LM; “I can remember
small details in pictures”), imagination (IM; “I can visualize
things mentally”), and interest in visual puzzles (IP; “I like to
solve picture puzzles”). These were reported on a scale from
1 (strongly disagree) to 4 (strongly agree). All answers were
given via touchscreen input by the participants. School classes
were offered a lump sum of 100€ as collective compensation.

Sample I was presented four images included in the visual search
task: “Exhibition,” “Oppermann,” “Footprints,” and “Clock and
Graffiti” (see Figure 1).

Sample II comprised 52 participants, who were screened for
eligibility as part of the eye-tracking study. Two participants were
excluded from further analysis, one because of poor acuity and
the other because of insufficient eye tracking quality. For another
participant in the expert group the eye-tracker lost the tracking
signal on two trials and therefore data from this participant were
only included for the remaining trials (images 1–7). As there is
currently no validated test available on the assessment of VL,
experts and novices were screened based on their prior experience
and interest in the visual arts. Participants in the expert group
(n = 25) were either members of the European Network of
Visual Literacy (ENVIL) or working in professions requiring a
high visual competency (photographer, gallerist, art educator, art
designer, art students, or self-employed artists). The non-expert
group (n = 25) were adults from the clerical and academic staff
of various educational settings not associated with academic or
professional work in the visual arts. The participants’ ages ranged
from 16 to 66 years (mean age = 29.08 years, SD = 12.55 years).
Participants in Sample II were individually assessed in seminar or
laboratory rooms (e.g., at the Academy of Fine Arts in Munich)
or at expert’s working places. All participants had normal or
corrected-to-normal vision. Student participants received 20€
each as compensation. Other participants, including experts
in the expert group, who were generally interested in the
topic of visual literacy and eye tracking, participated without
any compensation.

Stimuli
Subjects were required to identify three targets (details) on each
of the four (Experiment I) or nine (Experiment II) subsequently
presented images. Figure 1 illustrates the procedure of the
experiment. Calibration screen and fixation cross was only visible
for Experiment II.

In a short pre-study, four untrained VL experts independently
rated each of the photographs in our sample of images with the
ARESI classification (van Meel-Jansen, 2006) on a scale from 1
(feature not present) to 7 (highly prominent feature). Ratings
reached a reasonable mean interrater correlation of ICC = 0.50
(Shrout and Fleiss, 1979) and the following mean values: A = 4.8,
R = 5.1, E = 3.6, S = 5.1, I = 4.4. Thus, images can be regarded as of
satisfactory aesthetic value with above average rating on realism
(R) and style and form (S) and not representing outliers on one
of the five aesthetic domains.

Each image had three primes positioned on the right-hand
side (P_1, P_2, and P_3). The primes represented details to be
found as targets on the left (T_1 to T_3). Figure 2 shows prime
and associated targets as pre-defined AOIs (see E-Appendix for
all nine images). Image areas not covered by any AOI are defined
as white space (WS). Once the subject found (or thought to have
found) a target they touched the region on the screen to indicate
the corresponding position of the given target. A red circle of 50-
pixel radius appeared at each touching point to indicate that input
was registered. Targets were counted as identified when they were
touched within a 50-pixel radius around the center of each target
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FIGURE 1 | Procedure of experiment with nine images. Sample I only included the following images: Exhibition, Oppermann, Footprints and Clock and Graffiti.
Sample II included all nine images. For more details see text.

region. All participants were assessed on Android A6 Tablets
with 10.1-inch screen size. Tasks were constructed explicitly for
the study (Andrews et al., 2018). There was no time constraint
during the task. The participant ended each trial by pressing the
“Done”-button.

In Sample II eye movements were recorded with SMI eye
tracking glasses (SMI ETG 2w Analysis Pro). The glasses were
positioned and strapped tightly onto the subject’s head, which
they could freely move during task completion. Participants were
seated 50–80 cm away from the tablet screen. Eye movements
where calibrated with a 3-point calibration. All eye tracking data
were recorded at 60 Hz. Saccades and fixations (as well as blinks)
were recorded binocularly. Before each image was presented, a
fixation cross was displayed for 2 s. Subjects were free to search
the targets in any order and received no further feedback during
the trial (on number of correct targets found).

The session started with a task instruction (in German):

“In the following task you have to search for specific details inside
a given picture. Touch the area on the picture where you found it.
There will always be 3 details to find. When you are done, click
‘Done’. Then the next picture follows.”

Eye tracking data analysis was conducted with SMI BeGazeTM

version 3.7. Fixations for each image were mapped onto
corresponding reference images using SMI fixation-by-fixation
semantic gaze mapping (Vansteenkiste et al., 2015). Each

reference image was divided into three prime and three target
AOIs (see Figure 2). The following eye movement variables were
analyzed: the spatial coordinates of each fixation, the fixation
sequence and the fixation duration in milliseconds. Due to the
explorative nature of this study, no measures against inflation of
type I error were undertaken, as statistical tests were not regarded
as confirmatory analyses.

The study was conducted according to the guidelines for
human research outlined by the Declaration of Helsinki and
was approved by the Ethics Committee of Research of the
Leibniz Institute for Research and Information in Education,
Frankfurt am Main (DIPF, 01JK1606A). All subjects and their
legal representatives, respectively, had given written informed
consent prior to participation.

Latent Profile Analysis
Students’ responses to the images presented were recorded as
a vector of 4 (images) times 3 (details to be identified) = 12
dichotomous variables (target correctly identified or not?) and
4 continuous variables (time in sec. to solve all three search
tasks per image). Individual response patterns were grouped into
latent classes of similar response patterns by means of a Latent
Profile Analysis (see Ferguson et al., 2020), for statistical model
and a practical application). Models between 2 and 6 latent
classes were estimated using MPLUS 8.4 software. The decision
to interpret four latent classes (named LC1–LC4 in Figure 3)
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FIGURE 2 | Example image with pre-defined AOIs. Primes (P_1–P_3) on the right-hand side and targets (T_1–T3) of the image are correspondingly shaded in color.
Note that neither the colored shading nor the labeling of AOIs was presented to the subjects during the experiments. See Supplementary Material for all nine
images.

FIGURE 3 | Probability of target misidentification for each latent class on each image (Upper part) and time for solving each search task on each image (Lower
part). Latent class profiles are depicted from left to right: LC1 “fast and erroneous” (n = 238), LC2 “easy images fast, difficult images slowly” (n = 56), LC3
“Mainstream” (n = 740), and LC4 “slow working” (n = 31).

as the final solution was based on the progression in the
BIC fit indices (sharp decline after 4 classes) and the Lo-
Mendell-Rubin test of significant improvements in model fit
(p = 0.6707 for a five class solution). Latent class analysis

(and the generalization of latent profile analysis) results in class
membership probabilities for each individual to each of the
estimated classes. Individual students were manifestly classified
into latent classes according to their modal class membership
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probability. This categorical variable (reflecting four qualitatively
differing solution patterns) then was used as dependent variable,
which was regressed on by a list of demographic (gender and
age) variables and self-reported skills (mentioned above under
“subjects”). To arrive at a parsimonious multinomial logistic
regression model for group membership, a stepwise selection
of predictor variables was applied, which resulted in three
significant predictors (Table 2). Results are presented as Odds-
Ratios per scale point of three self-ratings of students’ visual
performance skills for three of the latent classes as compared to
the largest (“mainstream”) group.

Hidden Markov Model
Hidden Markov models (HMMs) represent efficient and flexible
modeling tools for data that include temporal constraints and
spatial variability such as the sequences of eye movements. The
intuitive idea behind a Markov Model or a Markov chain is
that in series of events where each probability of something
happening depends only on what happened right before it.
For eye movements, we can look at the fixation sequence and
classify each fixation to their most likely state (data-driven Area
of Interest) depending on the previous fixation. The HMM
divides the image into multiple data-driven AOIs which we
can call Markov states. Each time a new fixation arises in our
fixation sequence, we can give the fixation a certain probability
of belonging to the same AOI or switching to any other one.
This probability is called the transition probability. The transition
probability is conditional to the previous fixation observed.
Combining the probabilities for each state gives us a transition
matrix. In the case of hidden Markov models the states are not
directly observed. Only the observation sequence (the fixation
sequence) is known.

A HMM comprises three components: the initial state
distribution (in what states participants start in), the state
transition probability distribution (how likely it is to transition
from one state to another), and the observation probability
distribution (how likely an observation is produced by any given
state, i.e., how likely a fixation is linked to any given AOI).
Again, each HMM state in this study represents a location on
the image participants fixated while inspecting that area. The
transitions between each hidden state (image area) can be placed
into a transition probability matrix, describing the probability of
switching between each hidden state.

A Hidden Markov model can be defined as

λ = A, B, π

where λ is a triplet comprising the model matrices. A is the
state transition probability distribution of state j following state
i. B is the observation (emission) probability distribution of
observation k from the state j. π is the initial state distribution:
π = {πi}, 1 ≤ i ≤ N.

See (Rabiner, 1989) for an introduction to HMM and (Coutrot
et al., 2018) and (Boccignone, 2019) for HMM applied to
eye movement data.

Hidden Markov models were estimated using the depmixS4
package (Visser and Speekenbrink, 2010) with the software

R. Spatial variability can be modeled through the output
distribution of an HMM and temporal variability through the
HMM transition parameters. In the case of eye-tracking data,
each transition can be interpreted as an outgoing saccade from
one data-driven AOI to another. The HMMs were formulated
based on the spatial coordinates of each fixation. No additional
constraints were put on the models’ parameter matrices. We
estimated HMMs for each expertise group (experts vs. non-
experts) on each of the nine images.

Each HMM was estimated from two to 14 states. Selection
of model class (number of states for each image and group)
was achieved by Bayesian Information Criteria (BIC, see Vrieze,
2012). If there was a discontinuous progression of the log-
likelihood when incorporating a new state to the model,
alternative seeds to determine randomly chosen starting values
were used to avoid local optima.

To visualize the HMM, all fixations (emission points) were
exhaustively and disjunctively classified to their best suited
hidden Markov state and then drawn as 2D density maps
(contour maps) onto the corresponding images. In order to
analyze the precision of the visual search (H3) each pre-defined
AOI (primes and targets) was linked to the hidden state with
the highest number of fixations. Percentage of fixations inside
pre-defined AOIs in each corresponding hidden state was used
to determine precision. High fixation overlap of hidden state
and AOI indicates higher precision while looking for prime
and target regions.

Figure 4 visualizes a hypothetical 7-state HMM of plausible
transition probabilities between primes and targets.

FIGURE 4 | Hypothetical transition probability matrix for a theoretical HMM. In
this simple arrangement each AOI represents a hidden state (Prime 1–3,
Target 1–3, or White Space). Each hidden state has a certain probability of
staying in that state or transitioning from one to another indicated by arrows.
Note that the pairwise numbering is arbitrary as there was no instruction to
search from top-to-bottom.
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RESULTS

Speed and Precision of Search
Table 1 presents error rates for each target and task durations on
each of the four images presented in Sample I and compares it to
the corresponding results for Sample II. In Experiment I (Sample
I) only images Exhibition, Oppermann, Footprints, and Clock
and Graffiti were shown.

Students were able to correctly identify the required targets
virtually without errors for the Exhibition and the Oppermann
image (Table 1) and solved the search task in mean durations
of about 20–25 s. The Clock and Graffiti image comprised a
lot of optical distractors and therefore led to an error rate of at
least 11.5% per target. Targets in the Footprint image were much
harder to identify with at least one third of all students failing
per target. The two more difficult images required on average
double the task duration (about 50 s) as compared to the other
two images. Remarkably, the third target of each of the four
images was the most difficult one for all four tasks. Footprint
target 3 was only correctly solved by slightly more than 10%
of the students. VL experts, but also novices on average solved
the easy images faster than students, with the exception of the

Clock and Graffiti image, where VL experts worked longer than
students (H1a). Experts were as good or better at identifying
targets in comparison to the student sample (H1b). Even though
experts found on average one target more than non-experts
MExpert = 22.76 (SD = 1.69), MNon−experts = 21.56 (SD = 2.65), this
was not statistically significant; two-sided Welch t(40.781) = 1.91,
p = 0.063 (H2a). Across all 9 images experts did not differ from
non-experts with respect to time on task [MExpert = 45.30 s,
MNon−experts = 45.91 s, F(1,48) = 0.022, n.s. (H2b)].

When error patterns over all four images and invested time
periods were grouped into latent classes of similar behavior, a
latent profile analysis resulted in four distinguishable patterns
(see methods section for details justifying the decision for four
classes). Latent class 3 (LC3, n = 740) more or less represents
the same solution pattern (error rates and durations) as the
total sample with the exception of Clock and Graffiti, where
LC3 performed better than the average. Errors cumulate in the
second largest class LC1 (n = 238), where students performed
reasonably on the Exhibition and Oppermann image, but failed
to identify targets over base rates of the Clock and Graffiti and
the Footprint image. The reason for this low performance might
be given by the high task-performance speed that members of

TABLE 1 | Percent of correctly solved targets and mean time to solve each image in Sample I and Sample II.

Task Total Sample I (N = 1056)
Mean age = 15.27 years

(SD = 0.94)

Sample II Experts (N = 25)
Mean age = 34.36 years

(SD = 14.69)

Sample II Non-experts (N = 25)
Mean age = 23.80 years

(SD = 6.92)

Image Target no. Error Rate Mean time in seconds (SD) Error rate Mean time in seconds (SD) Error rate Mean time in seconds (SD)

Exhibition 1 0.038 25.29 (15.14) 0.20 20.52 (6.58) 0.08 18.81 (6.02)

2 0.006 0.00 0.00

3 0.041 0.04 0.04

Oppermann 1 0.011 19.16 (10.10) 0.04 15.07 (6.77) 0.00 13.87 (7.15)

2 0.008 0.00 0.04

3 0.018 0.00 0.00

Footprints 1 0.331 47.21 (29.54) 0.32 44.06 (17.86) 0.20 48.73 (33.81)

2 0.362 0.28 0.48

3 0.895 0.76 0.88

Clock and Graffiti 1 0.115 50.39 (28.96) 0.12 55.18 (36.43) 0.12 47.63 (23.94)

2 0.115 0.00 0.08

3 0.274 0.16 0.20

Spider Net 1 0.56 0.68

2 Not applicable 0.08 41.25 (18.72) 0.08 35.41 (12.03)

3 0.20 0.32

Easter 1 0.12 0.16

2 Not applicable 0.08 37.29 (16.17) 0.24 33.73 (17.15)

3 0.00 0.04

Abbey 1 0.04 0.00

2 Not applicable 0.04 47.86 (25.00) 0.00 51.55 (20.00)

3 0.20 0.60

Glasshouse 1 0.12 0.28

2 Not applicable 0.40 60.12 (38.7) 0.40 57.90 (30.23)

3 0.20 0.20

Linocut Pattern 1 0.08 0.00

2 Not applicable 0.16 86.37 (40.4) 0.24 105.52 (62.69)

3 0.04 0.08
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LC1 displayed especially for the more challenging images. The
remaining quite small groups (LC2 and LC4) differ mostly with
respect to the time invested for solving the search tasks. LC2
(n = 56) worked fast on the two easy images (and achieved nearly
perfect hit rates), but invested much more time (96 and 125 s) for
the more difficult images. By doing so, they were able to achieve
hit rates comparable to or better than the “mainstream group”
LC3. By contrast, members of LC4 (n = 31) represent a group
that continuously worked quite slowly (all mean times above
50 s) over all four images, but ending up in error rates not better
than the mainstream (see Figure 3).

A multinomial logistic regression model on the solution
pattern as represented by class membership explored the
potential impact of gender, age, and metacognitive self-
perceptions of students in Sample I. Only three variables reached
a nominal significance level of p < 0.05. Gender and age did
not affect solution patterns, neither did the variables “Art is
important for me personally,” “When I see a photographed
geometric object, I can imagine what it looks like from behind,”
“I can remember small details in pictures,” “I like to solve
picture puzzles,” “Do you regularly attend an art school or art
workshops?”, “Understanding art history and theory.” But the
three variables listed in Table 2 had a significant impact on
class membership. The global Likelihood Ratio Test for the
whole model scored at χ2

(9) = 64.903 (p < 0.001) and resulted
in a Pseudo-R-square of 0.0746. Each of the three regressor
variables reached a Wald Chi-square test with p < 0.001. Specific
effect sizes (Odds Ratio per increasing response category) of the
independent variables on the probability of each solution pattern
(LC4, LC2, and LC1 compared to the mainstream pattern LC3)
are listed in Table 2.

Students claiming to have a photographic memory display
a lower probability for belonging to each of the three non-
mainstream latent classes at each increased response category.
Most pronounced is this effect for LC1 (“fast and erroneous”).
Students belonging to this group (on average) proclaim to have
a photographic memory to a smaller degree. If students are
convinced of their ability to visualize things mentally, then this
slightly diminishes their chances to belong to latent classes LC4

TABLE 2 | Effect sizes (odds ratios) of self-reported art skills on latent profile
classification.

Effect Comparison group
(referencemainstream”)

Odds ratio
(per category)

95% confidence
limits

“I have a
‘photographic
memory”’

LC4 “slow working” 0.961 0.632 1.463

LC2 “easy images fast,
difficult images slowly”

0.928 0.671 1.284

LC1 “fast and erroneous” 0.659 0.554 0.785

“I can visualize
things mentally”

LC4 “slow working” 0.991 0.659 1.491

LC2 “easy images fast,
difficult images slowly”

0.992 0.716 1.375

LC1 “fast and erroneous” 1.536 1.298 1.817

“How well do
you perform in
arts education
generally?”

LC4 “slow working” 1.057 0.686 1.629

LC2 “easy images fast,
difficult images slowly”

0.591 0.435 0.802

LC1 “fast and erroneous” 0.721 0.605 0.860

and LC2, but increases the probability for membership in LC1
(“fast and erroneous”) by more than 50% per category. This
means, that LC1 has a self-perception of high competence in
recognizing details in pictures and might therefore work very fast
on the respective tasks, but indeed fail to reach the same precision
as the other groups. Students’ self-reported high performance in
art education is associated with higher chances to belong to the
“slow working” group LC4, but considerably lower chances to
belong to LC2 or LC1.

From these results it seems clear that interpreting a simple
score of correctly solved search tasks does not cover art related
visual competence in a meaningful way. A deeper understanding
of the cognitive processes during search tasks has to be acquired
from additional images and from comparing VL experts to
VL non-experts. Results from sample II might contribute to
this understanding.

Eye-Movements in Sample II
Table 3 shows the mean fixation duration and mean number
of fixations on each image. VL experts generally show longer
fixation durations than non-experts. Experts’ mean fixation
durations ranged from 264.83 ms (“Linocut Pattern”) to 317.59
(“Abbey”) and non-experts’ mean fixation duration ranged from
256.26 ms (“Linocut Pattern”) to 308.12 ms (“Abbey”). For most
images, experts exhibited more fixations than non-experts. As
there is a significant difference in age between both expertise
groups [t(34.163) = 3.252, p < 0.01 with MExperts = 34.36,
MNon−experts = 23.80], a correlation between age and eye
movement indicators was calculated for possible confounders.

TABLE 3 | Mean fixation duration (ms) and number of fixations per image.

Image Experts
(N = 25)

SD Non-experts
(N = 25)

SD

Mean fixation duration (ms)

Exhibition 302.35 260.12 287.94 249.74

Oppermann 292.27 230.77 289.26 227.65

Footprints 284.29 195.00 265.24 182.67

Spider net 280.09 228.07 288.71 221.24

Easter 274.69 201.86 258.32 180.26

Abbey 317.59 227.79 308.12 222.22

Clock and Graffiti 297.96 191.01 287.28 197.67

Glasshouse* 313.90 219.25 292.40 201.58

Linocut Pattern* 264.83 148.37 256.26 144.71

Mean number of fixations

Exhibition 59.83 15.76 54.56 19.24

Oppermann 43.83 18.92 40.24 21.19

Footprints 129.46 48.21 154.00 117.97

Spider net 136.67 55.17 104.84 33.48

Easter 117.17 43.13 108.92 60.41

Abbey 136.42 64.07 142.40 47.16

Clock and Graffiti 168.62 92.71 141.04 71.24

Glasshouse* 177.22 107.66 162.48 85.99

Linocut pattern* 298.78 110.99 346.80 205.27

*N = 24 experts due to insufficient data transmission from eye-tracker
during one session.
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Age and fixation duration exhibited a moderate correlation of
r = 0.37, p < 0.01 and no correlation between age and overall
number of fixations was found (r = 0.08, n.s).

HMM Estimates
Table 4 shows the optimal number of hidden states based
on HMM by expertise group, i.e., fixation sequences of all
experts are used to estimate one HMM for the entire expert
group and all fixation sequences of all non-experts for the non-
expert group. There is only a small difference in the number
of states in the expert group and in the non-expert group
(MeanExperts = 8.7 hidden states vs. MeanNon−Experts = 7.8 states)
that varies depending on given image.

A traditional Heatmap (Bojko, 2009) of fixations and fixation
durations of Experts and non-Experts is given on the image
Exhibition (Figure 5). As can be seen, fixations tend to cluster
around prime and target image regions. Also some fixated areas
seem to overlap each other. What about the fixations in between,
i.e., to WS? If we want to classify each fixation to their respective
underlying image region, we can use the HMM to infer the
most probable state for each fixation. We also take the sequence
of fixations, as a transition probability matrix into account
while modeling [in contrast to other classification methods like
k-means clustering (Steinley, 2006)].

As each HMM is based on spatial coordinates of fixation
points and their sequence, hidden states can be analogously
visualized as 2D topological areas on the image incorporating
additional information. Figure 6 represents hidden areas for
the non-expert group and expert group on image Exhibition
(see E-Appendix for all nine images). Every hidden area was
assigned a different label, either belonging to a prime, target
or distractor area (part of WS). Interestingly, the novice group
includes a broader orientation area which spans across the
image. We can differentiate this clearly now, as each fixation
is matched to their most probable state over time, allowing for
spatially overlapping states differentiated additionally through
the transition probability matrix. By contrast, the expert group
clearly defines a figure of a woman in front of the museum
paintings, resembling the traditional motif of a “Rückenfigur.”

Figure 7 compares another conventional Heatmap (produced
by SMI BeGaze) and a density map based on the HMM.

TABLE 4 | Optimal* number of hidden states based on HMM by status group.

Image Expert group
(N = 25)

Non-expert group
(N = 25)

Exhibition 9 9

Oppermann 7 8

Footprints 9 6

Spider net 10 7

Easter 7 7

Abbey 8 10

Clock and Graffiti 8 8

Glasshouse** 10 9

Linocut pattern** 11 7

*As indicated by Bayesian Information Criterion (BIC), **N = 24 Experts due to
insufficient data transmission from eye-tracker during one session.

FIGURE 5 | Heatmap of fixation points of experts (red) and non-experts (blue)
on image Exhibition. Each circle represents a fixation. Size of circles
represents fixation duration.

Regions attracting attention during different phases of the visual
search become visible through HMM states, otherwise they are
overlooked in conventional Heatmaps. For example prime 1 (top
right corner) is hardly evident by the Heatmap. However, the
HMM density map shows us how prime 1 is connected to the
target region (at the top) and incorporated into a common state.
In this case, experts as well as non-experts seem to fixate two
pre-defined AOIs in rapid succession to form a single HMM
state. Both examples given in Figures 6, 7 show how regions not
previously identified (in WS) that attract participants’ attention
are uncovered with the use of HMMs. Figure 7 additionally
shows how overlapping hidden states differ in their relative time
(normalized to each subject’s individual working time).

How good does each hidden state represent pre-defined AOIs?
Figure 8 displays the overlap of hidden states with pre-defined
AOIs. There is a clear connection between the hidden states and
the pre-defined AOIs. In most cases one hidden state is directly
associated with one prime or target AOI, indicating a meaningful
distribution of hidden areas on the image. The more “white” a
hidden state encompasses the more it includes undefined WS
region on the image. Usually the target AOIs include more WS.
Some hidden states in WS can be defined as distractor areas that
draw attention during the search. When a hidden area covers
multiple pre-defined AOIs (see Figure 8 on image “Linocut
Pattern” below, e.g., in state 2 for non-experts) they combine
into a single state. This may happen due to frequent transitioning
between two pre-defined AOIs. We can see how the states are not
randomly distributed over the image, but are closely related to the
visual search task (primes and targets).

In order to determine differences in precision between experts
and non-experts (H3), hidden states in each HMM were assigned
to 3 primes and 3 target AOIs according to their best possible fit;
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FIGURE 6 | HMM density map of hidden states based on the fixation sequence for each group (Left) and assigned semantic interpretation of the hidden states
(Right). States are colored for better differentiation. Each hidden state either represents a prime, target or distractor region in WS. The nine states of the non-expert
group are: (1) Prime 1, (2) Prime 2, (3) Prime 3, (4) Target 1, (5) Target 2 + faces, (6) Target 3 + Distractor, (7) Distractor + angels, and (8, 9) as two wide orientation
states across the image. The nine states of the expert group are: (1) Prime 1, (2) Prime 2, (3) Prime 3, (4) Target 1 + angles, (5) Target 2 + faces, (6) Target 3, (7) angel
figures as distractor, (8) “Rückenfigur,” (9) orientation/undo-buttons. See Supplementary Material for all nine images.

each pre-defined AOI to the HMM-state with the most fixation
overlap, i.e., the percentage of fixations of the corresponding
HMM that fell into the predefined AOI region, (see Figure 8).
A two-way, repeated measures (three primes and three targets
as within factor 1, nine images as within factor 2) ANOVA
with one between-subjects factor (VL-experts vs. non-experts)
was estimated using these percentages as dependent variable
measuring the precision of the fixations, one ANOVA model
for primes, one for targets. No main effect for experts vs. non-
experts could be seen in either of the models: though the global
F-test for primes pointed at differences [Fprimes(1,48) = 13.25],
the global F-test for targets [Ftargets(1,48) = 3.96] fell short
to reach significance and no clear direction of differences was
visible (see Figure 9). For both primes and targets there was
a significant main effect for images [Fprimes(8,41) = 182.77;
p < 0.001; Ftargets(8,41) = 67.33; p < 0.001], and for the three
AOIs [Fprimes(2,47) = 105.38; p < 0.001; Ftargets(2,47) = 8.84;
p = 0.0006].

Both within-subjects effects interacted with the status of
experts vs. non-experts in the following way: the third prime
and target AOI (P_3 and T_3) on all 9 images was on average
fixated by experts with a significantly higher precision than
by non-experts (see Figure 9). Non-experts on P_3 and T_3
more frequently switched between prime and target and WS
regions to reassure that they recognized the correct region on

the image, whereas VL-experts once they had memorized the
third prime (coverage rate nearly 90% vs. 75%), VL-experts
were able to search the corresponding target quite efficiently
(coverage rate nearly 50% as compared to only 37% in non-
experts). With regard to differences between images, VL-experts
reached a significant higher precision in fixating the primes on
the “Spider Net,” “Glasshouse,” and “Linocut Pattern” image, and
in fixating the targets of the “Spider Net” and “Linocut Pattern”
image. Non-experts on the other hand more precisely fixated the
primes of the “Footprints” and “Abbey” image indicating that
they spent more fixations within the prime regions and reached
higher precision in fixating target regions in image “Exhibition”
and “Oppermann.”

DISCUSSION

Student Solution Patterns
The majority of students (n = 740) took their time to solve
the more difficult items “Footprints” and “Clock and Graffiti”.
Most of these “mainstream” students claimed to have a
‘photographic memory’ to a higher degree than other student
groups. Overconfidence in student’s ability to “visualize images
mentally” increases the probability of them rushing through the
tasks and making more mistakes. Visualizing images mentally can
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FIGURE 7 | Heatmaps (A,C,E,G) vs. density maps (B,D,F,H) on images (“Spider Net” and “Clock and Graffiti”) for the expert group and non-expert group. The
Heatmaps (left) disregard fixation points that are scattered outside of “hot spots” because on a global scale they do not carry much information. Image underlying
density maps are masked out to make colors more visible. The HMM density maps (right) shows how every fixation point is connected to their most probable state
throughout the image (color indicates differences in relative time of attendance). Some hidden states span over multiple areas or overlap each other that are still
differentiable through time. We can also see how local differences in density differ within each state.

go beyond details in 2-dimensional images and therefore not be
helpful for the search task. A “photographic memory” much more
encompasses the necessary skill to attentively focus on details
in artwork. On the contrary, high self-reported capacity in art
education leads students to take it slower on all tasks but does not
necessarily enable students to outperform other student groups.
Art teachers therefore may be interested not only in students
engagement in art class but also be inclined to know about visual
memory (“photographic memory”) skills. These results can be
first clues for finding student groups that need more help in
engaging and analyzing artwork or to learn when to invest more
time in a visual task.

VL experts could solve three of the common four images faster
than students and in a more homogeneous manner (less variance
of solution time) (H1b) and at equal or even superior chances for
a correct solution (H1a). Only for the “Clock and Graffiti” image
did VL experts take longer than students, resulting in a nearly
perfect solution probability that was not reached by students.

Expertise Differences
Did VL experts outperform students? This cannot be deduced
from mere test solutions, but requires data on the solution
process as well. Because the pathway to understanding cognitive
processes is revealed by the analyses of eye movement data, we

Frontiers in Psychology | www.frontiersin.org 12 January 2021 | Volume 12 | Article 594248

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-594248 January 22, 2021 Time: 16:8 # 13

Tallon et al. Visual Search Analyzed With HMMs

FIGURE 8 | Distribution of fixations and percentage overlap on pre-defined AOI and hidden states for the expert (Left) and non-expert (Right) group. Each color
represents either a target or prime region on the image. White is undefined White Space (WS) area. In most cases prime regions are represented by a single hidden
state; e.g., states for target and prime regions in the expert group on image Exhibition. Target regions are usually encompassed by WS area, as they need to be
found inside the image. Frequent transitioning between multiple pre-defined AOI may integrate into one hidden state; for example in the non-expert group on image
“Linocut Pattern” (bottom right) one hidden state overlaps with P_1, P_2, and P_3.

recorded VL experts’ oculomotor behavior while working on the
tasks. Clearly this measurement could not be performed in a
large classroom survey. Therefore, VL experts were compared to
non-experts in Experiment II.

Visual literacy experts found as many targets and were as fast
as non-experts (H2a, H2b) but differed in the way they found
target regions. HMM analysis revealed that experts were able
to divide seven of the nine images into the same number of or
more areas (hidden states) than novices. Aesthetic interpretation
of hidden states suggest that WS does not cover a homogeneous
region of “non-attraction” but has meaning and “Gestalt” that
goes beyond the gist of the scene and governs clues important
for the scene composition. The idea that a sequence of hidden
states represents cognitive processes is further emphasized by
the visualization of the hidden states of experts with density
maps, which revealed semantically meaningful regions on the
image. Dissecting the image into these additional regions might
help VL experts in understanding the scene composition, best
illustrated by specific symbolic objects (angel-figures) or artistic
compositions (“Rückenfigur”). These regions might be more
salient for VL-experts. Given experts knowledge about image
composition and arrangement, experts may be able to “find their
way” through the pictures differently. Results hint at fewer hidden
states for the non-expert group and a wider spread of fixations
across WS compared to experts. This is in accordance with the
findings of Koide et al. (2015) stating that experts regarding

abstract paintings tend to not only focus their attention on
salient regions (for a visual search task, the target and prime
regions) but were also able to direct their attention to areas
that are disregarded by novices. One possible explanation would
stress the role of working memory as the psychological correlate
of the underlying cognitive processes during the respective
spatiotemporal HMM state. Thus, important information for the
image arrangement is processed while fixating a certain region of
the image during a given time period (Irwin, 2004).

To assess the precision of expert and non-experts search
strategy we assigned hidden states to each pre-defined AOI
with the highest fixation overlap. ANOVA revealed a significant
interaction of fixation overlap (of hidden state and AOI) with
expertise, the image and the pre-defined AOIs. Precision is higher
for the expert group on the third prime and target regions (H3).
Non-experts show more fixations in previously undefined WS
when they look at the third prime and search for the third
target region, leading to more fixations outside pre-defined AOIs
within the corresponding hidden state, therefore focusing with
less precision than the expert group.

Recent evidence has shown that aesthetically appreciated
images lead to enhanced perceptual processing (Sarasso et al.,
2020). VL experts would have therefore benefited from the
artwork stimuli as it might have improved the engagement and
encouraged a deeper commitment into “analyzing” (Wagner and
Schönau, 2016) the image thoroughly. It can also be argued
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FIGURE 9 | Fixation overlap between pre-defined AOIs and best fitting hidden state (state with highest fixation overlap) for expert and non-expert group. Upper
panels (A,B) show overlap between prime regions, lower panels (C,D) between target regions. Images: 1 = Exhibition, 2 = Oppermann, 3 = Footprints, 4 = Spider
Net, 5 = Easter, 6 = Abbey, 7 = Clock and Graffiti, 8 = Glasshouse, 9 = Linocut Pattern. ∗∗p < 0.001, ∗p < 0.05.

that visual working memory (Olivers et al., 2011; Bahle et al.,
2019) of experts form an enhanced representation or mental
model of the images.

Hidden Markov Models in Visual Search
Each HMM state in Sample II represents a location on the image
participants fixated while inspecting that area during the search.
In general, there is a good coincidence between pre-defined
AOIs (primes and targets) and the data driven hidden states.
WS mostly comprises several distinguishable hidden areas either
representing semantically meaningful attractors (e.g., people’s
faces or control buttons) or distractor regions that had to
be excluded (e.g., different angel-figures or different parts of
the spider net).

Hidden Markov models also allows for an aggregated
comparison between fixation sequences. Usually comparing
multiple scanpaths between subjects is a complex challenge. E.g.,
what threshold values should be used to define a starting/landing
point for fixations on important image areas? The HMMs based
on group level allows for a description of fixation sequences as
hidden states on the image, as each fixation point was classified to
their most probable hidden region over time.

Hidden Markov models have not been extensively used in
visual search tasks. However, the method presented here, can

be of great use to investigate complex search processes that can
go beyond the visual search task presented in this study (e.g.,
natural scenes, virtual reality, and real-world searches) in which
classical aggregate statistics may fall short. Subtle differences in
viewing behavior can be more clearly defined. The hidden states
estimated by the HMM can be interpreted as data-driven AOIs.
Instead of defining AOIs by arbitrary thresholds, we can include
subject’s fixations that lie outside the pre-defined AOIs in WS to
be included to any data-driven AOI (hidden state) based on the
estimated probability.

The HMM presented here are not exhaustive for eye
movement analysis for expertise research and can be expanded
upon (e.g., additional variables are conceivable as basis for
model formulation such as the length of saccades or individual
fixation durations to assess selective attention allocation). Further
research is needed in respect to VL skills in the domain of arts,
as the literature is dominated by studies in sports and medicine
and eye movement differences are heterogeneous across expertise
domains (Brams et al., 2019).

Limitations
A few limitations have to be mentioned. First, the images were
not tested for low-level saliency (Foulsham, 2019). Our focus
was on expert vs. non-expert search strategies in identifying
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targets from prime regions. Different levels of saliency could
interfere with the results presented here (Loftus and Mackworth,
1978). Thus, further studies could vary the number of visual
salient features systematically. That way cognitive states prone to
bottom-up mechanisms could be differentiated from top-down
search strategies guided by expertise and/or working memory.

Another concern for the generalizability of our results is the
lack of time constraints combined with a motor coordination
problem in identifying the targets. Deviating from earlier studies,
this might lead to a varying number of data points per trial.
The visual search task was only finished when the participant
indicated to have found all three target regions. This led to a
wide variance in individual search times untypical for other target
search experiments that only last a few seconds (Coutrot et al.,
2018). It remains uncertain how many fixations are efficient for
HMM for eye movements. Depending on the time constraints
and task at hand, different number of fixation points might
be necessary. Coutrot et al. (2018) argue that images should
contain various regions of interest to capture systematic patterns
of exploration behavior. This can be achieved by pre-defined AOI
(as in our study) or by using images with different salient areas
that draw participants attention.

Lastly, even though the number of participants was
above average for eye tracking studies in expertise research
(Gegenfurtner et al., 2011), sample size might still have been too
small to find all differences between VL experts and non-experts,
especially as effects of VL on visual search behavior seem to
be more subtle than proposed by art education research. As
the present results are exploratory, further research is needed
to confirm these observed differences. There was also a mean
age difference of 10 years between each group. However, as
the number of fixations was not correlated with age, we would
argue that differences in HMMs are not primarily due to age
differences. A few seconds of eye movement data used to define
fixation sequences was sufficient to model clearly distinguishable
hidden states on a group level. This is promising for future use
cases with limited sample size and more obvious differences
in eye-movement behavior [e.g., in patients with visuospatial
neglect (Cox and Aimola Davies, 2020)].

Conclusion and Future Outlook
This study investigated VL expert and non-expert visual search
behavior. The expert group revealed a more detailed search
strategy, indicated by a higher number of hidden states and
higher precision for looking at the last prime and searching
for the last target. Specific image parts, previously not taken
into account by pre-defined AOI were outlined in greater clarity
among VL experts. Non-experts on the other hand, focused on
broader and thus fuzzier image areas during visual search. For the
purpose of constructing a VL assessment test battery, selecting
more items of intermediate or greater difficulty, including
even more realistic and stylistic image compositions, is advised
because students displayed a rather skillful ability to perform
visual search tasks.

From a methodological view point, the statistical methods
used could introduce a new perspective on modeling expertise-
related differences in eye movements. Future studies could

investigate the link between topological HMM states and
“cognitive” hidden states incorporating more variables such as
fixation duration or saccadic length into the models. The same
idea was followed by van der Lans et al. (2008), who found an
association between a 2-state cognitive HMM based on local and
global search strategies. Deviating from our art oriented approach
in choosing visual stimuli, they used a saliency map based on low-
level perceptual features and the scene’s organization to explain
their results. Other recent approaches measured oculomotor
behavior while switching between hidden cognitive states during
a decision task (Chuk et al., 2019). In an educational context,
not necessarily restricted to art education, HMMs states could
be helpful to describe how much students are “involved” in
the given tasks.
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