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The recognition and incorporation of evidence-based neuroscientific concepts into
creative arts therapeutic knowledge and practice seem valuable and advantageous for
the purpose of integration and professional development. Moreover, exhilarating insights
from the field of neuroscience coincide with the nature, conceptualization, goals, and
methods of Creative Arts Therapies (CATs), enabling comprehensive understandings
of the clinical landscape, from a translational perspective. This paper contextualizes
and discusses dynamic brain functions that have been suggested to lie at the heart
of intra- and inter-personal processes. Touching upon fundamental aspects of the self
and self-other interaction, the state-of-the-art neuroscientific-informed views will shed
light on mechanisms of the embodied, predictive and relational brain. The conceptual
analysis introduces and interweaves the following contemporary perspectives of brain
function: firstly, the grounding of mental activity in the lived, bodily experience will be
delineated; secondly, the enactive account of internal models, or generative predictive
representations, shaped by experience, will be defined and extensively deliberated;
and thirdly, the interpersonal simulation and synchronization mechanisms that support
empathy and mentalization will be thoroughly considered. Throughout the paper, the
cross-talks between the brain and the body, within the brain through functionally
connected neural networks and in the context of agent-environment dynamics,
will be addressed. These communicative patterns will be elaborated on to unfold
psychophysiological linkage, as well as psychopathological shifts, concluding with the
neuroplastic change associated with the formulation of CATs. The manuscript suggests
an integrative view of the brain-body-mind in contexts relevant to the therapeutic
potential of the expressive creative arts and the main avenues by which neuroscience
may ground, enlighten and enrich the clinical psychotherapeutic practice.

Keywords: brain function, integration, embodiment, predictive processing, simulation, brain-to-brain coupling,
creative arts therapies

INTRODUCTION

The integration of knowledge from recent neuroscience research into Creative Arts Therapies
(CATs) practice and education, in a multidisciplinary translational approach, can be transformative
for advancing the comprehension and treatment of different mental states and disorders. CATs
disciplines, such as dance/movement therapy, art therapy, music therapy, drama therapy, and
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psychodrama, seek to engage clients holistically across somatic,
cognitive, emotional, cultural, aesthetic, and social aspects of the
self (Dunphy et al., 2019). CATs include verbal and non-verbal
forms of expression and communication, accentuated embodied
knowledge and memory, multisensory engagement, presence
and liveness, and the transcendent qualities of imagination and
creativity (Malchiodi, 2005; Van Lith, 2015; Czamanski-Cohen
and Weihs, 2016; Gerber et al., 2018; Samaritter, 2018). The
comprehensive essence of the psychotherapeutic treatment could
interweave with neuroscience that addresses the mechanistic
understanding of brain functions. A deeper understanding
of the neurobiological underpinnings of the subjective and
intersubjective experiences, as well as their maladaptive shifts,
may have great benefits and help improve the therapist’s
observations, goals and interventions, to optimally help clients.
Moreover, the knowledge generated from neuroscientific studies
anchors the appreciation of ways in which the therapeutic work
might influence brain function and the validity of our profession
and thus advances professional identity (King et al., 2019).

Indeed, the assimilation of neuroscientific knowledge into
psychotherapeutic practice has received growing interest over
the past decade, both in general (Javanbakht and Alberini, 2019)
and specifically with relation to the different CATs modalities
(Homann, 2010; Belkofer and Nolan, 2016; Berrol, 2016; O’Kelly
et al., 2016; Payne, 2017; King et al., 2019). The current
manuscript aims to describe and discuss main characteristics
of brain function and their applicability to the therapeutic
work, addressing intertwining themes, presented in the following
sections. The first section elaborates on the neuroscientific
meaning of embodiment; the second introduces and deliberates
on the predictive nature of the mind and the formation
and reformation of internal models; the third articulates and
discusses predictive processing mechanisms in the context of
the psychic apparatus; the fourth explores developmental and
therapeutic implications of the brain’s predictive mechanisms;
and the fifth section focuses on the relational account of
neural functioning and the underpinnings of empathy. The
fundamental brain mechanisms are conceptualized and tailored
to the understanding of their clinical relevance, ultimately
acknowledging the neuroplastic potential of CATs.

THE EMBODIED BRAIN AND THE
GROUNDING OF THE MIND

Advancements in the field of neuroscience lend substantial
support to the embodied nature of brain mechanisms (Fabiani,
2015; Kiverstein and Miller, 2015). This implies that neural
processing, bodily action, and environmental forces are
constantly and complexly combined in constant dynamic
feedback loops. The brain does not merely passively perceives
input and controls body action, but rather actively creates
perceptual experiences from sensory stimuli accumulating from
the body’s internal milieu (interoceptive and proprioceptive) and
from the surroundings (exteroceptive), in a generative manner.
Mental representations dynamically evolve over time, in the
form of nerve impulses that propagate in circuits and functional

network assemblies, in order to anticipate, decode and respond
to complex concrete (physical) and abstract (social) variables in
the environment, based on prior information (Ju and Bassett,
2020; Teufel and Fletcher, 2020). Relevant to this argument, it
has been acknowledged that in natural settings, brain activity is
neither predefined nor fixed, but rather continuous and transient
(Dmochowski et al., 2012; Zioga et al., 2018). The reciprocity
between the human mind and the sensing active body, within
the relational environment, underscores the need for holistic and
integrative mental health approaches, such as CATs.

From the earliest foundation of the sense of self, neural
processes related to multisensory perception give rise to the
embodied, spatially located, self-conscious experience (Park
and Blanke, 2019). Accordingly, the qualia of the mental
experience of feeling were shown to be associated with
the unique topography of the concurrent bodily sensations
(Nummenmaa and Saarimäki, 2019). Subjective feelings were
suggested to be elicited by the perception of emotion-related
bodily states that reflect changes in the skeletomuscular,
neuroendocrine (hormonal), and autonomic peripheral nervous
systems (Levenson, 2003; Barrett et al., 2007; Damasio and
Carvalho, 2013). Moreover, neural structures responsible for
sensory, motor and emotional experiences are also involved in
attributing linguistic meaning, expressing those experiences in
words (Buccino et al., 2016). Respectively, language processing
re-enacts sensorimotor, emotional, and introspective experiences
(Pulvermüller and Fadiga, 2010). Indeed, sensory perception,
movement, emotion, and cognition are interdependent processes
that dynamically influence each other and are supported by
cohesive brain networks (Pessoa, 2013). Well beyond the
direct anatomical pathways that signals to and from the
body, emotion is closely linked to transient bodily states and
actions through functional interactions between the regions
implicated in emotion and those that are chiefly important
for mental operations, traditionally labeled as “cognitive,”
such as decision making, spontaneous thought or mind-
wandering (Babo-Rebelo et al., 2016; Pessoa and McMenamin,
2017). Correspondingly, there is a paradigm shift toward an
action-oriented view of cognition (Engel et al., 2016). The
well-supported concept of “grounded cognition” stresses that
cognitive processes lie upon meaningful interactions with a
dynamic environment and cannot be reduced to thinking-related
mental representations (Engel et al., 2013). There is a close
and causal relationship between sensorimotor and conceptual
systems of the brain (Buccino et al., 2016). The brain possesses an
ability to take our physical experiences and use it metaphorically
for abstract thinking as basis of imagination and creativity
(Wang et al., 2019).

This canonical framework implies that it is within the
embodied actuality, through the subjective, lived, bodily
experience, that we may induce awareness and change the
way we perceive, think and feel about ourselves and others.
This coincides with and highlights the uniqueness of the arts
and the therapeutic potential of the embodied enactive CATs
(Koch and Fuchs, 2011; Koch, 2017). Within the context of a
containing relationship, CATs offer clients the opportunity to
explore, articulate and express experiential content, grounded
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in the body and connected with representations of feelings and
mental perceptions of the self and the outer world.

The following sections will develop these ideas through an
intriguing neuro-functional account that is ultimately becoming
a general and unifying explanation of brain function, and, by
extension, dysfunction, with emerging clinical applications.

THE PREDICTIVE BRAIN AND
EXPERIENCE-BASED GENERATIVE
REPRESENTATIONS

An increasingly supported hypothesis in contemporary
neuroscience, which concurs with the conceptualization of
the “embodied brain,” converges on the idea that the brain
runs internal models that function as probabilistic (Bayesian)
inference for incoming sensory information from inside and
outside the body (e.g., Friston, 2010; Clark, 2013). For the
purpose of maintaining homeostasis and minimizing “free
energy,” the brain makes meaning of the current situation, by
re-implementing past experiences, and proactively tailoring
the body’s responses accordingly (i.e., enacts allostasis, Barrett,
2017b). These past experiences are embodied representations
that continuously anticipate upcoming sensory events and the
best action to deal with those events, i.e., “predictive processing.”

As aforementioned, connectedness, at a structural and
functional level, is a fundamental aspect of brain architecture.
Neural activity cascades through hierarchical pathways, from
lower level sensory and motor processing toward a functional
spectrum of progressively higher level abstract representations.
Accordingly, the constructive, non-deterministic nature of
sensory perception emerges from continuous functional
interaction between higher and lower levels of the neural
processing hierarchy. The predictions are originated in cortical
regions that unconsciously generate, in “top-down” (descending)
pathways, expectations (beliefs) of hidden causes of the
unfolding sensory events. The perception of actual sensory
input, passed on in a “bottom up” (ascending) pathways,
to the brain is then constantly shaped and modified by
descending prior expectations. “Bottom-up” sensations are
matched with “top-down” predictions, creating an interplay
between forward and backward flow of information (Friston,
2005, 2010; Barrett and Simmons, 2015). Anticipated inputs
confirm the predictions and become meaningful sensations,
while unanticipated information or discrepancy between
what was expected and what occurred becomes a prediction
error – a “surprise.” The mismatch, in turn, serves as a driver
for change, in order to minimize free energy, by actively
interacting with the environment to better match predictions
(“active inference”), or by updating the relevant predictions to
accommodate unexpected signals, an opportunity to induce
remodeling, adjusting and modifying the internal models
(i.e., predictions) of the embodied exchange with the world
(Clark, 2013).

Notably, predictive processing connects to embodied and
enactive approaches, it is not merely a view of the brain as
reducing the uncertainty of its sensory observations but rather

concerns the active, selective sampling of the world by an
embodied agent (Ramstead et al., 2020). In other words, the brain
is no longer viewed as a passive system that generates complex
representations over time, with top-down processes playing a
modulatory role on the accumulating bottom-up stimulation,
but rather an active organ that is constantly predicting its
future state and stimulation. Actions, and their accompanying
mental events, begin as top-down representations in the brain,
constructed from past experiences that are tested against the
state of the (social) world. The dependence on embodied priors
occurs implicitly, without the requirement to explicitly remember
past events (Hutchinson and Barrett, 2019). The comparison of
predictions with incoming sensory information forms prediction
errors, which serve as corrective feedback and can be minimized
using two strategies: (1) changing sensory input through action or
(2) changing the internal models of the world (prediction signals)
(Venter, 2021).

The ontology of the human mind, through the lens of
“predictive processing,” provides a powerful framework that
captures fundamental aspects of psychic functioning and
yields considerable ground to experientially oriented integrative
therapeutic approaches, such as CATs. These brain mechanisms
and brain-body-mind intersections are explored in more
detail below.

THE MULTIFACETED PREDICTIVE
BRAIN IN THE PSYCHIC LANDSCAPE

The predictive function of brain, or the way the brain actively
handles uncertainty in dynamic relationships with the body
and the environment, is a multifaceted, multidisciplinary, and
multilevel account of the mind. It may map proto- and core
aspects of the self, reflected in neural processes, which may
further explain why predictive coding and error processing have
been suggested to lie at the heart of a wide range of mental health
conditions and disorders (Harrison et al., 2019; Smith et al.,
2021), and how it applies to our therapeutic work.

Multisensory integration underpins minimal (pre-reflective)
experiential aspects of the bodily self, including senses of agency
and ownership, based on a model that successfully predicts
the sensory consequences of one’s own movement, intentions
in action, and sensory input (Hohwy, 2007; Limanowski and
Blankenburg, 2013). This also establishes forms of self-awareness,
enabling the recognition of the self, as the most accurate
explanation of the inferred and modeled hidden cause of one’s
sensory experience (Apps and Tsakiris, 2014). It explains how
we make sense of the world, already observed in infant learning,
navigating the dynamic physical and social environment (Köster
et al., 2020). The predictive work in progress, thus, applies
not only for maintaining life and for learning how to meet
organismic needs in the world, but also for selfhood (self-
organizing existence within a world that can be separated from
the self) that conforms to goal-directed notions of intentionality
(Solms and Friston, 2018).

Emotion has been eagerly advocated to belong at the very heart
of the predictive-coding embodied nexus (Friston et al., 2018;
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Miller and Clark, 2018). According to these view of emotion, on-
going changes in the peripheral body actively contribute to the
creation of emotional experiences, in a constructive way, using
accumulated knowledge from prior experiences (Barrett, 2017b).

Internal models of the body in the world (i.e., predictions)
are generated, for example, in cortical regions of the brain that
constitute the salience network, which is involved in affective
experience, including the anterior insula and anterior cingulate
cortex. These regions are continually informed by bodily changes
and mediate interoception, supporting awareness and response to
relevant internal or external stimuli, imbuing these stimuli with
emotional weight, and using this information to guide attention
and behavior (Barrett et al., 2016; Seeley, 2019).

The dynamics of predictive processing relate also to self-
referential processing and the way we integrate memory
representations with ongoing events and envision our future.
In this account, top-down associative predictions also involve
the regions of the medial prefrontal cortex: the ventromedial
prefrontal cortex, which creates Gestalt representation of how
an organism is situated in its environment and the subjective
value of environmental stimuli, which then drives predictions
about future events (Roy et al., 2012; Dohmatob et al., 2020);
and the dorsomedial prefrontal cortex, which supports higher
level evaluative control and may subserve the representation and
assessment of self and other’s action considerations (Alexander
and Brown, 2015). Both of these medial regions of the prefrontal
cortex (i.e., the ventral and dorsal midline regions), along with
the posterior cingulate cortex, are also part of the default
mode network (DMN), a unique brain network that performs
baseline mental activities, supporting free-ranging thought,
spontaneous introspection, autobiographical memory, episodic
future thinking, and mentalizing (Andrews-Hanna et al., 2014;
Raichle, 2015; Wen et al., 2020).

In the process of generating predictions and at moments
of uncertainty and surprise (i.e., prediction-errors), these
aforementioned cortical brain regions communicate with
sensorimotor cortices and with sub-cortical regions, such
as the hippocampus, supporting associative memory; the
amygdala, a key region of emotional processing; and the ventral
striatum, integrating affective and rewarding/motivational
information. These functional communications likely involve
the temporal integration of incoming information with internal
representations stored in memory, recently shown in naturalistic
ongoing events, suggested to support narrative integration
(Brandman et al., 2021). Moreover, an emotional experience
manifests when there is resonance across hierarchical levels, that
is, conceptualization and abstraction supported by higher-level
DMN function make concrete, present moment, multisensory
lower-level features meaningful as discrete emotions, in a given
context (Satpute and Lindquist, 2019).

Both emotional awareness and emotion differentiation,
also termed emotional granularity, defined by the ability to
accurately distinguish between specific emotions like anger,
sadness or frustration, rely on this internal model of the
body in the world created by the brain (Barrett, 2017a).
Correspondingly, alexithymic features, including affective
agnosia, an impairment in knowing how one feels, have been

linked with this neuroscientific theory of how “predictive
processes” create emotional experiences (Duquette, 2020).
Accordingly, poor emotional awareness and differentiation are
considered transdiagnostic features of mental disorders and may
act as either a vulnerability or maintenance factor (Kashdan et al.,
2015; Lane et al., 2015b; Smith et al., 2018). Understanding such
mechanisms could represent an important step in identifying
which mechanisms are operative in different individuals and
how they might be targeted on an individual basis within therapy
(Smith et al., 2021). Poor emotional awareness may relate,
for example, to overly precise prior expectations for somatic
threats, leading to somatization (high anxiety sensitivity), or to
highly imprecise predictions and emotion-concept acquisition
due to consistently high levels of threat or environmental
unpredictability (Smith et al., 2021).

These neural mechanisms linked to psychological constructs
further lead to implications regarding the underlying
developmental trajectories and the therapeutic work, elaborated
on in the next section.

THE DEVELOPMENT AND USE OF A
PREDICTIVE BRAIN IN THE
THERAPEUTIC REALM

Before delving into the development of predictive abilities and
its manifestation in the relational context, let us recognize again
that the brain’s modus operandi is situated, constantly receiving
information from, responding to, updating expectations
and monitoring actions in accordance with the ongoing
communicative signals (Hari et al., 2015). What we perceive of
the world in any given moment, then, depends, critically, on the
nature of our prior learning about the world and object relations.
In order to increase predictability, we explore the environment
(beginning with the infant exploring the mother’s breast) and
the mind of others with our unconscious phantasies and proto-
representations, building a repertoire of “priors” to make future
inferences (Holmes and Nolte, 2019). Predictable input from
the caregiver enables the brain to begin differentiating “self ”
versus “non-self ” causes of sensations, securing an experience
of ownership and agency (Fonagy et al., 2002; Seth, 2013; Di
Plinio et al., 2020). The probabilistic predictions we generate
may be experienced as daydreams or fantasies (Bucci and Grasso,
2017), this coincides with the aforementioned involvement of
the default mode network.

With early life experience, the brain assembles predictive
models, which underpin the development of social concepts
and skills (Atzil et al., 2018), linked to the way we mentalize
about own and others’ internal bodily and mental states
(Koster-Hale and Saxe, 2013; Fotopoulou and Tsakiris, 2017;
FeldmanHall and Shenhav, 2019). Primary embodied interactions
permit the “mentalization” of bodily signals across exteroceptive
and interoceptive sensory modalities, transforming rough
perceptions into subjective feelings (Fotopoulou and Tsakiris,
2017). Correspondingly, the process was recently metaphorically
linked to Bion’s postulation of the way “alpha function” (i.e.,
maternal “reverie” generating top-down predictions) processes

Frontiers in Psychology | www.frontiersin.org 4 April 2021 | Volume 12 | Article 634079

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-634079 April 30, 2021 Time: 10:47 # 5

Vaisvaser Neuroscience Meets Creative Arts Therapies

the infant’s projected “beta fragments” (unnamed “bottom-
up” raw sensory impressions) (Bion, 1962; Holmes and Nolte,
2019; McVey et al., 2020). Both the “alpha function” and
“predictive processing” framework focus on the linking of
implicit expectations and the actual realization, based on
prior learning and inference, to produce the meaning-saturated
elements of thought. The importance of such linking relies on
the flexible and mutual flow of information between predictions
and experience, rather than being frozen in maladaptive patterns
(as in depression) or disrupted and fragmented (as in psychosis)
(McVey et al., 2020).

Developmental studies emphasize the role of attachment
figures, with whom one could appropriately place epistemic trust
(Fonagy and Allison, 2014), in the progressive refinement of
the internal self-model via predictive processing mechanisms,
in the course of psychological development (Palmer et al.,
2015; Fotopoulou and Tsakiris, 2017; Pereira et al., 2019). In
accordance, in cases of insecure attachment, the possibilities
for active (or enactive) inference are compromised due to the
absence of a secure base for exploration. The limited extent
and range of sensory sampling of the environment, confines the
variety of “priors” available to account for them (Holmes and
Nolte, 2019). The therapeutic secure relationship might alter
these dynamics of brain function drawing on neuroplasticity
(Pascual-Leone et al., 2005).

By enabling a safe and trustful environment and by “loaning”
the therapist’s brain functions, creating a “reverie” that can
offer therapists a means to enter the predictive moment,
psychotherapy mobilizes the active inference in the context of
intimate relationships (Holmes and Nolte, 2019; McVey et al.,
2020). Moments of creative not-knowing may emerge and
hence the need for active exploration, innovation and generative
possibilities. In that sense, CATs may encompass both strategies
to engage predictive processing neurodynamics – sampling new
sensory input through action (active inference) and shaping
the internal models of the world (prediction signals) through
meaning-making (Venter, 2021).

The experimental aspects of CATs provide the opportunity
for sensorimotor exploratory actions, expanding the individual’s
repertoire of experiences in a secure, accepting, and facilitating
relationship. Thus, the neuroplastic therapeutic processes enables
both the “breaking” (i.e., creative destruction) of priors and the
“making” (i.e., creative construction) of new ones, seeking for
the optimal individually tailored balance between predictability
(a therapeutic setting that does not overwhelm the client) and
opportunities for prediction error- uncertainty, surprise and play.

Given that emotions, as predictions, are embodied conceptual
categories built with experiential multisensory features, preparing
the body for action while simultaneously making meaning of
the incoming sensory array (Hoemann et al., 2020), valuable
opportunities for emotional processing in CATs may arise.
The usage of art forms as a vehicle for affective expression
may enhance emotional awareness and acceptance. Attention
to bodily sensations or unconscious somatically experienced
knowledge, can further be transferred to explicit thought through
language and symbolic formations, interweaving affective,
cognitive and social domains (Czamanski-Cohen and Weihs,
2016; Koch, 2017). The process can also update resistant prior

beliefs and in doing so, alternative expectations about the
subjective experience can be generated.

Moreover, the predictive processing account of emotion
might interlace with theories of aesthetic emotions, such as the
feeling of “being moved,” savored for their own sake, linked
with subjectively felt intensity, or rewarding emotional arousal
(Menninghaus et al., 2019; Zickfeld et al., 2019). Aesthetic
experiences, engaging the brain’s reward network, are laden
with tension, fluctuations in uncertainty, generating prediction
errors (“surprises”) that create a yearning for resolution,
triggering predictive processes directed at future events of
emotional significance (Koelsch, 2014; Lehne and Koelsch,
2015; Shany et al., 2019). Minimization of prediction error
involves the embodied capacity to generate experience through
action, thereby fostering creativity (Daikoku, 2019; Schiavio
and Benedek, 2020). In this sense, CATs may tap into the
intrinsic motivation to seek predictive progress and offer clients
opportunities to venture out of predictable zones (Gottlieb et al.,
2013). Successful predictions remain implicit, it is prediction
errors that attract consciousness (Solms, 2015). The discovery
of affective dynamics, unfolding through prediction errors,
including negatively valenced contents, validates self-existence
and the cognitive-affective schemata with which one experiences
and navigates the world (Van de Cruys et al., 2017). Through
embodied aesthetic expression and impression in CATs, that
involve symbolizing, meaning-creating processes (Koch, 2017),
predictive progress is being made, enlivening curiosity, creativity
and sense of mastery.

Such therapeutic processes may also drive associative plasticity
to update internally generated predictions that draw on memory
traces (Barron et al., 2020). Indeed, an error in prediction,
between expected and current events, affects different stages
of learning and memory (Dudai, 2012) and can also drive
the updating of consolidated memories in the process of
reconsolidation, when memory is labile and susceptible, during
its reactivation (Sevenster et al., 2014; Exton-McGuinness et al.,
2015; Fernández et al., 2016; Gershman et al., 2017; Lee
et al., 2017). In this regard, CATs may assist the formulation
of a reconsolidated narrative, while processing traumatic
memories also in the implicit realm, using the art forms that
incorporate body movement (Hass-Cohen, 2016; Gerge et al.,
2019; Hass-Cohen and Findlay, 2019; Perryman et al., 2019).
Notably, the process of reconsolidation depends on emotional
reactivation, without necessarily explicitly recalling the event,
as well as on the recognition of a mismatch or disconfirming
information (prediction error). Further activation of new
emotional experiences allows the situation to be experienced
and understood in a different way, adding safe elements
to a threatening memory, working through the emotional
consequences of the new learning in a variety of contexts and
focusing on creating a more coherent narrative (Lane et al., 2015a;
Lane, 2018; Hass-Cohen and Findlay, 2019).

These dynamic processes emerge within the context of
a therapeutic relationship, moving us toward second-person
neuroscience perspective, learned through real-time social
encounters (Schilbach et al., 2013; Redcay and Schilbach, 2019).
Focusing on interactive phenomena occurring in the relational
matrix, the next section explores the neural mechanisms
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underscoring the capacity to grasp the mental states of others, i.e.,
mirror neuron and mentalizing systems; as well as the intriguing
interbrain coupling through shared experiences.

THE RELATIONAL BRAIN AND THE LINK
BETWEEN SUBJECTIVITY AND
INTERSUBJECTIVITY

Intrapsychic experiences are interwoven with and dependent
on relational and intersubjective contexts. These may be
played out in the therapeutic relationship and transference-
countertransference interaction, supported by the therapist’s
presence and empathic attunement. Social neuroscience offers a
window into the origins and dynamics of this relational matrix.

The conceptualization of the brain as embodied and the agent-
environment dynamics of the predictive processing account
of brain function, relates also to its social essence, being
interconnected, interactive and intercommunicative. Humans are
social species and the complex specialization for social stimuli
processing encompasses regulation from the neurotransmitter to
the neural network level, resulting in a “social brain” (Dunbar,
2009). Consequently, deficits in these processes may result and
relate to diverse neuropsychiatric disorders (Porcelli et al., 2019).
Indeed, robust literature suggests that human brains are wired
to connect, dependent on ongoing social transaction and thereby
should be considered in the context of other human brains. It has
become increasingly clear that the brain is practically sensitive to
social presence, whereby the mere presence of another person can
alter brain activity (Verbeke et al., 2014). Furthermore, it is the
non-verbal aspects of social interaction and embodied relational
experiences that lay the foundation for the development of brain
function (Hari et al., 2015; Atzil et al., 2018).

This interpersonal resonance is anchored by brain
mechanisms of simulation- the vicarious representations of
the bodily and emotional states of others through mirror neuron
systems, and synchronization- the inter-individual neuronal
coupling of brain activity during interaction.

Mental simulation theories of action understanding, based
on mirror mechanisms of the brain, suggest that observed
actions are matched onto the observer’s motor system (in mirror
neurons in the premotor and parietal cortex), thereby allowing
an understanding of the intentions behind these actions (Gallese
et al., 1996; Rizzolatti et al., 1996; Rizzolatti and Sinigaglia,
2016). Furthermore, research has demonstrated that the human
brain is also endowed with mirror mechanisms in the domain
of emotions. Simulation describes the mapping of not only
movements, but also sensations and emotions of others, mapped
onto the observer’s visceral and somatosensory systems (Gallese
and Sinigaglia, 2011). This implies that overlapping nervous
structures involved in the subjective experience of emotions are
also active when such emotions are recognized in others (Gallese,
2003; Keysers and Gazzola, 2009). This process, termed embodied
simulation, recruits sensory-motor regions (e.g., the premotor
cortex) along with visceromotor brain regions (e.g., the anterior
insula) mediating interoception. Accordingly, neuroimaging
studies have shown an overlap between these brain regions
implicated in self and bodily experiences and those underpinning

mental inferences about the affective states of others (Decety,
2015; Abraham et al., 2019); a shared neural representations for
self- and empathetic emotions, including pain, and positive or
negative emotions (Zaki et al., 2016).

Embodied simulation, therefore, recreates the other’s
emotional state in one’s brain, a mechanism that enables
individuals to resonate with other’s mental state and emotions,
and grounds experience in the present moment (Gallese, 2014).
These simulations of self and other, as ongoing, intrinsic activity,
function as internal models (i.e., predictions) that construct
emotions and perceptions, and guides actions (Chanes and
Barrett, 2016). The simulation process in the parental brain, for
example, was shown to be critical for grounding a “shared space”
in the brain that underpins the capacity to build and maintain
attachment (Feldman, 2017). Accordingly, studies found that this
embodied simulation network of a parent also supports the child’s
long-term sociality, well-being, and health, with participation of
the neurotransmitter and hormone oxytocin, which underpins
the development of trust and bonding (Abraham et al., 2019).
Neural mechanisms that underlie simulation may explain
individual variability in social functioning in healthy, at-risk and
clinical populations (Masson et al., 2019; Lincoln et al., 2020).

The simulation mechanisms signify intercorporeality – the
mutual resonance of intentionally meaningful sensorimotor
behaviors – as a primordial source of intersubjectivity (Gallese,
2014). This concurs with the methods of CATs, demonstrating
how deeply our making sense of others’ living and acting
bodies is rooted in the power of re-using our own motor,
emotional and somatosensory resources (Gallese, 2013). Notably,
this mechanism plays a key role in our aesthetic experience, in the
engagement of bodily memories and in imaginative associations
(Gallese, 2017).

Empathic concern requires motivational investment and
thereby is also supported by brain regions associated with
reward processing (Singer and Klimecki, 2014; Weisz and
Zaki, 2018). Furthermore, studies suggest a division between
regions responding preferentially to internal states of the others’
bodily grounded emotional experience, versus internal states of
others’ thoughts (Lombardo et al., 2010; Bruneau et al., 2012;
Kanske et al., 2015; Spunt et al., 2016). Indeed, in addition to
embodied emotional resonance, empathic attunement entrails
cognitive understanding, which involves the activation of a
theory of mind (ToM) or “mentalizing” network in the brain.
This “mentalizing” network mainly includes the temporoparietal
junction (TPJ), and regions of the aforementioned default mode
network (DMN, mainly concerns midline anterior and posterior
cortices), involved in the attribution of mental states, beliefs and
intentions to others. The DMN is associated with distinguishing
internal from external information, as well as generating and
contemplating on thoughts and intentions of both the self and
significant others (Alcalá-López et al., 2019; Dohmatob et al.,
2020; Wen et al., 2020).

Importantly, mentalization during empathic engagement
refers also to the attribution of emotions, wishes, desires, and
needs (Fonagy et al., 2002) and involves automatic, embodied
aspects, as well as more controlled reflective aspects (Luyten
and Fonagy, 2015). The neuroimaging literature may help us
understand this phenomenon better, suggesting that distinct
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neural networks are involved in self-knowing and knowing
others, differentiating between affective simulation processes, i.e.,
shared representations for firsthand and vicarious experiences
of affective states, and cognitive mental state attribution, which
relies more on symbolic and abstract processing (Shamay-
Tsoory, 2011; Raz et al., 2014; Luyten and Fonagy, 2015). As
aforementioned, these networks show overlapping activations for
mentalizing about the self and others (Lombardo et al., 2010).
Accordingly, both the sense of self and the sense of others
rely on the functional integration and segregation of default
mode, sensorimotor, affect-related (insula, cingulate cortex) and
executive brain networks (Di Plinio et al., 2020). This also concurs
with the idea that the capacity for mentalizing is acquired in the
context of attachment relationships (Fonagy and Luyten, 2016),
since, as depicted above, attachment is founded on the caregiver’s
capacity for empathic engagement (supported by the simulation
and mentalizing networks) (Abraham et al., 2018), establishing
the mechanism that creates our internal models (i.e., predictions).

It is not surprising then that the DMN, a core brain system
for processing information about the self and about others, has
emerged as a key system underlying multiple psychopathologies,
mainly due to abnormal connectivity and decreased segregation
between the DMN and other functional brain networks (Xia et al.,
2018). This was shown, for example, in autism (Padmanabhan
et al., 2017; Reiter et al., 2019), Schizophrenia (Kottaram et al.,
2019), depression (Scalabrini et al., 2020; Zhou et al., 2020) and
PTSD (Akiki et al., 2018).

Acknowledging the interplay between the aforementioned
affective and cognitive dimensions of empathy, emphasized
through the lens of brain systems, is particularly valuable in
the context of the therapeutic relationship. Such dynamics
may reflect the oscillation and tension between subjective
and objective positions through the course of psychotherapy,
and phenomena such as identification and transference-
countertransference (including somatic) transactions. Within
this interchange, a key issue is that the therapist processes
her/his own implicit (body-based) and background (conscious
but in the attentional background) feelings to make sense of the
current interactive experience (Lane, 2018). Distinguished from
emotional contagion, for other-directed empathetic concern to
arise, along with the grounding of empathy in our own emotional
experiences through shared representations, there needs to be a
clear self-other distinction, or the capacity to correctly distinguish
between our own affective representations and those related to
the other (Lamm et al., 2016). This is presumably accomplished
by inter-network connectivity and functional integration among
brain systems, such as the embodied simulation (salience) and
mentalizing networks (Levy et al., 2019).

Intriguingly, during real-time moments of affect sharing,
a fascinating phenomenon of neurophysiological synchrony
between people, analogous to a wireless communication, was
operationalized and empirically observed (Anders et al., 2011;
Hasson et al., 2012). This spontaneous and dynamic concordance
in brain activity between individuals was found in brain regions
of embodied simulation, reward/motivation and mentalization
functions (Feldman, 2017), with regions of the prefrontal cortex
most commonly implicated in this “brain-to-brain coupling”
(Reindl et al., 2018; Azhari et al., 2020b; Behrendt et al.,

2020). Notably, the coordinated or synchronized brain activation
across people, i.e., intersubject correlation, was suggested as a
mechanism of transmission of shared meaning and common
interpretation that goes beyond cultural and linguistic boundaries
(Honey et al., 2012): Moments of neural synchrony may be driven
by shared attention to external stimuli in the environment or
directly mediated by person-to-person communicative signals,
through which interaction is conveyed (e.g., eye contact, facial
expression, bodily gestures, vocal prosody). Correspondingly,
the intersubjective oscillatory brain response has been related
to empathic relationships and bonding (Wheatley et al., 2012;
Hu et al., 2017), shown to be indicative of rapport (Ellingsen
et al., 2020), emotion co-regulation and social learning, through
mutual attention, and communication (Leong et al., 2017;
Levy et al., 2017; Pratt et al., 2018; Reindl et al., 2018;
Piazza et al., 2020). Recently, this implicit interpersonal neural
resonance was suggested as the basis of attachment (Schore
and Schore, 2008; Siegel, 2015; Long et al., 2020) and also
affiliated with the development of resilience (Feldman, 2020).
Accordingly, parenting stress was shown to have adverse effects
on mother-child brain-to-brain synchrony (Azhari et al., 2019)
and anxiously attached mothers exhibit less synchrony with their
child, suggested to indicate less attunement to his/her mental
state (Azhari et al., 2020a). Strengthened synchronization was
presented when events were accompanied by strong emotions
(Nummenmaa et al., 2012, 2014), social proximity (Parkinson
et al., 2018), behavioral synchrony (Kinreich et al., 2017;
Levy et al., 2017) and group bonding (Yang et al., 2020).
Importantly, there seems to be an agreement on the fact that
the brain-to-brain networks become increasingly efficient and
integrated as the level of interaction between subjects intensifies
(Falk and Bassett, 2017).

Within empathic relationships, moments of interpersonal
match/synch are integrated with moments of mismatch,
with relation to behavior, neurophysiology and mental
states (Feldman, 2020). These notions provide biological
and scientific evidence to Winnicott’s conceptualization on
the critical continuity of being in the presence of a non-
impinging good enough other as the basis for play and
creativity (Winnicott, 1971). Furthermore, interbrain coupling
is experience-dependent, demonstrating its specific relevance
to CATs; it increases with diversity of repertoire, symbolic level
and degree of mutuality, tuning the social brain (Levy and
Feldman, 2019). Artistic experiences were shown to induce
brain-to-brain coupling, e.g., while creating, performing or
listening to music together (Babiloni et al., 2012; Müller
et al., 2013; Zamm et al., 2018; Sachs et al., 2020), viewing
dance performance (Jola et al., 2013; Herbec et al., 2015), in
shared movement (Reddish et al., 2013) and in interacting
audiences during free viewing of live cinema (Zioga et al.,
2018). In the context of the therapeutic relationship, the
contribution of creative processes to the intersubjective
neuropsychological boding is thus compelling. Synchrony is
rooted in biological rhythms grounding this experience in the
physical and concrete and enabling the history of the relationship
to resonate within “moments of meeting,” as “implicit relational
knowing” (Stern et al., 1998; Bruschweiler-Stern et al., 2007;
Feldman, 2020).
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SUMMARY AND CONCLUSION-
CREATIVE ARTS THERAPY AND
NEUROPLASTICITY

Recent advances in understanding of brain mechanisms that
underlie mental processes, as well as psychotherapeutic change,
might have significant impact on CATs practice; not only
for arriving at the most accurate and holistic account of
case formulation and presentation, but also for treatment
and intervention.

The invigorating present views of brain function that
endorse its embodiment, dynamic processes of prediction,
remodeling, resonance and interconnectedness, ground the
intra- and inter- psychic features and highlight the therapeutic
potential of the expressive creative arts. Moreover, these
neuroscientific accounts emphasize the pre/non-verbal dynamics
that play an important role in shaping self-experience and
development and are an integral part of the CATs setting, were
creativity, intimacy, and aliveness might emerge. The ability
of the brain to plastically develop, adapt and change is a
fundamental well-recognized phenomenon (Pascual-Leone et al.,
2005). In accordance with the brain’s embodied engagement
with the inner and outer environment, plastic processes
were shown to be highly action-dependent and modifiable
by experience (Fields, 2008; Tomassy et al., 2016; Sampaio-
Baptista and Johansen-Berg, 2017). Moreover, neuroplastic
processes are heavily influenced by environment, culture and
the accumulation of experiences of production and appreciation
of the arts (White-Schwoch et al., 2013; Bolwerk et al., 2014;
Nadal and Chatterjee, 2019; Teixeira-Machado et al., 2019;
Zamorano et al., 2019).

The exploratory, integrative nature of CATs may be linked to
various dynamic brain mechanisms; enabling the brain to become
more sensitive to experience-based context, broadening sensory
sampling, processing of emotional salience and interoceptive
awareness, promoting agency and shaping the interpersonal
world to revise “priors” and reconsolidate memories in

the light of experience. Therapeutic attunement encompasses
means for interpersonal brain-to-brain coupling and the
integration of the lived experience with reflective, meaning-
making processes that might promote communication between
different functional systems. These include neural systems
related to the multidimensional sense of self and self-other
relationship, supporting emotional awareness, motivational
investment, mirroring or embodied simulation mechanisms and
mentalization. Further research that evaluates the presented
mechanisms will be valuable and useful to the field. Recent
developments of mobile brain/body imaging technology, for
example, may yield more extensive understandings of brain
function in natural settings and in relational contexts, also during
real-time artistic creation (King, 2018; Cruz-Garza et al., 2019;
King and Parada, 2020).

Our task then, as therapists, is to tap into the brain’s potential
for change and mobilize plasticity in the process of therapeutic
development. Emotionally attuned experiential practice, enriched
in multisensory and expressive tools, which provides a safe
space for self and self-other explorations, might do just
that. Neuroscience-informed therapy, acknowledging dynamic
brain responses that underlie the subjective and intersubjective
experiences, would enable deeper understandings of these intra-
and inter-personal psychodynamics.
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