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How humans efficiently operate in a world with massive amounts of data that need to
be processed, stored, and recalled has long been an unsettled question. Our physical
and social environment needs to be represented in a structured way, which could be
achieved by reducing input to latent variables in the form of probability distributions,
as proposed by influential, probabilistic accounts of cognition and perception. However,
few studies have investigated the neural processes underlying the brain’s potential ability
to represent a probability distribution’s complex, global features. Here, we presented
participants with a sequence of tones that formed a normal or a bimodal distribution.
Using a novel, single-trial EEG analysis, we demonstrate a neural response that indexes
the likelihood of an item, given previously presented items, and corresponds to the
experienced tones’ distribution. Our results indicate that the adult human brain can build
a representation of the complex, global pattern of a probability distribution and offer a
novel tool for an in-depth understanding of related neural mechanics.
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INTRODUCTION

According to recent accounts of cognition (Chater et al., 2006) and perception (Knill and Pouget,
2004; Yuille and Kersten, 2006), the human mind is probabilistic, in that it represents data in the
form of probability distributions (Knill and Pouget, 2004; Clark, 2013; Ma and Jazayeri, 2014).
A probabilistic mind does not have to represent every feature of every piece of data it encounters;
instead, data can be summarized with only a few parameters that capture its distribution (such as
the central tendency, variance, and the approximate number of observations). According to these
accounts, knowledge about the world is acquired through an inferential process (Ma et al., 2006;
Fiser et al., 2010; Tenenbaum et al., 2011; Pouget et al., 2013; Ma and Jazayeri, 2014) over probability
distributions (Knill and Pouget, 2004; Clark, 2013), where existing knowledge (prior distributions)
is updated in the light of new data.

Evidence in support of a probabilistic mind comes both from studies investigating cognitive
processes such as language acquisition (Kalish et al., 2007), memory (Anderson and Milson,
1989), intuitive physics (Téglás et al., 2011), and intuitive statistics (Griffiths and Tenenbaum,
2006; Gweon et al., 2010; Griffiths et al., 2011) as well as from studies investigating perceptual
processes such as visual perception (Ma et al., 2006; Yuille and Kersten, 2006; Pouget et al., 2013),
auditory perception (Pearce et al., 2010; Winkler and Czigler, 2012; Frost et al., 2016), sensorimotor
learning (Körding and Wolpert, 2004), and statistical learning (Conway, 2020). In both of these
domains, probabilistic computational models can account for a diverse set of human behavior and
perceptual processes. Probabilistic computational models have also provided a proof-of-concept

Frontiers in Psychology | www.frontiersin.org 1 March 2021 | Volume 12 | Article 596231

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.596231
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-1326-6177
https://doi.org/10.3389/fpsyg.2021.596231
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.596231&domain=pdf&date_stamp=2021-03-25
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.596231/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-596231 March 19, 2021 Time: 17:21 # 2

Lindskog et al. Can the Brain Build Probability Distributions?

that probability distributions could be implemented in groups of
neurons (Ma et al., 2006; Fiser et al., 2010, p. 201; Pouget et al.,
2013; Ma and Jazayeri, 2014).

Furthermore, studies investigating statistical learning
(sometimes referred to as implicit learning or sequence learning)
have shown that people can learn probabilistic patterns in
sequentially presented data (Saffran et al., 1996; Fiser and
Aslin, 2002; Kirkham et al., 2002; Fiser et al., 2010) and that
specific brain regions are engaged during such learning processes
(Dehaene et al., 2015; Conway, 2020). However, most studies
investigating the neural representation of statistical learning
have focused on local probabilistic features of the presented data,
such as associations between adjacent items or adjacent chunks.
In contrast, much less attention has been given to complex,
global patterns, such as distributional features, that require the
integration of information over longer time-scales (Dehaene
et al., 2015; Conway, 2020).

Taken together, findings from the previous literature strongly
suggest that the brain can represent even the complex, global
patterns of a probability distribution on the neural level and use
the representations for perceptual and cognitive tasks. However,
although many prominent theories in cognitive science rely on
the assumption that the brain builds probability distributions,
it has been argued that probabilistic representations might be
too complex and far beyond the computational ability of the
human brain (Mozer et al., 2008; Jones and Love, 2011; Bowers
and Davis, 2012; Marcus and Davis, 2013, p. 20). This critique
is warranted, given that little previous research has provided
neurophysiological evidence that the brain can represent
the complex, global patterns of probability distributions, as
conjectured by the probabilistic accounts of the mind.

Here, we investigated whether the brain can build probability
distributions to represent experienced data and use this global
representation to evaluate the likelihood of new information. We
reasoned that three pieces of neural evidence were required for
concluding that the brain builds such representations; indexing,
correspondence, and flexibility. First, the neural response should
index the likelihood of a single presented item, given previously
presented items. Previous research has shown a distinct neural
response to unexpected events (Winkler, 2007). However, our
indexing criterion requires, in addition to a response to
unexpected events, that the response scales to the degree of
unexpectedness. Significantly, this response should not be driven
by potential covariates, such as how often an item is presented
or its similarity to other items. Second, the neural response
as a function of item likelihood should correspond to the
distribution of the presented data, such that the neural response
approximates the underlying structure of the data. Put differently;
a normally distributed dataset should result in a neural response
that approximately follows a normal (gaussian) curve. Previous
studies indicate that people make use of mental shortcuts
(heuristics) when dealing with uncertainty (Gigerenzer and
Todd, 2001; Gilovich et al., 2002) and try to reduce experienced
stimuli to simple parameters such as range and frequency
(Parducci, 1965). Indeed, there is even evidence that the brain
considers small variations within a range when determining if
a new stimulus is unexpected (Winkler et al., 1990). Finding

evidence for indexing and correspondence would indicate that the
brain represents a probability distribution, rather than using a
shortcut or simple parameter. Finally, the neural response should
be flexible in that it should vary with the structure of the presented
data. This feature is important because probabilistic accounts of
cognition and perception suggest that existing representations
are fine-tuned as new information become available (Knill and
Pouget, 2004; Ma et al., 2006; Fiser et al., 2010; Tenenbaum
et al., 2011; Winkler and Czigler, 2012; Clark, 2013; Pouget et al.,
2013; Ma and Jazayeri, 2014). Thus, if a presented dataset was
bimodal instead of normally distributed, the neural response
should also have two peaks.

In the current study, we combine insights from previous
work investigating how the brain responds to unexpected
auditory events (Kujala et al., 2007; Winkler, 2007; Winkler and
Czigler, 2012) with those investigating how the brain learns
environmental structure (Dehaene et al., 2015; Conway, 2020).
However, we move beyond such studies by focusing on the
neural responses associated with the probability distribution’s
complex, global patterns. We measured electric brain responses
elicited while participants passively listened to a sequence of
tones, the frequencies of which followed an approximately
normal distribution (Experiments 1A and 1B, see Figure 1)
or a bimodal distribution (Experiment 2., see Figure 1). In
the main text, we focus on the functional response due to
the theoretical implications and provide information on the
topographical response in the Supplementary Information (SI).
We were interested in single-trial activation, as we wished to
evaluate whether the brain responds to the likelihood of each
tone, which cannot be achieved with traditional measures of
event-related potential (grand average ERPs). Therefore, we
devised a new analysis method and calculated a measure, the
Neural Likelihood Response (NLR), of the brain’s response to
each different tone (see Figure 2 and section “Materials and
Methods” for details). The NLR was calculated as the difference in
amplitude within trials at the latencies of the mismatch response’s
(MMR) most prominent positive (P2MMR) peak and negative
peak (N1MMR) at a frontal region of the scalp (Figure 2, and
see the section “Materials and Methods” for detailed information
on how the P2MMR and N1MMR were identified). The amplitude
difference, rather than absolute voltage, was used to reduce inter-
trial variability due to individual EEG trials often containing
drift and noise. We argued that if the brain builds a probability
distribution of the experienced data, the NLR should exhibit
indexing, correspondence, and flexibility, as outlined above.

EXPERIMENT 1A

Methods
Participants
Participants were 22 university students (13 women, mean ± SD
age 26.5± 9.3, range 19–63 years) recruited through flyers on the
local campus. We collected data from two additional participants,
who were not included in the final analysis. One was not included
due to technical problems and one was not included because a
mismatch negativity response could not be detected due to issues
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FIGURE 1 | Illustration of stimuli and results for Experiments 1A, 1B, and 2, respectively. (Top) Histogram of the auditory stimuli presented to participants in
Experiments 1 (1A and 1B) and 2, respectively. In Experiment 1A and 1B, we presented a total of 620 tones, 500 tones from a reference set, and 120 tones from
four tail sets (30 from each distribution). Thus, tones from the tail sets were equally frequent. The histogram illustrates stimuli collapsed over all references sets used
and their corresponding tail sets. In Experiment 2, we presented a total of 500 tones that followed a bimodal distribution. The figure includes an illustration of the two
tails’ position, modes, and the center minima used to analyze the data from Experiment 2. (Bottom) Individual data points from Experiment 1A, Experiment 1B, and
Experiment 2, respectively, with the mean and standard error (whiskers). The figure depicts the negative normalized NLR. In Experiment 1A and 1B, the individuals’
responses resemble a normal curve, and the response to the tail sets is not categorically flat. In Experiment 2, the brain responses flexibly mirror the presented
stimuli and not a normal curve.

with impedance or too many movement artifacts. Participants
received a cinema voucher (worth ∼10 EUR) or course credits
for participating.

Ethics
The study was approved by the local ethical committee
(Regionala Etikprövningsnämnden) and was performed
following the Helsinki Declaration of 1964. Before starting the
EEG recordings, all participants were familiarized with the lab,
and the application of the EEG was described. Participation was
voluntary, and it was possible to quit the experiment at any time.
However, no one stopped the experiment early. Informed written
consent was obtained from all participants.

Procedure
Before the EEG recording, all participants’ hearing was tested
by creating audiograms based on perceived volume at different

frequencies relative to a reference tone using pure sine
waves as in the actual experiment. This procedure took
approximately 8–10 min and screened the participant for hearing
impairments. Normal hearing was requested during recruitment,
and no participants were excluded because of their audiograms.
Participants were recorded while sitting relaxed in a comfortable
chair. Participants could sit with open or closed eyes but were
instructed to move their eyes and blink as little as possible.

Stimuli
Stimuli consisted of pure sine wave tones with a duration of
100 ms and a random inter-stimuli interval of 800–1,100 ms. We
presented 620 tones, which included four tail sets interleaved in
a larger reference set. The tones were presented in a continuous
sequence that lasted approximately 12 min. Tones in the reference
set (500) were drawn from one of four normal distributions;
two narrow distributions [s = 30: N(600, 30), N(700, 30)] and
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FIGURE 2 | Overview of the analysis workflow. A neural likelihood response (NLR) was calculated for each item as the single-trial ERP amplitude difference at the
latencies of the mismatch response’s positive peak (P2MMR) and negative peak (N1MMR). The statistical analyses tested the indexing-, correspondence-, and
flexibility properties of the NLR.

two broad distributions [s = 60: N(600, 60), or N(700, 60)]. We
manipulated which set participants were presented with between-
subjects by cycling through the four possible combinations
throughout both Experiments 1A and 1B (n = 10, 10, 12, and 9
for each combination, respectively).

Tones for the tail sets were drawn from four normal
distributions (30 tones from each) with a standard deviation of
10 Hz and means ±200 Hz and ±400 Hz (i.e., on both sides of
the reference set) that of the reference distribution (see Figure 1
for an illustration of the reference and tail sets). We included both
positive and negative deviations in the tail sets to control for the
effects of absolute pitch. The tail tones were always presented

with 4–6 reference tones in between and blocked so that all
four tail distributions contributed with one trial (in random
order) before being presented again (see Figure 3). No other
order or blocking rules were used. Importantly, the four tail
distributions contributed an equal number of tones (n = 30) and
were equally frequent.

Suppose the mind treats the tones inside and outside the
reference set as categorically different. In that case, we expect the
tones in the tail set to be outside of the category boundaries of
the reference set and give rise to a categorically different neural
response (Winkler et al., 1990). In contrast, if the brain represents
the probabilistic information in the experienced data, we expect
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FIGURE 3 | Example of stimuli presentation in Experiments 1A and 1B with pitch as a function of trial. See main text for details regarding the properties of the
reference set and tail sets.

the neural response to the tones in the reference and tail sets to
be on a continuum. To allow for the possibility of categorically
different responses to the reference and tail sets, these two
cannot overlap. Therefore, the reference sets with s = 60 were
truncated at ±100 Hz from the mean. This procedure resulted
in an empirical standard deviation (SD) of 48 in these sets. For
participants that experienced a narrow reference set (s = 30), the
tail sets had means corresponding to 6.7s and 13.3s, while for
participants that experienced a wide reference set (s = 48), the
tail sets had means corresponding to 4.2s and 8.3s. Thus, across
all participants, eight tail sets were used.

EEG-Analysis and NRL Extraction
Geodesic Sensor Nets with 128 channels (HCGSN 130; EGI,
Eugene, OR, United States) were used to record EEG signals
with a sample rate of 250 Hz. The signal relative to the vertex
reference was amplified by an EGI Net amplifier (GES 300 Amp;
EGI, Eugene, OR, United States) and stored for offline analysis.
The data were then digitally filtered (0.3–30 Hz) and segmented
into trials from 300 ms before the sound onset to 1,000 ms
after. Trials were baseline corrected by subtracting the mean
of the pre-sound interval (−300 to 0 ms). The data were then
resampled to 100 Hz to reduce memory load and re-referenced
to an average reference.

A region of interest (ROI) containing 11 channels [EGI
channels 5, 6, 7, 11 (Fz), 12, 13, 31, 55, 80, 106, 112]
was defined based on previous literature (Kujala et al., 2007,
who suggested the Fz and frontal channels) and on visual
inspection of the grand average ERPs (which suggested that
the overall EEG response for all pitches together extended
over the central electrodes; note that these channel locations
are in line with studies reviewed in Näätänen et al., 2007).
The most frontal electrode (11) corresponds to the Fz channel
in the 10–20-system, and the channels 7, 31, 55, 80, and
106 surrounded the reference at the Cz channel location (see
Figure 2 and Supplementary Figures 1, 4, 5, 7 for visual
guidance). The ROI thus covered both frontal and central areas
typically included when the central auditory function is measured

(Näätänen et al., 2007). These channels were averaged, and a
mismatch response (MMR) was calculated from the ERP average
of tail trials (deviant trials) minus reference trials (frequent
trials) (Kujala et al., 2007; Winkler, 2007). To exclude artifacts
originating from eye and body movement and eye blinks, trials
with an amplitude range exceeding 100 µV were excluded in
individual channels before averaging. Individuals’ time points
for the mismatch response’s most prominent negative (N1MMR)
and positive peaks (P2MMR) were identified by a semi-automatic
procedure, using visual inspection and manually marking the
MMR waveform, where the position automatically snapped to
the local minima or maxima. The identified time points were
then used to calculate an EEG amplitude difference in all trials
(i.e., within single trial ERPs), to capture the brain response
to individual tones (see Figure 2 for an illustration). Because
our aim was to assess brain activity to individual tones, we did
not use the traditional mismatch negativity (MMN) component
(Kujala et al., 2007; Näätänen et al., 2007), which is calculated
from averaged responses of multiple trials. The MMN is a
very stable EEG component that has been shown to measure
central auditory function and responds to deviations in auditory
stimuli structure (Kujala et al., 2007; Näätänen et al., 2007;
Winkler, 2007). At a single-trial level, the ERP components are
rarely visible, as they are very small compared to environmental
noise and low-frequency drifts in the EEG signal. However, a
difference measure between two points close in time is relatively
robust to such low-frequency noise. Accordingly, we used this
approach to reduce inter-trial variability. We here assume that
the N1MMR − P2MMR difference represents a neural likelihood
response (NLR), which is intended to be a single-trial equivalent
to the MMR. We used the NLR as the dependent measure
in all subsequent analyses. It is important to note that the
two peaks (N1MMR and P2MMR) were identified based on the
mismatch response, a measure based on averages. The NLR
was calculated at single-trial ERPs after these peaks had been
identified. Participants with poor signal-to-noise ratio, without
clear MMR components, were excluded from further analysis
(n = 8, Experiments 1A and 1B together). The mean latency
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(of Experiments 1A and 1B together) of N1MMR was 131 ms
(SD = 23, range = 90–180), and M = 221 ms (SD = 25,
range = 150–250) for P2MMR.

Model Fitting
Model fitting was performed using the MATLAB “fit” command
in the curve fitting toolbox, using the Trust-Region algorithm
and a non-linear least-squares fitting method with a maximum
of 1,000,000 iterations and evaluations of the model. We
used frequency z-scores as the x-data and the NLR as the
y-data and averaged all data points within one (1) z intervals
centered on z-positions that captured all tail distributions and
split the reference distribution into thirteen bins (i.e., the z
bins were −13.63, −8.375, −6.75, −4.125, −2, −1, 0, 1, 2,
4.24, 6.75, 8.5, 13.75). All individuals’ data points used for
modeling are illustrated as gray dots in Figure 1. The normal
distribution was fitted individually for each participant using
NLR = a + normpdf (z, b, c) · d, where NLR is the negative
normalized neural likelihood response, z is the z-position, and a,
b, c, and d are free parameters. In contrast, the square distribution
was fitted using NLR = a + c/(1 + exp((abs(z − e)− d) · b)),
where a, b, c, d, and e are free parameters. Thus, the square
function was not a pure square but a continuous approximation
to meet the fitting procedure’s requirements. The difference
between adjusted r2 values for each participant’s normal and
square distributions was tested with a paired t-test.

Results and Discussion – Experiment 1A
We first asked if the NLR indexes the likelihood of individual
items in a distribution. With the help of a linear mixed model
[NLR ∼ 1 + Abs(z) + (1| ID), in Wilkinson notation] using
all individual trial NLRs in the reference set as dependent
variable and with absolute z-score of the presented frequencies
as a fixed factor grouped within-subjects (random intercept), we
demonstrate a significant effect [F(1,8430) = 4.09, p = 0.043]1 of
the absolute z-score (b = 0.28, 95% CI = [0.008, 0.556], p = 0.043).
Table 1 summarizes the fixed-effects parameter estimates of
the model. In other words, the brain response increased as
the likelihood decreased, which is supportive of a probabilistic
account of the mind.

Next, we wanted to ascertain that the effect above was not
driven by how often an item is presented. Put differently, it is
possible that the NLR is influenced by the larger number of trials
presented close to the reference set’s mean. If so, the NLR would
index how often an item is presented, rather than how likely
an item is. To address this possibility, we evaluated if the brain
response varied as a function of likelihood even when holding
item occurrence constant using a linear mixed model on all
individual trial NLRs in the tail sets, with absolute z-score as
a fixed factor grouped within-subjects (random intercept). Note
that the frequency of the tones is identical for the tail sets, but they
differ in terms of likelihood. Analyzing the tail sets also showed
a significant effect [F(1,1258) = 18.6, p < 0.001] of the absolute
z-score (b = 0.24, 95% CI = [0.13, 0.37]). Table 2 summarizes
the fixed-effects parameter estimates of the model. Thus, not only

1Degrees of freedom for the fixed effects of all linear mixed models were
determined using Satterthwaite’s method.

does the brain response increase as the likelihood decrease, it does
so even when keeping the frequency of the tones constant (see
Figure 1).

It is possible that the exhibited scaling of the NLR could arise
due to some process other than the brain building a probability
distribution to represent experienced data. Although the NLR
indexes the likelihood of individual items, there might not be
a correspondence between the NLR as a function of likelihood
and the structure of the presented data. Previous research
using auditory stimuli has indicated that when a deviant sound
follows a sequence of repetitive standard tones (i.e., in “oddball”
paradigms), a mismatch negativity (MMN) event-related brain
potential (Kujala et al., 2007; Winkler, 2007) can be observed.
The MMN is elicited regardless of whether participants are
engaged with or ignores the sounds. Thus, it is possible that the
observed scaling of the NLR is a result of a process that treats
all of the tones in the reference distribution as standards and
the tones in the tail distributions as oddballs. Previous research
has indicated that even when small variations are introduced to
the standard tone, an MMN is elicited by tones outside of the
standard tone’s range (Winkler et al., 1990). A further alternative
process, albeit related, is that the brain structures the experienced
data into categories (Ashby and Maddox, 2005). Humans form
categories from an early age (Mareschal and Quinn, 2001), and
categories are essential data management tools throughout life
(Ashby and Maddox, 2005). There is also clear neural evidence
that the brain can create categories (Grinband et al., 2006). There
have been several suggestions regarding what information people
use to form perceptual categories (Ashby and Maddox, 2005).
One possibility is that people rely on the range and frequency
of the presented stimuli, as suggested by range-frequency-
theory (Parducci, 1965). As suggested by the generalized
context model, another option is that people store individual
items in memory and categorize new items based on their
similarity to the previously stored items (Nosofsky, 1986, 1988).
However, regardless of the exact mechanism, a categorization
process will divide the range of tones into separated
category regions.

Thus, both the MMN and categorization accounts will
treat items within and outside the reference distribution as
categorically different. Hence, we will refer to these two
possibilities as the categorical account. It should be noted that
there is evidence suggesting that the amplitude of the MMN can
capture the degree of deviance from the standard tone (Sams
et al., 1985; Frost et al., 2016), and it has been suggested that
the MMN is an integral part of a predictive coding system in
the brain (Winkler and Czigler, 2012). However, it is still unclear
if the MMN can capture the full complexity of a probability
distribution. The categorical account predicts the NLR to be the
same or similar for all items within the reference distribution
but different for all items outside. In terms of a function, such
a pattern should be well approximated by a square function.
Figure 4A illustrates the diverging predictions made from the
probabilistic and categorical accounts, respectively.

We investigated if there is a correspondence between the NLR
and the distribution of the data, such that the neural response
approximates a normal (gaussian) curve. We evaluated the fit in
terms of the adjusted r2 of a normal and square curve for each

Frontiers in Psychology | www.frontiersin.org 6 March 2021 | Volume 12 | Article 596231

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-596231 March 19, 2021 Time: 17:21 # 7

Lindskog et al. Can the Brain Build Probability Distributions?

TABLE 1 | Fixed effects parameter estimates for model using reference set.

95% Confidence Interval

Names Estimate SE Lower Upper df t p

(Intercept) 0.342 0.328 −0.30124 0.986 18.1 1.04 0.311

Abs(z) 0.282 0.140 0.00874 0.556 8429.9 2.02 0.043

TABLE 2 | Fixed effects parameter estimates for model using tail sets.

95% Confidence Interval

Names Estimate SE Lower Upper df t p

I(ntercept) 3.234 0.3737 2.502 3.967 16.5 8.65 <0.001

Abs(z) 0.244 0.0567 0.133 0.356 1257.6 4.31 <0.001

participants’ negative normalized NLRs2. We used transformed,
rather than raw, NLRs to ensure that standard normal and
square curves could be fitted to the data. For more information
about the model fitting procedure, see the Methods. Overall,
the normal curve provided a better fit to the data than the
square. As illustrated in Figure 4B, the difference in adjusted r2,
Mnorm = 0.57, SDnorm = 0.28, Msquare = 0.10, SDsquare = 0.51, was
significant, t(21) = 8.1, p < 0.001, Cohens’ d = 1.72. Although the
normal curve had fewer model parameters, the unadjusted r2 was
also significantly higher, t(21) = 6.8, p < 0.001, Cohen’s d = 1.46,
for the normal curve, Mnorm = 0.73, SDnorm = 0.18, than for the
square curve, Msquare = 0.45, SDsquare = 0.26. These data show
that the brain builds probability distributions because the neural
response resemble a normal curve more than a square.

EXPERIMENT 1B

Because our analysis method is new, we collected a second sample
of participants in an effort replicated the findings of Experiment
1A using the same methods and the same analyses approach.

Methods
Participants
Participants were 19 university students (11 women, mean ± SD
age 26.1 ± 5.45, range 20–39 years) recruited through flyers
on the local campus. We collected data from seven additional
participants who were not included in the final analysis because a
mismatch negativity response could not be detected due to issues
with impedance or too many movement artifacts.

Procedure, Stimuli, and Analyses
Participants were recorded as in Experiment 1A. We used the
same stimuli and analyses as in Experiment 1A. Participants in
Experiment 1B also completed a questionnaire assessing sensory
processing sensitivity after the EEG session. Analysis of this
questionnaire is outside the scope of the current study and will
be reported elsewhere.

2The negative normalized NLR (nnNLR) for the i:th tone the k:th participant was
calculated as nnNLRi,k =−(NLRi,k − µk)/σk.

Results and Discussion – Experiment 1B
As in Experiment 1A, we first investigated if the asked if the
NLR indexes the likelihood of individual items in a distribution.
Using the same analyses approach, we found a trend in the
same direction (b = 0.19, 95% CI = [−0.027, 0.41], p = 0.09),
that did not reach conventional levels of statistical significance
effect [F(1,10558) = 2.95, p = 0.086]. Table 3 summarizes the
fixed-effects parameter estimates of the model.

However, directly replicating the results of Experiment 1B,
we found a significant effect, F(1,985) = 9.49, p < 0.001, of the
absolute z-score, b = 0.14, 95% CI = [0.05, 0.23], when analyzing
the tail sets. Table 4 summarizes the fixed-effects parameter
estimates of the model.

Finally, as in Experiment 1A, we evaluated the fit of the NLR
to a normal and a square curve to investigate if it exhibited
correspondence. Replicating the findings form Experiment 1A,
the results, summarized in Figure 4C, indicated an overall better
fit, t(18) = 6.6, p < 0.001, Cohens’ d = 1.52, in terms of adjusted
r2, for the normal, Mnorm = 0.70, SDnorm = 0.28, than for the
square, Msquare = 0.19, SDsquare = 0.46, curve. Furthermore,
as in Experiment 1A, the unadjusted r2 was also significantly
higher t(18) = 5.6, p < 0.001, Cohen’s d = 1.29, for the normal
curve, Mnorm = 0.81, SDnorm = 0.18, than for the square curve,
Msquare = 0.60, SDsquare = 0.23.

Over two experiments, we found very similar results. For
indexing, the analyses of the tail sets showed the same statistically
significant result in both experiments. Although the direction of
the effect for the analysis of the references was the same in both
experiments, it did not reach conventional levels of statistical
significance in Experiment 1B. Finally, for the correspondence
analysis, the normal curve provided better fit to the data than the
square curve in both experiments.

Discussion – Experiments 1A and 1B
Taken together, Experiments 1A and 1B indicated that the NLR
exhibits both indexing and correspondence. However, one final
piece of neural evidence is needed to support the idea of a
probabilistic mind. The neural response needs to flexibly change
with the presented data’s distribution, demonstrating sensitivity
to the environment (Knill and Pouget, 2004; Ma et al., 2006;
Fiser et al., 2010; Conway, 2020). Also, we need to rule out
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FIGURE 4 | Predictions from the probabilistic and categorical account together with results showing the correspondence between the functional form of the NLR
and the distribution of the data. (A) The red and blue curves illustrate predicted negative NLR for the probabilistic and categorical accounts, respectively. (B) Box plot
of individual adjusted r2 for the fit of the normal (probabilistic) and square curves (categorical) in Experiment 1A. The normal curve provided a significantly better fit
than the square (paired t-test, p < 0.001). (C) Box plot of individual adjusted r2 for the fit of the normal (probabilistic) and square curves (categorical) in Experiment
1B. The normal curve provided a significantly better fit than the square (paired t-test, p < 0.001).

TABLE 3 | Fixed effects parameter estimates for model using reference set.

95% Confidence Interval

Names Estimate SE Lower Upper df t p

(Intercept) 0.256 0.233 −0.2014 0.713 21.0 1.10 0.285

Abs(z) 0.193 0.112 −0.0272 0.414 10557.9 1.72 0.086

TABLE 4 | Fixed effects parameter estimates for model using tail sets.

95% Confidence Interval

Names Estimate SE Lower Upper df t p

(Intercept) 2.215 0.2449 1.7346 2.694 20.8 9.04 <0.001

Abs(z) 0.139 0.0451 0.0506 0.227 984.8 3.08 0.002

one potential alternative explanation of the previous results.
Namely, the brain relies on similarity (Nosofsky, 1988; Ashby
and Maddox, 2005) rather than likelihood when processing the
presented data. Experiments 1A and 1B cannot provide this
crucial piece of evidence because we only present participants
with a single distribution, the normal distribution, in which
likelihood and similarity are confounded.

EXPERIMENT 2

In Experiment 2, to address this, participants were presented
with a sequence of 500 tones following a bimodal distribution
(Figure 1, see section “Materials and Methods” for details on how
the frequency distributions were created). To analyze the data,
we divided the range of the pitch into five intervals for the two
tails, the two modes, and the center minima of the distribution,

respectively, and analyzed, for each participant, the NLR of the
50 tones closest to these positions, giving a total of 250 analyzed
trials per subject. Choosing the 50 closest points was an arbitrary
choice, which balanced the number of trials needed to get a
reliable ERP for the MMR with the need to have a separation
between the intervals. Suppose the brain builds a representation
that flexibly changes with the presented data’s structure and uses
likelihood as the representation metric, rather than similarity. In
that case, it should be reflected by a negative normalized NLR
with two peaks over the five intervals.

Methods
Participants
Participants were 19 university students (11 women, mean ± SD
age 33.8 ± 4.1, range 26–41 years) recruited through flyers
on the local campus. We collected data from an additional 13
participants who were not included in the final analysis. Three
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participants were excluded due to technical problems with the
stimuli presentation, and 10 participants were excluded due to a
broken reference channel on one of the EEG nets, leading to noisy
data that prevented identification of N1 and P2. Participants
received a cinema voucher (worth ∼10 EUR) or course credits
for participating.

Ethics
As in Experiments 1A and 1B, the study was approved by
the local ethical committee (Regionala Etikprövningsnämnden)
and was performed following the Helsinki Declaration of
1964. Before starting the EEG recordings, all participants were
familiarized with the lab, and the application of the EEG was
described. Participation was voluntary, and it was possible to
quit the experiment at any time. However, no one stopped the
experiment early. Informed written consent was obtained from
all participants.

Procedure
Participants were recorded as in Experiments 1A and 1B.

Stimuli
As in Experiments 1A and 1B, stimuli consisted of pure sine
wave tones with a duration of 100 ms and a random inter-
stimuli interval of 800–1,100 ms. We presented 500 tones with
a bimodally distributed pitch ranging from 400 to 800 Hz. We
created the distribution as described below to avoid perceptually
salient frequency shifts that could be used to categorize the two
modalities. We first created two modes by shuffling 100,000 tones
that were randomly drawn from two normal distributions with
50,000 tons each [N (500 Hz, 40 Hz) and N (700 Hz, 40 Hz)]. We
then applied an iterative procedure that removed tones where the
difference in Hz to the next tone in the sequence exceeded 80%
of the maximum difference between all tones in the sequence.
This process was repeated 1,000 times and resulted in a set of
tones with a bimodally distributed pitch (Figure 1) without large
frequency shifts between two trials. The first 500 tones in the
set were used in the experiment. This procedure resulted in a
stimulus distribution with range 405–802 Hz and with the left
mode at 532 Hz, the center minima at 598 Hz, and the right mode
at 677 Hz.3

EEG Analysis
In Experiment 2, we used the same approach to analyze the EEG
data as in Experiments 1A and 1B, except that the MMR was
computed as the difference between the average ERP of the tail
intervals (deviant trials) and the mode intervals (frequent trials).
At this stage of analysis, the center minima trials were not used;
they were only used in the statistical analysis.

Results and Discussion
We investigated our prediction using polynomial regression with
the average negative normalized NLR as the dependent variable
and interval (left tail/left mode/center minima/right mode/right

3We established the parameters of the distributuon by fitting a probability
distribution to the frequencies of all trials, using the “fitdist” command in Matlab
with a normal kernel.

tail) as the independent variable. We fitted both a second-order
(i.e., with a linear and a quadratic term) and a fourth-order
(i.e., with a linear, a quadratic, a cubic, and a quartic term)
model (see Vassena et al., 2020 for a similar approach of using
polynomial regression to evaluate the functional form of a brain
response). The fourth-order model provided a better fit than
the second-order model (AIC: −109.9 vs. −99.2). Furthermore,
in the fourth-order model, both the quartic, b = −0.51, 95%
CI = [−0.77, −0.24], t(90) = 3.9, p < 0.001, and the quadratic,
b = −0.81, 95% CI = [−1.1, −0.55], t(90) = 6.2, p < 0.001,
terms were significant, while the linear and cubic terms were not,
indicating a shape with two peaks (see Figure 1, bottom right for
an illustration). To ascertain that this finding was not the results
of our choice to divide the data into five intervals, we ran the
same models on all data without bins, with the average negative
normalized NLR as the dependent variable and frequency as the
independent variable. This analysis again showed a better fit for
the fourth- than the second-order model (AIC: 10707 vs. 10712)
with both significant quartic (p = 0.003) and cubic (p < 0.001)
terms in the fourth-order model. Importantly, when fitting the
same models to the data from the reference set in Experiments
1 (1A and 1B combined), the second-order model provided a
better fit than the fourth-order model (BIC: 788.9 vs. 799.4).
In the second-order model the quadratic term, b = −4.37, 95%
CI = [−7.5, −1.2], t(202) = 2.76, p = 0.006, was significant.
Taken together, these findings show that not only does the brain
build probability distributions, it can do so flexibly for different
underlying distributions, and it uses likelihood as the metric on
which it builds the representation.

GENERAL DISCUSSION

One of the central questions in cognitive science is how the mind
can parse massive amounts of unstructured data to navigate and
learn about the physical and social environment (Tenenbaum
et al., 2011; Conway, 2020). In the current study, we used an
auditory learning paradigm to provide neural evidence that the
brain can solve this problem by building probability distributions,
even when no explicit instructions to sort, categorize, or learn
the material are provided. We reasoned that three pieces of
neural evidence were required for concluding that the brain
builds representations of probability distributions; indexing,
correspondence, and flexibility. In Experiment 1A, our results
showed that the NLR indexed the individual items’ likelihood
in a presented distribution. As the likelihood decreased, the
brain response increased. Notably, this increase in brain response
with decreased likelihood occurred even when keeping the
presentation frequency of the tones constant. These results are
in line with previous studies indicating that the amplitude of the
MMN can capture the degree of deviance from the standard tone
(Sams et al., 1985; Frost et al., 2016). However, we extend such
findings by showing a brain response that captures a presented
item’s likelihood.

Furthermore, Experiment 1A provided evidence for a
correspondence between the distribution of the presented data
and the NLR. By comparing the fit of the data to a normal curve to
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the fit of the data to a square curve, Experiment 1A also ruled out
the possibility that the brain treated the data in the references and
tail distributions as belonging to two different categories. Because
we devised a new analysis method, we conducted Experiment 1B
in an effort to replicate the findings from Experiment 1A. The
results of Experiment 1B closely mimicked those of Experiment
1A. We replicated the correspondence analysis and one of the
analyses of indexing. The results of the second analysis of
indexing revealed the same pattern of results, but did not reach
conventional levels of statistical significance.

Experiment 2 ruled out another alternative account of our
findings, namely that the brain uses similarity rather than
likelihood as the metric for building a representation of the
data. More importantly, however, Experiment 2 provided the
crucial evidence for flexibility that is necessary for concluding
that the representation is sensitivity to the environment
(Knill and Pouget, 2004; Ma et al., 2006; Fiser et al., 2010;
Conway, 2020). That the NLR exhibited a functional form
that mimics a bimodal distribution in Experiment 2 shows
that the brain can flexibly build probability distributions
for different underlying distributions of experienced data.
Taken together, the findings in the two experiments provide
neurophysiological evidence that the adult human brain can
build a representation of the complex, global pattern of a
probability distribution.

There are, of course, limitations to the present study. We
suggest that evidence of a correspondence between the functional
form of the NLR and the distribution of the presented data was
needed to conclude that the brain can build a representation
of a probability distribution. However, the mind could be
probabilistic without exhibiting correspondence if, for example,
it uses mental shortcuts that correspond to factual probabilities
to make predictions about new data. Our data do, however,
indicate the NLR exhibit correspondence. Furthermore, we
do not find support for the possibility that the brain uses
similarity as the metric on which it builds the representation
or treats the data in the reference and tail distributions as
belonging to different categories, both of which would be possible
heuristics. There is thus little support for the idea that the
brain is using a heuristic on the neural level to represent
probabilities in the current study. However, future research
should further investigate the intriguing possibility that the
brain might rely on other rules-of-thumb than similarity to
represent probabilities.

There are also methodological limitations that should be
addressed. For example, the NLR measure is new, and although
the metric seems to capture the structure of the stimuli, a
more in-depth evaluation of the measure is warranted. When
constructing the ROI, we relied on findings from the previous
literature and visual inspection. A future evaluation of the
NLR should better map the signal’s topographical distribution
and its neural sources. Although the channel wise analyses
provided in Supplementary Figures 4, 5, 7 show that the
response is most clear over the scalp’s frontal and central
areas, the exact neural origin is still unknown. Here, we
mainly focused on the functional response on theoretical
grounds to establish the phenomenon and pave the way for

studies using MRI for reliable anatomical source localization.
Further, the NLR’s topographical distribution overlaps with
the MMR topography, but the relation between the MMR
and the NLR is not clear. Although the NLR was based on
the MMR and constructed as a single-trial equivalent to the
MMR, they are not the same, and dedicated studies should
disentangle the two.

Another methodological concern is that our trial rejection
criteria of ranges >100 µV did not eliminate eye blinks
sufficiently. However, there are two reasons why we do not think
that eye blinks influenced our results. First, if eye blinks were
unrelated to the stimuli, they would be evenly distributed across
trials and cancel each other out over the hundreds of trials we
presented. Secondly, if eye blinks were systematically related to
the stimuli as startle responses, we would expect a bias for high
or low pitch frequencies or the center frequencies seen in the
bimodal experiment, but this is not seen in the data.

Furthermore, it is possible that the preprocessing of the
data (i.e., band-pass filtering at 0.3–30 Hz and resampling at
100 Hz) introduced confounding effects, in line with Tanner et al.
(2015). To evaluate the influence of preprocessing parameters,
we reanalyzed both Experiment 1 (A and B) and Experiment
2 without downsampling (using the recorded 1,000 Hz) and
changing the band-pass to 0.1–30 Hz. The analysis did not change
our interpretation of the data but instead support the results’
robustness (see Supplementary Figures 3, 6). Independent
replications, which we encourage, could further strengthen
these conclusions.

An essential part of probabilistic accounts of cognition and
perception is that existing knowledge is updated in the light of
new data (Knill and Pouget, 2004; Ma et al., 2006; Fiser et al.,
2010; Tenenbaum et al., 2011; Winkler and Czigler, 2012; Clark,
2013; Pouget et al., 2013; Ma and Jazayeri, 2014; Conway, 2020).
Our results provide evidence for the biological plausibility of
an essential tenant of these accounts; that the brain represents
probability distributions. The design of the current study did
not allow us to evaluate how the representation evolves over
time. However, the finding that the brain can build probability
distributions flexibly for different underlying distributions in
the data suggests that the representation is learned and fine-
tuned as new information become available. One special case of
a probabilistic account is the Bayesian account, which proposes
that internal representations of probability distributions are
updated in the presence of new data by applying Bayes’ rule
(Tenenbaum et al., 2011; Ma and Jazayeri, 2014). It will be an
exciting venture for future research to investigate how the brain
updates the representation of probability distributions and if it
does so by using Bayes’ rule or some other updating rule.

Humans learn about the world in several ways, by active
exploration and through social and cultural transmission. Our
findings pave the way for a new, neurologically grounded
method of investigating learning with direct implications for
developmental and cognitive psychology, as well as clinical
research and research in judgment and decision-making.
Questions that now become directly accessible include the
ontology (Tenenbaum et al., 2011; Conway, 2020) of information
processing and the conditions under which data are encoded as
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continuous probability distributions versus discrete categories.
A critical question for future research will be to investigate if
a neural representation of probability distributions is present
already in infancy such that it can be a foundation for learning
about the world (Tenenbaum et al., 2011; Conway, 2020).
Previous work using similar paradigms as in the current study
has shown that infants can learn statistical regularities in the
environment (Saffran et al., 1996; Fiser and Aslin, 2002; Kirkham
et al., 2002; Xu and Garcia, 2008). However, these studies have
focused on local probabilistic features (Dehaene et al., 2015)
of the presented data, such as transitional probabilities (Saffran
et al., 1996), and there is yet little evidence, both on a behavioral
and a neural level, for the infant mind being able to represent the
complex, global patterns of a probability distribution.

We conclude by noting that the NRL is a novel tool with
the potential to significantly enhance our understanding of the
probabilistic nature of the human mind and its ability to learn
and re-organize as a function of experience.
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