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The efficient coding hypothesis posits that sensory systems are tuned to the regularities

of their natural input. The statistics of natural image databases have been the topic

of many studies, which have revealed biases in the distribution of orientations that are

related to neural representations as well as behavior in psychophysical tasks. However,

commonly used natural image databases contain images taken with a camera with a

planar image sensor and limited field of view. Thus, these images do not incorporate

the physical properties of the visual system and its active use reflecting body and eye

movements. Here, we investigate quantitatively, whether the active use of the visual

system influences image statistics across the visual field by simulating visual behaviors

in an avatar in a naturalistic virtual environment. Images with a field of view of 120◦ were
generated during exploration of a virtual forest environment both for a human and cat

avatar. The physical properties of the visual system were taken into account by projecting

the images onto idealized retinas according to models of the eyes’ geometrical optics.

Crucially, different active gaze behaviors were simulated to obtain image ensembles

that allow investigating the consequences of active visual behaviors on the statistics

of the input to the visual system. In the central visual field, the statistics of the virtual

images matched photographic images regarding their power spectra and a bias in

edge orientations toward cardinal directions. At larger eccentricities, the cardinal bias

was superimposed with a gradually increasing radial bias. The strength of this effect

depends on the active visual behavior and the physical properties of the eye. There

were also significant differences between the upper and lower visual field, which became

stronger depending on how the environment was actively sampled. Taken together, the

results show that quantitatively relating natural image statistics to neural representations

and psychophysical behavior requires not only to take the structure of the environment

into account, but also the physical properties of the visual system, and its active use

in behavior.
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1. INTRODUCTION

One of the most successful and long-standing computational
approaches to perception has posited that perceptual systems are
adapted to the sensory stimuli they encounter. This idea was
originally fueled by the advent of information theory (Shannon,
1948) and dates back to the 1950s, when Attneave (1954) and
later Barlow (1961) argued that sensory systems should represent
their input in a way that removes statistical redundancy while
retaining as much information as possible. Due to the structure
in the environment to which the sensory system is exposed, not
all conceivable inputs are equally likely. Since the computational
resources available to a sensory system are limited by biological
constraints, more resources should be allocated to process the
inputs that are more likely to be encountered. This formalization
is closely related to Bayesian approaches to perception (Knill and
Richards, 1996), according to which the visual system infers the
most likely causes of ambiguous, uncertain, and noisy sensory
signals it obtains by probabilistically combining them with prior
knowledge. In this Bayesian setting, computing a posterior
probability over image causes only leads to the correct inferences,
if the prior distribution over these image causes is adapted to the
empirical distribution of the variables in the environment. Thus,
it is of crucial importance both in the framework of information
theory and the Bayesian framework for a sensory system to be
well-calibrated to the statistics of its input (Fiser et al., 2010;
Ganguli and Simoncelli, 2014; Wei and Stocker, 2017).

A first requirement in quantitatively establishing the link
between neural representations and perception on one hand
and environmental statistics on the other hand (Simoncelli and
Olshausen, 2001) is therefore to analyze the statistics of the
natural input to the visual system, i.e., the typical kinds of
stimuli it encounters while an organism interacts with its natural
environment. But, what are the stimuli that sensory systems
encounter? Regarding the visual system, this line of thought
has motivated numerous studies investigating environmental
statistics via natural image ensembles. Classic studies typically
used images from natural scene databases, which mostly consist
of photographs taken in natural landscapes. Early studies used
the database by van Hateren and van der Schaaf (1998), which
is made up of 4,000 monochrome, calibrated images of natural
landscapes in part containing human artifacts including roads,
buildings, and cars. Several other natural image datasets have
been collected over the decades with the specific goal of
measuring image feature statistics and relating them to properties
of the human visual system. Such datasets include image
collections from the putative birthplace of homo sapiens (Tkačik
et al., 2011) and images together with depth measurements of
natural environments (Adams et al., 2016) or video sequences
recorded by placing cameras in the natural habitat of animals
(Qiu et al., 2020) or by simulating some physical properties of the
visual system of animals (e.g., Nevala and Baden, 2019; Tedore
and Nilsson, 2019).

There are, however, several aspects in which photographic
images of natural environments and the natural input to the
visual system differ. Betsch et al. (2004) identified two of these
aspects: First, the temporal dynamics of the environment are lost

when considering only static images. Second, images selected by
humans potentially introduce biases, since the process by which
the visual system samples the environment is most likely different
from the selection process for these databases. Humans and
animals actively direct their eyes to different parts of the scene in
conjunction with the ongoing behavior (Land and Tatler, 2009),
which is primarily determined by behavioral goals (Hayhoe
and Ballard, 2005). During walking in natural environments
humans show specific preferences in gaze directions (Einhäuser
et al., 2007; Pelz and Rothkopf, 2007). When navigating rough
terrains, subjects tend to align their gaze most of the time
with environmental features lying in their plane of progression
(Hollands et al., 2002) and they differentially adjust their gaze
targets to obstacles and targets along the way (Rothkopf et al.,
2007). Because of this active selection of gaze targets, the local
statistics at the point of gaze vary between tasks (Rothkopf and
Ballard, 2009). This suggests, that the statistics of the natural
input to the visual system depend on the active sensory strategy.
Indeed, a preliminary study revealed, that preferred orientations
of receptive fields learned with sparse coding differ depending on
looking directions (Rothkopf et al., 2009). Several studies have
approached this by placing cameras on the head of animals and
humansmoving through natural environments (e.g., Betsch et al.,
2004; Schumann et al., 2008; Orhan et al., 2020).

Another important difference was noted by Pamplona et al.
(2013). The field of view in natural image databases is typically
limited, e.g., 26◦ in the van Hateren and van der Schaaf (1998)
database. Thus, the statistics of natural images are often assumed
to be homogeneous across the visual field or even space-invariant,
which previous research has shown to not be the case (Bruce
and Tsotsos, 2006; Rothkopf et al., 2009; Pamplona et al., 2013).
Furthermore, the photoreceptors at the back of the retina are not
arranged on a plane but on an approximately spherical surface.
By simply using camera images, one assumes that the geometrical
optics of the eye are identical to those of a camera or that these
differences do not matter. Pamplona et al. (2013) inspected the
power spectra of images after taking into account the human
eye’s geometrical optics and the blurring introduced by the
eccentricity-dependent modulation transfer function (Navarro
et al., 1993) and found eccentricity-dependent effects of both the
geometry and blurring on the distribution of spatial frequencies.
Thus, the sensory stimuli that visual systems encounter may not
be well represented by photographic images but are influenced
by the respective imaging process and the active use of the visual
system. The crucial question resulting from this observation is,
whether these factors significantly influence the statistics of the
sensory signals entering the visual system or whether they do
not matter.

Here we investigate quantitatively through simulations of
avatars in virtual reality whether differences in the imaging
system and in visual exploration strategies do actually influence
image statistics across the visual field or not. Specifically, we
generate parametric image databases for two visual systems
by moving a human and a cat avatar through a virtual
wooded environment and selecting gaze targets according to
three different visual strategies. Using virtual scenes might
seem like a step away from analyzing natural image statistics.
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However, virtual environments created in game engines have
several important advantages over natural image databases. The
properties of the environment are controlled, which makes the
dataset easily reproducible (Rothkopf et al., 2009; Richter et al.,
2016). It also allows full control over the imaging process,
including focal length, field of view, and eye height. This allows
capturing images with a much larger field of view than well-
known image databases (e.g., van Hateren and van der Schaaf,
1998). Furthermore, by controlling the active sampling strategy
of gaze targets and the process of image formation on the model
retina, we can quantify their influence on image statistics. Finally,
previous research has shown that while differences between
simulated images and real-world images for certain vision tasks
exist (Veeravasarapu et al., 2017), commonly considered image
statistics relevant for the analysis of visual systems such as
second-order luminance statistics and Gabor filter responses can
match those obtained on classic images databases (Rothkopf and
Ballard, 2009).

Using virtual environments furthermore allows sampling
images from the viewpoint of a human and a cat and project
local image patches onto idealized model retinas of the respective
species. Recent work comparing the statistics of optic flow
in natural videos between infants and their mothers (Raudies
et al., 2012; Raudies and Gilmore, 2014) has shown that
the viewpoint matters. Here, we compare human and cat
viewpoints, because the cat’s primary visual cortex is a common
animal model in visual neuroscience and is, despite their
differences, often compared to the primate visual system (Payne
and Peters, 2001). Thus, the present study contributes to the
understanding of the source of potential differences in neuronal
representations between these two species. Neurophysiological
and neuroimaging studies for example revealed cardinal and
radial orientation biases in early visual areas both in cats
(Leventhal, 1983; Wang et al., 2003) and humans (Furmanski
and Engel, 2000; Sasaki et al., 2006), albeit with quantitative
differences. We argue that in order to transfer from a model
system to humans, it is important to understand how differences
in neural representations arise as a function of different natural
input. In this paper, we take a step in this direction by
comparing low-level statistics of the input of the human and cat
visual system.

While sampling locations in the environment during
exploration can still introduce biases, it is a step toward
incorporating such explorative biases that occur during
natural behavior, instead of those that play a role in choosing
photographs for a database. Therefore, positions and gaze
directions were recorded at regularly spaced temporal intervals
along a trajectory during free exploration of the environment
by a single subject. Instead of deliberately taking images in the
environment, we opted for this method to avoid the above-
mentioned biases in selecting images. In addition to the recorded
gaze directions, we considered three different visual strategies:
an agent looking straight ahead, an agent looking toward the
ground, and an agent with random gaze directions. At each
of these recorded positions and for each of these active vision
strategies, image patches were sampled across the visual field.
The geometric optics of the eye were modeled by approximating

the spherical surface of the retina locally with tangential planes,
in an approach similar to Pamplona et al. (2013). The second-
and higher-order statistics of images obtained according to this
process were analyzed by computing the power spectra and edge
filter responses. This allows establishing and quantifying the
influence of the imaging process and the active use of the visual
system on the statistics of the input to the visual system.

Using this virtual image dataset, we are equipped to ask
the following questions. Do the image statistics in the virtual
environment in the central region of the visual field match
those of photographic images? Going beyond the central region,
which is covered by common natural image databases, do
the image statistics change with increasing eccentricity and
across different regions of the visual field and if so, how?
Does it make a difference whether we view the environment
with the eyes of a cat or a human? And finally, do different
active vision strategies lead to differences in image statistics?
After all, while quantitative differences in second order image
statistics across image categories (Torralba and Oliva, 2003)
have been reported, much less is known whether and how the
factors investigated in the present study affect image statistics.
It is conceivable that differences in visual sampling of the
environment would average out in large image ensembles.
Indeed, our results show that the simulated images match a
number of summary statistics at the center of gaze previously
reported in the literature using photographic image databases.
Specifically, we find the characteristic 1/f 2 spatial frequency
behavior (van der Schaaf and van Hateren, 1996) and a cardinal
orientation bias (Coppola et al., 1998). Replicating previous
results, we also find cardinal and radial biases in the orientation
distributions across the visual field. But, varying the parameters
of the imaging process as well as the viewpoint between
a human and a cat avatar results in mensurable influences
on image statistics. Similarly, image ensembles obtained with
different active vision strategies also show clear differences
in image statistics. Taken together, these results provide clear
evidence, that studying neuronal representations and perceptual
properties of the visual system not only needs to quantify
statistical properties of natural photographic images but also
the statistics imposed on the stimulus by the imaging process
and the statistics of active use of the visual system. The
dataset on which this study is based will be released as
part of this publication to facilitate further investigations of
these influences.

2. METHODS

2.1. Virtual Scene Dataset
In order to analyze the properties of the natural input of
the visual system, we created a dataset of image patches in a
naturalistic virtual environment. Image patches were sampled
across a large visual field (120◦) from two different viewpoints
and with three different active vision strategies. The imaging
process was adapted to account for the projective geometry of an
idealized retina.
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2.1.1. Virtual Environment
The virtual scenes were constructed in Unity1, a 3D game engine
and integrated development environment. A naturalistic forest
environment was created with close to photo-realistic models
of trees, undergrowth and smaller plants, deadwood, and rocks
based on an interactive Unity demo2.

2.1.2. Simulating Virtual Agents’ Movement
In this study, we consider static images so that we need
to select static positions and viewing directions to obtain
individual images instead of movie sequences with naturalistic
movement trajectories. Therefore, the first author obtained
movement sequences by exploring the virtual environment with
no particular goal in mind. The environment was presented in
first-person view on a 27” computer screen. While navigating the
environment using mouse and keyboard controls, the position
and orientation of the viewpoint were recorded every 2 s. In total,
663 positions were recorded.

2.1.3. Simulating Human and Cat Avatars
As a wealth of classic data on the visual system have been
recorded in different animal species (particularly humans,
monkeys, and cats), we simulated a human and a cat avatar.
This was achieved by selecting a viewing height of 1.8 m for
the human avatar and a viewing height of 0.25 m for the cat
avatar. The positions (except eye height) and viewing directions
were those recorded during exploration of the environment.
Furthermore, the parameters of the virtual eye model (see section
2.1.6) were chosen to be realistic for each species. Exemplary
screenshots from the two viewpoint heights are shown in
Figures 1A,C, respectively.

1http://unity3d.com, version 2018.2.21f1.
2https://unity3d.com/book-of-the-dead, version 1.1.

2.1.4. Simulating Active Vision Strategies
To investigate the effect of different active vision strategies we
sampled gaze directions according to three different methods
(see Figure 2). The straight agent always looked in the heading
direction of the movement, with an elevation angle of zero. The
down agent directed gaze at an elevation angle of 30◦ downward
from the horizontal heading direction, so that the agent always
looked to the ground (Figure 1B). The random agent directed
gaze in random heading and elevation angles, which were drawn
from a standard normal distribution (in radian units) centered
around the heading direction, which corresponds to a standard
deviation of 57.30◦.

2.1.5. Imaging Process
The camera was placed at the recorded positions along the
trajectory and rotated according to the corresponding orientation
of the three different virtual agents. At each of these positions,
image patches were sampled from the virtual scene. The
parameters of the imaging process were the same as in Pamplona
et al. (2013). The field of view covered 120◦ horizontally
and vertically and the focal length was chosen to match the
parameters of a thin lens equivalent model of the human or
cat eye (see section 2.1.6). Specifically, the environment was
projected onto a plane at the back of a model eyeball, with radius
r, centered at z = −r in a 3D coordinate system relative to
the camera position and rotation. Thus, the environment was
projected onto the plane z = −2r (see Figure 3B). The overall
resolution of the entire scene was 5,954 × 5,954 pixels. This
resolution was adopted in order to have a resolution similar to
van Hateren and van der Schaaf (1998) in the central area of the
visual field. Since this resolution is too high to efficiently save
and store the full images, image patches of 512 × 512 pixels
were sampled at different positions across the visual field (see
Figure 4). The coordinates of these positions are specified in
terms of eccentricity ϕ and polar angle χ (see Figure 3B for a

FIGURE 1 | Illustrations of the virtual environment. The virtual environment, shown from the viewpoint of a human looking straight ahead (A) and down (B) and from

the viewpoint of a cat (C). Note that the distortions present in these images result from the projection of a large field of view on a single plane and are different from the

geometrical distortions considered in the following (see Figure 4).
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FIGURE 2 | Virtual agents and active gaze behaviors. Top row: illustration of gaze directions in human and cat avatars. (A) The “straight” agents were simulated with

gaze being directed in the direction of locomotion. (B) The “down” agents directed gaze downward from the horizontal heading direction by an angle of 30◦ . (C) The
“random” agents directed gaze in random heading and elevation angles. Bottom row: Top view of the corresponding walking trajectory in virtual space and the viewing

directions, which are indicated by the direction (heading) and color (elevation) of arrows.

FIGURE 3 | Illustrations of image projections. (A) Projection of a sample environment onto a spherical model retina. The crosses indicate the centers of the patches at

different positions in the visual field as defined in Figure 4. (B) Illustration of the geometry of the imaging process. The image plane at z = −2r is shown as a grid.

Point p lies in the image plane. The corresponding point on the sphere is p′. The eccentricity ϕ is the angle between the vector from the origin to the point p and the

z-axis. The polar angle χ is the angle between the point p and the x-axis on the image plane. (C) The local approximation of the sphere by means of a tangent plane is

used in image rendering.

definition of the angles). The Cartesian coordinates of a point
P = [x, y, z] on the image plane can be obtained from these angles
as follows:

x = 2r tanϕ cosχ

y = 2r tanϕ sinχ

z = −2r.

(1)

The positions in the visual field, at which image patches were
sampled were chosen as the combinations of three eccentricities

(ϕ ∈ {0, 30, 50}) and 8 polar angles, i.e., angles in the xy-plane
(χ ∈ {0, 45, 90, 135, 180, 225, 270, 315}). Since the coordinate is
the same at eccentricity 0 for each polar angle, this results in
the 17 combinations in Figure 4, which shows a few exemplary
patches. In order to capture the image patch at (ϕ, χ), the center
of the patch was computed according to Equation ((1)) and the
projection matrix of the camera was set using a call to OpenGL’s
frustum(x − s

2,x + s
2, y − s

2, y + s
2), where s is the size

of an image patch. In total, 663 × 17 = 11.271 image patches
were recorded.
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FIGURE 4 | Example image patches. Image patches from the virtual environment across the visual field from the human viewpoint at (A) 0◦, (B) 30◦, and (C) 50◦

eccentricity and 8 different polar angles (0–315◦) obtained by the simulated imaging process.

2.1.6. Projection Onto the Retina
The usual imaging model in computer vision applications
assumes a planar image, i.e., an image of the world where
every world point has been projected onto a plane. While this
assumption is valid for camera images, the human eye’s surface is
not planar. In order to take a step toward a realistic model of the
human visual system, the retina can be modeled as a spherical
surface. Instead of modeling the lens properties of the optical
apparatus and the aberrations introduced by it, an equivalent
thin lens model of the human eye with the same parameters as

Pamplona et al. (2013) was used. This model assumes that the
eye is focused at infinity, resulting in a focal length of f = 2r,
where r is the radius of the eye. Each point in the 3D world is
then projected onto a sphere, whose center is at c = [0, 0,−r].
To compare image statistics from the viewpoint of a human and
a cat, different parameters of the eye model were chosen for these
two viewpoints. For the human model, the eye height was 1.8m
and the focal length was 16.67mm (Emsley, 1948), while for the
cat model the eye height was 0.25m and the focal length was
12.5mm (Vakkur and Bishop, 1963).
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Figure 3A shows an example image from the virtual
environment projected onto a sphere. The coordinates of a point
p′ = [x′, y′, z′] on the sphere can be obtained from its eccentricity
ϕ and polar angle χ (derivations the Supplementary Material):

x′ = 2r sin(ϕ) cos(ϕ) cos(χ)

y′ = 2r sin(ϕ) cos(ϕ) sin(χ)

z′ = −2r cos2(ϕ).

(2)

Since points on the sphere can either be described using
two angles (e.g., in terms of eccentricity and polar angle, see
Figure 3B) or using three-dimensional Cartesian coordinates,
they are not suitable for analysis with common image processing
software, which assumes images with 2D coordinates (i.e., images
defined on a plane). As a solution, one can approximate the
spherical image locally using a tangent plane (see Figure 3C). For
each image patch on the projective plane at the back of the sphere
at a specific eccentricity ϕ and polar angle χ , a corresponding
tangent plane is defined by the point p′T on the sphere at (ϕ,χ)
and the normal vector En = p′T − c. The point p′T then lies both on
the sphere and on the tangent plane, while all points in its vicinity
are well-approximated with the tangent plane. With increasing
image patch sizes, the exactness of the approximation decreases.
For this reason and due to computational constraints, an image
patch size of 128 pixels on the tangent plane was chosen. This
patch size results in a maximal approximation error in 3D space
between the sphere and the tangent plane of 0.054mm at ϕ = 30◦

and 0.075mm at ϕ = 50◦.
The local approximation of the spherical image by a tangent

plane has one additional advantage because it allows us to
transform the planar image into the approximate spherical image
with standard computer vision methods, without first computing
the actual spherical image. Two planar images taken from the
same camera center are related by a homography, i.e., a 3D
projection matrix with 8 degrees of freedom (e.g., Hartley and
Zisserman, 2003). A point in homogeneous coordinates on the
tangent plane q′ = Ap′ can be computed from its counterpart on
the projective plane q = Bp with the following equation:

p′ ∝ p

H⇒ q′ ∝ A−1Bq

H⇒ q′ = Hq, (3)

where the scaling of H is arbitrary. See Supplementary Material

for derivations of the matrices A and B.
Compared to the projection used by Pamplona et al. (2013),

this has one advantage in terms of computational efficiency.
Pamplona et al. (2013) first compute the spherical image and then
reproject it to a plane using the stereographic transform. While
this mapping is nonlinear, the approximation introduced here
can bemodeled with only linear transformations. An image patch
on the projective plane can be transformed into its corresponding
tangential image patch by warping the image according to the
homography matrix H. The warping was implemented using the
scikit-image package for Python (Van derWalt et al., 2014).

2.2. Image Statistics
To evaluate differences between simulated image ensembles we
computed two feature statistics that have been highly influential
in perceptual science and neuroscience: power spectra and edge
histograms.Each of these is briefly described in the following
subsections. Prior to these analyses, all image patches were
converted to grayscale: they were first transformed to XYZ space
and only the luminance channel was used. Then, each image
patch was divided by its mean luminance. Statistical tests and
circular statistics were computed using the pingouin Python
package (Vallat, 2018).

2.2.1. Power Spectra
The second-order statistics of the image patches were quantified
using their power spectra. The power spectrum of an image
Ii(x, y) is defined as the squared absolute value of its Fourier
transform. The images were preprocessed using a procedure
based on the one described by van der Schaaf and van
Hateren (1996). Boundary effects of the rectangular image grid
were attenuated using a two-dimensional radially symmetric
Hamming window w(x, y). Each image was normalized by
subtracting and dividing by the weighted average µi =
∑

(x,y) Ii(x,y)w(x,y)
∑

(x,y) w(x,y)
before applying the window. In summary, the

average power spectrum over a set of N images was computed
as

Ŵ(u, v) = 1

N

N
∑

i=1

∣

∣

∣

∣

∣

∣

∑

(x,y)

Ii(x, y)− µi

µi
w(x, y) e2π i(ux+vy)

∣

∣

∣

∣

∣

∣

2

, (4)

where (u, v) are coordinates in the frequency space. They can
more intuitively be understood in polar coordinates (f , θ) =
[
√
u2 + v2, atan2(v, u)], where f is radial spatial frequency and

θ the orientation. The size of the image patches on which we
computed the power spectra were 128 × 128 pixels and the
Hamming window was of the same size.

2.2.2. Parametric Power Spectra Fits
For amore concise representation of the power spectra, they were
fit with a parametric function that captures some of the relevant
aspects of their shape, such as the characteristic power law shape
and an orientation bias. Following Pamplona et al. (2013), an
oriented elliptical power law function was used:

Ŵ(ur , vr) =
A

(

u2r + v2rb
)β

, (5)

where (ur , vr) =
[

u cos(θ)+ v sin(θ),−u sin(θ)+ v cos(θ)
]

are
the rotated coordinates. This function describes the power
spectra as an ellipse, which falls off toward the higher frequencies
with a power law scaling β . Setting β = 1 corresponds to the
typical 1

f α
power law with α = 2. The ellipse is rotated by

the angle θ , which characterizes the direction of an orientation
bias, while the elongation of the ellipse b indicates the strength
of the orientation bias. In contrast to Pamplona et al. (2013), a
hyperbolic component was not needed to adequately characterize
the power spectra.
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The best-fitting parameters were obtained with least-squares
optimization using standard optimization routines from the
scipy package. The parameters were optimized within the
bounds 0 < θ < π , 1 × 10−3 < A < 1, 1 × 10−3 < b < 1,
and 0.5 < β < 2.

2.2.3. Edge Orientation Histograms
As an additional method for estimating local orientation
content, edge orientation histograms were computed using
the method described by Girshick et al. (2011). Specifically,
rotationally invariant derivative filters (Farid and Simoncelli,
2004) were used to compute an orientation tensor (see
e.g., Granlund and Knutsson, 2013) and, subsequently, its
eigenvalue decomposition. Then, pixels whose energy (sum of
the eigenvalues) was above the 68th percentile in an image and
whose orientedness (eigenvalue difference divided by its sum)
was higher than 0.8 were selected as edge pixels. The distributions
of the orientations of these edge pixels were aggregated across all
image patches in a visual field segment.

To quantify the average orientation in a visual field region,
von Mises distributions were fit to the distributions of angles
withmaximum likelihood estimation. The vonMises distribution
can be characterized by two parameters, its mode µ and
a measure of concentration κ . Since the angles of oriented
edges range from 0 to 180◦, the angles were multiplied by
2 prior to fitting. The obtained parameters µ and κ were
then divided by 2 in order to be interpreted in the original
space of oriented edges. The parameters µ and κ indicate the
direction and strength of the orientation bias. In some cases, the
distributions were not well-characterized by a single von Mises
distribution. Then, a mixture of two von Mises distributions was
fit to each of the histograms using expectation maximization
(Banerjee et al., 2005).

3. RESULTS

3.1. Statistics in the Central Area of the
Visual Field
To establish that the virtual forest scenes do not show
idiosyncratic differences to natural images but exhibit similar
statistics to real images, the planar virtual images in the central
area (ϕ = 0◦,χ = 0◦) of the visual field were compared with
the van Hateren and van der Schaaf (1998) database. The radially
averaged power spectra of the two datasets (Figure 5) have very
similar power law exponents, which confirms that the virtual
scenes in the current study have similar second-order average
statistics to real images.

There are, however, differences in orientation statistics
between the virtual forest and the natural scenes. While the
natural scenes have a strong bias in the cardinal (horizontal and
vertical) directions, the virtual scenes show a weaker cardinal
bias. This can be seen in the contour plot of the power spectra,
as well as in the edge orientation histograms (Figure 5). The
means of a mixture of two von Mises distributions fit to the
histograms were −1 and 90◦ for the virtual images and 0 and
86◦ for the van Hateren database, indicating a bias toward the
cardinal orientations in both cases. The standard deviations of
the mixture components are higher for the virtual scenes (19
and 17◦) compared to the natural scenes (22 and 23◦), which
indicates that the edge orientations in the virtual images are more
uniformly distributed compared to the real images.

3.2. Power Spectra and Orientation
Histograms Reveal a Radial Bias
While natural image databases cover only the central visual field,
our virtual images allow us to analyze image statistics across the
whole visual field, revealing differences at different positions in

FIGURE 5 | Statistics of planar virtual images in the central area of the visual field compared with those from the van Hateren and van der Schaaf (1998) dataset. (A)

Shows the radial average power spectra. (B) Shows the contours of the power spectra, indicating the 50, 70, and 90% percentiles of the overall log power. Edge

orientation histograms are shown in (C), along with the best-fitting mixture of two von Mises distributions.
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FIGURE 6 | Powers spectra and edge histograms across the visual field. Contour plots indicating 50 and 80% log power are shown at 17 positions across the visual

field in (A). Parameters of least-squares fits of ellipses for the power spectra are shown in (B) for the human model and in (C) for the cat model. The color in a

segment of the circle indicates the best-fitting parameter value at that position in the visual field. Edge orientation histograms with maximum likelihood von Mises fits

are shown in (D). The mean µ and precision κ of the von Mises fits are shown in (E) for the human viewpoint and in (F) for the cat viewpoint. The color in a segment of

the circle indicates the best-fitting parameter value at that position in the visual field.

several aspects. Just visually inspecting the power spectra (see
Figure 6A) reveals two phenomena. First, there is an obvious
radial orientation bias: the best-fitting orientation parameters θ

of the power spectra contours (Figure 6B) are highly correlated
with the polar angle of the position in the visual field χ (ρc =
0.899, p = 0.004). Similarly, the means of the edge distributions
µ (Figure 6D) match the respective position in the visual field
(ρc = 0.860, p = 0.003). Second, the radial bias becomes stronger
with increasing eccentricity. This can be seen in the elongation
parameter b of the power spectra contours (Figure 6B), which
becomes larger at higher eccentricities, as does the concentration
κ of the edge distributions (Figure 6E). For both parameters,
the values are significantly different between 30 and 50◦ of

eccentricity [t(7) = −9.18, p < 0.001, d = 2.70,CI =
[−1.73,−1.02] for the elongation of the power spectra and t(7) =
−16.57, p < 0.001, d = 3.21,CI = [−0.65,−0.49] for the
concentration of the edge histograms].

3.3. Effect of the Spherical Projection
Differences between the planar and spherical images were
quantified by comparing the parameters of the power spectra fits
at the 17 positions in the visual field. There were no significant
differences in the orientation θ [t(16) = 1.073, p = 0.300,CI =
[−4.91, 14.98]] or the shape of the ellipse b [t(16) = −0.272, p =
0.789,CI = [−0.08, 0.06]], suggesting that the projection does
not change the strength of the radial bias. There are, however,
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FIGURE 7 | Comparison of planar and spherical projection on power spectra parameters (A) The parameter A describing the magnitude of power spectra and (B) the

parameter β describing the exponent in the power law behavior are compared between regular planar projections as in photographic images and spherical projections

as on a spherical retina. The color indicates polar angle of the visual field position (see legend on the right).

significant differences between planar and spherical images for
the power law exponent β [t(16) = 3.218, p = 0.005,CI =
[0.03, 0.13]] and the overall power A [t(16) = 2.967, p =
0.009,CI = [0.01, 0.05]]. To further analyze these deviations, the
parameters A and β of the power spectra fits at additional, more
fine-grained eccentricities are shown in Figure 7. In the planar
images, one can clearly see a different pattern in the β and A
values between the upper and lower half of the visual field. This
difference between the lower and upper visual field is mitigated
in the spherical images.

3.4. Differences Between Cat and Human
Viewpoint
Like the images from the human viewpoint, the images from the
cat viewpoint show a radial bias. The main orientation of the
ellipse fit to the power spectra (Figure 6C) is highly correlated
with the position in the visual field (ρc = 0.732, p = 0.007).
The picture is less clear for the edge distributions, however
(Figure 6F), where the correlation between χ and µ is not as
strong but still significant (ρc = 0.602, p = 0.045). The strength
of the radial bias (quantified by the parameters b of the power
spectra and κ of the edge histograms) is not significantly different
between the cat and human models [t(16) = 1.71, p = 0.11,CI =

[−0.04, 0.35] for b, t(16) = 0.08, p = 0.93,CI = [−0.05, 0.05]
for κ].

There are, however, differences between image statistics from
the human and cat viewpoint. While the power spectra from
the human viewpoint are rather symmetric with respect to the
horizontal axis, the power spectra from the cat’s perspective show
a distinct difference between the top and bottom half of the visual
field (see Figure 6C). First, as quantified by the parameter A,
the lower part of the visual field has more overall power. As
a result, the values for A from the cat model are significantly
different from those of the human model [paired t-test, t(16) =
2.97, p = 0.009, d = 0.96,CI = [0.01, 0.03]]. Second, the
parameter β shows that the power spectrum falls off faster with
spatial frequency in the lower part of the visual field compared
to the upper part. These parameter values are also significantly
different from those of the human model [paired t-test, t(16) =
3.63, p = 0.002, d = 0.92,CI = [0.04, 0.16]].

3.5. Differences Between Visual Strategies
In this section, we investigate whether there are differences
in the image statistics depending on the visual strategy. The
distributions of local edge orientations at 17 visual field positions
for all three virtual agents are shown in Figure 8. We compared
the means of the orientation distributions between the three
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FIGURE 8 | Comparison of edge orientations. Edge orientation distributions across the visual field for the three active vision strategies (A) “straight,” (B) “down,” and

(C) “random” are shown in the top row. In the bottom row, the orientation distributions at ϕ = 30, χ = 315 are shown in more detail (with a mixture of two von Mises

distributions fit to the data). Note the differences in orientation and magnitude between the three active gaze behaviors.

strategies using Watson-Williams tests (Berens et al., 2009)
and found significant differences at every visual field position
(p < 0.01). However, visual inspection of the histograms shows
that the orientation distributions are not well-described with
a single mean direction. We additionally performed pairwise
comparisons between the three strategies at each visual field
position using non-parametric two-sample Kuiper tests (Kuiper,
1960). Again, all comparisons were significant (p < 0.01).

To inspect the differences more closely, we fit mixtures of
two von Mises distributions to the orientation histograms and
picked out one position in the visual field where the differences
are particularly strong: the lower right (ϕ = 30, ξ = 315). In
the images from the straight agent, there is a stronger bias toward
vertical and horizontal orientations. The means of the mixture
components are 91 and 174◦ (standard deviations 16 and 21◦),
indicating most notably a cardinal bias. The images from the
random agent, on the other hand, show a radial bias (similar to
the human agent analyzed in section 3.2) and a relatively uniform
distribution. Its two mixture components both lie around the
radial direction of 135◦ (98 and 166◦) and have relatively high
standard deviations (23 and 24◦). For the down agent, the local
orientation distribution is quite different compared to the human

and the other two virtual agents. Since the agent looked toward
the ground, the visual input is dominated by the ground texture,
which consisted of elements oriented toward a vanishing point
(quantified by one mixture component’s mean at 158◦, standard
deviation of 23◦), and grass elements roughly perpendicular
to that (mixture component mean at 76◦, standard deviation
of 20◦).

Note that these results are due to an interaction between visual
strategy and the environment: an agent looking straight ahead
in a forest environment has a lot of trees in their central visual
field (resulting in a cardinal orientation bias), while an agent
with a different viewing strategy can have quite different local
orientation content.

4. DISCUSSION

If the visual system is shaped by the statistics of its input
at developmental and evolutionary timescales it is crucial to
characterize the statistics of its sensory input signals (Attneave,
1954; Barlow, 1961; Simoncelli and Olshausen, 2001). Both
neuronal representations as well as psychophysical performance
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have been related jointly to measured image statistics (Ganguli
and Simoncelli, 2014; Wei and Stocker, 2017). To measure these
statistics, several images ensembles from natural environments
have been collected (e.g., van Hateren and van der Schaaf,
1998; Tkačik et al., 2011; Adams et al., 2016). Furthermore,
some studies utilized video sequences recorded from the head
perspective of animals or humans moving through natural
environments (e.g., Betsch et al., 2004; Raudies et al., 2012; Orhan
et al., 2020) or simulated the physical properties of the visual
system (e.g., Nevala and Baden, 2019; Tedore and Nilsson, 2019)
when capturing such image collections. With the present study,
we move closer to a quantitative understanding of the relative
contributions of different factors to the statistics of the natural
input to the visual system. Using virtual human and cat avatars
moving through a simulated wooded environment, images were
sampled at different positions in the visual field. This allowed
quantifying the second-order statistical luminance dependencies
and the image edge content depending on the position in the
visual field, the human and cat viewpoints and image projections,
and different active vision sampling strategies.

The statistics of the images in the central area of the visual
field, as quantified by power spectra and edge histograms,
are comparable with those of photographs in classic natural
image databases. This is in accordance with previous research
(Rothkopf and Ballard, 2009), which established that the second-
order statistics of virtual images resemble those of natural images.
The power spectrum shows the typical dependence on spatial
frequencies with an exponent of approximately 2. A cardinal
bias is present in both second- and higher-order statistics,
although the distribution of orientations is more uniform in
the virtual forest scenes than in general natural images. This
result is most likely due to the type of scene, i.e., forest vs.
general landscapes, instead of an artifact of the virtual image
generation process, since it agrees with what is known about
the spectral contour shapes of different scene categories in static
images (Torralba and Oliva, 2003) and during natural behavior
(Schumann et al., 2008).

Considering image statics when moving out from central
region of the visual field into the periphery provides a much
more intricate picture. The cardinal bias changes with increasing
eccentricity, but differently depending on the simulated visual
behavior. Compared to an actor with a random viewing direction,
there is a stronger vertical bias when looking straight ahead and a
bias toward the bottom of the visual field when looking toward
the ground. This shows that not only the viewpoint but also
the active behavior of an actor interacting with the environment
shape the statistics of the input to the visual system. Additionally,
the cardinal bias is accompanied by a radial bias, which again
differs quantitatively between simulated visual behaviors. This
radial bias in second-order statistics (Bruce and Tsotsos, 2006;
Pamplona et al., 2013) as well as edge orientations (Rothkopf
et al., 2009) was present regardless of whether a planar projection
or a projection onto a spherical retina was used. Note that this
radial bias is not a feature of the virtual environment, but rather
due to the perspective projection, since it also occurs projections
of randomly oriented edge elements (Pamplona et al., 2013) and
real images (Bruce and Tsotsos, 2006).

Consistent with previous research (Pamplona et al., 2013),
modeling the eye’s geometric properties by projecting the input
onto a sphere changes the second-order statistics compared
to planar images. Specifically, the amplitude of power spectra
increased much less in spherically projected images compared
to planar images with increasing eccentricity from the fovea. A
second difference between the two projections is the exponent
of the power spectrum dependence on spatial frequencies. The
commonly found exponent of 2 when rotationally averaging
power spectra close to the fovea increases with eccentricity for
planar images but decreases for spherically projected images.
Thus, the geometry of the retina influences image statistics
through the projection onto its surface and therefore needs to
be taken into account when relating image statistics to neuronal
representations and psychophysical performance.

A comparison using images from a human viewpoint with a
cat viewpoint shows comparable edge statistics and power spectra
for the upper half of the visual field. By contrast, differences
between the upper and lower visual field are more pronounced
in the input to the cat’s visual system. Particularly, the overall
power spectrum amplitude is higher in the lower area of the
cat’s visual field. This result is qualitatively consistent with
results on actual videos taken from a cat’s viewpoint (Betsch
et al., 2004). The reason is most likely the higher density of
edge elements in images taken from the viewing height of the
cat avatar because of the smaller distance to objects on the
ground plane.

Taken together, comparing image statistics obtained by
simulating different visual behaviors in human and cat avatars
in a naturalistic wooded environment revealed quantitative
differences in power spectra and edge content across the visual
field. This is not necessarily obvious, as the different influences
could potentially average out over large image ensembles. This
result implies that models investigating the relationship between
image statistics, neuronal representations, and psychophysical
performance (e.g., Ganguli and Simoncelli, 2014; Wei and
Stocker, 2017) in humans and animals should increase validity by
using representative image ensembles. Accordingly, such image
ensembles may show substantial differences in the quantitative
results explaining properties of retinal ganglion cells in terms
of second order image statistics such as the extent of center-
surround antagonism or elongation of profile (Atick and Redlich,
1992; McIntosh et al., 2016; Ocko et al., 2018). Similarly,
properties of V1 simple cells in terms of higher order statistical
dependencies in natural images such as preferred orientation or
spatial frequency preferences may be affected (e.g., Olshausen
and Field, 1996; Güçlü and van Gerven, 2015; Chalk et al.,
2018; Cadena et al., 2019). By contrast, most current studies
investigating the relation between natural image statics and
neuronal representations through statistical learning utilize
generic image databases (e.g., Yamins et al., 2014; McIntosh et al.,
2016; Cadena et al., 2019; Lindsey et al., 2019). Therefore, future
work of computational models of visual representations should
take into account the statistics of actors’ behaviors in their natural
environment and how these interact with the environmental
regularities in producing the statistics of the natural input to the
visual system.
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4.1. Limitations
First, only a single type of virtual environment, specifically a
forest scene, was used in generating the images. As discussed
above, second-order statistics and edge histograms show that
the distribution of orientations is more uniform in a forest than
in other types of natural environments. Accordingly, further
investigations on the influence of properties of the environment
on image statistics are required potentially also using simulations
of avatars in virtual environments. Furthermore, a lot of humans’
visual experience is made inman-made environments and during
the interaction with objects or other people. Torralba and
Oliva (2003) have shown that the low-level statistics of natural
landscapes and man-made environments are very different.
Future work should take this into account and investigate how
active vision influences the input statistics while interacting with
objects or people.

Second, only the geometrical optics were modeled,
disregarding other factors such as the blurring and additional
aberrations induced by the eye’s imaging process. In this study,
these were not modeled to enable a comparison with the cat
viewpoint. Although measurements of the cat’s modulation-
transfer function exist (Wässle, 1971; Bonds et al., 1972), there
is, to our knowledge, no data on how the cat’s MTF changes
with eccentricity. Nevertheless, the influences of the geometric
optics on the projections of scenes onto the retina does not
change by including additional blurring due to aberrations and
defocus. The the provided databases will allow investigating these
influences in the future by including the position-dependent
image transformations.

Third, we simulated the natural input to the visual system only
up to the level of the retina. If our goal is to quantitatively relate
image statistics to biases in psychophysical experiments, further
processing steps, such as the receptor density on the retina,
processing in the retinal ganglion cells and LGN as well as in early
visual cortical areas need to be taken into account. Quantifying
the statistics of the natural input to the visual system at these
higher processing stages would enable ideal-observer analysis
(Geisler, 1989) of more complex stimuli than are typically used
in psychophysical experiments.

Finally, although first steps were made toward incorporating
behavior by simulating viewing directions of several virtual
agents, the current study is only an initial investigation
demonstrating the dependence of input statistics on the active
use of the sensory system. It is well-known that vision is
an active sensory modality that is driven by eye movements
and blinking behavior (Findlay and Gilchrist, 2003). Here, we
only considered three hand-crafted visual behaviors. Tomasi
et al. (2016) have measured how head movements and gaze
directions are coordinated in natural environment, and recent
work by Thomas et al. (2020) explores how different surfaces
influence gaze behaviors. To more accurately quantify the
influence of gaze direction on image statistics, the statistics
of gaze behaviors from these findings should be incorporated
into the simulated strategies. Furthermore, in our work only
the head direction was considered during sampling of the
environment. While related work (Schumann et al., 2008) has

found little difference in power spectra between gaze- and head-
aligned images, there were differences in local image features.
Complicating the interpretation of such investigations is the low
accuracy of current gaze tracking devices relative to visual feature
distributions. Future work should investigate how differences in
gaze targets due to movements of the body, the head, and the eyes
shape the statistics of the natural input to the visual system across
the entire visual field.

5. CONCLUSION

The present study investigated the statistics of low-level image
features across the visual field using simulations of different
active visual strategies in human and cat avatars in a naturalistic
virtual environment. Taken together, the results of the present
study show that the natural input to the visual system is not
only influenced by the structure of the environment, but also
by how the environmental statistics interact with the projective
geometry of an agent’s visual system and its active visual
behavior. Future studies linking neural representations, behavior
in psychophysical tasks, and natural image statistics should take
this into account.
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