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This paper proposes an account of neurocognitive activity without leveraging the notion 
of neural representation. Neural representation is a concept that results from assuming 
that the properties of the models used in computational cognitive neuroscience (e.g., 
information, representation, etc.) must literally exist the system being modelled (e.g., the 
brain). Computational models are important tools to test a theory about how the collected 
data (e.g., behavioural or neuroimaging) has been generated. While the usefulness of 
computational models is unquestionable, it does not follow that neurocognitive activity 
should literally entail the properties construed in the model (e.g., information, representation). 
While this is an assumption present in computationalist accounts, it is not held across 
the board in neuroscience. In the last section, the paper offers a dynamical account of 
neurocognitive activity with Dynamical Causal Modelling (DCM) that combines dynamical 
systems theory (DST) mathematical formalisms with the theoretical contextualisation 
provided by Embodied and Enactive Cognitive Science (EECS).

Keywords: neurocognitive activity, neural representation, dynamic causal modelling, dynamical systems theory, 
embodied, enactive cognitive science

It will be all too easy for our somewhat artificial prosperity to collapse overnight when it is 
realized that the use of a few exciting words like information, entropy, redundancy, do not 
solve all our problems (Shannon, 1956, p. 3).

INTRODUCTION

In his seminal paper in 1995, Van Gelder (1995) asked, ‘what might cognition be, if not 
computation’. In that paper, he  tells us that computationalism becomes so prominent due to 
the false assumption that there is no other option. The received view of cognition as machine-
like computation dates back to the beginning of the cognitive revolution (for a review, see 
Miller, 2003). The brain-computer metaphor provided the conceptual toolkit that cognitivism1 
greatly required to push back against the behaviourist explanation of mental events.

Many computer scientists and mathematicians contributed to the toolkit. One of them was 
von Neumann (1958, p.  3) defining computation as ‘to operate on … numbers according to a 

1 Cognitivism is the programme that states that cognition is information processing, i.e., rule-based manipulation of 
symbols. It works through any device which can support and manipulate discrete physical elements: the symbols. A 
system is functioning adequately as cognitive when the symbols appropriately represent some aspect of the real world, 
and the information processing leads to a successful solution of the problem posed to the system (Varela, 1992, p.  239).
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predetermined plan’. Despite his contribution to the toolkit, von 
Neumann (1958) always resisted the metaphor he helped create, 
granting the metaphor an ‘absolute implausibility’ on account 
of the distance between a biological system and a computer 
(Peters, 2018). However, as noted by Piccinini (2003, p.  329) 
because ‘Neumann did not clarify what he had in mind… many 
scientists adopted his language with the same lightheartedness’. 
Gradually the computer-brain metaphor metamorphoses into a 
literal sense by which neural activity ought to be machine-like 
computation. This reasoning becomes so pervasive in cognitive 
science that it becomes hard to see other options in the field. 
The orthodox attitude is well-captured in statement of Newell 
(1990, p. 56): ‘there do not seem to be any viable alternatives… 
to the computational theory of mind (CTM)’.

While neurobiological transduction could be seen as involving 
some kind of biological computation, following von Neumann 
(1958), given the distance between a biological system and a 
computer, biological activity should not be described or defined 
in the terms, we  use to refer to how a computer computes. 
Manicka and Levin (2019) have shown that a minimal non-neural 
Bio-Electric Network model that utilises the general principles 
of bioelectricity (electrodiffusion and gating) can compute. This 
evidence motivates the reasoning that considering that (P1) 
neurobiological activity is neurochemistry of thermodynamic 
energy transfer, and if (P2) non-neural biological structures 
compute and (P3) neural structures compute, then (C) 
computation is neurochemistry of thermodynamic energy transfer. 
From this follows that if we must use the notion of computation 
to refer to neurobiological activity, it must be  such that it 
applies to all scales of neurobiology, which means deflating 
the notion to the extent that it becomes nothing like a computer.

Linson et  al. (2018), in their paper pushing against the 
traditional input/output understanding of computationalist 
cognition, claim that active inference, a predictive coding 
descending account of neurocognitive activity, ‘re-arranges the 
picture to dispense with the classical/computational model of 
input and output’ (p. 9). They conceive of neurobiological activation 
patterns through an analogy with a game of tennis. The act of 
hitting a ball with a racket would take much imagination to 
be  conceived of in terms of an input to the ball. After all, what 
would be  the output? The appropriate way of characterising this 
activity is, by using fundamental physics, ‘regarding the action 
of hitting the ball as a transfer of energy, from the arm to the 
racket to the ball’ (p.  9). Applying this example to how a system 
is influenced by its environment, for example, a cell in a tissue, 
a neuron in a cortical network, or a brain in an organism, then, 
thermodynamic energy transfer occurs between the local 
environment and the system, for example, between other neurons 
in a cortical network, or between cells, as computationally explained 
in Bio-Electric Network model of Manicka and Levin (2019).

Cognition, however, according to the orthodoxy of machine-
like analogies, is conceived of as a product of a neuronal 
information-based process that unfolds to the end of computing 
intelligible representations (Fodor, 1983a; Millikan, 2017, 2020; 
Piccinini, 2018; Shea, 2018; Sprevak and Colombo, 2018; 
Smortchkova et al., 2020; Rupert, 2021). This view is so engrained 
in computational cognitive neuroscience that one would seem 

mad to question it. Some might say because computation 
‘makes us blind’ (Brooks, 1991; see also Brooks et  al., 2012). 
The lack of (an alternative) vision might be due to a phenomenon 
well-diagnosed by Egan (2020, p.  31), that ‘despite the fact 
that there is no widely accepted naturalistic foundation for 
representational content, computational theorists persist in 
employing representational language in articulating their models’. 
In cognitive neuroscience, it is not uncommon to hear that 
the concept of representation should be  left for philosophers 
to deal with. But as Dennett and Dennett (1996, p.  21) well 
notes, ‘[t]here is no such thing as philosophy-free science; 
there is only science whose philosophical baggage is taken on 
board without examination’.

There are at least two main consequences of taking representation 
on board in neuroscience without examination. First, in the light 
of the brain-computer metaphor, neural and cognitive activity 
becomes seen as the transfer of symbolic information (recall 
definition of von Neumann, 1958). While metaphors can aid 
understanding to some extent by explaining by analogy some 
common feature between two objects, being a metaphor also 
means that not all features between the two objects will match, 
but that we  can make a loose analogy, provided that we  accept 
some levels of abstraction and fiction. The brain-computer metaphor 
serves the purpose of computers offering an abstract or fictional 
model of the brain. As an abstraction, it may aid some epistemic 
understanding of some part of the brain. But epistemology does 
not grant per se ontological properties. As did von Neumann 
(1958), one must resist the metaphor (Brette, 2019).

The second consequence of taking representation without 
examination is that it leaves out the possibility of aspects of 
cognitive and neural activity that are not machine-like computations. 
Adopting the machine language light-heartedly will at some point 
give the impression that either all that there is to mental life 
is computation (i.e., to operate on … numbers according to a 
predetermined plan); or even if there are some non-computational 
aspects to cognition, these are not relevant enough to cognitive 
neuroscience. This limitation has been widely acknowledged by 
non-representational approaches such as Embodied and Enactive 
Cognitive Science (EECS), contending that cognitive activity does 
not reduce to mental representations and rejecting the notion 
of neural representation altogether (Dreyfus, 2002; Maturana, 
2002; Fuchs, 2017; Hutto and Myin, 2017; Gallagher, 2020). A 
related consequence has been crucially pointed out by Barrett 
(2016, p.  9). Placing the mark of the cognitive in computational 
processes results in that ‘a great injustice is done to both human 
and nonhuman animals: On the one hand, we  fail to recognize 
the distinctive nature of nonhuman cognition, and on the other 
hand, we  continue to promote a somewhat misleading view of 
human psychological capacities’.

MODELS IN COGNITIVE 
NEUROSCIENCE

Modelling science is the construction of computational models 
for the scientific understanding of a physical phenomenon that 
would otherwise not be possible to tackle, given its complexity 
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and large degrees of freedom. In a way, a model is a substitute 
for empirical experimentation. Examples of phenomena tackled 
with models include any highly complex system such as the 
weather, the ocean, or the brain.

A scientific model is a physical and/or mathematical and/
or conceptual representation of a system of ideas, events, or 
processes. Scientists seek to identify and understand patterns 
in our world by drawing on their scientific knowledge to offer 
explanations that enable the patterns to be predicted objectively. 
Computational modelling in cognitive science aims at explaining 
and understanding cognitive behaviour, such as emotion (Ong 
et  al., 2019), decision making (Calder et  al., 2018), (ethical) 
reasoning (McLaren, 2006; Demigha, 2020), planning, problem-
solving, and moral behaviour (Allport, 1947) as well as 
psychopathologies such as depression, anxiety, eating disorders, 
or addiction.

Models in cognitive neuroscience are a link between what 
is known and what is unknown. More precisely, models aim 
to connect the data collected from behavioural or neuroimaging 
studies (what is known) with the activity that generated the 
data (what is unknown). In cognitive neuroscience, scientists 
use models to explain the activity that generated the collected 
data. More precisely, the model leverages, roughly speaking, 
a theory or a folk ontology constructed by the modeller that 
aims to explain how the data has been generated.

 

Scientific Model data theory about how
the data was g

 SM D  
   

( ) = ( ) +
eenerated T( ).

Because a model is constructed to test a theory about how 
the data was generated, many in philosophy of science claim 
that a model is a representation. It is argued that a model, 
being the product of a scientific endeavour, is a scientific 
representation (Suárez, 2010; Poznic, 2018; Beni, 2019; Frigg 
and Nguyen, 2020). While there is much debate about 
representation in science, the problem comes roughly as 
discussions about the adequacy of an account of scientific 
representation (Camardi, 2020; San Pedro, 2021).

Some scientists and philosophers are compelled to add yet 
another layer. They suppose a metaphor between the work of 
a scientist constructing models/representations and neuronal 
activity (Poldrack, 2020). This means that the brain at work 
also theorises, constructs, and tests a model, thereby delivering 
representations. Neural connectivity distributed in computations, 
just like the work of a scientist, delivers representations with 
important causal roles. Neural activity is explained as if it 
were literally a computation on information-based mechanisms. 
From this perspective, it is not only the scientist who constructs 
representations about a target system, but the target system 
also constructs representations. To do so, neurons are supposed 
to encode information and compute information to deliver a 
representation that is then meaningful for another neuron in 
the network chain of information processing. Examples of 
approaches in computational neuroscience taking this view 
include neural networks as topological mappings of the 
connectivity and activity in the nervous system. As a map of 

the connectivity and activity, a model of the neural network 
of the nervous system is said to represent it (Sporns, 2007; 
Hagmann et  al., 2008; Bullmore and Sporns, 2009; Rosenthal 
et  al., 2018; Goulas et  al., 2021). The process is analogous to 
scientists constructing and delivering representations that are 
meaningful to the scientific community.

While, as we  will see, this metaphor is at the basis of 
cognitive neuroscience (i.e., neural networks, deep and machine 
learning, and cognitivism) and philosophy of mind (CTM, 
connectionism), the metaphor between scientific computational 
models and neurons that compute representations is not held 
across the board is computational neuroscience (Freeman and 
Skarda, 1990; Brette, 2019; Friston, 2019; Jafarian et  al., 2021).

The following section explains the two primary techniques 
of modelling brain activity as neural connectivity. It is shown 
that because these techniques hold different assumptions about 
whether or not there are representations in neural activity, 
they tackle completely different questions (how vs. why processes), 
subject matters (topology vs. causes), and elucidation goals 
(description vs. explanation), respectively. Finally, it is stressed 
that these are two ways in which neuronal connectivity can 
be  made intelligible to us. While models of brain connectivity 
correspond to a link between known data (the data collected) 
and simulation of the unknown data (the activity that generated 
the data), neuronal and cognitive activity as the target that 
needs to be  explained. So, models of brain data and cognitive 
processes are irreducible to one another. This means that while 
there could be  representational properties in the scientific 
model, it does not follow that there are symbolic representational 
properties in neuronal activity.

SCIENTIFIC MODELS IN 
NEUROIMAGING

In neuroscience, models are valuable tools for the understanding 
of brain activity in terms of connectivity. Functional neuroimaging 
aims to depict the function of the central nervous system 
with the support of a network of models of cortical activity. 
As an evolving field, the methods of functional neuroimage 
today reveal active distributed networks in a way that no other 
method has done before.2

Some of the core difficulties in functional neuroimaging 
remain. These are due mainly to the vast amount of data 
collected from the brain scan. Models are helpful to attempt 
to make sense of what activity generated the data. This 
understanding contributes to developing a framework of the 
physiological relations between blood flow, neuron discharge, 
and energy metabolism and how this physiological activity 

2 This has been due mainly to the discovery and introduction of Diffusion 
Tensor Imaging (DTI), which serves as a non-invasive tool that allows magnetic 
scanning of the orientation of water molecules. It becomes possible, for the 
first time, to map neural structures in remarkable detail. DTI is helpful to 
investigate the connectivity in cognitive networks (Le Bihan et al., 2001; Skudlarski 
et  al., 2008; Wang et  al., 2020).
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relates to how psychological activity unfolds. This is, in essence, 
the problem of how to link neuronal and cognitive activity.

The critical issue is establishing relevant activity and how 
to pattern the activity in an intelligible way. Models in cognitive 
neuroscience aim to link what is known and what is unknown. 
More precisely, models aim to connect the data collected from 
neuroimaging studies (what is known) with the activity that 
generated the data (what is unknown). Put otherwise, to attain 
the functions and processes from the vast amount of brain 
data (e.g., whole brain); we  require models of data for the 
neuronal influences. A model of data is an idealised version 
of the raw data, we  gain from functional neuroimaging. The 
main goal of a data model is to confirm a theory, considering 
that the model of the collected data is what a theory is compared 
against, not the messy, complex, raw data. In other terms, the 
model aims to confirm a theory that motivated the model. 
In short, a model corresponds to a theory, that is to say, a 
theory about the connections observed.

Models of data in neuroscience can be conceptually organised 
into two broad categories: those assuming and rejecting neural 
representations. The former I  shall call structural information 
models (SIM) and the latter, dynamical models (DM). SIM are 
right at the core of brain mapping, aiming to develop a model 
that displays the rules by which information is either propagated 
or constrained within structures in the brain. The distributed 
information in causal structures is typically inspired by 
connectionism and, more recently, is the view endorsed by 
neural networks and deep learning using Structural Causal 
Modelling (SCM) to map connectivity in terms of presence 
or absence of ‘information’ in a neuronal structure at a given 
time (Bielczyk et  al., 2019; Borsboom et  al., 2019; Straathof 
et  al., 2019). As such, SCM aims to offer easy-to-use maps 
depicting the topology of causal connections amongst the 
neuronal parts exchanging ‘information. This is why, for these 
models, acyclic graphs are sufficient and easy to use. Instead 
of the direction of the causation, these graphs offer another 
indication. The width of the edges indicates how likely it is 
for a region to connect to another, where a thicker edge means 
increased likelihood. Dependency graphs or Bayes nets depict 

causal links through directed edges (Lauritzen, 1996; Pearl, 
1998; Spirtes et  al., 1998).

Structural Causal Modelling is conventionally used to pick 
out conditional independence, underlying functional connectivity, 
between nodes in a network. For example, in Figure  1, X3 
is statistically independent of X1 given X2. This means it is 
possible to understand the properties and dynamics of X3 
independently of X1 if we  know X2. SCM has a particular 
topological ordering without any directed cycles between nodes. 
One important point to note is that causation in SCM fails 
for phenomena involving distant correlations as it breaks with 
the idea of large-scale causal connectivity between multiple 
nodes in a network. By being motivated to describe local 
pairwise connections, X1 and X2, SCM is not concerned with 
large-scale functional architectures. On the contrary, the 
fundamental question driving functional analysis is how likely 
it is for areas to connect in a certain way, given certain 
(physiological) conditions.

By determining sequential correlations, it is possible to 
determine which nodes are functionally segregated. Notably, 
these elements are arranged linearly or sequentially in indirect 
graphs, where two elements stand in correlation with each 
other. As essentially a statistical measure, functional connectivity 
does not rest upon any model of statistical dependencies among 
observed responses. In functional analyses, there is no inference 
about what motivates the coupling between X1 and X2. Instead, 
the inference is about whether X1 and X2 are correlated, i.e., 
disambiguating between statistical dependency and the null 
model (hypothesis) of no dependency, stipulated in terms of 
probability distributions over observed multivariate responses 
(This goal is achieved by analysing brain networks via acyclic 
graph metrics describing functional connectivity). SCM, under 
SIM, provides a rigorous set of tools to quantitatively describe 
topological properties of complex systems such as the brain 
(Rubinov and Sporns, 2011; Rathkopf, 2018). The methodological 
tools employed to allow for the extraction of different kinds 
of correlational information from the topology observed at 
different spatial or time scales; which thereby allows, following 
Sporns (2011, p. 29), ‘for a more comprehensive analytic strategy 

FIGURE 1 | Schematic highlighting the distinction between Direct acyclic graph (DAG) (on the left) and Dynamical Causal Modelling (DCM; on the right) in the form 
of a directed cyclic model (Friston, 2011, p. 25).
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for investigating the neural substrates of cognition’. Under 
information modelling or theory, cognition lies in highlighting 
‘the subsets of network nodes that are more densely 
interconnected among themselves than they are with other 
nodes in the network’ (p.  32). SIM implements SCM 
methodologies to capture the conditional independencies between 
the elements of a network.

In conclusion, SCM rests upon a theory of dependencies, 
such as correlations or coherence between remote 
neurophysiological events. Even in its dynamical form, its aim 
is not to provide a causal explanation of the sort provided 
by (model-based) effective connectivity but to display a causal 
topology. Because, theoretically, these models assume neuronal 
connectivity as information and its display, the theory itself 
does not call for an explanation of the reasons why connections 
occur in the ways they do. SCM is, in conclusion, a modelling 
set of techniques typically employed in the topological mapping 
of connectivity.

Dynamical models take a different approach. They take 
neuronal connectivity as interaction instead, speaking to effective 
connectivity.3 In DM, neuronal connectivity is cast instead as 
the presence or absence of interaction between parts of a 
system. The aim is to develop a model and test the theory 
that elucidates upon the observed data and assists in making 
sense of it as patterns according to a principled explanation. 
As opposed to the topological description of the information 
category of modelling, the interaction category of models is 
interested in testing the theory that contains a hypothesis that 
explains why a specific neuronal activity occurs or what 
motivates it.

Dynamical causal models (DCM) are used to investigate 
the context-sensitive, direct coupling of neuronal connections, 
targeting the influence explicitly that one neural system exerts 
over another. Neuronal activity is taken as interactions that 
unfold over time in changing, highly contextual environments 
that present features of chaos and unpredictability. Causes of 
neural coupling are precisely the subject matter of effective 
connectivity (Zarghami and Friston, 2020). At the root of this 
enquiry are questions about what is relevant to determine the 
causes underlying neural connections. Effective connectivity 
emphasises the observed dependencies between regions 
concerning what motivates the coupling or directed influence 
between them. To do so, it rests explicitly on a model of that 
influence – called a generative model. Notably, each model 
corresponds to an alternative hypothesis about how the 
correlation, say between A and B, at a synaptic or populational 
level, was caused.4 These models are optimised to fit measured 
data and then compared based upon their relative (Bayesian) 
model evidence.

From this perspective, DCM attempts to answer the specific 
methodological difficulty in neuroimaging regarding how to 

3 See the distinction between effective and functional connectivity in Friston (2011).
4 In dynamic causal modelling – based upon dynamical systems theory – causality 
has a technical meaning. In this setting, the generative models or hypotheses 
about dynamical architectures are causal in a control-theoretic sense. This means 
that all models or hypotheses are stipulative about causal (dynamic) architectures.

link neuronal and cognitive activities under the same patterned 
explanation by explicitly clarifying the influence that one neural 
system exerts over another, i.e., the direction of the causation 
between systems. Dynamic models of effective connectivity are 
thus an inference or theory about the most likely cause of a 
correlation of dynamics. More precisely, they are a generative 
model of how statistical dependencies and independencies are 
generated. The inference about the cause of the correlation 
between neural systems is made by introducing latent (neuronal) 
states. That is, by introducing a state of context-dependent 
coupling into a model of interactions. This means that these 
models feature a state-dependent causal architecture, in which 
condition-specific changes in connectivity are usually of primary 
interest. On this account, models of effective connectivity are 
dynamic – they do not suppose that there is an invariant 
structure whose plastic connections can be topologically mapped. 
But there is a dynamic structure that is pressured by activity, 
where the explanatory traction can be  gained. Specifically, by 
two crucial features: dynamics (activity-dependent) and a model 
of directed interactions or coupling. Effective connective is 
thus model-based, i.e., can be  reduced to model comparison. 
That is to say, the comparison between models to infer its 
explanatory accuracy to observed functional connectivity. In 
this sense, effective connectivity analysis recapitulates the scientific 
process (Zarghami and Friston, 2020). Accordingly, research 
on effective connectivity requires tools to explain what motivates 
activity-dependent effects on synaptic connections. For that 
reason, DCM seems suitable as it applies nonlinear dynamics 
to model the activity in the nervous system, from single neural 
cells to cognitive interaction with the environment.

A dynamical model thus needs to encompass all possible 
states, expressed by a phase state, of neurons in a large-scale 
neuronal and cognitive simulation. DCM is a technical means 
for simulating this. Under the assumption of different causal 
interactions, it applies model comparison and selection to 
develop models to investigate the coupled influences among 
the other parts of the nervous system and what drives the 
re-organisation of neuronal activity. Considering that neuronal 
connectivity is spatiotemporally situated, reciprocally in a 
spatiotemporal dynamic that comprises and contributes to the 
system’s history, direct cyclic graphs are a more suited tool. 
Cyclic graphs are formally equivalent to those used in SCM; 
however, in DCM, they are used as explicit generative models 
of observed responses. The arrow in effective connectivity 
denotes the temporal asymmetry denoting causality (see 
Figure  1). The task of neuroimaging is thus to capture the 
neuronal activity in terms of dynamical states and draw patterns 
of temporal and spatial activity. Because of the dynamical 
understanding of neuronal activity, DCM is consistent with 
dynamical and complex systems theory (DCST) and EECS.

Thus far, the paper contended that theories in brain data 
analysis are conceived under two main categories: those taking 
brain activity as ‘information’ and those casting it as dynamical 
states. Either conception is purely theoretical. It is a theory 
about interpreting brain data: either as ‘information’ or states. 
The former is helpful in many modelling scientists because 
the goal is to unfold a topological map describing the likelihood 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hipólito Cognition Without Neural Representation

Frontiers in Psychology | www.frontiersin.org 6 January 2022 | Volume 12 | Article 643276

of connectivity. The latter is a theoretical understanding of 
neuronal activity in terms of why connections occur the way 
they do.

In conclusion, while the two main modelling techniques 
are motivated by different theoretical assumptions, they set 
off completely different paradigms tackling different questions 
(how vs. why processes occur), subject matters (topology vs. 
causes), and elucidation goals (description vs. explanation), 
respectively. Both models, however, aim to solve a common 
problem: to explain how the data has been generated. They 
do so by linking what is known (neuroimaging data) with a 
theory about what is known (how the brain has generated 
the data). These models are thus a result of data plus a theory 
about the data. As stated in section Scientific Models 
in Neuroimaging:

 

Scientific Model data theory about
how the data was g

 SM D  
   

( ) = ( ) +
eenerated T( ).

Neurocognitive activity is not a result of data plus a theory 
about data, but the phenomenon itself that the scientists aim 
to explain. Brain activity is not a result of data and a theory 
of data. Models of brain data and brain activity are thereby 
not reducible to one another. In short, models of brain data 
are not analogous to brain activity; they should not thereby 
be  conflated in any form or kind of metaphor: for this would 
be  fallacious reasoning. This is fallacious reasoning because 
even if there are representational structures in the models of 
the brain because models of the brain and brain activity are 
irreducible to one another, it does not follow that there are 
representational structures in the brain.

The following section shows how, even though brain models 
and brain activity are two different things, non-reducible to 
one another, the history of philosophy of mind writes itself 
on the assumption that they are analogous. More precisely, 
assuming that properties of models of the brain, i.e., information, 
semantics, syntax, functions, models, representations, etc., can 
and should be  applied to explain the mind.

PHILOSOPHY OF MIND AND ITS 
COMPUTATIONAL DASHES OF REALISM

The previous section shows two major ways computational 
neuroscience develops models for understanding neural activity. 
The history of philosophy of mind goes hand in hand with 
computational models, most times applying the conceptual 
machinery of the time to the mind. Examples of this, we  will 
see below, include the computational theory of mind, 
connectionism, and, more recently, the Bayesian brain.

The rise of Turing computing stimulated Fodor (1983b) into 
applying its computational concepts and technicalities to the 
explanation of the mind. A Turing machine (Turing, 1936) is 
a modelling computation of input/output instructions that 
manipulate symbols according to a set of predefined rules. In 
this kind of modelling, given any algorithm, it is possible to 

generate the algorithm’s logic. Technically, a Turing machine 
comprises operations in discrete cells or modules. The machine’s 
‘head’, positioned over a cell, ‘reads’ the symbol in the cell. 
The ‘head’ then makes sense of the symbol by referring to 
the action table of rules, and either proceeds to a subsequent 
instruction or halts the computation.

Fodor applies Turing’s constructs to the explanation of the 
mind.5 The mind, Fodor contends, comprises computations in 
a realist sense, with a central system and satellite, modular 
systems (Fodor, 1983b). The CTM, scaffolded on a realist account 
of Turing machines, holds that the mind is a computational 
system that is realised (i.e., physically implemented) by neural 
activity in the brain (Horst, 2003; Rescorla, 2015; Gallistel, 
2017; Rabkina et  al., 2017). The CTM is not a metaphor 
between a computer and the mind. It is the view that the 
mind is, literally, a computer system processing information. 
More precisely, ‘it states that a computer simulation of the 
mind is sufficient for the actual presence of a mind and that 
a mind truly can be  simulated computationally’ (Rescorla, 
2020). Like a Turing machine, the mind is a symbolic operator 
and mental representations are symbolic representations, just 
like language meanings. On a modular architecture, symbolic 
representations are computed in modules; their processing 
involves automaticity, mandatory operations, fast processings, 
shallow outputs, and fixed architectures.

Building upon this, analytic philosophy of mind comes to 
a discussion about the representation in this computational 
device. How should representation be  understood? Classic 
representationalists believe that mental representations are 
symbolic structures with semantically evaluable constituents 
and that mental processes are rule-governed manipulations that 
are sensitive to their constituent structure (Turing, 1950; Newell 
and Simon, 1972; Marr and Vaina, 1982; Fodor, 1983b; Fodor 
and Pylyshyn, 1988). Teleosemantics, accordingly, tells us mental 
representations should be  understood in terms of biological 
functions allowing for some role of the environment to shape 
symbolic structures (Neander, 2017; Garson and Papineau, 2019; 
Shea, 2020). Millikan (2020, p.  1) tells us that, ‘[c]orrectly 
understood, teleosemantics is the claim that ‘representation’ is 
a function term. Things are called ‘representations’ if they have 
a certain kind of function or telos and perform it in a certain 
kind of way’,6 where the telos is consistent with Turing’s action 
table of rules.

The rise of distributed computing brings up a revolution 
in the understanding of the mind. Distributed computing is 
a system whose components are located in different networked 
computers, which communicate and coordinate their actions 
by passing messages to one another. Distributed systems interact 
with each other to achieve a common goal in a distributed 
program. Distributed computing is motivated to solve a computer 
problem. Here, the problem is divided into many tasks, each 
of which is solved by one or more computers, which communicate 
via message passing.

5 However, note that the idea of firing neurons in the nervous system could 
be  modelled as logical propositions date back to McCulloch and Pitts (1943).
6 See how Egan (2020) challenges teleosemantics.
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Cognitive scientists applied this form of computing to explain 
the nervous system (and linked cognitive activity) in a model 
called Parallel Distributed Processing (PDP) (McClelland and 
Rumelhart, 1986).7 These were the early days of neural networks 
(Cowan, 1990). PDP inaugurated new ways of simulating and 
getting insights into how the nervous systems work, known 
as connectionism. With this new programming tool, it is then 
possible to model the nervous system as an electrical network 
of neurons with good results for sensory perception and motor 
activity simulation. Connectionists, taking a literal sense of 
PDP modelling, hold the model in a realist way commit to 
the view that mental representations are realised by patterns 
of activation in a network of simple processors (or nodes), 
just like in the models computation scientists develop. The 
main difference between PDP and Turing computing is how 
representation should be understood. Representations in nodes 
are not necessarily semantically evaluable, nor do their patterns 
of activation have semantically evaluable content. Nevertheless, 
some ‘localist’ versions somewhat aligned with connectionism, 
like that held by Ballard (1986), conceive representations in 
individual nodes as having semantic properties.8 PDP is 
revolutionary because its advent allowed for developing novel 
ways of developing tools to simulate the brain and make sense 
of data collected from neuroimaging.

This gives rise to a new computational model: predictive 
coding. Predictive coding is the theory in computational 
neuroscience that aims to explain the brain’s activity as constantly 
generating a model of the environment. The model is used 
to generate predictions of sensory input by comparing it to 
actual sensory input (Shipp et al., 2013; Spratling, 2017; Friston, 
2018; Smith et  al., 2021). Bayesian formalism is used as a 
rule to update the model as new information becomes available. 
As we  will see, predictive coding has set off many ships in 
cognitive science and philosophy of mind, which include the 
conservative prediction error minimisation (PEM; Hohwy, 2013, 
2018, 2020; Gładziejewski, 2019, 2021; Kiefer and Hohwy, 2019; 
Litwin and Miłkowski, 2020; Seth and Hohwy, 2021), the radical 
predictive processing (PP; Orlandi, 2014; Clark, 2015), and 
active inference (Friston, 2013). The conservative PEM and the 
radical PP, while agreeing on the analogy between the brain 
and a predictive machine, thereby applying conceptual machinery 
as an ontological property of brain activity, differ in how they 
understand the isolation or encapsulation of this machine brain. 
For PEM, the brain is a machine of PEM that is sufficiently 
equipped to construct and update models of the world, where 
‘the mind can be  understood in internalist, solipsistic terms, 
throwing away the body, the world, and other people’ (Howhy, 
2016, p.  7). While Hohwy (2016) encapsulates mental life in 
the skull, Clark (2015) deflates the notion of representation. 
Clark (2015, p.  4) takes it ‘as minimal as possible, neither 
encoding nor processing information in costly ways’. The reason 

7 See also McCulloch and Pitts (1943); Smolensky (1988); Rumelhart (1989).
8 Clark (2015) holds a similar perspective: at every level of a Bayesian hierarchy, 
he  supposes a two-step predictive processing involving an initial issue of a 
prediction (representation) that is then updated by a prediction error 
(representation). See Orlandi and Lee (2019).

for this is that there is yet another inference/representational 
model: top-down motor prediction. In the end, both neuronal 
and cognitive activity comes down to inference mechanisms 
and models (Kirchhoff et  al., 2018; Miller and Clark, 2018; 
Kiverstein et  al., 2019; Wilkinson et  al., 2019), a framework 
that has received its criticisms (Gallagher et al., in press; Hutto 
and Hipólito, in press; Hutto, 2018; Williams, 2020).

Finally, active inference, also a descendent from predictive 
coding and Bayesian inference, is a modelling tool that explains 
a living system’s activity as minimisation of uncertainty, entropy, 
or surprisal (Parr et  al., 2022). It is a corollary of the Free 
Energy principle stating that the evolution of systems, i.e., 
how a system interacts with the environment to maintain its 
integrity, can be  understood as the internal states free energy 
gradient descent by using variational Bayesian methods (Da 
Costa et  al., 2020). According to active inference:

Internal states (and their blanket) will appear to engage 
in active Bayesian inference. In other words, they will 
appear to model – and act on – their world to preserve 
their functional and structural integrity, leading to 
homoeostasis and a simple form of autopoiesis (Friston, 
2013, p. 1).

The internal states of a system of interest and the external 
states will indirectly influence one another via a further set 
of states: active and sensory states (called blanket states). These 
influences can be  explained by supposing that internal states 
of a system engage in an active inference activity: that of 
predicting the external state. A probabilistic model predicts 
how external states influence the Markov blanket that is implicit 
in the dynamics of internal states: a generative model. While 
active inference is a formalism that can be  used to construct 
scientific models in terms of variational free energy, i.e., as 
an information-theoretical function that can be applied to solve 
for optimisation of model evidence and comparison analysis, 
it does not follow that everything in every scale of life that 
can be  modelled by active inference, literally engages in active 
inference. Supposing this requires a philosophical argument.

What all these theories in philosophy of mind, from the 
computational theory of mind, connectionism, PEM, PP, and 
active inference, share is the tendency to hold the analogy 
between the mind and a machine-like computer and its activity 
with computational models, be it symbolic, distributed processing, 
or statistics predictive processing. This means two things: (1) 
that the properties of the computational model construed are 
expected to exist in the target phenomenon, and (2) that claims 
made about the computational model should also hold for 
the target system. A difficulty of endorsing (1) and (2) is that, 
for consistency, one should expect this to be  the case when 
the target is not brain and/or cognitive activity. After all, classic, 
connectionist, and Bayesian computational models are widely 
applied for understanding and predicting the behaviour of 
other complex phenomena (e.g., weather, societies, etc.).

Prediction error minimisation, PP, and active inference give 
rise in philosophy of mind of a new trend resulting, if taking 
a realist standpoint, mainly from the literal application of predictive 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Hipólito Cognition Without Neural Representation

Frontiers in Psychology | www.frontiersin.org 8 January 2022 | Volume 12 | Article 643276

coding. As I  have argued elsewhere, the literal sense is not 
necessary: for rejecting the analogy between the mind and brain 
as a computer and its processes as computational models, 
computational models become an instrumental tool that, once 
applied to a behavioural activity, allows the scientist to draw 
interpretations and explanations, but the system under study does 
not have the properties of the model (van Es and Hipólito, 2020).

The history of analytic philosophy of mind is written with 
many examples of applying concepts of modelling neuronal 
activity to the explanation of mind and cognition (Turing, 
PDP, Bayesian modelling are examples). Over the years, 
philosophy of mind has adopted much of the conceptual 
machinery and insights of the best computational modelling 
of the time, for example, Turing machines, PDP, or Bayesian 
modelling, giving rise to the computational theory of mind 
(Fodor, 1983b), connectionism (Bechtel and Abrahamsen, 1991), 
and the Bayesian brain (Rescorla, 2019) and predictive accounts 
of cognition (Hohwy, 2013; Clark, 2015), respectively.

The project of providing a theory about the mind by 
borrowing conceptual machinery from computational 
neuroscience will be  doomed if computational neuroscience 
returns this project back to philosophy. Egan (2020, p.  31) 
makes a similar point: ‘the majority of philosophers of mind 
who look to the cognitive sciences, and in particular, to 
computational neuroscience, to provide a naturalistic explanation 
of our representational capacities. Their hopes would be dashed 
if cognitive science just kicks the project of naturalising the 
mind back to philosophy’. But if turning to computer science 
for answers about the mind must be  the case, then one should 
also pay attention to important remarks made by computer 
scientists. Shannon (1948), the visionary of information theory, 
explicitly points out that his theory concept does not apply 
to human brains and cognition. In his ‘bandwagon’ paper 
(Shannon, 1956), he  expressed his discomfort, here quoted 
in full:

Although this wave of popularity is certainly pleasant 
and exciting for those of us working in the field, it carries 
at the same time an element of danger. While, we feel 
that information theory is indeed a valuable tool in 
providing fundamental insights into the nature of 
communication problems and will continue to grow in 
importance, it is certainly no panacea for the engineer 
or, a fortiori, for anyone else. Seldom do more than a 
few of nature’s secrets give way at one time. It will be all 
too easy for our somewhat artificial prosperity to 
collapse overnight when it is realized that the use of a 
few exciting words like information, entropy, and 
redundancy, do not solve all our problems. What can 
be done to inject a note of moderation in this situation? 
In the first place, workers in other fields should realize 
that the basic results of the subject are aimed in a very 
specific direction, a direction that is not necessarily 
relevant to such fields as psychology, economics, and 
other social sciences… if, for example, the human being 
acts in some situations like an ideal decoder, this is an 
experimental and not a mathematical fact, and as such 

must be  tested under a wide variety of experimental 
situations (p. 3, highlights in the original).

What Shannon is concerned about is the danger of confusing 
the map with the territory, and precisely moderate the claims, 
especially those about psychology and biology, that can be made 
solely on the account of the maths. Cronbach (1955) shares 
Shannon’s concerns arguing against the indiscriminate application 
of information theory to topics in psychology (for a review, 
see Sayood, 2018). While Shannon shows lucid reasoning, the 
assumption of information (and computations over it) in the 
brain is pervasive (Reinagel, 2000; Stone, 2018; Nizami, 2019; 
Luppi and Stamatakis, 2021), the debates revolving around 
what kind of information is brain information (Rathkopf, 2020): 
semantic, Shannon, or something in between? As noted by 
Shannon, applying information theory to the brain would be a 
simplistic description that is nevertheless widespread, preventing 
the progress in a theory of the mind and cognitive and brain 
science. A new theoretical breakthrough is needed, one that 
is not at the mercy of the technological developments in 
computer science.

WHAT MIGHT COGNITION BE, IF NOT 
NEURAL REPRESENTATION?

Embodied and Enactive Cognitive Science (EECS), as a theoretical 
framework and Dynamical and Complex Systems Theory (DCST), 
as a formalism, is widely known for rejecting the metaphor between 
cognition and computers. Both accounts, EECS and DCST, 
categorically reject the talk of the mind as processing a device:

We deliberately eschew the machine vocabulary of 
processing devices, programs, storage units, schemata, 
modules, or wiring diagrams. We substitute, instead, a 
vocabulary suited to fluid, organic systems, with certain 
thermodynamic properties (Thelen and Smith, 1996, 
p. Xix, emphasis added).

These two accounts, EECS and DCST, although quite aligned 
in their rejection of the mind as a computer analogy, do not 
always work together. This section aims to bring together these 
two frameworks and show how explicit cooperation fulfils a 
cohesive programme in cognitive science.

Embodied and enactive cognitive science rejects the existence 
of representations or any form of model-like theorising at any 
level that is not the level of a fully enculturated agent. More 
precisely, an agent that has been enculturated with symbols 
and reasoning skills in a sociocultural setting (Hutto and Myin, 
2013, 2017; Durt et  al., 2017; Hutto et  al., 2020; Satne, 2021). 
In short, for enactivists, representing requires enculturation 
and engagement with thinking and inference about a certain 
state of affairs in the world, i.e., they theorise.

More sophisticated yet is the scientific work of developing 
models. Trained and skilled as such, scientists can construct 
models that aim at explaining the behaviour of a system. 
While it may be  the case that these models involve 
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representational structures, such as symbols, information, 
or data, it does not follow that the system being investigated 
under the model possesses the properties of the model. 
Supposing that it does is a theoretical assumption that 
involves a metaphor between the thing being investigated 
and the computational model. While the model results from 
the best intellectual efforts and training of a fully enculturated 
agent, the neurocognitive activity is biological activity. Holding 
the metaphor between scientific computational models and 
neurons that compute representations, enactivists argue, 
involves a fallacy of attributing full agent capacities to the 
neurobiological scales. The rejection of the metaphor does 
not compromise the usefulness and suitability of simulation 
modelling and Bayesian inference to the investigation and 
understanding of the brain. The brain does not care about 
the methods scientists use to pattern its activity.

A definition of cognition should not thereby follow from 
the assumption of the metaphor: for it should be  rejected. An 
understanding of cognition must result, not from computational 
models but front-loading computational models. As such, it 
must result from logical reasoning and thereby implicate the 
least number of assumptions. It should be a principled description 
of front-loading the design of experiments and models. Maturana 
(2002) describes cognition in a form that requires minimal 
assumptions as it follows from what can be  observed in the 
biological system (as opposed to assigning machine-like properties):

‘Cognition [is] the capacity that a living system exhibits 
of operating in dynamic structural congruence with [its] 
medium’ (p. 26).

Unpacking the concepts, medium refers to the environment, 
structural congruence to the specifics of its situation, in ways 
that can be  described as coupled or adapted. Maturana (2002) 
arrives at such a description, he  notes, after he  had asked 
himself, ‘[w]hat should happen in the manner of constitution 
of a system so that I  see as a result of its operation a living 
system?’. Importantly, in answering the question, he  tells us, 
he  is not ‘making a hypothesis about how the system was. 
[he] was proposing that the relation between the internal 
dynamics of the system and the result of that internal dynamics 
in the domain in which [he] observed it, would tell [him] 
what the system was’ (p.  5, emphasis added). For example, in 
Maturana’s constructivist view of science, intentionality, as well 
as other cognitive functions, can be  seen not as an ontological 
property of the living system but a scientific construct to label 
the behaviour of an agent directed towards some goal or object, 
which the scientist can adjudicate as adequate or inadequate. 
In more detail, the relation unfolds as follows:
If we see a living system behaving according to what we consider 

adequate behaviour in the circumstances we observe it, we claim 
that it knows. What we see in such circumstances underlying the 
adequate behaviour of the living systems is:

 a. That the living system under our attention shows or exhibits 
a structural dynamics that flows in congruence with the 
structural dynamics of the medium in which we  see it; and

 b. That it is through that dynamic structural congruence that 
the living system conserves its living (Maturana, 2002, p. 26, 
emphasis added).

The description of cognition by Maturana (2002) can 
be  formally put as follows:

P1:  If we  see adequate cognitive behaviour, the system 
is cognitive.

P2:  Adequacy means that a system exhibits dynamics that are 
congruent with the dynamics of the medium.

P3:  The system maintains itself by being congruent with 
the medium.

Conclusion: The system is cognitive.

This understanding allows then to say something about 
whether or not a system can be deemed as cognitive, refraining 
from forcing the definition with suppositions and assumptions 
following from metaphorical interpretations.

In the same vein, Maturana and Varela (1980) tells us, ‘what 
[we] call normative activities are not aspects of […] autopoiesis 
[but only] commentaries or explanatory propositions that [we] 
make about what [we] may think that should occur in the 
[…] organism’ (Maturana, 2011, pp. 149–150, emphasis added). 
Notably, enactivists such as Maturana and Varela (1980) stress 
that scientific modelling and explanations belong to the scientific 
realm. To put it more precisely, when we  use a computational 
model to make sense of behaviour, both the properties constructed 
and the interpretations made by the use of the model are not 
aspects of the system of scientific scrutiny. This is precisely 
why this specific metaphor – between the brain and a computer 
– is misleading: ‘representation’ is not to be  found in the brain 
but as a representation of the scientist herself constructing, 
testing, and interpreting the results of an experiment theory.

While the notion of representation is widely used in 
cognitivist neuroscience, it is not endorsed across the board 
in neuroscience. Skarda (2013, p.  265) notes that ‘recent 
findings in neurophysiology and cognitive science point to 
the conclusion that cognition can be explained without appeal 
to the representations and rules of earlier cognitivist 
explanations’. This claim is motivated by 30 years of research 
together with Freeman (2001). One example of this research 
is their experiments on odour, that the idiosyncrasy of neural 
activity cannot be best described as a computation of a domain-
specific system that automatically activates according to a 
programme of certain structural rules (a machine-like system). 
They remark that ‘there is nothing intrinsically representational 
about this dynamic process until the observer intrudes. It is 
the experimenter who infers what the observed activity patterns 
represent to or in a subject, to explain his results to himself ’ 
(Freeman and Skarda, 1990, p.  4, emphasis added).

As opposed to the interpretations made by the experimenter, 
properties of the system should be  laid out carefully not to 
involve experimental theories. One feature that is referred to 
throughout and undeniable in neurocognitive activity is that it 
is dynamic and lives in high dimensionality, i.e., it is a complex 
system. There is good reason, then, to think that, to know 
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what something is, it is insightful to investigate its behavioural 
dynamics, conceptually and mathematically. Here is where 
philosophy of mind and modelling science can fruitfully meet.

Freeman (2001) demonstrates a mechanism for embodied 
cognition ‘casting the mental events involved in perception, 
planning, deciding, and remembering in the same analogic 
dynamical language as used to describe bodily movement’. 
Applying the vocabulary of movement to perceiving, planning, 
deciding, or remembering as moving around or navigating an 
environment (as opposed to internal information-based processes 
and representations) remarkably breaks up with cognitivism 
and, together with his findings for neural activity as self-
organising dynamics (Kozma and Freeman, 2017), is perfectly 
aligned with the most recent research in EECS and Dynamical 
Systems Theory (DST).

Dynamical Systems Theory is well-equipped with the 
computational tools that allow simulating neurocognitive activity 
as a dynamical system. The basis is the insight that where ‘rather 
than computation, cognitive processes may be dynamical systems; 
rather than computation, cognitive processes may be  state-space 
evolution within these very different kinds of systems’ (Van 
Gelder, 1995, p.  346). Neurocognitive activity ‘lives’ in high 
dimensions. More precisely, its dynamics occur in dimensions 
with high degrees of freedom for having too many attributes 
in parameter spaces or configuration spaces. High-dimensional 
spaces arise within the context of modelling data sets with 
many attributes.

The following section offers a generative model under DCM 
that explains neural activity as the covariance between the 
data obtained and how the data was generated given its dynamical 
and complex nature.

DYNAMICAL CAUSAL MODEL OF 
NEUROCOGNITIVE ACTIVITY

This last section focuses on a model that links neuroimaging 
data and the theory (parameters) under the procedure explained 
in section Scientific Models in Neuroimaging, i.e., Dynamical 
Causal Modelling (DCM). As we  will see, under DCM, 
neurocognitive activity is explained, not as machine-like 
computations, but dynamic interactions of flows and influences 
underlying neurobiological signalling.9

Generally speaking, a generative model is a model of the 
conditional probability of data given parameters, P(V|A) = y [as 
opposed to an inference model of the conditional probability of 
the data given the observations, P(A|V) = x]. The generative model 
is solving for model evidence, where the probability of the model 
is the probability of data given parameters multiplied by the 
probability of the parameters, where P(A) is the model evidence.

 P V,A P V|A P A( ) = ( ) ( )

9 Some might call this a model-like biological computation, which would 
be  acceptable, as long as understood, not as a machine-like computation.

Zarghami and Friston (2020) recently offered a dynamic model10 
for effective connectivity.11 Extending an established spectral DCM 
(Friston et  al., 2003, 2019; Daunizeau et  al., 2011; Razi and 
Friston, 2016), to generate neuronal functional connectivity data 
features that change over time. The goal is to map these (observable 
and) evolving spatiotemporal patterns back to the (unobservable) 
evolving neuronal networks that generate them. This can 
be achieved by constructing generative models of the observations 
and adopting an inference procedure to estimate the time-varying 
effective connectivity of neuronal activity.

The brain continuously expresses transient patterns of 
coordinated activity that emerge and dissolve in response to 
internal and external perturbations. The emergence and evolution 
of such metastable coordination dynamics (in self-organising 
complex systems, such as the brain) is nonlinear. Given this, 
the scientific goal is to identify the model (network) with the 
greatest evidence for any given data and infer the corresponding 
(context-sensitive) coupling or effective connectivity parameters.

The generative model underlying itinerant brain states is 
based on the contention that macroscopic (slow) dynamical 
modes (Haken, 1983; Jirsa et  al., 1994) visit a succession of 
unstable fixed points in the parameter space of directed 
connectivity. This model departs from the hypothesis that neuronal 
dynamics are generated by patterns of intrinsic (within a region) 
and extrinsic (between regions) connectivity changes over time. 
It does so by assuming that a heterocyclic orbit can trace the 
patterns of neuronal connectivity12 and that the transitions from 
one stable point to the other are fast (more detail below). This 
allows then to attain the main component for developing a 
model under variational Bayes: parameters. Figure  2 presents 
the generative model of effective connectivity with such parameters.

The goal of setting up the generative model is to solve for 
Y. The generative model proceeds as follows: (1) Sampling of 
a state transition matrix from a distribution parameterised by 
its concentration parameters b. (2) The transition matrix B is 
then used to select the current brain state given the previous 
state, assuming a small number of hidden states (s). (3) The 
current state then selects a state-specific connectivity pattern 
according to β sampled from a multivariate Gaussian distribution. 
(4) Further, a random Gaussian variate is added to the pattern 
to generate connectivity (θ) for the current epoch. This 
connectivity allows moving forward to define the neuronal 
network (transfer functions and cross spectra) under local 
linearity assumptions and parameterised, scale-free, endogenous 
fluctuations in each brain region, Y.

This model can further be  expanded by model inversion 
with variational message passing that emerges from free energy 
minimisation: identifying the relations among the model 
components as if each component were sending a message to 
the next. Figure 3 shows these messages in circles with arrows 
amongst the components of the model: the posterior expectation 
of the transition matrix (B), the posterior expectation of hidden 

10 Refer to the glossary for concepts typically employed in dynamical systems theory.
11 For a review on effective connectivity, see Friston (2011).
12 A heteroclinic orbit is a path in phase space that joins two different 
equilibrium points.
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states (s), posterior state-specific connectivity patterns (β), and 
posterior epoch-specific connectivity (θ).

Constructing a variational free energy bound on model 
evidence (also known as an ELBO in Machine Learning) makes 
it possible to attain a functional of the observed data and an 
approximate posterior density. The data corresponds to the 
cross spectra (Y) constituting an fMRI time series. The 
approximate posterior is obtained by a mean-field approximation 
over all unknown parameters (β, b) and states (s), denoted 
by Q. The approximate posterior is then optimised for the 
free energy functional, i.e., by minimising the KL divergence 
between the approximate and the real or true posterior (mirroring 
the steps explained in the previous section).

This optimisation allows to further obtain a lower bound 
on model evidence for the free energy. This means that we can 
use the free energy functional for model comparison regarding 
evidence or marginal likelihood. It is possible to compare 
different models with different hidden Markov blankets (depicted 
in Figure 3 with a blue box). In conclusion, optimising variational 
free energy can be  used for Bayesian model selection.

An initial assumption is to suppose the hidden Markov model 
is motivated by orbits. That is to say, that the connectivity 
parameter space will visit a succession of unstable fixed points 

(Rabinovich et  al., 2008, 2012). This allows us to draw two 
further assumptions. It assumes that connectivity patterns trace 
out a heterocyclic orbit – a stable heteroclinic cycle (SHC) in 
the parameter space visiting a discrete number of unstable fixed 
points in a winless competition among states of brain activity 
(Afraimovich et  al., 2011; Deco and Jirsa, 2012). An SHC is a 
set in the phase space of a dynamic system consisting of a 
circle of equilibrium points and connecting heterocyclic 
connections. If a heterocyclic cycle is asymptomatically stable, 
approaching trajectories spend longer periods in a neighbourhood 
of successful equilibria. However, in high dimension connections, 
approaching trajectories will not persist due to a large number 
of parameters. The second assumption is that the transitions 
from one unstable fixed point to the next are fast regarding the 
time connectivity remains in the neighbourhood of a fixed point. 
This assumption leverages from features of the SHC: (i) the 
origin of the structural stability and (ii) the long passage time 
in the vicinity of saddles13 in the presence of moderate noise 
in high dimension connections with large degrees of freedom 

13 A saddle point or minimax point is a point on the surface of the graph of 
a function, where the slopes (derivatives) in orthogonal directions are all zero 
(a critical point) but which is not a local extremum of the function.

FIGURE 2 | The generative model P (Y, η), where η = (b, s, β, θ, and λ). b refers to the parameters for the matrix B, where the Matrix B comprehends the posterior 
expectations, s refers to the hidden states, β to the connectivity parameters, θ to the connectivity patterns, and Y to the cross-spectral data features of an epoch 
that is, the cross-correlation/variation between two time series (s, θ). The model is built up to explain the data, Y. The box in blue corresponds to a hidden Markov 
blanket (further detail in Figure 3). Figure modified from Zarghami and Friston (2020).
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(Rabinovich and Varona, 2018). These assumptions further allow 
for inferring attributes that the probability transition matrices 
must possess: (1) dwell prior: the dwell time at an unstable fixed 
point must be  short; (2) orbit prior: there will be  a systematic 
structure with predictable transitions from one unstable fixed 
point to the next; and finally (3) equidistribution prior: the hidden 
states required to explain the prior must be  all occupied in a 
non-trivial way in time over which the data is observed.

In conclusion, a generative model is constructed to explain 
Y. Y is the cross spectra or covariance between a time series 
of states and an fMRI time series of connectivity. A mean-
field approximation obtains the approximate posterior over all 
unknown parameters (β, b) and states (s). The approximate 
posterior is then optimised concerning the free energy functional, 
i.e., by minimising the KL divergence between the approximate 
posterior and the real or true posterior with a variational free 
energy bound on model evidence (between competing models 
with different Markov blankets). To overcome the posterior 
parameter space’s ill-conditioned information geometry, an 
assumption is introduced: the hidden Markov blanket is motivated 

by orbits. From this, a set of attributes is inferred about the 
transition matrices, which allows for inferring how the data 
observed in the fMRI times series was generated. Crucially, 
this means that, although the model does not represent the 
target – the model ‘lives’ in low dimension as opposed to the 
activity aimed to be  explained, ‘living’ in high dimension – it 
has predictive and explanatory power. More precisely, it allows 
for drawing explanations as well as predictions about neuronal 
activity. Lastly, using DCM delivers a profile and understanding 
of neurocognitive activity as enactive and dynamically situated.

CONCLUSION

This paper rejected the analogy between neurocognitive 
activity and a computer. It was shown that the analogy results 
from assuming that the properties of the models used in 
computational cognitive neuroscience (e.g., information, 
representation, etc.) must also exist in the system being 
modelled (e.g., the brain). In section Scientific Models in 

FIGURE 3 | The upper part of the model corresponds to a hidden Markov blanket (highlighted in Figure 2 in a blue box) on the left panel. The middle part of the 
model fits to the empirical priors (parametric empirical Bayesian scheme). The lower part of the model refers to a conventional DCM analysis of complex cross 
spectra within each epoch. The DCM parameter estimates then constitute the evidence for a hierarchical model of changing connectivity over epochs, estimated 
using parametric empirical Bayes (PEB). Some factors can be found on the right panel throughout the model (green numbered squares), corresponding to the 
parametric empirical Bayes.
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Neuroimaging, we have seen how computational models offer 
a link between the collected data (e.g., behavioural or 
neuroimaging) and a possible explanation of how it was 
generated (i.e., a theory). While the usefulness of computational 
models is unquestionable, it does not follow that neurocognitive 
activity should literally possess the properties used in the 
model (e.g., information, representation). The last section 
offered an alternative account of neurocognitive activity 
bringing together the EECS and the formalisms of DCST. 
While both these accounts individually reject the mind as 
a computer metaphor, they rarely explicitly work together. 
The last section has shown how the cooperation between 
EECS’s characterisation of cognition and DCST’s formalisms 
offers a sustained and cohesive programme for explaining 
neurocognitive activity, not as a machine but as a biologically 

situated organism. Mainly this link was made by focusing 
on DCM of neurocognitive activity.
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