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Several canonical experimental paradigms (e.g., serial reaction time task, discrete 
sequence production task, m × n task) have been proposed to study the typical behavioral 
phenomenon and the nature of learning in sequential keypress tasks. A characteristic 
feature of most paradigms is that they are representative of externally-specified 
sequencing—motor tasks where the environment or task paradigm extrinsically provides 
the sequence of stimuli, i.e., the responses are stimulus-driven. Previous studies utilizing 
such canonical paradigms have largely overlooked the learning behaviors in a more realistic 
class of motor tasks that involve internally-guided sequencing—where the sequence of 
motor actions is self-generated or internally-specified. In this work, we use the grid-
navigation task as an instance of internally-guided sequencing to investigate the nature 
of learning in such paradigms. The participants performed Grid-Sailing Task (GST), which 
required navigating (by executing sequential keypresses) a 5 × 5 grid from start to goal 
(SG) position while using a particular key-mapping (KM) among the three cursor-movement 
directions and the three keyboard buttons. The participants performed two behavioral 
experiments—Single-SG and Mixed-SG condition. The Single-SG condition required 
performing GST on a single SG position repeatedly, whereas the Mixed-SG condition 
involved performing GST using the same KM on two novel SG positions presented in a 
random, inter-mixed manner. In the Single-SG condition, we show that motor learning 
contributes to the sequence-specific learning in GST with the repeated execution of the 
same trajectories. In the Mixed-SG condition, since the participants utilize the previously 
learned KM, we anticipate a transfer of learning from the Single-SG condition. The 
acquisition and transfer of a KM-specific internal model facilitates efficient trajectory 
planning on novel SG conditions. The acquisition of such a KM-specific internal model 
amounts to trajectory-independent cognitive learning in GST. We show that cognitive 
learning contributes to the learning in GST by showing transfer-related performance 
improvements in the Mixed-SG condition. In sum, we show the role of cognitive and motor 
learning processes in internally-guided sequencing and further make a case for using 
GST-like grid-navigation paradigms in investigating internally guided skill learning.
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learning
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INTRODUCTION

Our everyday experiences are an excellent demonstration of 
the surprisingly adaptive and fluid learning behavior that is 
orchestrated by the human brain. Such a learning behavior is 
a hallmark of human cognitive ability and spans a broad 
spectrum of tasks. Ranging from complex tasks such as cycling 
and driving to seemingly simpler ones such as typing and 
grasping movements, all tasks involve the acquisition of skillful 
behavior. Skill learning is a natural behavioral phenomenon 
concerned with the acquisition of the ability to perform tasks 
proficiently. Motor skill learning refers to learning a specific 
subclass of skills that involve sequential motor movements such 
that they are executed accurately and quickly with practice 
(Newell, 1991; Clegg et al., 1998; Haibach et al., 2017; Schmidt 
et  al., 2019). Much of the early interest in motor sequencing 
focused on investigating the typical behavioral phenomenon 
in sequence learning tasks (Lashley, 1951; Hebb, 1961; Fitts 
and Posner, 1967). This has led to the formulation of many 
serial order canonical experimental tasks such as the m × n 
task (Hikosaka et al., 1995; Bapi et al., 2000, 2006) and discrete 
sequence production (DSP) task (Verwey, 2001; Abrahamse 
et  al., 2013; Verwey et  al., 2015) in the explicit domain and 
serial reaction time (SRT) task (Nissen and Bullemer, 1987; 
Willingham, 1999; Robertson, 2007) in the implicit domain. 
While explicit learning involves conscious awareness of what 
is being learned, implicit learning occurs without conscious 
awareness of learning. Subsequent research has extensively used 
these paradigms to understand the brain processes involved 
in sequence learning, memory, attention, etc.

In SRT and DSP tasks, the participants repeatedly respond 
to a fixed set of visual stimuli organized in successive trials. 
Each trial involves presenting a sequence of visual cues that 
prompt corresponding keypress responses on a visuospatially-
compatible button-box. In the m × n task, each trial consists of 
n consecutive visual stimuli (called a hyperset). Each visual stimulus 
consists of m illuminated squares on a 3 × 3 grid presented on 
a screen. The participants learn to press m corresponding keys 
(called a set) successively in the correct order on a keypad in 
response to the visual stimulus. The visual stimuli that guide 
the sequencing behavior in such paradigms are predetermined 
and fixed by experimental design. The sequence of motor actions 
to be  performed is not contingent on the participant’s choice or 
plan. Therefore, these canonical tasks belong to a class of discrete 
sequence learning tasks that involve externally-specified (visual) 
sequences. The sequence of motor actions in such tasks is 
conditioned on fixed, externally-specified visual cues/stimuli.

While such simple canonical paradigms are useful for 
investigating skill learning in controlled experimental settings, 
they fail to account for a larger class of real-life motor tasks. 
Unlike SRT, DSP, or m × n task, many real-life motor skills 
are internally-guided, i.e., the sequence of the motor actions 
is triggered by self-choice or some internal model of the 
environment. Such tasks constitute a class of internally-guided 
motor tasks. The sequence of actions is self-initiated or generated 
internally by the participant and is not extrinsically prescribed 
or predetermined by the environment. Unlike externally-specified 

sequencing, the sequential action in such tasks is not elicited 
as a chain of stimulus-response pairs. While the visual cues 
might help the agent make sense of the environment in such 
tasks, it does not specify the sequence of motor movements 
to be executed. The central point of difference between externally-
specified and internally-guided sequencing is that the latter 
involves volitional planning of motor action sequences. A template 
tracing task on paper is an example of an externally-specified 
task. It employs external cues and visual feedback with a greater 
role of visuomotor associations for imitating the given template. 
On the other hand, drawing is an internally-guided task that 
relies on internal cues for guiding the pencil strokes to self-
determined positions on paper. Such behavior is characterized 
by greater demands on brain processes related to memory and 
planning as compared to the tracing task. Other examples of 
such motor skills are composing music on a keyboard, creating 
a dance choreography, or solving a Rubik’s cube. Such tasks 
involve planning as well as execution of a self-generated sequence 
of motor actions. The performance in internally-guided sequencing 
tasks depends on the dexterity of executing the motor actions 
and the ability to program the sequence of future actions.

Previous studies have investigated the motor behavior in 
externally-guided and internally-guided tasks and determined the 
neural underpinnings of the underlying processes. The externally-
guided movements predominantly involve brain areas related to 
sensory guidance and optimization of movements, perception, 
and salience, whereas internally-guided movements involve brain 
areas related to muscle/movement selection, mental imagery, and 
planning complex behaviors (Gowen and Miall, 2007; Drucker 
et  al., 2019). Other investigations have confirmed the role of 
cerebellar and premotor circuits in externally-guided tasks and 
basal ganglia, pre-supplementary motor cortex and dorsolateral 
prefrontal cortex in internally-guided tasks (Jueptner et al., 1996; 
Jueptner, 1998; van Donkelaar et  al., 1999).

In externally-specified sequencing, bindings between the 
presented stimuli and the corresponding responses emerge with 
simple association rules between stimuli and response (S-R): 
selecting an action in response to a given stimulus binds the 
codes of the action-relevant stimulus attributes and the 
corresponding action codes (Logan, 1988). Due to repeated 
execution of sequences, the activity of the system controlling 
stimulus-based actions results in stimulus-response or sensorimotor 
learning (Herwig and Waszak, 2009). Therefore, the sequencing 
in the externally-specified domain is exhibited as a chain of 
stimulus-response-effect (S-R-E). On the other hand, the internally-
guided or voluntary actions typically involve a goal-directed 
motivation to achieve an internally pre-specified outcome. The 
studies have shown that such self-determined action goals play 
a role in the acquisition and planning of internally-guided actions 
(Hommel et al., 2001; Hommel, 2003). The activity of the system 
guiding intention-based actions results in action-effect or 
ideomotor learning due to the formation of associations between 
movements and their ensuing sensory effects (Herwig and Waszak, 
2009). According to the ideomotor framework of action control 
(Greenwald, 1970; Prinz, 1997), internally-guided actions primarily 
refer to anticipated action effects or, in other words, response-
stimulus (R-S) bindings. In internally-guided actions, the 
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participants might only attend to response-effect (R-E) 
contingencies (Herwig and Waszak, 2009). None of the previous 
studies have explored the nature of learning processes in such 
a class of discrete, self-guided sequential movement tasks. Motivated 
by this apparent gap, our present study investigates the role of 
different learning components in internally-guided sequencing.

Sequence learning in simple grid-navigation tasks is an 
example of an internally-guided sequencing task. The tasks 
involve navigating (typically, using a cursor) on the grid from 
the start position to the goal position. Each unique trajectory 
from the start to the goal position constitutes a novel sequence 
of keypresses. The optimality of trajectory is conditioned on 
the task specifications such as the reward scheme, possible 
agent movements, and time constraints. Participants are free 
to choose among many possible optimal trajectories for a trial 
to be  successful. The repeated execution of these trajectories 
results in learning a self-generated, voluntary sequence of 
keypresses. The behaviors in grid-navigation tasks give us rich 
insights into the learning processes involved in internally-guided 
sequencing. We  propose a novel usage of the simple grid-
navigation task—Grid-sailing task (GST; Fermin et  al., 2010, 
2016) as a canonical paradigm to investigate the learning 
processes involved in internally-guided sequencing. The GST 
requires navigating a 5 × 5 grid from start to goal (SG) position 
using a given key-mapping (KM). The KM associates possible 
movement directions of the cursor with the corresponding 
keyboard buttons. The participants are instructed to reach the 
goal in an optimal number of steps as quickly as possible. 
Table  1 provides a concise summary of different sequencing 
tasks—SRT, DSP, m × n, and GST—based on the experimental 
paradigm and the nature of learning involved.

Specifically, we  considered the involvement of two learning 
components—motor and cognitive. The cognitive component 

involves learning the sequential order of movements, whereas 
the motor component concerns the acquisition of fine-tuned 
movement dynamics and sensorimotor integration (Doya, 2000; 
Ghilardi et  al., 2009; Penhune and Steele, 2012). Using GST as 
our canonical paradigm, we  employ two behavioral experiments 
to identify the underlying learning processes in the internally-
guided sequencing. In Experiment-1 (Single-SG condition), 
participants perform GST on a single SG-condition. We  show 
evidence for motor learning due to the repeated execution of 
sequences. In Experiment-2, the participants use the learned KM 
from Experiment-1 to perform grid-navigation on the Mixed-SG 
condition, which consists of randomized trial order of two 
previously unseen SG conditions. A successful transfer of a 
KM-specific internal model would enable efficient trajectory 
planning on the novel SG conditions and, thus, would point 
out the role of the cognitive learning in Experiment-2. We further 
make a case for using GST-like grid-navigation tasks for investigating 
the typical behavioral phenomena in internally guided sequencing.

EXPERIMENT-1: SINGLE-SG CONDITION

We hypothesize that sequence-specific motor learning contributes 
to the learning in GST. As the participants repeatedly execute 
the same trajectory, the motor movements are optimized to 
facilitate accurate and fast sequential keypresses. This can 
be  empirically tested by examining the effect of trials on the 
mean execution in Experiment-1 (also referred to as the 
Single-SG condition). The Single-SG condition also involved 
a rotation trial to test whether the learning in GST occurs 
due to the acquisition of a motor program or general motor 
improvements. The general motor improvements can result 
from factors such as task familiarity or adaptation. The rotation 

TABLE 1 | Task comparison between externally-specified (SRT, DSP, m × n) and internally-guided sequencing tasks.

Serial reaction time task 
(SRT)

Discrete sequence 
production task (DSP)

m × n task Grid-sailing task (GST)

Features of experimental paradigm

Number of effectors 1/2 2 1 1

Number of choices/fingers 
used

4 4/6/8 3 3

Stimuli Visual: spatially-compatible and 
key-specific

Visual: spatially-compatible and 
key-specific

Visual: consists of m 
illuminated squares on a grid

Visual cues for start, goal and 
agent positions

Sequence length 10 3–8 10–12 5–7

Number of trials 800 500–1,000 10–20 successful trials 20

Behavioral measures Response time Response time Choice time, movement time Reward, number of moves, 
execution time, reaction time

Nature of sequences and learning

Sequence specification Explicitly specified Explicitly specified Explicitly specified—discovery 
by trial and error

Internally planned

Kind of sequences learnt Typically first-order and 
second-order

Typically first-order and 
second-order

Hierarchical sequence Higher-order trajectory of grid-
cell states

Nature of learning Implicit Explicit Explicit Explicit
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was introduced such that the sequence of keypresses required 
to navigate the cursor from the start position to the goal 
position remained the same as in the normal trials. Consequently, 
the execution time on the rotation trials is expected to remain 
unaffected if the performance improvements in GST occur 
only due to general motor improvements.

Materials and Methods
Participants
Forty-two healthy participants volunteered for the study. The 
participant pool consisted of 29 women and 13 men between 
ages 17 and 27 (mean age: 21) years. All participants were 
non-musicians with normal or corrected-to-normal vision. The 
study was approved by the Institute Review Board, IIIT-
Hyderabad, India. The participants gave informed written consent 
before the study. Additionally, permission for participation was 
obtained from the College Principal for participants below 
18 years of age. The participants initially performed Experiment-1 
(Single-SG condition with visuomotor rotation trial) followed 
by Experiment-2 (Mixed-SG Condition).

Apparatus
The participants were seated on a chair facing a high-resolution 
24-in computer screen placed ~2  ft away. A conventional desk 
keyboard was used to record responses. The participants used 
the right index, middle, and ring fingers to press the number-pad 
buttons “4,” “5,” and “6,” respectively. All the other keys on 
the number-pad were removed to prevent meddling in response 
selection. The experiment program for stimulus presentation 
and data recording was written using Python3 and PyGame 
(Python Game Development1).

Procedure
The participants were verbally instructed about the task procedure 
before the session started. A 5 × 5 grid with a red fixation 
cross at the center was displayed at the beginning of each trial. 
On pressing the “space” button, after a random delay of 
500–1,000  ms, the trial started with the start position marked 
as a green tile and the goal position marked as a blue tile. The 
cursor, shown as a black triangle, was initially placed in the 
starting position. The participants were given 6  s to solve each 
trial, and this duration was not explicitly conveyed to them. 
During the trial response period, participants executed sequential 
keypresses to navigate the cursor from the starting position to 
the goal position. The possible cursor-movement directions were 
defined by the KM (see Figure  1A). In the beginning, the task 
required participants to explore the KM directions and its 
association with the corresponding keys by trial and error.

The participants were explicitly instructed to achieve a maximum 
score (of 100 points) while executing each trial as quickly as 
possible. If an optimal path is traversed, a maximum of 100 
points is awarded for that trial. A minimum steps trajectory 
from start to the goal is considered an optimal trajectory. If 
the participant took a non-optimal path, a penalty of −5 points 

1 Retrieved from https://www.pygame.org

incurred for every excess move. In case the participant tried to 
perform an invalid move, such as moving out of the grid, the 
cursor position remained the same with an incremented move 
count. If the participant failed to reach the goal in the given 
time duration, 0 points were awarded for that trial. At the end 
of each trial, the performance feedback was displayed for 2  s, 
following which the fixation screen signaled the beginning of 
the next trial. On the center of the feedback screen, the performance 
feedback was presented as two numbers. The display showed 
the number of moves in the traversed trajectory and the reward 
score for that trial. A trial outline is shown in Figure  1C. The 
participants were given a rest block after every 20 trials to 
minimize the effects of muscle fatigue on the performance. The 
participants were also advised to maximally re-use the explored 
trajectories in order to execute the task quickly and accurately.

Two different KMs were used in the experiment to avoid 
any unwanted performance effects or bias due to a particular 
KM. Moreover, each KM was associated with a unique set of 
SG pairs (see Figure  1A). The participants were randomly 
assigned one of the two possible KMs. The participants used 
the same assigned KM throughout the experiment for both, 
Single-SG and Mixed-SG conditions. Twenty-four participants 
used KM1, whereas 18 participants used KM2 for the experiment.

In Experiment-1, the participants repeatedly performed GST 
on a single SG condition. The participants were presented 
with the same SG condition for trials 1–41. The rotation trial 
(trial 42) was introduced after the completion of 41 successful 
trials. The rotation trial was followed by the re-introduction 
of the learned single SG condition for the next five trials 
(trials 43–47). The post-rotation trials (trials 43–47) were used 
only for a comparative analysis between the rotation and normal 
condition. The rotation trial involved a 90° clockwise rotation 
of the grid. The start and goal positions also changed accordingly 
with the grid rotation. The rotated cursor changed its color 
from black to red to indicate the transformed KM associations 
(see Figure 1B). Therefore, the sequence of keypresses required 
to reach the goal position effectively remained the same. In 
the case of error trials in the rotation condition, the participants 
were repeatedly presented with the rotation trial. The participants 
were already instructed about the rotation trial beforehand. 
The participants took about 15 min to complete Experiment-1.

Behavioral Measures
The number of moves in the traversed trajectory, reward 
obtained, reaction time and execution time were the performance 
measures recorded for each trial of the experiment. Reaction 
time is defined as the time interval between the onset of 
stimuli and the first keypress. Execution time is the total time 
taken for sequential keypresses in a particular trial. Execution 
time is computed as the difference between the keypress time 
of the last and the first response. For analysis purposes, the 
trials were classified into three categories (1) Successful trials—if 
the goal position is reached with a non-zero reward, (2) 
Optimally successful trials—if the goal position is reached in 
an optimal number of moves and thereby scoring a maximum 
reward, and (3) Error trials—if the goal position is not reached 
in the given time duration.
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Results
The following behavioral measures were included for the 
analysis: reward score, reaction time, execution time, number 
of moves, and error rate. The error rate is a computed 
measure that denotes the average number of error trials 
attempted to complete one successful trial. The successful 
and error trials were both included in the analysis to show 
the emergence of learning and skillful behavior in the task. 
However, only successful trials were considered for other 
analysis purposes. A within-subjects repeated-measures 
ANOVA was used to test for the effect of practice (trials) 
on different behavioral measures. A series of Wilcoxon signed-
rank tests was performed on various measures to compare 
the performance on rotation and normal trials. Repeated-
measures ANOVA was used to probe any KM-specific effects 
on the performance. The statistical analysis was performed 
using Python (scipy and statsmodels packages) and JASP 
software (JASP Team, 2020).

The learning in the task is evident from the performance 
improvements in various behavioral measures. With practice, 

we  see an increasing and decreasing trend in reward and 
execution time, respectively, which suggests that within a few 
(10–15) trials, the participants progressively learned to perform 
the task while optimizing for speed (execution time) and 
accuracy of navigation (reward; see Figure 2A). We took reward, 
moves, execution time, and reaction time as dependent measures 
of learning for successful trials. To evaluate the learning behavior, 
we plotted the mean values of behavioral measures in successful 
trials (see Figures  2B,C). The mean reward increases to a 
maximum of 100 points as the number of moves reduces over 
the practice to reach the optimal/minimum number of steps. 
A non-parametric Friedman test of differences among repeated 
measures (within-subjects) rendered a significant effect of trials 
on average reward obtained [ c2 40 73 97 0 001( )= <. , .p ] and 
the average number of moves required to reach the 
goal [ c2 40 73 97 0 001( )= <. , .p ].

The learning is also evident by comparing the mean 
execution time of the first successful trial (M  =  3,110  ms, 
SD  =  1,062) with the last successful trial (M  =  1,271  ms, 
SD  =  380  ms). The mean reaction time decreased from 

A

C

B

FIGURE 1 | (A) Key-mapping (KM) and start-goal (SG) position sets used in the experiment. Each participant was randomly assigned either KM1 or KM2. The 
boxed numbers on KM figure show corresponding numeric keys associated with the movements. In SG figures, green and blue tiles represent start and goal 
positions, respectively. (B) The 90° clockwise rotated KMs used in the rotation trials in Experiment-1. (C) Task diagram: sequence of trial events (adapted from 
Fermin et al., 2010). In this illustration, the participant is assigned key-map KM1. An example optimal trajectory is shown on the grid.
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1,232  ms (SD  =  592) to 659  ms (SD  =  380). The Friedman 
test indicated significant improvements in execution time 
[ c2 40 485 90 0 001( )= <. , .p ] as well as reaction time 
[c2 40 300 55 0 001( )= <. , .p ]. However, this decrease in execution 
time could have been a function of the number of moves in 
the trajectory. Therefore, we  computed normalized execution 
times or execution time per keypress to account for the unequal 
lengths of trajectories in successful trials. The Friedman test 
indicated significant improvements in normalized execution 
time [ c2 40 499 93 0 001( )= <. , .p ]. The acquisition of learned 
sequences was examined by computing the error rates and 
plotting them against trials. A steep decrease in error rates 
is observed over the first few trials (see Figure  2D). 
Additionally, sequence-specific motor learning was examined 
by controlling the number of keypresses and the trajectories 
followed. For each participant, the most frequently used 
optimal trajectory was determined. The trials that employed 
the most-frequented optimal trajectory were extracted. A 
decrease in mean execution time from 2,473 ms (SD = 1,051) 
to 857  ms (SD  =  157) in extracted trials suggests sequence-
specific learning. To evaluate the performance improvements 
across these trials, we  performed a Friedman test, which 
indicated a significant effect of trials [c2 38 78 72 0 001( )= <. , .p ] 
on execution time.

In order to examine whether the learning observed in the 
GST was particular to KM, we performed 2 (KM: 1 and 2) 
× 41 (Trials: 1–41) mixed repeated-measures analysis of variance 

(ANOVA) on normalized execution time. The KM was used 
as a between-subject factor, and trials were a within-subject 
factor. A Greenhouse-Geisser correction was applied when the 
ANOVA assumptions were violated. The ANOVA results 
suggested a significant main effect of trials 
[ F p p11 16 446 25 19 148 0 001 0 324

2
. , . . , . , .( )= < =h ] on the 

normalized execution times. Similarly, a significant main effect 
of KM [ F , p p1 40 7 517 0 009 0 158

2( )= = =. , . , .h ] indicated that 
the normalized execution times are different for the two KM. 
However, the Trial × KM interaction was not found to 
be significant [ F p p11 16 446 25 1 347 0 194 0 033

2
. , . . , . , .( )= = =h ], 

suggesting that the variation in normalized execution time 
across the trials is not dependent on KM.

On the visuomotor rotation trial (trial 42), we  observed a 
spike in the execution time (see Figure  3A). The execution 
time comes down with the re-introduction of the learned SG 
condition after the rotation trial. To assess whether the mean 
execution time for the visuomotor rotation trial is significantly 
higher than the normal condition, we took the average execution 
time of the preceding and the succeeding optimally successful 
trials and compared it with the rotation trial (trial 42). The 
mean execution time increased from 1,473  ms (SD  =  496) in 
the normal trials to 2,906  ms (SD  =  919) in the rotation trial. 
A Wilcoxon signed-rank test was used as the normality 
assumptions were violated. It suggested that the mean execution 
time for the rotation trials is significantly higher than the 
normal trials ( df Z p= = <29 0 0 001, , . ). Similarly, the mean 

A B

C D

FIGURE 2 | Trial-by-trial course of performance improvement in Single-SG condition (rotation trial excluded). The bars on the plot data-points denote standard 
error in measurement. (A) Evolution of learning behavior in the task. Mean execution time and mean reward across trials—averaged over both successful and error 
trials. (B) Mean reaction time and normalized execution time in successful trials. (C) Mean reward and average number of moves in successful trials. (D) Mean error 
rates in successful trials.
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reaction time increased from 900 ms (SD = 420) in the normal 
trials to 1,176 ms (SD = 672) in the rotation trial (see Figure 3B). 
The Wilcoxon signed-rank test indicated that the difference 
in mean reaction time on the rotation trial and normal trials 
was significant ( df Z p= = =41 245 50 0 010, . , . ). On following 
a similar procedure, we  found that the mean reward obtained 
decreased from 99.702 (SD  =  1.581) to 95.595 (SD  =  9.513) 
on the rotation trials (see Figure  3C). The Wilcoxon signed-
rank test suggested that the difference in mean reward score 
obtained on normal and rotation trials is significant 
( df Z p= = =41 96 50 0 006, . , . ). Similarly, the number of moves 
executed increased from 6.060 (SD  =  0.316) in the normal 
trials to 6.881 (SD = 1.903) in the rotation trials (see Figure 3D). 
The Wilcoxon signed-rank test suggested that the increase in 

the number of moves is significant ( df Z p= = =41 8 50 0 006, . , . ).  
The error rates also increased from 0.024 (SD  =  0.108) to 
1.024 (SD  =  1.828) in the rotation trials (see Figure  3E). The 
Wilcoxon signed-rank test also suggested a significant difference 
in error rates ( df Z p= = <41 0 0 001, , . ) in both conditions.

Discussion
In line with previous GST studies and other skill learning tasks, 
the performance improvements in terms of speed (execution time, 
reaction time) and accuracy (reward) suggest the acquisition of 
skillful behavior (Nissen and Bullemer, 1987; Hikosaka et al., 1995; 
Willingham, 1999; Sakai et al., 2003; Fermin et al., 2010; Abrahamse 
et  al., 2013). The practice-driven performance improvements in 
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FIGURE 3 | Comparison of performance on normal and visuomotor rotation trials in Experiment-1. The bars on the plot data-points denote standard error in 
measurement. (A) Mean execution time on optimally-successful rotation trials is significantly higher than the average of preceding and succeeding optimally-successful 
trials. (B) Mean reaction time on successful rotation trials is significantly higher than the average of preceding and succeeding successful trials. On the rotation trial, the 
average reward obtained (C) is significantly lesser while the average number of moves (D) is significantly higher. (E) The mean error rate also increases in the rotation trials.

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Bera et al. Learning in Internally-Guided Motor Skills

Frontiers in Psychology | www.frontiersin.org 8 April 2021 | Volume 12 | Article 604323

various behavioral measures in Single-SG trials suggest overall 
learning in GST. The practice-driven performance improvements 
in execution time provide evidence for motor learning that occurs 
due to the fine-tuning of motor movements. The Single-SG 
condition also included a visuomotor rotation trial to probe if 
the performance improvements in GST can be  solely attributed 
to general motor improvements. The performance degradation 
on execution time and other measures such as reward, reaction 
time, and error rate suggests that the performance improvements 
in GST can be attributed to the sequence-specific learning processes 
(specifically, the acquisition of the motor program).

EXPERIMENT-2: MIXED-SG CONDITION

In Experiment-1, the participants repeatedly performed GST on 
a single SG condition using the same KM. The participants not 
only learned the motor program associated with the sequence 
of movements to reach the goal position but also internalized 
the navigation strategies related to the specific KM. The results 
of Experiment-1 established trajectory-specific motor learning. 
Further, to investigate KM-specific cognitive learning, we designed 
Experiment-2 (also referred to as the Mixed-SG condition) to 
test the transfer of KM-specific learning to novel SG conditions. 
We  anticipate that the transfer of KM-specific learning will lead 
to efficient trajectory planning on novel SG conditions. The 
account can be empirically tested by comparing various performance 
measures during the initial trials of Experiment-1 and Experiment-2.

Materials and Methods
Participants
All the participants performed Experiment-2 after completing 
Experiment-1.

Apparatus
The experimental setup and apparatus were the same as in 
Experiment-1.

Procedure
In the Mixed-SG condition, the general task paradigm was 
the same as in Experiment-1 except for the SG-conditions. In 
the Mixed-SG condition, participants employed the previously 
learned KM (from Experiment-1) to perform grid-navigation 
on two novel SG conditions. The optimal number of steps in 
both the SG conditions were the same. During the experiment, 
each trial was randomly assigned to one of the two possible 
SG conditions. The participants performed GST on the 
randomized and mixed order of SG conditions. The experiment 
terminated when the participant performed 20 successful trials 
of each SG condition. The participants took about 15  min to 
complete the Mixed-SG condition task.

Behavioral Measures
The behavioral measures logged and analyzed were the same 
as in Experiment-1.

Results
A within-subjects repeated-measures ANOVA was used to test 
for the effect of practice (trials) on different behavioral measures. 
A series of Wilcoxon signed-rank tests was performed on 
various measures to test for the transfer of learning in 
Experiment-2. Repeated-measures ANOVA was used to probe 
any KM-specific or SG-specific effects on the performance. 
The first 20 successful trials of each SG condition were considered 
for analysis. Mean execution times and reaction times for a 
total of 40 successful trials were plotted against the trials. We 
observe that with practice, the participants become more accurate 
and efficient in performing GST on the Mixed-SG condition 
(see Figure  4A). Both the execution time and reaction time, 
as dependent measures of performance, decrease with practice 
(see Figure  4B). The learning is evident by the decrease in 
the mean execution time from 2,854  ms (SD  =  971) in the 
first successful trial to 1,298 ms (SD = 428) in the last successful 
trial. And the mean reaction time decreased from 1,278  ms 
(SD  =  623) to 733  ms (SD  =  403). To evaluate whether the 
change across the trials is statistically different, we  performed 
a non-parametric Friedman test of differences among repeated 
measures (within-subjects) for trials 1 through 40. We observed 
a significant effect of trials on the mean execution time 
[ c2 39 423 35 0 001( )= <. , .p ] as well as the mean reaction time 
[ c2 39 210 40 0 001( )= <. , .p ]. A Friedman test also indicated 
a significant effect of trials [ c2 39 469 06 0 001( )= <. , .p ] on 
normalized execution time. The mean reward scores improved 
from 97.50 (SD = 5.325) in the first trial to 99.52 (SD = 1.851) 
in the last trial. The effect of trials was significant on the 
mean reward obtained [ c2 39 61 96 0 011( )= =. , .p ; see 
Figure  4C]. The average number of moves required to reach 
the goal position decreased from 6.50 (SD  =  1.065) to 6.095 
(SD  =  0.370) with practice. A Friedman test indicated a 
significant effect of trials on the average number of moves 
[ c2 39 61 96 0 011( )= =. , .p ; see Figure  4C). A Friedman test 
on mean execution time in optimally successful trials rendered 
a significant effect [ c2 39 191 42 0 001( )= <. , .p ] of trials. The 
mean error rates were computed by averaging the participant 
error rates while preserving the trial order. A steady decrease 
in error rates is observed with practice (see Figure  4D).

Additionally, we examined if the performance in the Mixed-SG 
condition was particular to KM. We  performed 2 (KM: 1 and 
2) × 40 (Trials: 1–40) mixed repeated-measures analysis of 
variance (ANOVA) on normalized execution time with KM 
as a between-subject factor and the trials as a within-subject 
factor. A Greenhouse-Geisser correction was applied when the 
ANOVA assumptions were violated. The ANOVA results 
suggested a significant main effect of trials 
[F p p13 09 523 48 17 326 0 001 0 302

2
. , . . , . , .( )= < =h ], indicating that 

the normalized execution time varies across the trials. A 
non-significant main effect of KM 
[ F , p p1 40 0 782 0 382 0 019

2( )= = =. , . , .h ] indicated that the 
normalized execution times are not different for the two 
KM. Moreover, a non-significant Trial × KM 
[ F p p13 09 523 48 1 325 0 193 0 032

2
. , . . , . , .( )= = =h ] interaction 

suggested that the variation in normalized execution time across 
the trials is not dependent on KM.
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Since the participants used the same KM assignment as 
that in the Single-SG condition, we  anticipate the transfer of 
learning to occur from the Single-SG condition to the Mixed-SG 
condition. We analyzed behavioral measures such as error rate, 
reward, and execution time for the first trial in both conditions 
to probe for transfer effects. The mean error rate improved 
from 2.857 (SD  =  2.859) in the Single-SG condition to 0.690 
(SD  =  1.473) in the Mixed-SG condition. A Wilcoxon signed-
rank test comparing the error rates during the first trials of 
both conditions reported significant differences 
( df Z p= = <41 508 00 0 001, . , . ). The mean reward score 
improved from 20.952 (SD = 40.714) in the Single-SG condition 
to 67.976 (SD = 46.224) in the Mixed-SG condition. A Wilcoxon 
signed-rank test revealed that the mean reward obtained is 
significantly higher ( df Z p= = <41 36 00 0 001, . , . ) for the initial 
trial in the Mixed-SG condition as compared to the first trial 
in the Single-SG condition. Similarly, the mean execution time 
improved from 3,743 (SD  =  1,380) ms to 2,807 (SD  =  1,083) 
ms due to the transfer effects. A Wilcoxon signed-rank test 
suggested that the mean execution time for the first trial in 
the Single-SG condition is significantly different 
( df Z p= = <41 743 00 0 001, . , . ) as compared to the first trial 
of the Mixed-SG condition.

The Single-SG condition does not require participants to 
employ all three keys to reach the goal position. In both 
the KM groups, the participants only needed keys 4 and 5 
to build the trajectory from the start to the goal position. 
Therefore, in both the KM groups, at the end of the Single-SG 
condition, the participants are highly trained with the response 

effects for two (keys 4 and 5) of the three keys. In the 
Mixed-SG condition, condition SG1 requires using keys 5 
and 6 to build an optimal trajectory, whereas condition SG2 
requires keys 4 and 5 to navigate to the goal position.  
Since the participants are highly trained on response-effect 
contingencies for keys 4 and 5 but not for key 6, the 
differential amount of practice may benefit performance 
on condition SG2 (employing keys 4 and 5) but not condition 
SG1 (employing keys 5 and 6). Thus, one can argue that 
performance will be  influenced by a differential amount 
of practice based on SG conditions in the Mixed-SG 
condition. To probe this, we  analyzed the effect of SG on 
execution time in the Mixed-SG condition. We  performed 
2 (SG: 1 and 2) × 20 (successful trials: 1–20) repeated-
measures ANOVA on the mean execution time for each 
KM. A Greenhouse-Geisser correction was applied when 
the ANOVA assumptions were violated. For KM1, the 
ANOVA  results reported a main effect of trials 
[ F , p4 875112 123 27 583 0 001 0 402

2
. . . , . , .( )= < =h ], suggesting 

practice-driven learning. The test reported a non-significant 
main effect of SG [ F , p1 23 3 915 0 060 0 006

2( )= = =. , . , .h ] 
and  Trial × SG interaction 
[ F , p6 983160 601 1 081 0 378 0 010

2
. . . , . , .( )= = =h ]. Similarly, for 

KM2, the ANOVA results reported the main effect of trials 
[ F , p19 323 13 192 0 001 0 263

2( )= < =. , . , .h ], suggesting practice-
driven performance improvements. It suggested a non-significant 
main effect of SG [ F , p117 0 035 0 854 0 0001

2( )= = =. , . , .h ] and 
Trial × SG interaction [F , p19 323 1 204 0 252 0 023

2( )= = =. , . , .h ]. 
The results suggest that the execution time is not different 
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FIGURE 4 | Trial-by-trial course of performance improvement in Mixed-SG condition. The bars on the plot data-points denote standard error in measurement. 
(A) Evolution of learning behavior in the task. Mean execution time and mean reward across trials—averaged over both successful and error trials. (B) Mean reaction 
time and normalized execution time in successful trials. (C) Mean reward and average number of moves in successful trials. (D) Mean error rates in successful trials.
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for the two SGs in the Mixed-SG condition in both the KM 
groups. Therefore, the performance is not influenced by the 
differential amount of practice based on SG conditions in 
the Mixed-SG condition.

Discussion
The randomized and mixed order of SG conditions in Experiment-2 
minimized the trajectory-specific performance improvements that 
occur due to the repeated execution of the keypress sequences. 
Significant performance improvements were observed for 
normalized execution time in successful trials and execution 
time in optimally-successful trials. Other performance measures 
such as reward and reaction time also improved with practice. 
This efficient performance of GST on new and randomly-ordered 
SG conditions can be attributed to the ability to use a previously 
learned KM-specific internal model for planning navigation 
strategies. As the learned KM relations can be successfully applied 
to new SG conditions, the participants could generalize the 
learning from the Single-SG condition to the Mixed-SG condition. 
The positive transfer effects support the idea of cognitive learning 
because the participants cannot simply transfer a learned motor 
sequence in the Mixed-SG condition.

In both the KM groups, the Single-SG condition employed 
only two (keys 4 and 5) of the three possible cursor movements 
to construct an optimal trajectory. One can raise the question 
that the transfer of learning would be  better on the novel SG 
condition that employed the same practiced keys (namely, 
condition SG2) compared to the other novel SG condition 
(namely, condition SG1) in Experiment-2. However, the analysis 
revealed no difference in performance in execution time in 
both the SG conditions. This suggests that the transfer of the 
internal model related to the KM is not contingent on the 
specific keys that are practiced in various SG conditions.

GENERAL DISCUSSION

We investigated the nature of learning in internally-guided 
sequencing. We  argued that GST-like grid-navigation tasks are 
exemplars of such a paradigm and hypothesized the role of 
motor and cognitive learning processes in learning in GST. 
We proposed a novel use of GST in two behavioral experiments 
to this end. In Experiment-1 (Single-SG condition), 
we investigated the progressive nature of learning, as evidenced 
by improvements in various behavioral measures. We  provide 
evidence for the role of trajectory-specific motor learning in 
GST by showing the effect of trials on execution time in the 
Single-SG condition. The performance degradation on the 
introduction of a visuomotor rotation trial suggests that the 
learning in GST involves the acquisition of a motor program 
and therefore, it cannot be  solely attributed to the general 
motor improvements. In Experiment-2 (Mixed-SG condition), 
we  provide evidence for the role of KM-specific, trajectory-
independent learning in GST. The transfer-related performance 
improvements in the Mixed-SG condition provide evidence 
for the acquisition of a KM-specific internal model that translates 
as cognitive learning in GST.

General Stages of Learning in GST
Improvements in various behavioral measurements such as 
execution time, reaction time, and reward score indicate learning 
in GST (see Figure 2). In the Single-SG condition, the participants 
initially tried to learn the possible movement directions and 
the corresponding key-map (KM) by trial and error. As the 
participants became familiar with the association between 
keypresses and corresponding cursor movements, they learn 
the effects of their responses. In further attempts, using the 
learned KM, the participants execute the keypresses to move 
the cursor in the direction of the target. Further practice 
enables them to plan simple and optimal navigation strategies 
to reach the goal. In the late phase, the repeated execution 
of the optimal trajectory drives performance improvements 
due to motor learning. We anticipate the role of motor chunking, 
due to which the planned trajectory to the goal position is 
segmented into sub-sequences of individual motor actions 
(keypresses). The late stage of practice would be  characterized 
by an “automatic” mode of execution with reduced cognitive 
and attentional demands. Motor chunking would enable the 
participants to perform the sequence as a whole without relying 
on individual response-effect contingencies. The practice-driven 
performance improvements in GST due to chunking are 
investigated in another study (Bera et  al., 2021).

The trajectory planning was guided by feedback from the 
reward score and the number of moves (see Figure  2A). The 
reward feedback gives a measure of the optimality of the trajectory 
followed. A steep decrease in the number of error trials (error 
rates) is observed after the first successful trial (see Figure  2D). 
Further practice enabled planning of optimal trajectories, as 
evident from the increase in mean reward. The participants 
quickly hit the reward ceiling (reward  =  100) within 10–15 
trials, implying that they have learned to navigate optimally. 
After a substantial amount of practice, as the KM model and 
SG trajectories are thoroughly learned, the (reward) feedback 
became less consequential for task accuracy (see Figure  2C). 
Nevertheless, we  saw a further performance improvement in 
normalized execution time (task speed) of successful trials (see 
Figure  2B). To control the number of moves over which the 
execution time is computed in successful trials, we  performed 
the normalized execution time analysis. A statistically significant 
improvement in normalized execution time shows growing 
expertise in performing the sequence. While multiple optimal 
trajectories are possible for a given SG position, the performance 
improvements due to repeated execution of the same trajectory 
can be attributed to motor learning. Therefore, we also performed 
the execution time analysis with a control on the number of 
moves and the sequential keypresses of the trajectory traversed. 
A statistically significant improvement in execution time confirms 
the role of motor learning due to repeated execution of the 
same trajectories.

Cognitive Aspects of Internally-Guided 
Sequencing
In addition to motor learning, the performance in internally-
guided paradigms is also contingent on the ability to plan the 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Bera et al. Learning in Internally-Guided Motor Skills

Frontiers in Psychology | www.frontiersin.org 11 April 2021 | Volume 12 | Article 604323

sequence of actions efficiently. In GST, determining the sequence 
of keypress execution corresponds to planning a trajectory 
from the start to the goal position. Such planning and trajectory-
generation are analogous to the goal-directed behavior in the 
knight’s tour on a chessboard. To reach a given goal position 
on the chessboard, goal-directed planning is employed to 
generate an optimal sequence of moves (analogous to a trajectory 
in GST) using an internal map based on possible movement 
directions of a knight (similar to a KM in GST). In both 
cases, the conceived reach pattern used for planning trajectories 
is KM-specific. The acquisition of such a KM-specific internal 
model helps in planning trajectories and amounts to cognitive 
learning in GST.

Therefore, we hypothesized that cognitive learning processes 
contribute to the learning in GST. The role of cognitive learning 
could be confirmed if the participants can generalize the learning 
from a learned SG condition to other novel SG conditions. 
To test this, we  performed Experiment-2, where we  asked the 
participants to perform GST on randomized and mixed order 
of novel SG positions using the learned KM from Experiment-1. 
The transfer-related performance improvements in various 
behavioral measures confirm the role of cognitive learning. 
Since the participants cannot readily utilize the previously 
learned motor sequences on novel SG conditions, the transfer-
related performance gains occur due to a trajectory-independent 
learning component. The two experiments are not independent 
because the same participants employed the same KM. Therefore, 
the improvements suggest that the KM-specific internal model 
is acquired and transferred from the Single-SG condition to 
facilitate efficient trajectory planning in the Mixed-SG condition. 
The acquisition of an internal model involves learning the KM 
relations between the possible cursor movements and the 
keypress buttons. This internal model is employed while planning 
the trajectories to generate a new sequence of keypresses that 
can be  executed to solve a novel SG condition. Therefore, the 
cognitive component in GST is a form of the trajectory-
independent learning process and it involves the acquisition 
of a KM-specific internal model.

The participants were able to employ the learned KM (from 
the Single-SG condition) to plan trajectories to the goal position 
with minimal failed attempts, as evident from a significant 
decrease in the error rate from 2.857 in the Single-SG condition 
to 0.690  in the Mixed-SG condition. The error rates denote 
the average number of error trials attempted to complete each 
successful trial. The fraction of participants who performed 
the first trial without any errors increased from 21% in the 
Single-SG condition to 69% in the Mixed-SG condition. Moreover, 
a qualitative examination of the evolution of trajectories in 
the early and late phases of the Mixed-SG condition suggests 
the role of a KM-specific learning component in GST. It is 
apparent from Figure  5 that the participants employed the 
learned KM-specific internal model to improvise on non-optimal 
trajectories in the early phase. Thus, the late phase is characterized 
by optimal trajectory planning and increased trajectory density.

This account of transfer of learning is also corroborated 
by improvements in other behavioral measures such as the 
mean execution time and average reward score. The mean 

execution time decreased from 3,743 to 2,807  ms as the 
participants were able to quickly plan trajectories using the 
acquired KM on novel SG conditions. The mean reward score 
also improved from 20.952  in the Single-SG condition to 
67.976  in the Mixed-SG condition. In summary, these results 
suggest that the participants are faster, more accurate, and 
quickly discover the optimal trajectory in the Mixed-SG condition 
as compared to the Single-SG condition. It suggests a key 
contribution of transfer of the acquired key-map from the 
Single-SG condition to the Mixed-SG condition.

In addition, we observed a significant effect of practice on 
the reaction time in Single-SG and Mixed-SG conditions (see 
Figures  2B, 4B). This result is rather intriguing because no 
improvements in reaction time were expected in line with the 
previous findings (Fermin et  al., 2010). The reaction time 
denotes the latency of the first keypress, reflecting the time 
cost of pre-planning the whole trajectory from the start to 
the goal position. A steady decrease in reaction time implies 
that the participants become more adept at using the previously 
acquired KM-specific internal model to plan trajectories with 
practice. The reaction time trend provides additional evidence 
for the involvement of cognitive learning in GST.

The Single-SG condition involved a rotation trial. One 
possible way to complete the rotation trial efficiently, would 
be to execute the learned sequence of keypresses after performing 
a mental rotation of the KM and SG positions to “undo” the 
rotation. If participants employed this strategy, we  would 
anticipate that the reaction times increase but not the execution 
times. However, we  observed an increase in execution time 
and reaction time even on multiple attempts on the rotation 
trial (see Figure  3). This indicates that the participants may 
have attempted the rotation trial as a novel KM-SG condition. 
Consequently, the execution time increased due to the additional 
time cost of planning trajectories using a novel KM. The 
performance degradation is also evident from other behavioral 
measures such as reward score and error rates. We  further 
examined the differences in the trajectories traversed in the 
normal and rotation condition (see Figure  6). We  observed 
many qualitative differences between trajectories traversed in 
normal and rotation conditions, irrespective of the number of 
attempts on the rotation trial. Overall, the results in the rotation 
trials suggest that the trajectory-specific motor program learned 
in the normal condition could not be transferred to the rotation 
condition successfully.

Theoretical Perspectives on Internally-
Guided Sequencing
Fermin et  al. (2010) provide evidence for model-based action 
planning in GST by demonstrating that the participants benefit 
from previously learned state transition models (or KM) if an 
additional delay is given before the start of the movements. 
For learned KM, such a delay would favor model-based planning 
using internal simulations of sequential action selection. In 
our case, such acquisition of the internal model is evidenced 
by the ability to efficiently navigate in a randomly-ordered 
mixed-SG condition where trajectory/sequence-specific learning 
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due to visuomotor associations is minimized. While Fermin 
and colleagues established the progressive nature of learning 
in different stages based on model-based and model-free action 
selection strategies, we examined the behavior in GST in terms 

of cognitive-motor dichotomy in internally-guided sequencing. 
We  provide evidence to establish the role of cognitive as well as 
motor learning in GST. Numerous studies have tried to reconcile 
the computational (model-based vs. model-free) and behavioral 

A

B

FIGURE 5 | Evolution of trajectories in Single-SG and Mixed-SG condition in two representative participants—MD (A) and AS (B). Participants MD and AS are 
assigned key-maps KM1 and KM2, respectively. The comparison of trajectories in early vs. late phase is shown. The early and late phase correspond to the first and 
last five successful trials, respectively, in each condition. A darker trajectory shade denotes more frequented trajectory.
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(cognitive vs. motor) perspectives in understanding the distinct, 
parallel processes involved in motor learning (Keele et  al., 
2003; Wolpert et al., 2011; Dezfouli and Balleine, 2012; Wolpert 
and Landy, 2012; Savalia et  al., 2016; McDougle and Taylor, 
2019). In line with Fermin et  al. (2010), we  show evidence 
for the role of the cognitive learning process as part of goal-
directed, model-based action planning in GST. The implications 
of our findings are two-fold—while establishing the role of 
cognitive and motor processes in the non-trivial planning and 
sequence execution in GST, we  call for a renewed interest in 
understanding a class of practical, internally-guided motor 
sequence learning tasks. In sum, sequencing behavior in GST 
involves both general motor learning and acquisition of an 
internal model. Learning the association between the movements 
and the corresponding keypresses allows for the acquisition 
of sequence as participants learn to “react” appropriately and 
efficiently to the motor intention or plan as circumscribed by 
the KM-specific internal model. General motor learning results 
in quick and efficient performance with repeated execution of 
finger movements in response to visual cues. The performance 
improvements due to motor learning may be  driven by motor 
chunking. In GST-like internally-guided tasks, practice-driven 
motor learning is constrained by a goal-directed internal plan 
of sequential actions. The internal model in GST involves the 
acquisition of a general structure or organization which guides 

the sequential order of keypress execution. A salient feature 
of such paradigms is that motor learning is influenced by the 
structure and organization of practiced sequences. It is guided 
internally and not externally imposed. Consequently, internally-
guided paradigms involve developing internal representations 
for both the response-effect mappings for KM and the sequence 
of keypresses (trajectory) to reach the goal. These internal 
representations are subject-specific even when the participants 
were using the same KM on a similar SG condition. Our 
account is again in line with the previous studies on the 
ideomotor framework of voluntary action control. The action-
effect (or R-E) bindings emerge during action planning, 
integrating components of the forward and inverse models of 
motor control (Ziessler et  al., 2004; Nattkemper et  al., 2010).

GST involves the role of interleaved cognitive and motor 
learning components. This parallel trajectory planning and 
motor learning induce a natural duality in the task. We speculate 
the role of working memory and visuospatial attention in GST. 
The task involves divided attention where information such 
as KM and the current trajectory is actively maintained online 
in the working memory. In contrast, SG information in the 
visual buffer helps in directing the cursor towards the goal 
position. The executive control inhibits the natural tendency 
of executing a response to generate the appropriate sequence 
of keypresses, given the constraints of the KM-specific internal 
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FIGURE 6 | Comparison of trajectories traversed during normal and rotation trials in Experiment-1 for four representative participants—JK (A), LM (B), RS (C), and 
CP (D). The trajectories for all the rotation trials are plotted for each participant. The number of trajectories plotted for the normal condition is matched with that from 
the rotation condition. The number of trajectories (or trials) plotted for participants JK, LM, RS, and CP is 1, 3, 1, and 5, respectively. A darker trajectory shade 
denotes more frequented trajectory.
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plan. The early practice phase would be characterized by high 
attentional and cognitive demands as the participants learn 
response-effect mapping for the KM. With trial and error, as 
they learn to move the cursor towards the goal, the visuospatial 
attention and working memory are actively engaged to strategize 
navigation to the goal position. Further practice allows for 
optimizing the trajectories to reach the goal position in an 
optimal number of moves. Once an optimal path is discovered 
in the late practice phase, the performance improvements occur 
predominantly due to motor learning. We speculate that motor 
chunking characterizes automatic and habitual control with 
reduced attention.

Grid-sailing task is a simple canonical paradigm that does 
not require any complicated experimental setting, yet it offers 
rich insights into the planning and sequencing behavior. Unlike 
other discrete sequencing tasks such as SRT, DSP, or m × n 
task, GST involves learning self-generated motor sequences. 
In GST, the sequential keypresses are not guided by an external 
series of stimuli but are instead self-initiated by a KM-specific 
internal model. The behavior in GST can be  organized into 
the “planning” and “executing” phases. These distinct phases 
enable natural dissociation of cognitive and motor strategies 
involved in internally-guided sequence learning. This is a unique 
and helpful characteristic of GST that can be  leveraged to 
investigate the role of different learning processes involved in 
internally-guided sequencing. The cognitive phase in GST can 
be distinctly associated with acquisition of the trajectory-
independent and KM-specific internal model, which is employed 
while navigating the grid. The learned KM could also enable 
a selective transfer of the learned model to other tasks where 
the KM is compatible. Therefore, GST can also be  used to 
study skill transfer and related behavioral phenomena. Moreover, 
the GST task paradigm affords variations in different aspects. 
The GST instances can differ in various factors such as grid-
size, start-goal (SG) positions used, KMs associated with the 
task, and the number of cursor movement directions. Owing 
to many possible variations in the GST paradigm, the instances 
cover a broad spectrum of grid-navigation tasks that vary 
across aspects such as the difficulty of solving, execution time 
required, and cognitive effort demanded—providing reasonable 
experimental control that is necessary to study different factors 
involved in sequence learning tasks.

CONCLUSION

Using GST as an exemplar paradigm of the grid-navigation 
task, we  provide evidence for cognitive and motor learning 
in internally-guided sequencing. In the Single-SG condition, 
we  show that the overall learning in GST is evident from the 
performance improvements in various behavioral measures. 
We  further show increasing dexterity on repeated execution 
of the same trajectories as evidence for motor learning. A 
rotation was introduced in the Single-SG condition to probe 
if the performance improvements can be  solely attributed to 
general motor learning. The performance degradation on the 
rotation trial suggests that the learning is not occurring only 

due to general motor learning. We  further hypothesized that 
cognitive learning contributes to the learning in GST. The role 
of such a cognitive learning process is confirmed by showing 
transfer-related performance improvements on the randomized 
and mixed order of previously unseen SG conditions in the 
Mixed-SG condition. We  show that the participants generalize 
and transfer a KM-specific internal model from the Single-SG 
condition to the Mixed-SG condition. We  further advance the 
use of grid-navigations tasks in investigating internally-
guided sequencing.

LIMITATIONS AND FUTURE DIRECTIONS

The experimental paradigm can be  modified to incorporate a 
within-subject control over the executed trajectories to probe 
motor chunking. Future work can also attempt to examine 
the differences in trajectory traversals in different conditions 
statistically. For example, a hypothetical measure of trajectory 
density can be used to understand the evolution of trajectories 
in Single-SG conditions. A categorical comparison of the 
trajectory features in Single-SG and Mixed-SG conditions can 
reveal further evidence for the “transfer” of KM-specific learning. 
The role of KM-specific learning can be  further validated by 
introducing a new KM on the same SG conditions. Future 
studies can also employ a retention task by extending the 
experimental task over a period of days to dissociate the 
cognitive and motor learning in GST. We  anticipate that the 
KM-specific internal model will be  retained longer than the 
fine-tuned motor movements specific to the trajectory. 
Consequently, we can expect to see that the participants quickly 
recall the learned KM and perform better than they had initially 
performed at the beginning of the task.
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