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Maximum deviation global discrimination index (MDGDI) is a new item selection method
for cognitive diagnostic computerized adaptive testing that allows for attribute coverage
balance. We developed the maximum limitation global discrimination index (MLGDI)
from MDGDI, which allows for both attribute coverage balance and item exposure
control. MLGDI can realize the attribute coverage balance and exposure control
of the item. Our simulation study aimed to evaluate the performance of our new
method against maximum global discrimination index (GDI), modified maximum GDI
(MMGDI), standardized weighted deviation GDI (SWDGDI), and constraint progressive
with SWDGDI (CP_SWDGDI). The results indicated that (1a) under the condition of
realizing the attribute coverage balance, MDGDI had the highest attribute classification
accuracy; (1b) when the selection strategy accommodated the practical constraints
of the attribute coverage balance and item exposure control, MLGDI had the highest
attribute classification accuracy; (2) adding the item exposure control mechanism to
the item selection method reduces the classification accuracy of the attributes of the
item selection method; and (3) compared with GDI, MMGDI, SWDGDI, CP_SWDGDI,
and MDGDI, MLGDI can better achieve the attribute-coverage requirement, control item
exposure rate, and attribute correct classification rate.

Keywords: balance attribute coverage, cognitive diagnostic computerized adaptive testing, attribute
discrimination index, item exposure control, mastery pattern correct classification rate

INTRODUCTION

Cognitive diagnostic assessment (CDA) is a recently popular assessment method in theoretical
studies on psychological testing. CDA was developed to measure cognitive skills (Leighton and
Gierl, 2007; Gierl et al., 2008). When based on the classical test theory (CTT), CDA provides
examinee scores. When based on the multidimensional item response theory, CDA provides
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multidimensional ability scores, which details the advantages and
disadvantages of the examinee in a given content domain, aiding
the assessment of the examinees by administrators (Yao and
Boughton, 2007; Lee et al., 2012).

Interest in cognitive diagnosis is largely motivated by the need
for formative assessments. Computerized adaptive testing (CAT)
combines test theory with computer technology to improve
testing efficiency (Weiss, 1982), which has become a promising
method in psychological and educational measurement. In
addition, items in CAT have been executed in examinations for
items that have matched the estimating ability for candidates
(Mao and Xin, 2013; Chang, 2015). Recently, to maximize the
benefits of both CDA and CAT, researchers have attempted to
combine CDA with CAT and named it cognitive diagnostic
CAT (CD-CAT) (Xu et al., 2003; McGlohen and Chang,
2008; Cheng, 2009a,b). CD-CAT, which has the characteristics
of a tailor-made test, is promising and will be influential
in future educational practices. CD-CAT has received an
increasing scholarly attention worldwide (Kang et al., 2017;
Huebner et al., 2018).

The goal of CAT is to conduct individualized item selection
tests based on the most currently estimated ability of the
participant; thus, the determination of an optimal item selection
method is key in CAT. Although many item selection strategies
have been constructed in the item response theory–based CAT,
few applicable item selection strategies are currently available in
CD-CAT. Therefore, this study aimed to construct a selection
strategy that is suitable for CD-CAT. Based on the difference
distribution criteria of the potential attribute-mastery pattern
at the item level, researchers have proposed a selection criteria,
such as the Kullback–Leibler (KL)-based global discrimination
index (GDI), Shannon entropy procedure (Xu et al., 2003), and
the posterior-weighted KL information (PWKL; Cheng, 2009a,b).
However, the aforementioned item selection methods focus on
the maximum information of the item without considering the
attribute coverage balance of the test and exposure control of the
item. Therefore, the aforementioned item selection methods face
the following two problems. First, attribute coverage imbalance
may cause the test results to be unreliable. Cheng (2010)
also pointed out that it is of great importance to ensure
that each attribute in the test has been measured adequately
or the reliability of the test will be reduced. Second, an
unevenly applied item bank will result in the following two
situations: (1) some items increase their exposure rate in a
different test, which endangers the security of the item bank,
and (2) if some items are applied adequately, the item bank
is poorly utilized and resources (including labor) are wasted.
Although CD-CAT is increasingly used in the classroom, test
security is not fundamental to the CD-CAT practices, whereas
security and property balance are critical to CD-CAT developers.
Specifically, the item bank must be secured because CD-CAT
is a complex and expensive project. As for every item written
for CD-CAT, it must be based on a complex blueprint of
cognitive requirements. In addition, when specific items are
used for each test, practice or memory effects may produce
invalid diagnostic information for candidates who has taken
the test repeatedly. Improving the utilization rate of an item

bank also constitutes a research problem for the practical
application of CD-CAT.

To balance the attribute coverage in CD-CAT, Cheng (2010)
developed the modified maximum global discrimination index
(MMGDI) to build the item selection method using the number
of items that measure each attribute as the MMGDI did. The
MMGDI method is based on the global discrimination index
(GDI) developed by Xu et al. (2003). Although the MMGDI
method achieves the balance in attribute coverage and improves
the accuracy of the attribute-mastery pattern, MMGDI does not
consider the exposure rate of items, which leads the MMGDI
to repeatedly select some items in different tests. Lin and
Chang (2018) proposed a method, the constraint progressive
with standardized weighted deviation GDI (CP_SWDGDI),
which allows for attribute coverage balance and exposure
control (named considering the attribute balancing and exposure
control). Although CP_SWDGDI considers both the attribute
coverage balance and exposure control, the CP_SWDGDI
selection method fails under some conditions, such as when the
attribute coverage balance is satisfied.

The objective of this article is to propose a maximum deviation
(MD) index and a maximum limit (ML) index, and combine
them with GDI for use in CD-CAT. We first developed an
item selection method MDGDI, which can achieve attribute
coverage balance. Subsequently, we added an exposure control
mechanism based on MDGDI and developed a CD-CAT item
selection method MLGDI, that can achieve attribute coverage
balance and items exposure control. The rest of this paper is
organized as follows.

First, we discuss the CDM used in this study and introduce
the four existing item selection algorithms for CD-CAT. Next,
we introduce the MDGDI and MLGDI methods. We then
evaluate MDGDI and MLGDI against the existing item selection
algorithms via two simulation studies. Finally, we discuss the
consequences of the simulation results and provide suggestions
for further research.

REDUCED REPARAMETERIZED UNIFIED
MODEL

The reduced reparameterized unified model (RRUM) is used in
the current study (Hartz, 2002; Hartz and Roussos, 2008), because
previous studies have demonstrated that the RRUM is very useful
for formative assessment in practice (Wang et al., 2011). The item
response function of the RRUM is defined as,

p(Yij = 1|ai) = π
∗

j

∏
k∈Aj

r
∗(1−aik)qjk
jk

where, 0 < π
∗

j < 1 is the probability of a correct answer for
an examinee who has mastered all the attributes required for
item j, and 0 < r

∗

jk < 1 is a penalty parameter that reduces the

probability of a correct response by a factor of r
∗

jk for examinees
who do not possess attribute k.
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EXISTING ITEM SELECTION METHODS

Global Discrimination Index (GDI)
The KL information was first introduced to CAT research
in Chang and Ying’s (1996) groundbreaking paper on global
information. The KL information has since been applied to
various studies on CAT. For example, CAT was established
based on a non-parametric item response theoretical model (Xu
and Douglas, 2006), and CAT has been applied to classification
(Weissman, 2007) and cognitive diagnostic applications
(McGlohen and Chang, 2008; Cheng, 2009a,b). The KL
information, which measures the distance or divergence between
two probability distributions f (x) and g(x) (Cover and Thomas,
1991; Kaplan et al., 2015), is defined as follows:

d[f , g] = Ef

[
log

[
f (x)

g(x)

]]
In CD-CAT, information refers to the ability of an item to
distinguish between a pair of attribute patterns. In this sense,
KL information in diagnostic classification reflects the distance
between two conditional distributions, that is, f (Xij|âi) is the
distribution on the currently estimated attribute under condition
Xij, and f (Xij|at) is the distribution in the real state under
condition Xij. This logic gives the KL equation of CD-CAT:

KLj(âi||at) =

1∑
x=0

log
(

p(Xij = x|âi)

p(Xij = x|at)

)
p(Xij = x|âi)

Xu et al. (2003), who considered that the true potential is
unknown and that 2k possible states exist, proposed the GDI with
the following formula:

GDIj(âi) =

2k∑
c=1

[ 1∑
x=0

log
(

p(Xij = x|âi)

p(Xij = x|âc)

)
p(Xij = x|âi)

]
This index is the sum of the KL distances between p(Xij|âi) and
all possible potential states p(Xij|âc). Items with large GDI values
have a correspondingly high recognition between the estimating
attribute patterns and all other possible cognitive profiles. An
item with a maximum GDI (MGDI) will be administered as the
next item for a specific examinee. In Xu et al. (2003), the MGDI
method exhibited a good performance in restoring the pattern of
student attribute mastery.

The Maximum Modified Global
Discrimination Index (MMGDI)
The disadvantage of the GDI approach is that it does not consider
property balancing or exposure control. Cheng and Chang (2009)
introduced the maximum priority index (MPI) method for the
selection of items that satisfy the constraints in the IRT-based
CAT. In a subsequent study, Cheng (2010) extended the MPI
method to CD-CAT to achieve balance attribute override. The
attribute coverage balance index (ABI) is defined as follows:

ABIj =

K∏
k=1

(
Bk − bk

Bk
)qjk

where, Bk is the lower bound of the number of items required to
measure attribute k, bk is the number of items measuring attribute
k that has already been selected, and qjk is the element of the Q
matrix. Cheng (2010) added the ABI to GDI and constructed the
MMGDI item selection method, which is defined as follows:

MMGDIj(âi) =

K∏
k=1

(
Bk − bk

Bk

)qjk

.GDI(âi)

Modified maximum GDI makes a GDI-based strategy more
precise. Specifically, MMGDI attributes in the balance tends only
toward the choice of measurement index in the selected item of
a single attribute (Mao and Xin, 2013), and, in ABI, there may
be situations where negative and negative multiply to be positive,
which affects the efficiency of the item selection method.

The Standardized Weighted Deviation
GDI Method (SWDGDI)
Lin and Chang (2018) proposed a new attribute-balancing
item selection criterion, namely the Weighted Deviation GDI
(WDGDI), which multiplies GDI by the Weighted Deviation
Index (WD). To place the WD and the GDI metrics on an equal
footing, they standardized the WD and GDI values and named it
the standardized WDGDI (SWDGDI). The SWDGDI method is
defined as follows:

SWDGDIj(âi) =

(
Max(WDj)−WDj

Max(WDj)−Min(WDj)

)
×

(
GDIj(âi)−Min(GDIj(âi))

Max(GDIj(âi))−Min(GDIj(âi))

)

WDj =

K∑
k=1

(WkDjLk)+

K∑
k=1

(WkDjUk)

DjLk =

{
Lk − qk, qk < Lk
0, qk ≥ Lk

DjUk =

{
qk − Uk, qk ≥ Uk
0, qk < Uk

where, Wk is the weight for the kth attribute, and DjLk and DjUk
correspond to the positive deviations from the minimal (i.e.,
lower boundary) and maximal (i.e., upper boundary) numbers,
respectively, of the items required to assess the kth attribute when
item j is included in the test. For each constraint k, DjLk is
defined as (Lk − qk)and DjUk is defined as (Uk − qk), where Lk
and Uk, respectively, denote the lower and upper bounds for
the kth attribute constraint. The term qk represents the expected
number of items measuring the kth attribute that would have been
obtained if item candidate j was included in the test.

With the attribute balancing considered, the largest SWDGDI
item is selected first in the test rather than the GDI’s largest
project.

The Constraint Progressive With
SWDGDI (CP_SWDGDI)
In order to balance the attribute coverage and control the item
exposure rate, Lin and Chang (2018) adopted a progressive
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exposure control algorithm in SWDGDI. The Constrained
Progressive Algorithm is described as follows:

P_INFOj =

(
1−

X
L

)
Rj +

X
L
× RjI

Rj = U(0, max(information)) RjI = U(LBj, UBj)

LBj = Infoj − (Infoj −Min)/s UBj = Infoj

+(Max− Infoj)/s

In the progressive exposure control algorithm constructed by
Lin and Chang (2018), the adjustment information interval
parameter s was added. However, with regard to practical
applications, Lin and Chang (2018) offered no specific
suggestions for determining the value of s. Therefore, the
appropriate value of s may differ between the conditions and
number of attributes, which makes determining the value of s
difficult in practical applications.

When replacing Infoj with SWDGDIj, the CP_SWDGDI
became:

CP_SWDGDIj(âi) =
r_ max

rj

×

[(
1−

X
L

)
Rj +

X
L
× RjI

]
RjI = U(LBj, UBj)

LBj = SWDGDIj(âi)− (SWDGDIj(âi)−Min)/s

UBj = SWDGDIj(âi)+ (Max− SWDGDIj(âi))/s

where, r_max is the maximum exposure rate for the title and rj is
the current exposure rate for the item.

PROPOSED ITEM SELECTION
METHODS

Maximum Deviation Index With GDI
(MDGDI)
In order to make all the attributes relatively balanced throughout
the test and to reduce the tendency of the selection strategy
to choose certain types of items more often due to the index
added, the maximum deviation index (MD) was developed.
MD limits the difference between the maximum and minimum
measurement times of an attribute within a certain range. The
definition of MD is as follows:

MDj =

{
1, max(qjk)−min(qjk) ≤ LB
0, max(qjk)−min(qjk) > LB

where, LB is the lowest number of attributes, qjk is the number of
attributes to be investigated if the next item is j, and MD is the
deviation index.

Now the maximum deviation global discrimination index
(MDGDI) becomes:

MDGDIj = MDj × GDIj

The item that yields the largest MDGDI is offered for a specific
examinee as the next item.

Combining MD Index and Limited
Exposure Control Index With GDI
(MLGDI)
Although CP_SWDGDI considers both the attribute coverage
balance and exposure control in the selection strategy, for the
exposure control part of CP_SWDGDI, the variablesmust be
established by the manager themself, and the appropriate s value
may differ under different conditions, which makes it difficult to
determine the value of s.

Limiting Exposure Index
In this study, we proposed a limiting exposure index to control
the exposure rate of items. The idea of limiting exposure index
was built upon with the aims of (1) eliminating the need to
determine the crucial parameter s in the random part and (2)
making the exposure index more concise. The limit exposure
index is comprised of two parts: the random part and the limit
maximum exposure. The random part is based on the idea of
asymptotic behavior, and the amount of information in item J
after increasing the random part is expressed as RIj, where RIj =

U(LIj, UIj) and RIj is generated randomly from the uniform
distribution U(LIj, UIj).

LIj = GDIj − (x/L)× (GDIj −min(GDI))

UIj = GDIj + (x/L)× (max(GDI)− GDIj)

where, GDI is the GDI information of the remaining items in
the item bank; x is the current test length; L is the maximum
test length; and LIj and UIj are the lower bound and upper line
of U(LIj, UIj), respectively. As the length of the test increases,
LIj and UIj approach the original GDIj, and the random
RIj approaches GDIj. Therefore, the information of the items
becomes more accurate.

In addition, the component that limits the maximum exposure
rate is as follows,

Lrj

{
1, rj < r
0, rj ≥ r

where, r is the maximum exposure rate and rj is the current
exposure rate of item j. If the exposure rate rj of the next problem
j is greater than or equal to the maximum exposure rate r of the
problem, then Lrj = 0; if rj is less than r, then Lrj = 1.

To maximize the participant’s exposure rate restrictions, the
GDI item selection method was applied with the limited exposure
index as follows:

LGDIj = Lrj × RIj

Combining MD Index and Limited Exposure Control
Index
According to the aforementioned MD index and limited exposure
index, this study proposed the maximum limitation global
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discrimination indexes that considers both the attribute coverage
balance and exposure control as follows:

MLGDIj = MDj × LGDIj

During the MLGDI procedure, an item with the maximum
MLGDI value will be selected for administration.

SIMULATION STUDY

Study I
Study I is a simulation conducted to investigate the performance
of MDGDI against GDI, MMGDI, and SWDGDI.

Item Pools
Item pools were constructed based on the study of Wang et al.
(2020). Three item pools were designed in this study, denoted
as the low discrimination (LD), high discrimination (HD), and
hybrid discrimination (HyD) item pools, respectively. Each item
pool contained 775 items and measured five attributes in total
(Wang et al., 2011; Huebner et al., 2018). In the LD item
pool, item parameters π

∗

j and r
∗

jk were generated from uniform
distributions U(0.75, 0.95) and U(0.15, 0.50), respectively. In
the HD item pool, π

∗

j and r
∗

jk were generated from uniform
distributions U(0.75, 0.95) and U(0.05, 0.40), respectively. In
the HyD item pool, π

∗

j and r
∗

jk were generated from uniform
distributions U(0.75, 0.95) and U(0.05, 0.50), respectively. Table 1
represents the descriptive statistics of item parameters of LD
item pool, HD item pool, and HyD item pool.

Examinee Populations
Three examinee populations were generated, each containing
3,200 examinees. The first population (denote as Unif) assumed
that the Attribute Mastery Pattern (AMP) of each examinee was
generated from the uniform distribution of 32 possible pattern
profiles with a probability of 1/32. In this way, each AMP had 100
examinees; meanwhile, each examinee had a 0.5 chance to master
each attribute. Considering that correlations among attributes
is common in practice, a multivariate normal distribution was
used to describe the relationship among attributes for the second
and third populations (denote as Norm). In these two groups,
the mastery probabilities for the five attributes are defined as
0.45, 0.50, 0.55, 0.60, and 0.65, respectively. The correlations
between attributes were set at 0.5 for the second population (low
correlation) and 0.8 for the third population (high correlation).
Table 2 represents the frequencies of examinees who possess each
possible number of attributes.

Constraints of Attribute-Balance Coverage
The minimum measurement time of each attribute was
Bk = 3. The s parameter in CP_SWDGDI was 1.6,
r_max = 0.2 and LB = 3.

We generated a total of 27 conditions in this study (3 item
pools× 3 examinee populations× 3 item selection methods). We
fixed the number of items in the test to have 20 in all conditions.
The first item was selected randomly from the item pool, with
a maximum a posteriori (MAP) method used to estimate the

examinee’s AMP, and the prior information of AMP assumed
to follow a uniform distribution. The study procedures were
implemented by the R software.

Evaluation Criteria
We evaluated the methods with respect to six criteria: attribute
correct classification rate (ACCR), average marginal match rate
(AAMR), mastery pattern correct classification rate (PCCR),
item-bank exposure rate χ2, test overlap rate (TOR), and
maximum exposure rate. The computation of the first five criteria
is as follows:

ACCRk =

N∑
i=1

I(̂aik = aik)/N

AAMR =
K∑

k=1

N∑
i=1

I(̂aik = aik)/(N∗K)

PCCR =
N∑

i=1

I(̂ai = ai)/N

TOR =
N ×

∑Nitem
j=1 er2

j

(N − 1)× L
−

1
N − 1

χ2
=

Nitem∑
j=1

(erj − J/Nitem)2/(J/Nitem)

where, α̂i and ai are the real and estimated values, respectively,
of the attribute of participant i mastering the pattern, I(...)

TABLE 1 | Descriptive statistics of item parameters of the LD, HD,
and HyD item pools.

π∗

j r∗
1 r∗

2 r∗

3 r∗
4 r∗

5

LD item pool Min 0.750 0.151 0.152 0.152 0.151 0.151

Mean 0.850 0.327 0.323 0.325 0.326 0.324

Max 0.950 0.500 0.499 0.499 0.499 0.497

SD 0.058 0.100 0.101 0.103 0.100 0.100

HD item pool Min 0.750 0.051 0.050 0.052 0.051 0.052

Mean 0.850 0.229 0.224 0.230 0.226 0.225

Max 0.950 0.399 0.399 0.398 0.399 0.397

SD 0.058 0.101 0.102 0.100 0.102 0.101

HyD item pool Min 0.750 0.051 0.052 0.052 0.053 0.050

Mean 0.849 0.273 0.268 0.279 0.275 0.275

Max 0.950 0.499 0.499 0.497 0.499 0.499

SD 0.057 0.127 0.133 0.129 0.129 0.135

LD item pool, low discrimination item pool; HD item pool, high discrimination item
pool; HyD item pool, hybrid discrimination item pool.

TABLE 2 | Frequencies of examinees exhibiting each possible number of
attributes in each population.

Number of attributes 0 1 2 3 4 5

Number of examinees Unif 100 495 999 1,005 494 107

Norm-0.5 208 338 400 541 691 1,022

Norm-0.8 486 270 265 301 431 1,447
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is an indicator function. A higher ACCR and AMMR value
indicate a more accurate estimate of each participant attribute.
A higher PCCR value indicates a more accurate estimate of the
participant’s overall knowledge status; erj is the exposure rate of
item j, Nitem is the size of the item bank, χ2 is the exposure rate
index of an item, and TOR is the overlapping rate index of the
test. The smaller the values of χ2 and TOR are, the more fully
and uniformly the item strategy utilizes the item bank.

Results
Table 3 compares the recovery rate of each attribute and
of the entire profile obtained from the four item selection
methods (GDI, MMGDI, SWDGDI, and MDGDI). Clearly,
the MMGDI, SWDGDI, and MDGDI methods outperformed
the GDI method especially in the entire pattern recovery

rate. This was because recovering the entire profile requires
correctly recovering every attribute and gain the attribute level
aggregates. This is in line with Cheng (2010) and Lin and Chang
(2018). Among the four methods, the MDGDI method was
superior. Besides, all of the methods performed best in the HD
item pool, followed by the HyD item pool, and the LD item
pool was the worst.

Study II
Study II evaluated the performance of MLGDI, which had
the item exposure control mechanism and was based on
MDGDI, against competing item selection strategies. The results
of Study 1 indicated that when the test termination rule
is reached, MDGDI has the highest classification accuracy

TABLE 3 | Accuracy of the attribute classification for five attributes.

Item selection method Attribute (ACCR) AAMR PCCR

A1 A2 A3 A4 A5

HD-unif GDI 0.910 0.814 0.975 0.949 0.956 0.921 0.642

MMGDI 0.968 0.964 0.965 0.976 0.968 0.968 0.853

SWDGDI 0.937 0.867 0.969 0.945 0.959 0.935 0.688

MDGDI 0.990 0.984 0.992 0.991 0.990 0.989 0.953

HD-norm-0.5 GDI 0.946 0.854 0.856 0.901 0.942 0.900 0.598

MMGDI 0.978 0.969 0.976 0.973 0.982 0.976 0.887

SWDGDI 0.962 0.944 0.948 0.944 0.967 0.953 0.778

MDGDI 0.991 0.988 0.991 0.991 0.995 0.991 0.959

HD-norm-0.8 GDI 0.833 0.871 0.882 0.939 0.907 0.886 0.592

MMGDI 0.967 0.971 0.964 0.980 0.970 0.971 0.864

SWDGDI 0.947 0.957 0.952 0.967 0.965 0.958 0.800

MDGDI 0.989 0.994 0.991 0.993 0.990 0.991 0.962

LD-unif GDI 0.973 0.852 0.982 0.913 0.821 0.908 0.599

MMGDI 0.955 0.946 0.964 0.937 0.939 0.948 0.769

SWDGDI 0.964 0.921 0.972 0.922 0.901 0.936 0.728

MDGDI 0.972 0.963 0.978 0.960 0.960 0.967 0.868

LD-norm-0.5 GDI 0.866 0.914 0.914 0.950 0.793 0.887 0.541

MMGDI 0.964 0.959 0.959 0.960 0.950 0.958 0.815

SWDGDI 0.928 0.944 0.949 0.953 0.908 0.936 0.715

MDGDI 0.977 0.975 0.981 0.985 0.967 0.977 0.900

LD-norm-0.8 GDI 0.912 0.866 0.885 0.913 0.935 0.902 0.595

MMGDI 0.958 0.960 0.958 0.954 0.973 0.961 0.819

SWDGDI 0.941 0.933 0.932 0.929 0.954 0.938 0.709

MDGDI 0.965 0.970 0.974 0.964 0.985 0.972 0.877

HyD-unif GDI 0.937 0.908 0.983 0.813 0.970 0.922 0.648

MMGDI 0.969 0.967 0.966 0.953 0.963 0.964 0.837

SWDGDI 0.946 0.953 0.975 0.865 0.970 0.942 0.728

MDGDI 0.985 0.990 0.989 0.977 0.988 0.986 0.938

HyD-norm-0.5 GDI 0.893 0.872 0.948 0.849 0.926 0.897 0.593

MMGDI 0.958 0.970 0.975 0.971 0.973 0.970 0.859

SWDGDI 0.935 0.947 0.964 0.940 0.963 0.950 0.764

MDGDI 0.988 0.993 0.990 0.989 0.991 0.990 0.953

HyD-norm-0.8 GDI 0.846 0.873 0.950 0.938 0.912 0.904 0.642

MMGDI 0.968 0.963 0.976 0.978 0.972 0.971 0.864

SWDGDI 0.949 0.930 0.975 0.971 0.965 0.958 0.803

MDGDI 0.984 0.993 0.995 0.997 0.994 0.993 0.964
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TABLE 4 | Accuracy of the attribute classification for five attributes.

Item selection method Attribute (ACCR) AAMR PCCR

A1 A2 A3 A4 A5

HD-unif GDI 0.910 0.814 0.975 0.949 0.956 0.921 0.642

CP_SWDGDI 0.931 0.924 0.937 0.943 0.926 0.932 0.709

MLGDI 0.981 0.973 0.986 0.987 0.971 0.979 0.911

HD-norm-0.5 GDI 0.946 0.854 0.856 0.901 0.942 0.900 0.598

CP_SWDGDI 0.910 0.931 0.930 0.931 0.929 0.926 0.676

MLGDI 0.985 0.984 0.988 0.988 0.993 0.988 0.945

HD-norm-0.8 GDI 0.833 0.871 0.882 0.939 0.907 0.886 0.592

CP_SWDGDI 0.924 0.918 0.938 0.932 0.931 0.929 0.681

MLGDI 0.987 0.988 0.986 0.989 0.988 0.988 0.944

LD-unif GDI 0.973 0.852 0.982 0.913 0.821 0.908 0.599

CP_SWDGDI 0.903 0.914 0.919 0.906 0.903 0.909 0.643

MLGDI 0.956 0.949 0.967 0.939 0.944 0.951 0.811

LD-norm-0.5 GDI 0.866 0.914 0.914 0.950 0.793 0.887 0.541

CP_SWDGDI 0.895 0.903 0.904 0.900 0.886 0.898 0.580

MLGDI 0.968 0.976 0.963 0.973 0.952 0.966 0.859

LD-norm-0.8 GDI 0.912 0.866 0.885 0.913 0.935 0.902 0.595

CP_SWDGDI 0.890 0.879 0.897 0.902 0.908 0.895 0.555

MLGDI 0.963 0.960 0.969 0.961 0.974 0.965 0.850

HyD-unif GDI 0.937 0.908 0.983 0.813 0.970 0.922 0.648

CP_SWDGDI 0.923 0.918 0.927 0.913 0.912 0.919 0.658

MLGDI 0.973 0.978 0.980 0.964 0.971 0.973 0.885

HyD-norm-0.5 GDI 0.893 0.872 0.948 0.849 0.926 0.897 0.593

CP_SWDGDI 0.914 0.911 0.927 0.926 0.924 0.921 0.653

MLGDI 0.982 0.977 0.991 0.984 0.986 0.984 0.929

HyD-norm-0.8 GDI 0.846 0.873 0.950 0.938 0.912 0.904 0.642

CP_SWDGDI 0.903 0.912 0.930 0.919 0.919 0.917 0.642

MLGDI 0.978 0.986 0.990 0.988 0.988 0.986 0.934

compared with MGDI, MMGDI, and CP_SWGDI. MLGDI
is a new item selection method based on MDGDI with an
additional exposure control mechanism, whereas CP_SWGDI
is a new item selection method based on SWGDI with an
additional exposure control mechanism. We expect MLGDI
to have the highest attribute classification accuracy in MGDI,
CP_SWGDI, and MLGDI when the test satisfies the test
termination rule.

Study II was conducted to investigate the performance of
MLGDI against CP_SWDGDI and GDI. The data generation and
evaluation criteria are the same as study I.

Results
Table 4 lists the estimates of ACCR, AAMR, and PCCR in each
condition. The MLGDI stands out in both the recovery rate of
each attribute and the entire profile, followed by CP_SWDGDI.
As evident in Table 4, compared with the PCCR of CP_SWDGDI
(which also includes an exposure control mechanism), the
PCCR of MLGDI increased by approximately 0.15–0.30. Table 4
also indicates that when the test sample reached the test
termination condition, MLGDI exhibited the highest accuracy in
attribute classification.

MLGDI Can Reduce the Participant’s
Exposure Rate of MDGDI and Yield a
High Accuracy in the Attribute
Classification
Table 5 presents the exposure indicators of each item under
the different examinee populations, item pools, and six item
strategies (MGDI, MMGDI, SWDGDI, CP_SWDGDI, MDGDI,
and MLGDI). It is worth noting that, as the exposure control
index was added to the MLGDI, the decrease in PCCR was
relatively small compared to MDGDI which has the highest
PCCR comparing to the other selection item methods, but
result in a better item bank usage. As detailed in Table 5,
the chi-square value of the item-bank exposure rate of the
four item selection strategies without exposure restriction
exceeded 110, the TOR exceeded 0.15, and the maximum
item exposure rate reached >0.50. Although the accuracy of
the MDGDI’s attribute classification was the highest among
the six item strategies, the exposure rate of the relevant item
bank was also higher than those of the other five strategies.
For example, LD-norm-0.5, the chi-square value of MDGDI’s
exposure rate was as high as 250, the TOR was as high
as 0.349, and the maximum exposure rate of the title was
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TABLE 5 | Item exposure of each item selection method for five attributes.

Item selection
method

Index

χ2 TOR max_expose PCCR

HD-unif GDI 125.444 0.187 0.764 0.642

MMGDI 302.007 0.415 1.000 0.853

SWDGDI 121.937 0.183 0.566 0.688

MDGDI 326.991 0.448 0.936 0.953

CP_SWDGDI 0.025 0.026 0.030 0.709

MLGDI 75.726 0.123 0.190 0.911

HD-norm-
0.5

GDI 112.473 0.171 0.574 0.598

MMGDI 263.488 0.366 1.000 0.887

SWDGDI 139.819 0.206 0.433 0.778

MDGDI 250.257 0.349 0.753 0.959

CP_SWDGDI 0.031 0.026 0.032 0.676

MLGDI 75.008 0.122 0.190 0.945

HD-norm-
0.8

GDI 122.464 0.184 0.458 0.592

MMGDI 253.052 0.352 1.000 0.864

SWDGDI 181.618 0.260 0.488 0.800

MDGDI 264.183 0.366 0.660 0.962

CP_SWDGDI 0.038 0.026 0.032 0.681

MLGDI 78.197 0.126 0.190 0.944

LD-unif GDI 159.785 0.232 0.786 0.599

MMGDI 297.878 0.410 1.000 0.769

SWDGDI 136.547 0.202 0.595 0.728

MDGDI 291.227 0.401 0.893 0.868

CP_SWDGDI 0.024 0.026 0.030 0.643

MLGDI 67.731 0.113 0.190 0.811

LD-norm-
0.5

GDI 111.453 0.169 0.533 0.541

MMGDI 284.401 0.393 1.000 0.815

SWDGDI 141.231 0.208 0.480 0.715

MDGDI 235.690 0.330 0.693 0.900

CP_SWDGDI 0.032 0.026 0.031 0.580

MLGDI 72.465 0.119 0.190 0.859

LD-norm-
0.8

GDI 146.151 0.214 0.488 0.595

MMGDI 270.456 0.375 1.000 0.819

SWDGDI 179.267 0.257 0.491 0.709

MDGDI 253.893 0.353 0.642 0.877

CP_SWDGDI 0.036 0.026 0.033 0.555

MLGDI 79.315 0.128 0.190 0.850

HyD-unif GDI 178.761 0.256 0.843 0.648

MMGDI 250.533 0.349 1.000 0.837

SWDGDI 148.291 0.217 0.729 0.728

MDGDI 301.685 0.415 0.918 0.938

CP_SWDGDI 0.029 0.026 0.030 0.658

MLGDI 72.495 0.119 0.190 0.885

HyD-norm-
0.5

GDI 128.105 0.191 0.567 0.593

MMGDI 260.627 0.362 1.000 0.859

SWDGDI 151.950 0.222 0.429 0.764

MDGDI 263.093 0.365 0.691 0.953

(Continued)

TABLE 5 | Continued

Item selection
method

Index

χ2 TOR max_expose PCCR

CP_SWDGDI 0.038 0.026 0.032 0.653

MLGDI 80.168 0.129 0.190 0.929

HyD-norm-
0.8

GDI 151.469 0.221 0.525 0.642

MMGDI 286.640 0.395 1.000 0.864

SWDGDI 197.969 0.281 0.480 0.803

MDGDI 274.848 0.380 0.682 0.964

CP_SWDGDI 0.037 0.026 0.032 0.642

MLGDI 79.190 0.128 0.190 0.934

as high as 0.753. MLGDI was the selected item strategy
that integrated exposure inhibition based on MDGDI. As
indicated in Table 5, MLGDI could effectively reduce the
exposure index of each item while considering the high accuracy
of attribute classification. Similarly, the chi-square value of
MLGDI’s item exposure rate was 75, which was 175 less than
that of MDGDI. The TOR of MLGDI was 0.122, which was
less than that of MDGDI by 0.227. The maximum exposure
rate of the MLGDI’s item was 0.190, which was 0.563 lower
than that of MDGDI. With respect to the mastery pattern
correct classification rate, the PCCR value of MDGDI was
0.959, and that of MLGDI was 0.945. The mastery pattern
correct classification rate decreased by 0.014, and the attribute
classification accuracy remained high. In addition, the MLGDI’s
mastery pattern correct classification rate remained higher
than those of MGDI, MMGDI, SWDGDI, and CP_SWDGDI,
and its mastery pattern correct classification rate was second
only to that of MDGDI. Table 5 also indicates that although
CP_SWDGDI had the highest performance in each index of
item exposure rate, the excessive exposure inhibition component
added by CP_SWDGDI resulted in a low item selection efficiency
and a low accuracy in attribute classification. In the case of
LD-norm-0.5, the MLGDI’s PCCR value was 0.945, but that
of CP_SWDGDI’s was only 0.676, which was less than that
of MLGDI by 0.269. Therefore, although CP_SWDGDI can
reduce the items exposure rate, it has a low item selection
efficiency and a low accuracy in attribute classification. Therefore,
CP_SWDGDI cannot execute a desirable exposure control while
maintaining a relatively high classification accuracy in the
item selection test.

Table 6 shows the percentage of tests that met the
attribute-coverage requirement, both at the attribute and
overall test levels. For instance, the first entry in the table
is 0.675, meaning 67.5% of the tests under the GDI method
met the coverage constraint of the first attribute, or that
67.5% of the tests had at least three items measuring
the first attribute. Compared with the uncontrolled method,
MMGDI, SWDGDI, MDGDI, MLGDI, and CP_SWDGDI
produced noticeably better results in balancing the attribute
coverage: 100% of the tests met all the attribute coverage
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TABLE 6 | Attribute coverage balance of each item selection method under
five attributes.

Item selection
method

Attribute coverage balance Total balance

A1 A2 A3 A4 A5

HD-unif GDI 0.675 0.395 0.761 0.699 0.708 0.118

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HD-
norm-
0.5

GDI 0.883 0.607 0.697 0.739 0.747 0.276

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 0.999 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HD-
norm-
0.8

GDI 0.776 0.810 0.833 0.890 0.691 0.403

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

LD-unif GDI 0.948 0.638 0.952 0.585 0.411 0.103

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

LD-
norm-
0.5

GDI 0.763 0.844 0.880 0.918 0.466 0.241

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

LD-
norm-
0.8

GDI 0.903 0.820 0.830 0.828 0.898 0.481

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 0.999 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HyD-
unif

GDI 0.699 0.671 0.928 0.382 0.860 0.125

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

(Continued)

TABLE 6 | Continued

Item selection
method

Attribute coverage balance Total balance

A1 A2 A3 A4 A5

HyD-
norm-
0.5

GDI 0.785 0.781 0.926 0.586 0.718 0.275

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

HyD-
norm-
0.8

GDI 0.818 0.789 0.898 0.900 0.815 0.542

MMGDI 1.000 1.000 1.000 1.000 1.000 1.000

SWDGDI 1.000 1.000 1.000 1.000 1.000 1.000

MDGDI 1.000 1.000 1.000 1.000 1.000 1.000

CP_SWDGDI 1.000 1.000 1.000 0.999 1.000 0.999

MLGDI 1.000 1.000 1.000 1.000 1.000 1.000

requirements. This was more pronounced at the overall test
level: with the GDI method, only approximately 10–54%
of the tests had an adequate attribute coverage among the
conditions, whereas the other three methods ensured that
every test is so.

As shown in Table 6, both the MDGDI and MLGDI methods
yielded a perfect attribute balancing, with 100% of the tests under
all the conditions fulfilling all attribute coverage, or 100% of
these tests having three or more items measuring each of the
five attributes.

In addition, the ABI of MDGDI and MLGDI incorporates
the dynamic balance of test attributes. Consequently, in the
entire test process, the measurement frequency of all attributes
is relatively balanced; that is, the difference between the
maximum and minimum number of attribute measurements
are kept within a given range, which increases the item
selection efficiency. Therefore, MDGDI and MLGDI have a
higher attribute classification accuracy than do MGDI, MMGDI,
SWDGDI, and CP_SWDGDI.

DISCUSSION AND CONCLUSION

Cognitive diagnostic CAT captures the advantages of both CDA
and CAT, allowing the individualized diagnostic feedback with
fewer items. In this article, two new item selection methods,
the MLGDI and MDGDI, were introduced, and their efficiency
were compared with the existing methods. The results indicated
that the MDGDI method successfully balanced the attribute
coverage in CD-CAT and the MLGDI method simultaneously
achieved balance over the attribute coverage and ensured
the test security.

Both the MDGDI and the MLGDI outperformed the
GDI, MMGDI, SWDGDI, and CP_SWDGDI in terms of
the classification accuracy. Compared with MDGDI, MLGDI
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provides a better item exposure control. The studies also showed
that items with HD or high correlations among attributes
provided better classification rates.

MDGDI and MLGDI Have Higher Pattern
Determination Rates
The study demonstrated that MDGDI and MLGDI had a
higher attribute correct classification rate than GDI, MMGDI,
SWDGDI, and CP_SWDGDI under the different conditions.
The PCCRs of MMGDI, SWDGDI, and CP_SWDGDI were
worse than those of MDGDI and MLGDI. This was attributable
to the multiplicative form of the attribute balance indicator
in the MMGDI (Cheng, 2010). In such a form, negative–
negative–positive cases can occur, which reduces the item
selection efficiency of MMGDI. In addition, in the process of
the prophase research item, because of the ABI, SWDGDI and
CP_SWDGDI (Lin and Chang, 2018) attribute the propensity
to choose more items. Specifically, Lin and Chang (2018)
found that compared with the simple q vector (i.e., a vector
with less or a single measurement attribute), an excessively
complex q vector (i.e., one with multiple measured attributes)
reduces the classification accuracy of the measurement (Madison
and Bradshaw, 2015; Huebner et al., 2018). The MD index
was adopted in MDGDI and MLGDI to achieve attribute
coverage balance. Consequently, the measurement drying of
all attributes are relatively balanced in the whole test process,
that is, the deviation between the minimum and maximum
number of attributes measured is within a given range. Therefore,
the attributes of MDGDI and MLGDI are more balanced
in the test process, which reduces the interference of the
original selection strategy of the index and disallows the
selection strategy from being more inclined to select some
types of items due to the addition of the ABI. Therefore,
MDGDI and MLGDI have a higher attribute classification
accuracy.

MLGDI Provides a Better Exposure
Control and High Attribute Classification
Accuracy
Studies have shown that MDGDI has the highest attribute
correct classification rate among MGDI, MMGDI, SWDGDI,
CP_SWDGDI, MDGDI, and MLGDI. However, MDGDI also
has problems such as the item overexposure, high TOR, and
overuse of some items. Therefore, we added the restricted
exposure index to MDGDI to construct the MLGDI item
selection method. We found that MLGDI (1) greatly reduced the
exposure rate and TOR but still had a high attribute classification
accuracy and (2) had a pattern determination rate that was
second only to MDGDI. In addition, the selected item strategy of
CP_SWDGDI considers both the attribute coverage balance and
exposure control. The exposure control method of CP_SWDGDI
contains two key parameters, namely the adjustment information
interval parameter s and the exposure parameter r, which is
the maximum exposure required for a specific test purpose.

Therefore, CP_SWDGDI uses the exposure parameterrand
the adjustment information interval parametersto control
the item exposure. However, determining the value of the
information interval parametersthat is appropriate for a given
test length and number of attributes is difficult, which makes
the CP_SWDGDI difficult to apply in practice (Zheng and
Wang, 2017). Compared with CP_SWDGDI, MLGDI only
realizes the exposure control of the participant through the
exposure parameterr. The absence of the information interval
parametersand the need to determine the appropriatesvalue
under the different conditions makes MLGDI more practicable.
In addition, MLGDI has a higher attribute classification accuracy
than does CP_SWDGDI. In conclusion, MLGDI can better
meet the requirements of exposure control and has a high
attribute classification accuracy, making MLGDI more suitable
for practical applications.

The simulation studies yielded the following conclusions:

(1) When only the accuracy of attribute classification and
attribute-coverage requirement are considered, MDGDI
had the best attribute classification accuracy among GDI,
MMGDI, SWDGDI, and MDGDI.

(2) When the accuracy of attribute classification, attribute-
coverage requirement, and control item exposure
rate are considered, MLGDI had the best attribute
classification accuracy among GDI, CP_SWDGDI, and
MLGDI.

(3) Adding a restricted item exposure mechanism to the item
selection method will reduce the classification accuracy of
the attributes of the item selection method.

(4) Compared with GDI, MMGDI, SWDGDI, CP_SWDGDI,
and MDGDI, MLGDI can better achieve the attribute-
coverage requirement, control item exposure rate, and
attribute correct classification rate.

Directions for Future Research
Future studies can build upon our analysis of the performance of
the six item selection strategies (GDI, MMGDI, SWDGDI,
CP_SWDGDI, MDGDI, and MLGDI) under different
conditions. (1) In the simulations, we found that MDGDI
and MLGDI methods can be well used in the selection
of CD-CAT projects. However, simulation results are
limited to the given simulation conditions. Therefore,
to further demonstrate the effectiveness of our method,
future research should involve the practical application of
the two proposed methods in the use of CD-CAT item
banks. (2) For simplicity, we assumed that the correlations
between the attributes were set at 0.5 and 0.8 in our
simulations. Future studies can test the effectiveness of
our thematic strategies (MDGDI and MLGDI) under more
realistic conditions. (3) Future studies can extend the MDI
and ML indexes to the method based on the expected
Shannon entropy and the method based on the a posteriori,
weighted KL information.
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