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Human motor skills are exceptional compared to other species, no less than their

cognitive skills. In this perspective paper, we suggest that “movement matters!,” implying

that motor development is a crucial driving force of cognitive development, much more

impactful than previously acknowledged. Thus, we argue that to fully understand and

explain developmental changes, it is necessary to consider the interaction of motor and

cognitive skills. We exemplify this argument by introducing the concept of “embodied

planning,” which takes an embodied cognition perspective on planning development

throughout childhood. From this integrated, comprehensive framework, we present a

novel climbing paradigm as the ideal testbed to explore the development of embodied

planning in childhood and across the lifespan. Finally, we outline future research directions

and discuss practical applications of the work on developmental embodied planning for

robotics, sports, and education.
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1. INTRODUCTION

Humans start moving already in the womb, when they are just a few weeks old (Rahilly and
Gardner, 1975), and develop the most sophisticated motor skills throughout the first years of life.
Indeed, very young children are already able to thread a needle, build complex LEGO spaceships,
and eat with chopsticks. Eventually, some humans reach a motor mastery that enables them to
perform complicated heart surgeries or execute a triple twisting-double in gymnastics (the Biles
II). Over the first years of childhood, humans’ cognitive skills reach similar levels of extreme
sophistication. Children can memorize entire poems, learn complex game rules, and manage
to perform several tasks at the same time—eating, playing with a doll, binge-watching TV, and
following a conversation simultaneously. Most adults can stay focused on the street and ignore
irrelevant information while driving, and some are eventually able to control air traffic, play
chess, and solve a Rubik’s cube blindfolded. While newborns are far away from mastering any
of these sophisticated motor or cognitive tasks, they will eventually acquire these or comparably
complex skills throughout development. How do motor and cognitive development interact and
impact each other? In this perspective paper, we argue that “movement matters!,” implying that
motor development is a crucial driving force of cognitive development, much more impactful
than previously acknowledged. In this regard, we argue that to fully understand and explain
developmental changes, it is necessary to consider the interaction of motor and cognitive skills
from a developmental embodied cognition perspective.
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In what follows, we first introduce developmental embodied
cognition. Second, we exemplify our argument by introducing
the concept of “embodied planning” integrating the motor and
cognitive perspectives on planning and derive developmental
predictions. Third, we present a novel climbing paradigm as
the ideal testbed to capture and explore the development of
embodied planning during childhood and across the lifespan.
Finally, we outline future research directions and discuss
practical applications of the work on developmental embodied
cognition, and in particular of embodied planning, for robotics,
sports, and education.

2. A DEVELOPMENTAL EMBODIED
COGNITION PERSPECTIVE: WHY
MOVEMENT MATTERS!

Hundreds of studies have documented the influence of
sensorimotor manipulations on cognition, such as abstract
spatial and temporal presentation (Loeffler et al., 2016), memory
retrieval (Dijkstra et al., 2007), number processing (Fischer et al.,
2004), or decision making (Lepora and Pezzulo, 2015). A central
tenet of embodied cognition is that cognitive skills are “deeply
routed” (Wilson, 2002) in the body, sensorimotor experiences,
and the environment (Fischer and Coello, 2016). In this regard,
it is already clear how crucial it is to consider the body as
well as sensorimotor experiences and motor skills when trying
to understand cognitive skills (Glenberg et al., 2013). From an
embodied point of view, the interaction between sensorimotor
and cognitive skills is theoretically predicted and has empirically
been shown to be bidirectional and dynamic, although only
a few studies have addressed the influence of cognition on
sensorimotor processes (Engel et al., 2013).

Most sophisticated motor and cognitive skills are learned
throughout development. Previous work already proposed that
motor skills are the foundation of cognitive development (Ridler
et al., 2006; Koziol et al., 2012; Gottwald et al., 2016) and provide
the basis for learning (Adolph and Hoch, 2019). Different lines of
research support this claim by showing that cognitive changes are
associated with bodily changes (Hommel and Kibele, 2016), and
that cognitive performance benefits from instructions activating
bodily experience through body analogies (Pouw et al., 2016) or
from acting (Lozada and Carro, 2016). Gottwald et al. (2016)
recently demonstrated an association between motor control and
executive functions in infants, finding that prospective motor
control during reaching (i.e., peak velocity of the first movement)
was correlated to inhibition and working memory. The potential
magnitude of the impact of early motor skills on cognition is
further demonstrated by a study fromRidler et al. (2006) showing
that infants’ gross motor skills predicted executive functions in
adulthood. In particular, those infants who managed to stand
and walk earlier in their life had superior cognitive skills in their
thirties and showed higher gray-matter density in motor areas
(Ridler et al., 2006).

There are several reasons why we argue that an embodied
cognition perspective is extremely fruitful, if not necessary, to
understand the developmental trajectory of motor–cognitive

interactions. Together, bodily growth and the acquisition of new
motor skills enable and support children’s learning, acting as a
driving force of cognitive development (Adolph andHoch, 2019).
Across the lifespan, human experience consists of an alternation
of phases characterized by rapid change and phases of greater
stability. In phases of change, embodiment effects can be captured
particularly well: When our bodies change more dramatically
and motor skills improve notably, as during infancy, childhood,
and adolescence (Portella et al., 2017; Adolph and Hoch, 2019),
or in older age (Cole et al., 2019), the impact of these changes
on cognitive processes can be more easily scrutinized, and a
time-ordered, causal direction can be tested.

In this perspective paper, we support this claim by
focusing on the development of planning throughout childhood.
Developmental research on motor and cognitive planning exists
unnoticed from each other. However, we argue that both motor
and cognitive components need to be considered jointly to
understand the developmental trajectory of planning and its
relevance for actions in the real world, beyond controlled
lab environments.

3. EMBODIED PLANNING: INTEGRATING
THEORETICAL AND METHODOLOGICAL
APPROACHES

3.1. Motor Planning
Motor planning is defined as the ability to organize motor
behavior to accomplish an anticipated goal-directed action. By
definition motor planning processes depend on goal proximity:
To adjust motor behavior to an imminent goal is referred to
as first-order motor planning, whereas adjusting to subsequent
goals is referred to as second-order motor planning (Rosenbaum
et al., 2012; Domellöf et al., 2020). In tasks assessing motor
planning, participants are required to first plan and then execute
a motor sequence, during which the motor system needs to
be controlled and can be adjusted. Classic motor planning
tasks, used with children as well as with adults, are the bar-
transport task (Knudsen et al., 2012), the overturned-glass task
(Adalbjornsson et al., 2008; Knudsen et al., 2012), and the handle
rotation task (Craje et al., 2010). In the bar-transportation task,
for example, children are asked to insert a bar into a small
opening of a box. In the trials requiring two-steps planning,
children need to grasp the bar with a (rather uncomfortable)
thumb-down grip, then rotate the bar by 180 and conclude the
insertion in the much more comfortable thumb-up position.
Second-order motor planning is somewhat limited until the age
of 6 years (Benson et al., 2018), although improvements between
the age of 3–6 years have been reported (Knudsen et al., 2012).
At the age of 10, children usually reach adult-like motor planning
skills (Benson et al., 2018).

3.2. Cognitive Planning
Cognitive planning is defined as the ability to think about
action sequences in advance, thus approaching a task in an
organized, strategic, and efficient manner (Anderson, 2002; Best
et al., 2009), and is considered an essential requirement of
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goal-directed behavior. In tasks assessing cognitive planning,
participants are required to plan ahead, evaluate, implement, and
then potentially modify a sequence of actions (Best et al., 2009).
Classic cognitive planning tasks used across the lifespan are the
Tower of London (Bull et al., 2004) or maze navigation tasks
(Völter and Call, 2014), where children are asked to move a
reward through multiple levels of a maze. For planning which
route to take, children have to consider whether the passages on
the next levels are open or closed. Being a higher-order cognitive
function that relies on working memory and inhibition (Best and
Miller, 2010; McCormack and Atance, 2011), cognitive planning
skills emerge rather late. For instance, 4-year-olds can plan only
one step ahead, that is, considering only the configuration of
passages onto the immediate next level of the maze, whereas
5-year-olds can plan two steps ahead (Völter and Call, 2014).
Planning complex action sequences develops in late childhood or
adolescence (Best et al., 2009), and only by the age of 15 children
reach adult-like cognitive planning skills (Huizinga et al., 2006).
Besides, even adults do not always plan as efficiently as possible
(Meder et al., 2019).

3.3. Theoretical Integration of Motor and
Cognitive Planning
The developmental trajectories of motor and cognitive planning
have been studied separately. However, the interaction of
motor and cognitive planning in general, and in particular
during development, is to date not well understood. Specifically,
cognitive planning has largely been investigated with tasks
entailing no (or to a very low degree) motor planning or ignoring
the motor component altogether. In this paper, we introduce the
concept of “embodied planning,” which integrates perspectives
and methods from cognitive and movement sciences.

Embodied planning involves cognitive planning, which takes
place before starting the execution of a motor-cognitive task,
but assumes that one’s bodily state, physical constraints, and
(previous) motor experience provide cues for the planning
process (cf. similar models in choice: embodied choices; Cisek
and Pastor-Bernier, 2014; Wyer, 2016; Raab, 2017). Therefore,
cognitive planning is guided by the awareness of how exactly
a step can be executed through coordination of the motor
systems (Raab et al., 2005), and by the feedback from the motor
implementation at any previous step. Accordingly, embodied
planning can be conceptualized as a dynamic, continuous
feedback-loop between motor and cognitive planning in a goal-
directed planning task, as illustrated in Figure 1.

3.4. Developmental Predictions
Based on the theoretical notion of embodied planning and the
existing developmental evidence reviewed above, we can derive
predictions at different levels of specificity. In general, we expect
that the development of embodied planning across childhoodwill
follow a nonlinear trajectory (Best et al., 2009), depicting stronger
changes during infancy, early childhood, and adolescence—
phases of more pronounced bodily change. More specifically,
we predict that bodily changes will affect the motor aspects of
planning first, the improvement of which will promote cognitive
planning. Previous developmental findings support this claimed

chronology, showing that although the motor planning skills
reachmaturity already around 10 years of age, cognitive planning
develops way beyond age 10, reaching adult-like sophistication
only in late adolescence. This developmental chronology might
suggest that, indeed, cognitive planning skills are preceded by,
fostered by, and build on improved motor planning skills.

Zooming in on this proposed developmental trajectory of
embodied planning right on the onset of bodily change, we
would predict that bodily changes first entail learning new
motor skills and adapting already acquired ones, which in turn
would trigger changes in motor planning. Changes in motor
planning might then impact cognitive planning performance
negatively, taking away additional resources required to fulfill
the new motor planning demands (cf., embodied-cognitive-
load hypothesis Warburton et al., 2013; for a summary of
developmental work, see Berger, 2010; Berger et al., 2018).
However, once the new motor skills are mastered and the
corresponding improvements in motor planning are assimilated,
cognitive planning might also improve, benefiting from motor
planning efficiency.

3.5. Methodological and Technological
Advances
The integrative theoretical approach and developmental
predictions we propose have important methodological
consequences. To be able to empirically capture and study the
developmental trajectory of embodied planning, new designs,
tasks, and measures have to be developed and implemented.

First, experimental designs should allow monitoring intra-
individual changes and inter-individual differences throughout
development. Intra-individual changes can be tested in
longitudinal designs (Musculus et al., 2019), as well as in
intervention and training studies (Harbourne and Berger,
2019). Inter-individual differences can be analyzed with cross-
sectional comparisons of different age groups (Berger et al.,
2015; Benson et al., 2018). Ideally, longitudinal, intervention,
or training designs should be combined with cross-sectional
age-group comparisons to best disentangle the developmental
dynamics from individual differences and control for potentially
confounding variables.

Second, the planning tasks should exert similar demands
on both the motor and the cognitive systems, that is, both
motor and cognitive planning skills should be required to
solve the task, and to a similar extent. Additionally, the
movements executed for and/or during the task need to be task
relevant (Wilson and Golonka, 2013), not simply constituting
a random motor response (pressing a button) that could be
potentially interchanged with any other simple motor reaction
(pulling a lever). Third, the measures implemented should be
able to capture motor and cognitive interactions in embodied
planning, ideally online. This is why we propose to combine
movement analysis with reaction times. In developmental
research, movement analysis has been proven an objective, fine-
grained method to assess motor development (van Schaik and
Dominici, 2020). In particular, marker-based motion tracking
systems can provide accurate measures of motor processes
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FIGURE 1 | Embodied planning in a climbing paradigm. The figure depicts four steps of embodied planning during a goal-directed climbing task. At the bottom, the

embodied-planning concept is modeled as a dynamic, continuous feedback-loop between motor and cognitive planning. The two upper panels show an interactive

climbing wall (2.40–3.60 m) with touch-sensitive climbing holds, which can light up in different colors and capture reaction times (i.e., ClimbLing system). The climbing

system is synchronized to a movement-analysis system (Vicon; 10 infrared cameras at 119.88 Hz, VICONTM, Oxford, UK), which captures full-body movement

kinematics as indicated by the stick figure of the body.

(van Schaik and Dominici, 2020). With marker-based systems,

the position of children’s joints can be tracked with specific
camera systems while they move. During task execution,
movement trajectories in 3D space can be captured (i.e.,

kinematics, see Figure 1). Although developmental studies

exist that analyzed children’s kinematics and response times

(Domellöf et al., 2020), only a few combined the measures
to explore the interaction between motor and cognitive skills
(for an exception, see Gottwald et al., 2016). Domellöf et al.
(2020) analyzed age-related differences in the spatiotemporal

segmentation of the movement path for the wrist, index

finger, and object during a peg fitting task. Their kinematic

analyses provided a more detailed picture of the time course
of motor planning and revealed developmental differences:
While adults rotated the peg during transport, 6–10 year-
old children most often did so only after reaching the
goal. Integrating kinematics to the previously used cognitive
measures allowed to capture that children did not engage in

planning ahead as much as adults did, thus demonstrating
less efficient motor planning. Along the same lines, the
work of Gottwald et al. (2016) revealed that the peak
velocity of infants’ first movement in a prospective planning
task captured the extent of their motor planning, which
was related to their higher-order cognitive control. These
studies highlight how the combined analysis of motor and
cognitive processes is necessary to capture embodied-planning
development in childhood.

To exemplify the design, task, andmeasurement requirements
presented, we introduce a novel climbing paradigm to capture the
developmental dynamics of embodied planning accordingly.

4. CLIMBING AS A TESTBED FOR
EMBODIED PLANNING

Climbing to a predefined goal naturally involves embodied
planning, requiring both complex cognitive (Cascone et al., 2013)
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and motor planning (Testa et al., 2003) skills. To successfully
climb, one needs to plan which route to climb—which holds to
use, and in what order—as well as how to execute the route
(Raab, 2017). In particular, climbers need to consider their body
constraints and the motor skills required to execute every single
move. Then, during climbing, continuous sensorimotor (e.g., of
muscles, hands, feet) and cognitive (e.g., which hold should I
use next?) feedback fuels back, dynamically, into the ongoing
planning process.

Crucially, climbing tasks are perfectly suitable to be used with
a very wide age range, as they can be performed (and with
great fun) by young children and adults (Croft et al., 2018).
Indeed, children have a natural tendency to climb all sorts of
things, from home furniture to playground constructions, to
trees. Further, experimental climbing tasks can be used to explore
body and action boundaries (van Knobelsdorff et al., 2020; Seifert
et al., 2021), also in children (Croft et al., 2018): A recent study
showed that 6- to 11-year-old childrenwhoweremore accurate in
judging their reaching capability (i.e., whether they were able to
reach and grasp holds that are near or far away) completed more
climbing routes successfully and did so faster (Croft et al., 2018).

Methodologically speaking, goal-directed climbing comprises
motor and cognitive planning before the task and during
execution. In experimental settings, climbing tasks can be easily
adjusted and modified to manipulate cognitive and motor
demands, such that motor planning but only little cognitive
planning is required, or the other way around. In particular,
cognitive planning could be minimized by guiding children
through all steps (i.e., hold) along a predefined route. In
particular, by using an interactive climbing wall (e.g., ClimbLing),
one could indicate the next hold that children should use by
lighting it up. To reduce cognitive planning to a minimum, the
next hold would light up only after the previous hold has been
touched (please refer to Figure 1). At the same time, motor
planning could be reduced to a minimum by asking children to
plan a route without executing it. In particular, children could
be asked to plan a climbing route by just indicating to the
experimenter which holds they would use using a laser pointer
or on an app that displays the climbing wall. Thus, by carefully
designing novel climbing tasks, motor and cognitive planning
processes could be disentangled experimentally.

Given in regular climbing motor and cognitive planning
constantly interact, the joint consideration of motor and
cognitive measures in climbing experiments is warranted.
From the motor side, anthropometric measures and movement
analyses associated with climbing performance should be
captured, such as weight (Mermier et al., 2000; Watts et al.,
2003), height (Watts et al., 2003; Laffaye et al., 2016), body mass
index (Laffaye et al., 2016), grip strength (Mermier et al., 2000),
finger-tip strength (van Knobelsdorff et al., 2020), and Ape-
index (Mitchell et al., 2011). For movement kinematics, spatial
and temporal movement dimensions should be considered (Orth
et al., 2016, 2017). In particular, the immobility–mobility ratio
(IMR) and the geometric index of entropy (GIE) represent
temporal-spatial indices capturing motor planning in climbing
(Orth et al., 2017). Importantly, the movement data should be
time-matched and related to cognitive measures during the task,

such as the number of holds to indicate planning steps (Huizinga
et al., 2006), the time used to complete the route, and the initial
planning time used before starting task execution (Huizinga
et al., 2006). Complementing these “classical” cognitive planning
variables by capturing gaze patterns during initial route
preparation (Seifert et al., 2017; van Knobelsdorff et al., 2020) and
the time course of movement variability during route execution
can provide a better picture of the planning strategies.

Together, due to the close connection of motor and cognitive
planning during goal-directed climbing, the ongoing embodied-
planning dynamics can be captured and the performance in
previous planning steps can be related to the next and so forth.
Climbing as a task is useful because completing a route is only
possible by a sequence of embodied-planning steps. Therefore,
the unfolding of motor and cognitive processes from initially
planning a route through route execution can shed light on the
interaction—embodied planning.

5. FUTURE RESEARCH DIRECTIONS AND
POTENTIAL APPLICATIONS OF
EMBODIED PLANNING

Improvements in embodied planning across the lifespan can be
seen as a goal on its own, or as a means to an end. On the one
hand, research on embodied planning can support coaches and
teachers in developing interventions that target and boost motor
planning skills during the school-age years (Croft et al., 2018),
e.g., by introducing climbing exercises as an integral part of PE
curricula. On the other hand, embodied planning could also serve
as a means to improve sports and academic performance. Recent
results indicate that executive-function training through sports in
school has positive effects with near transfer (Vazou et al., 2016).
Embodied-planning training might be especially beneficial for
students with lower academic skills (Pouw et al., 2016) or children
with developmental delay (Harbourne and Berger, 2019). Indeed,
children with a lower level of general mathematical abilities
performed better in a physical problem-solving task when the
instructions provided references to their bodies, for example
when children had to mimic a lever with their arms (Pouw
et al., 2016). Also children with developmental delays profited
from a motor-based problem-solving intervention in terms of
motor and cognitive gains (Harbourne and Berger, 2019). Thus,
making use of the body, activating bodily representation, and
providing (active) sensorimotor experience during embodied-
planning exercises might constitute a promising intervention in
sports and education.

Broadening the scope, we believe that experimental research
on embodied planning could inform the development of
more accurate and sophisticated models of human movement
to be implemented in developmental robotics. First, fueling
children’s kinematics into a robotic system would support the
development of robots able to move and plan adaptively. Second,
developmental, cognitive, and movement scientists can profit
from the robotic implementation of embodied-planning research
to better understand developmental trajectories and individual
differences in motor and cognitive development, and their
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interaction. Researchers could use simulations to test whether
the way a person planned and executed their movements was
functional or not. Along these lines, Ossmy et al. (2018) trained
soccer-playing robots with kinematic walking data generated
by infants during free play. The robots trained with a high
variance of kinematic patterns won the simulated season of
“RoboCup” (Ossmy et al., 2018) against robots trained with a
low variance of kinematics. Similarly, aspects of motor planning
in climbing such as the IMR or GIE could be evaluated.
In detail, the kinematics of children climbing and of adults
climbing can be fed into a robotics simulation. In the next step,
the respective efficiency can be modeled, and, based on this,
climbing training could be designed aiming at specific, efficient
movement patterns.

6. CONCLUSION

In this perspective paper, we adopted a developmental embodied
cognition perspective to argue that “movement matters!” for
understanding the emergence and developmental trajectory
of motor and cognitive skills, as cognitive development is
fundamentally driven and constrained by motor development.
We supported this claim by reviewing recent literature
on motor and cognitive planning, so far researched in
isolation. We then introduced the integrative theoretical
concept of “embodied planning,” together with a novel
climbing paradigm and related measures allowing to test it.
Thereby, we intend to bridge the gap between the motor and
cognitive disciplines. Overall, we highlighted the added value

of embodied-planning research: Playful embodied-planning
interventions could promote children’s learning in the school
setting and beyond. In the long run, embodied-planning research
could contribute to the development of a new generation of
adaptive robots.
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