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This brief research report presents an experiment investigating how people interpret
quantities displayed in pictorial charts. Pictorial charts are a popular form of data
visualization in media. They represent different quantities with differently scaled pictures.
In the present study, 63 university students answered a 12-item questionnaire containing
three different pictorial charts. The study aimed to evaluate how individuals perceive
the quantities in the pictorial charts intuitively. Therefore, the students’ answers were
not rated as correct or incorrect. Instead, it was analyzed which functional relationship
between scale factor and estimated quantity best described people’s interpretation
of pictorial charts. The experiment showed that, on average, a model assuming a
quadratic relationship fitted best. This result deviates from research that found an
overgeneralization of linearity when students compare the areas of two mathematically
similar shapes. It may be that the routines for the interpretation of pictures differ
considerably depending on whether a person must calculate a quantity arithmetically
or is prompted to estimate the quantity based on visual perception.

Keywords: pictorial charts, illusion of linearity, problem-solving, cognitive processing, statistical literacy, data
visualization

INTRODUCTION

Data and data analyses play an important role in decision making in modern society. Consequently,
print media try to convey data of public relevance in graphically appealing and reader-friendly
data visualizations. These graphics are becoming increasingly popular, graphically elaborate,
and complex and are nowadays subsumed within the term information graphics or infographics
(e.g., Cairo, 2013).

A specific and popular form of an infographic is a pictorial chart (Huff, 1954). It uses a picture
related to the data to make the data presentation more aesthetically pleasing. Different quantities are
displayed by scaling the picture up or down. Figure 1, which compares the nitrogen oxide emissions
of different types of cars, provides an example of a pictorial chart. White clouds display the
threshold values for nitrogen oxide emissions, and gray clouds represent the cars’ actual emission
values. The “larger” the cloud, the greater the represented quantity of emissions.

An appealing graphical design for a chart can make data more accessible. However, graphical
features can create a distorting visual impression and mislead the reader. Therefore, various
countries’ curricula and standards in mathematics require students to have the ability to judge
statistical data visualizations and to be able to identify misleading data displays (e.g., National
Council of Teachers of Mathematics, 2000). Consequently, standardized testing includes the
evaluation of pictorial charts (cf. Figure 2). To evaluate whether a pictorial chart is misleading,
it is worth knowing how people interpret this form of data visualization. Do individuals base their
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interpretation on the real-life volume of the garbage can? Do they
consider the covered area on the paper? Or do they only compare
the height of the garbage cans?

First, this brief research report reflects from a theoretical
perspective upon how people interpret pictorial charts and
reviews empirical results from mathematics education and
psychology that could substantiate different assumptions.
Subsequently, the paper presents an empirical study investigating
how students interpret pictorially displayed quantities in pictorial
charts. Finally, in the “Discussion” section, the paper tries to
explain the different research results by suggesting that whether
people have to assess pictures analytically or perceptually might
have a substantial effect. Furthermore, it is argued that given
the increasing variety and importance of data visualization in
public life, mathematics education should pay more attention to
popular or novel forms of data visualizations.

THEORETICAL BACKGROUND

A pictorial chart is based on a similarity transformation.
A graphic designer uniformly scales a picture A by a factor to
generate a mathematically similar picture B. Tufte (2001) pointed
out that in data visualization, the visual representation should be
consistent with the numerical representation. For pictorial charts,
Tufte’s claim raises the question of how people interpret visual
representations and whether people’s interpretation is consistent
with the intended numerical representation.

Therefore, one can try to generate assumptions about how
people interpret pictorial charts by exemplarily analyzing an item
(Figure 2) from a standardized test of the National Assessment
of Educational Progress (NAEP). This item (National Assessment
of Educational Progress NAEP, 1992) represents two quantities
(the number of tons of trash produced in the United States in the
years 1960 and 1980) using two perspective drawings of a garbage
can. The students had to explain why the chart was misleading.
The expected answer was based on mathematical considerations
concerning the displayed objects’ volume in the real world. If
the length, width, and height of a three-dimensional object are
doubled, the volume increases eightfold. In other words, the
relationship between the scale factor and the volume is cubic.

While the mathematics of volume is clear, this might not be the
way people interpret the pictures of the garbage cans. If readers
perceptually evaluate pictures based on the area covered by ink,
the garbage can of 1980 extends over four times as much area as
the garbage can of 1960. Generally speaking, the area of a shape
quadruples if the shape’s length and width are doubled, due to
a quadratic relationship between the scale factor and the area.
There is also a third manner in which people could interpret the
pictorial chart. In Figure 2, one could argue that the garbage cans
are just replacing the bars of a bar chart to make the chart more
appealing to the reader. Therefore, it might be possible that the
reader, in the same way as when reading a bar chart, takes only
the garbage cans’ height into account.

This ambiguity begs the question whether empirical
research provides evidence of how readers evaluate pictorial
charts. Empirical research that explicitly addressed readers’

interpretation of pictorial charts could not be found. However,
research results from mathematics education and psychology
may substantiate some theoretical assumptions outlined above.

Results From Related Empirical
Research
Since most pictorial charts rely on displaying quantities via
representations of two- or three-dimensional objects, the reader’s
ability and strategies to deal with measures (length, area, and
volume) might influence the interpretation of pictorial charts.
However, the ability to calculate these measures exactly does not
play a significant role when interpreting pictorial charts. Instead,
the ability to estimate measures might be crucial.

One strategy for estimating measures is the reference point
strategy (Joram et al., 2005), that is, mentally comparing an object
whose measurement is known with an object whose measure has
to be estimated. When one estimates the length of a line by sight,
for example, the empirical results turned out to be relatively clear-
cut. Participants perceived lengths in a linear manner: that is,
a line twice as long as another line was perceived to be twice
as long (Stevens, 1975; Hartley, 1981). When a two-dimensional
object was used and the size had to be estimated, the results
were ambiguous. Stevens and Guirao (1963) used a square as the
stimulus and found that doubling the side of the square resulted
in a perceived apparent size 2.6 times as large. In two experiments
Schneider and Bissett (1988) found that people estimated areas
approximately correctly or slightly underestimated the area,
whereas the participants consistently underestimated volumes.
Based on his experiments, Morgan (2005) suggested that people
apply various heuristics for estimating areas by combining width
and height estimates. Investigating bubble charts, Raidvee et al.
(2020) concluded that the human visual system does not perceive
bubbles or discs in terms of their area but judges their size
closer to their radius or diameter. These results indicate that
people’s quantity estimation is not stable. Therefore, Joram et al.
(1998) concluded that “measurement estimation is a highly
volatile process, and easily influenced by the to-be-estimated
objects” (p. 417).

A further research strand that relates to the interpretation
of pictorial charts is research on problem-solving. In one
experiment, De Bock et al. (1998) asked seventh-graders to solve
word problems that required comparing areas. The students
had to calculate how many hours it would take to fertilize
a square piece of land with a side 600 m in length if a
square piece of land with a side 200 m in length took 8 h to
fertilize. The task was accompanied by scale drawings of the two
square pieces of land. The results showed that most students
assumed a linear relationship and answered 24 h; only 8% of
them detected the quadratic relationship and solved the item
correctly by answering 72 h. Solution rates for word problems
that required an area comparison of two circles (5%) or two
mathematically similar but irregular plane shapes (1%) were
even lower than the rates for comparisons based on squares. In
a replication study with tenth-graders, the solution rates were
higher but still low (square: 39%, circle: 21%, irregular shape:
7%). The assumption of a linear relationship in situations that
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FIGURE 1 | Pictorial chart of the nitrogen oxide emission of cars in a German magazine (Allgemeiner Deutscher Automobil-Club, 2017, p. 14). Copyright 2017 by
Allgemeiner Deutscher Automobil-Club. Reprinted with permission (Grenzwert Euro: threshold value Euro norm, realer Ausstoβ: actual emission).

are based on nonlinear relationships has been termed the illusion
of linearity. This phenomenon has been replicated in several
studies (e.g., De Bock et al., 2002; Vlahović-Štetić et al., 2010)
and could be demonstrated even among university students
(Esteley et al., 2010).

Present Study
In summary, the theoretical analyses and the empirical results
in mathematics education and psychology show that it is still

FIGURE 2 | Stimulus for a standardized test item in a task: “The picture above
is misleading. Explain why” (National Assessment of Educational Progress
NAEP, 1992). Material of the National Assessment of Educational Progress is
public domain.

unclear how people interpret pictorial charts. That is, the
question is the quantity Q2 that readers will assign to picture
B when a picture A with a known quantity Q1 is uniformly
scaled by a factor s and results in picture B. To evaluate
whether a pictorial chart is misleading, one should know how
people “read” a pictorial chart. Assuming that the processing
of pictorial charts in media is based on intuitive heuristics that
people quickly perform, the present study focuses on this System
1 (Kahneman, 2011). The study did not assess whether the
participants’ cognitive processes were correct or incorrect but
aimed to describe the participants’ perception non-judgmentally.
Therefore, the study investigated the functional relationship
between the scale factor and the individually perceived quantity.

Some assumptions could be derived from the presented
theoretical background. If readers apply an approximately
linear relationship (as discovered in research about the
overgeneralization of linearity) between the scaling factor and
the quantity Q2, it results in the rule Q2 ≈ s · Q1. If people
base their judgment on the perceptual aspects of interpreting
a picture as a two-dimensional object (cf. summarized research
above about the perception of areas), an approximately quadratic
relationship could be assumed, that is, Q2 ≈ s2 · Q1. If a pictorial
chart consists of perspective pictures of three-dimensional
objects (e.g., photographs or perspective drawings of garbage
cans), a spatial interpretation based on an approximately cubic
relationship is possible (Q2 ≈ s3 · Q1). The NAEP coding guide,
for example, evaluates this approach as the only correct solution
for interpreting three-dimensional pictures. Although these three
options would provide a clear-cut theoretical explanation for
their occurrence, different exponents (e.g., 1.6 or 2.4) in the
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power functions could not be ruled out. Therefore, it appears
reasonable to replace the exponent with a variable b so that the
rule results in the general equation Q2 = sb · Q1.

The research questions for this study were: (RQ1) When
one views a pictorial chart in which a quantity Q2 is displayed
via scaling a picture representing the known quantity Q1
with a scaling factor s, which value b in the power function
Q2 = sb · Q1 best describes a person’s interpretation of a
quantity Q2? (RQ2) Does the value b vary substantially between
persons? (RQ3) Does the value b depend on the picture? (RQ4)
Does the value b depend on whether the pictures were enlarged
or reduced?

MATERIALS AND METHODS

Participants
This study drew the participation of 63 mathematics teacher-
education students from a German university (primary and
secondary school education) with an average age of M = 21.5
(SD = 2.0). Since most of the students aspired to the primary
school teaching profession, female students predominated in the
sample (58 females, 5 males). The students had not received
instruction on the study’s topic, nor was the topic explicitly taught
in any course. The students were recruited during ordinary
course time and did not receive a financial incentive. Ethics
approval was obtained from the students.

Materials
The questionnaire consisted of 12 items (three testlets with four
items each). A specific picture formed the basis of every testlet.
The three pictures differed in their level of realism and the extent
to which they can be interpreted two- or three-dimensionally.
In the CO2 testlet, a line drawing of a cloud represented the
amount of carbon dioxide emitted by a factory. This line drawing
could be interpreted two-dimensionally as the cross-section of
a cloud. A three-dimensional interpretation was also possible
by taking into consideration the real-life nature of a cloud and
the overlapping lines. However, how deep the cloud is perceived
depends on the reader’s interpretation. In the Garbage testlet
(Figure 3), a photograph of a garbage can depicted the amount
of garbage produced by a household. The photograph was used
to stimulate a three-dimensional interpretation. In the Sugar
testlet, a perspective line drawing of a sugar lump in cavalier
projection displayed the amount of sugar a person consumes.
Like the Garbage testlet, the Sugar testlet should stimulate a three-
dimensional interpretation. A picture of a cloud, a garbage can,
or a sugar lump on the left-hand side displayed a base quantity
of 100 units in each testlet. On the right-hand side, the same
picture was uniformly scaled by a specific factor (e.g., 0.7 or
1.6, with the complete item booklet provided in Supplementary
Material, File 2, Chapter A). Different scale factors were used to
derive general rules from the data about the relationship between
scale factors and perceived quantities. The pictorial charts did
not contain an ordinate, and the pictures were not placed on a
horizontal baseline. The participants had to intuitively estimate
the quantity represented by the picture on the right because

FIGURE 3 | Item of the Garbage test translated into English: The garbage can
on the left is scaled by the factor 0.7.

the aim of the experiment was to determine the readers’ innate
interpretation of the pictorial chart. Each testlet comprised four
comparisons. The 12 items were presented in a fixed order (CO2,
Garbage, Sugar). The scale factor s in the experiment ranged
from 0.3 to 1.9.

Administration
The students answered the questionnaire with paper and pencil.
They were told that the questions dealt with intuitive estimation.
Hence, the students were asked to refrain from using a calculator
or a ruler and from performing calculations manually. It took the
students between 5 and 10 min to complete the questionnaire.

Data Analysis
Each of the three testlets contained four items, resulting in
12 items per person. The data analysis aimed to determine
the functional relationship between scale factor and a person’s
estimate. It was assumed that the estimation follows a power
function Q2 = sb · Q1 (cf., section “Theoretical Background”).
In the experiment, Q1 always equaled 100, so the equation
becomes Q2 = 100 sb. Taking logarithms of the equation, we
get: log( Q2

100 ) = b · log (s). Therefore, to determine the exponent
b, we apply a linear regression y = bx+ e with the logarithm
of the scale factor, log(s), as the independent variable x and
the logarithm of Q2 divided by 100, log( Q2

100 ), as the dependent
variable y, and e as the residual. In the equation y = bx+ e, the
value of the regression slope b equals the exponent b in the power
function. The regression intercept is zero.

The data had a multilevel structure because the responses were
nested within testlets and persons. Classical regression analysis
cannot account for the dependence on the responses within
persons. Therefore, multilevel models (cf. Gelman and Hill, 2006)
were applied to all analyses.

First, a two-level-approach (responses nested within persons)
was applied. To answer the first research question, an average
value for the exponent b for all participants across all items
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TABLE 1 | Descriptive information concerning the items.

Estimated quantity for Q2

Item No. Test Task Scaling factor If b = 1 (linear) If b = 2 (quadratic) If b = 3 (cubic) N M SD 95% CI

1 CO2 a 0.9 90 81 73 63 80.9 7.4 (79.0, 82.7)

2 b 1.3 130 169 220 62 177.5 59.6 (162.4, 192.7)

3 c 0.3 30 9 3 60 10.9 4.1 (9.8, 11.9)

4 d 1.6 160 256 410 63 290.2 98.3 (265.4, 314.9)

5 Garbage a 0.7 70 49 34 63 54.5 16.1 (50.4, 58.6)

6 b 1.5 150 225 338 62 189.3 47.0 (177.3, 201.2)

7 c 1.9 190 361 686 63 344.4 147.4 (307.2, 381.5)

8 d 0.5 50 25 13 62 28.4 12.0 (25.3, 31.4)

9 Sugar a 1.4 140 196 274 63 195.0 52.1 (181.9, 208.1)

10 b 0.8 80 64 51 63 67.9 13.2 (64.6, 71.2)

11 c 0.4 40 16 6 63 19.2 9.0 (16.9, 21.5)

12 d 1.8 180 324 583 63 365.6 180.9 (320.1, 411.2)

The six outliers were eliminated before calculating the descriptive statistics.

was estimated (Model 1: fixed slope). To evaluate whether the
exponent b varies among individuals (research question 2), a
value for the exponent b for every participant across all 12
items was determined (Model 2: random slope). In Model 3,
the testlet structure was taken into account (answers nested
within testlets and individuals). That is, this model estimated
whether the testlet (CO2, Garbage, and Sugar) had an effect on the
exponent b (research question 3). In Model 4, a further fixed effect
(enlargement or reduction) was added to Model 3 to evaluate
RQ4. A detailed description of the multilevel analyses can be
found in Supplementary Material, File 2, Chapter B.

Outliers were replaced with missing values before conducting
the multilevel analyses. A value was defined as an outlier if picture
B was scaled down, but a student estimated a value bigger than
100 and vice versa.

RESULTS

Every participant answered all 12 items, resulting in 756 item
responses (cf. descriptive statistics in Table 1). Six item responses
were identified as outliers and replaced with missing values.

Regarding the first research question, the aim was to identify
in the power function Q2 = 100 sb the exponent b that best
described the participants’ perception of the quantities in the
pictorial charts. Using logarithms of the estimation values and the
scale factors caused the slopes in the multilevel analyses to equal
the searched value b (cf. “Materials and Methods” section). The
first multilevel model (Model 1) with fixed slopes (i.e., assuming
that the value b did not vary among participants) resulted in a
value 1.92 for the exponent b, 95% CI (1.87, 1.96). The explained
variance in this model was 91% (Pseudo-R2). That is, on average,
the interpretation of the displayed quantities in a pictorial chart
followed approximately a quadratic relationship.

The second research question dealt with the question whether
the value b varied among participants. The second multilevel
model (Model 2) with random slopes showed that the exponent
b varied significantly among the participants, as a model

comparison between the first and second model showed. The
values ranged from the lowest value 1.4 to the highest value
2.7. Thirty-two of the participants (i.e., 51%) had an exponent
between 1.75 and 2.25, that is, an approximately quadratic
relationship. Several participants showed values in between two
whole numbers for the exponent b. Twenty-three participants
(37%) had an exponent between 1.25 and 1.75, and 8 participants
(13%) had exponents between 2.25 and 2.75.

RQ3 addressed the issue of whether the estimation process
depended on the picture in a pictorial chart. Therefore, in a three-
level model (Model 3), a testlet effect was estimated by assuming
a fixed effect of the testlet. This model fitted significantly better
than Model 2, χ2(1) = 100.1, p < 0.001, and the explained
variance was enhanced from 93.5 to 95.6%. Although the testlet
effect was significant, its size was rather small. This model’s
average value for the exponent b also was 1.92, 95% CI (1.83,
2.01). For the CO2 testlet, the value 0.04, 95% CI (0.01, 0.07) has
to be added to this exponent; for the Garbage testlet, the value
0.06, 95% CI (–0.10, –0.03), has to be subtracted, and for the Sugar
testlet, the value 0.02, 95% CI (–0.01, 0.05), has to be added.

Finally, the question was whether the estimation process was
influenced by whether the pictures were enlarged or reduced
(RQ 4). Model 4 did not improve the model fit in comparison
with Model 3, χ2(1) = 0.13, p = 0.72, and the fixed effect
(enlargement or reduction) did not significantly differ from zero,
95% CI (–0.09, 0.06). Detailed information about the results of
the multilevel analyses can be found in Supplementary Material,
File 2, Chapter B.

DISCUSSION

The study showed that the participants applied, on average,
an approximately quadratic relationship (b = 1.92) between
the scale factor and the estimated quantity. That is, generally,
the participants estimated the quantity in a pictorial graph
based on the area of the picture. The b-values, however,
differed among participants. None of the 63 participants could
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be identified to operate with a linear relationship or a cubic
relationship when dealing with pictorial charts. The majority
based their judgment on an approximately quadratic relationship
(51%). A considerable proportion of the students (37%) had
an estimation process in between a linear and a quadratic
relationship. These students might have intended to estimate
the area but did it in a biased manner because research has
shown many people underestimate areas (e.g., Stevens, 1975;
Raidvee et al., 2020). That means that the interpretation of
pictorial charts is probably based on the visual perception of
the ink-covered area rather than the result of an analytical
process. As for the research question on whether the picture
influences the estimation process, the experiment showed that
the exponent b varied among testlets, although the difference
was relatively small (between 1.84 and 1.95). Therefore, the type
of picture (i.e., a perspective or non-perspective line drawing
or a photograph) did not substantially influence the estimation
process, nor did it have an effect on whether the picture was an
enlargement or a reduction.

Within the context of the theoretical considerations presented
and prior empirical results from mathematics education and
psychology, the experiment revealed some surprising results.
First, the assumption that, in general, participants apply
spatial considerations to a two-dimensional picture of a three-
dimensional object cannot be corroborated. Second, the present
study’s results seem to deviate from the results of several
experiments that found a robust overgeneralization of linear
models when pictures were provided in problem-solving tasks.
However, the study’s empirical results align most closely with the
findings regarding the perception and estimation of areas.

These results raise the question whether the different results
from the research on the illusion of linearity and the present
experiment can be reconciled. In research concerning the
overgeneralization of linear models, the students were asked
to calculate the area or an indirect measure of the area (e.g.,
the time to fertilize a piece of land). The students had to
use arithmetic operations (e.g., addition and multiplication) to
solve the problem. Research has shown that students looked for
analogies when asked to solve a new problem (Gentner et al.,
2001). Proportional reasoning is often successful in mathematics.
Students seem to rely on this heuristic in mathematics even when
a closer look at the picture of the square of land could reveal
its incorrectness. In the present study, however, students were
requested to estimate the quantity of the pictures displayed based
on their perception. The participants were explicitly asked to
refrain from calculations.

The assumption that it matters whether students have to
estimate the quantity represented based on visual perception or
to calculate the quantities using arithmetic operations can be
supported by theories concerning information processing of texts
and pictures (e.g., Mayer, 2014). They assume that cognitive
processing differs according to whether it occurs on the symbolic
(e.g., words, texts, mathematical signs) or the pictorial channel.
In research detecting the illusion of linearity, students were urged
to work on the symbolic channel because symbolic information
was given (e.g., the length of the side of a square of land), and
calculations were required. In the present experiment, however,

the students were not provided with numerical information about
the figure’s length or width. They were nudged to process the
pictures on the pictorial channel and to assign quantities based on
their visual perception. Therefore, it seems reasonable to assume
that the processing channel has a decisive effect on the results.

With respect to the learning and teaching of mathematics,
the experiment showed that tasks such as those in Figure 2
are problematic when the aspect of “misleading” is only judged
theoretically as the NAEP coding guide does. The present
experiment showed that even mathematically inclined persons
did not base their quantity interpretations on real-world volume.
Therefore, students must be sensitized to this issue on a
more sophisticated level. However, further research in this field
is necessary to infer more specific knowledge that can be
taught in school about the interpretation of novel forms of
data visualizations.

However, some limitations should be mentioned. First, the
sample with mathematics teacher education students is selective.
The question is whether the findings are generalizable to different
samples (e.g., younger students or less mathematically educated
individuals). It could be possible that mathematically inclined
individuals interpret pictorial charts differently from people
without a mathematics background. Furthermore, there could
have been a priming effect, as the clouds were always presented
first and could have prompted an estimate based on areas.
Moreover, in future experiments, the picture’s effects in pictorial
charts should be investigated further by using diverse types of
pictures and varying them systematically. In a subsequent study,
the presented results should be replicated using a more diverse
sample and different pictures. A possible sequencing effect should
be controlled for by permuting the testlets. Furthermore, it would
be interesting to investigate whether providing a legend in a
pictorial chart would affect the reader’s interpretation.

CONCLUSION

Some conclusions can be drawn from the present study in
terms of the design of pictorial charts. Readers do not seem
to interpret two-dimensional pictures of three-dimensional
objects spatially. Therefore, chart designers probably should
refrain from using pictures of three-dimensional objects to
display quantities. With regard to the growing popularity of
infographics (e.g., Yau, 2011; Cairo, 2013) and software for
data visualizations (e.g., GapMinder), the investigation of how
individuals perceive these visualizations is also an important
educational aspect. Therefore, mathematics education should
also integrate teaching and research on nonstandard, novel forms
of data visualizations because they are becoming increasingly
prevalent in everybody’s life.
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