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As robots become more ubiquitous, they will increasingly need to behave as our team
partners and smoothly adapt to the (adaptive) human team behaviors to establish
successful patterns of collaboration over time. A substantial amount of adaptations
present themselves through subtle and unconscious interactions, which are difficult
to observe. Our research aims to bring about awareness of co-adaptation that
enables team learning. This paper presents an experimental paradigm that uses a
physical human-robot collaborative task environment to explore emergent human-robot
co-adaptions and derive the interaction patterns (i.e., the targeted awareness of co-
adaptation). The paradigm provides a tangible human-robot interaction (i.e., a leash) that
facilitates the expression of unconscious adaptations, such as “leading” (e.g., pulling the
leash) and “following” (e.g., letting go of the leash) in a search-and-navigation task. The
task was executed by 18 participants, after which we systematically annotated videos
of their behavior. We discovered that their interactions could be described by four types
of adaptive interactions: stable situations, sudden adaptations, gradual adaptations and
active negotiations. From these types of interactions we have created a language of
interaction patterns that can be used to describe tacit co-adaptation in human-robot
collaborative contexts. This language can be used to enable communication between
collaborating humans and robots in future studies, to let them share what they learned
and support them in becoming aware of their implicit adaptations.

Keywords: human-robot collaboration, human-robot team, co-adaptation, embodiment, interaction patterns,
emergent interactions

INTRODUCTION

With Al being increasingly used in social robotics (Breazeal et al., 2016), there is a growing number
of possible applications in which artificially intelligent robots need to interact and collaborate with
humans in the physical space. Creating Al for the physical world comes with many challenges, one
of which is ensuring that a robot does not only execute its own task, but instead behaves as a team
partner, to enable human and robot to become one well-functioning unit of collaboration. One of
the mechanisms that can be used to enable this, is a process of co-adaptation, where both human
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and robot, through (physical) interaction, adapt their behavior
to develop successful patterns of collaboration over time
(Chauncey et al., 2017).

To define what we mean by co-adaptation, we can think
of how humans adapt their behavior in a reciprocal manner
when they collaborate with other humans: the kind of adaptive
interactions they use to achieve a fruitful collaboration. It is
known that a human team’s ability to adapt to new circumstances
is vital for its performance, and team members tend to rapidly
develop updated interaction patterns that fit with new situations
(Burke et al., 2006; Uitdewilligen et al.,, 2013). Humans have
the ability to intuitively interpret body language of their team
members and to send signals when initiating adaptations (Sacheli
et al., 2013). This kind of non-verbal interaction is not obvious
when a team member is a robot. While we mighlt be able to
interact with a robot using language, collaborative interactions
are generally multimodal and contain many subtle and implicit
non-verbal interaction cues that help us to create tacit knowledge.
The focus of this paper is on these non-verbal interactions, and
specifically those that are connected to physical contact.

Two classic examples of non-verbal interactions for co-
adaptation in a human-non-human collaborative context can be
found in human-animal interaction:

(1) The interaction between a horse and its rider (Flemisch
et al., 2008);

(2) The interaction between a guide dog and a blind person
(Lagerstedt and Thill, 2020).

When a human rides a horse, they start off as two separate
entities with their own goals. As they interact for a longer period
of time, they gradually start to better understand the other,
adapting their interaction concurrently, until they become one
joint system acting toward a common goal through subtle and
implicit interactions. Another example is the interaction between
blind people and their guide dogs: blind people truly need to trust
and follow the choices of the guide dog, whereas in horse riding,
the human makes most of the decisions. When guide dogs and
blind people learn to navigate together, the human needs to learn
to assess when to adapt its behavior to follow the dog, and when
to give the dog directions about their route. The dog must learn
to understand what the human is and isn’t comfortable with and
adapt its behavior to that. All this learning and adapting takes
place through subtle physical interactions.

Mechanisms of adaptation have been studied in intelligent
agents, more specifically in the field of multi-agent systems [e.g.
(Foerster et al., 2016; Igbal and Sha, 2019)]. Research addresses
learning algorithms, such as different types of Reinforcement
Learning, and investigates their effects on agent performance
or team performance. Little to no attention is paid to the
interactions that the agents engage in, which bring about the
adaptations [except for some examples such as (Baker et al,
2020)]. Even when mechanisms of adaptation are studied in
human-robot interaction contexts such as in Nikolaidis et al.
(2017a), the effects on performance are studied. We believe
that research should also address the interactions that bring

about successful adaptation, to come closer to the fluency and
naturalness of the above-mentioned human-animal examples.
There is a need for further study of the specific interactions
and interaction patterns that bring about co-adaptation when
humans and robots collaborate. A deeper insight in these
interactions and patterns can help researchers and designers
to study and create more natural and fluent human-robot
collaborations that take the limitations and affordances of the
physical world into account. In addition, such insights can
support the collaborating human and robot to become more
aware of their implicit adaptations and communicate about
them, to further improve their collaboration. In Section “Co-
Adaptation in Human-Robot Teams,” we define co-adaptation
in a human-robot collaboration context, and we explain the
relevance of embodiment in this process in Section “Research
Challenge.” We describe an experimental paradigm that we
designed and implemented to conduct an empirical study into co-
adaptation and how it emerges from interactions. This human-
robot team task was presented to human participants, after which
we analyzed the team behavior in terms of interactions and
interaction patterns. The resulting interaction pattern vocabulary
and language provides a thorough analysis of co-adaptive
interactions surrounding leadership roles in human-robot teams.

CO-ADAPTATION IN HUMAN-ROBOT
TEAMS

Co-Adaptation - A Definition

In human-only teams, the term ‘team adaptation’ is used
to describe the changes that occur in team behavior and
performance. More specifically, (Burke et al., 2006) define team
adaptation as “a change in team performance, in response
to a salient cue or cue stream, that leads to a functional
outcome for the entire team”. They describe that it “is
manifested in the innovation of new or modification of existing
structures, capacities, and/or behavioral or cognitive goal-
directed actions” (p. 1190). On top of that, it is argued that
an important aspect in this is that the team members update
their mental models according to changes in the task situation
(Uitdewilligen et al., 2013).

We use the term co-adaptation instead of team adaptation, as
we study the adaptive interactions at the level of the individual
actors: team adaptation is a result of adaptative behavior
exhibited by the individual team members. Also, co-adaptation
is used more often in the context of (physical) human-robot
interaction. We define co-adaptation in human-robot teams as
follows:

A process in which at least two parties change their behavior and/or
mental models concurrently as a consequence to changes in task or
team situation while collaborating with each other.

This concurrent changing of behavior and/or mental models
is relevant for the team, as smooth collaboration requires
partners to adapt to each other over time. Since humans are
adaptive creatures by nature, and artificially intelligent systems
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are becoming more and more adaptive, there is an opportunity to
study how they adapt together as they collaborate.

Co-adaptation is a process which generally takes place over a
short period of time, e.g., over the course of several seconds or
minutes; this timespan is generally considered in the study of
co-adaptive behaviors (e.g., in Nikolaidis et al. (2017a), see also
Section “Related Work”). It is not necessarily a deliberate process:
adaptation happens as a consequence of interactions and an
implicit or explicit drive to improve performance or experience.
The resulting behaviors or mental models in both adapting
partners do not necessarily persist over time and contexts, as new
contexts and influences may cause the co-adaptation to continue.
We used the above definition to describe co-adaptation as a
design pattern in Table 1 [according to the template specified
in van Diggelen et al. (2019)]. This table provides a detailed
explanation of the possible positive and negative effects of co-
adaptation, as well as an overview of the kind of contexts in which
it is relevant to develop or apply co-adaptation.

Related Work

In the sections below, we discuss related work on co-adaptation
in human-robot or human-AI collaborative contexts, as we
are studying interactions that bring about co-adaptation. Since
we are specifically interested in analyzing and categorizing
interactions and interaction patterns, we also looked at literature
on interaction taxonomies within collaborative contexts. There
is a body of research on dynamic role switching in human-
robot collaboration, which has many similarities with how we
described co-adaptation in terms of interactions. However, the
existing literature [e.g. (Evrard and Kheddar, 2009; Mortl et al.,
2012; Li et al., 2015)] focuses on computational approaches to
enable a robot to dynamically switch roles in an attempt to
optimize performance of a human-robot team. While the existing
studies evaluate the impact of the robot strategies on human
factors, they do not study the natural interactions between the
human and robot that arise as a consequence of the necessity
for role switching. Therefore, we do not go into further depth
on these papers.

Co-Adaptation
Most work on human-agent co-adaptation focuses on making
the agent adaptive to the human, using information on different
properties of the human [e.g. (Yamada and Yamaguchi, 2002;
Buschmeier and Kopp, 2013; Gao et al., 2017; Ehrlich and Cheng,
2018)]. There have been studies that investigated how a human
adapts in situations when collaborating with an intelligent agent,
using the team’s performance to determine the impact of co-
adaptive collaborations (e.g. (Mohammad and Nishida, 2008;
Youssef et al., 2014; Nikolaidis et al., 2017a,b). In addition
to determining the effects of co-adaptation on performance,
it is also necessary to study the kind of interactions that
emerge throughout the co-adaptation process and support team
members in the process of developing a fluent collaboration.
A better understanding of these processes will help to initiate and
maintain co-adaptation in human-agent teams.

(Xu et al., 2012) have outlined requirements for co-adaptation
to occur in human-robot teams. First, they argue that in order

to achieve a common purpose, both agents need to be prepared
to adapt their behavior to their partner, should actively and
dynamically estimate the partner’s intention, and develop options
of how to adapt their own behavior in response. Another
requirement is that the agents need to be able to receive and
appreciate feedback or reward from the other, to express their
internal state to their partner in a comprehensible manner, and to
establish with their partner a common protocol for interaction.

TABLE 1 | Proposed Design Pattern for Co-adaptation.

Proposed Design Pattern for Co-Adaptation

Behavior Team members engage in collaboratively solving a task.

patterns While they do this, they observe each other’s actions and
adapt their behavior in an attempt to make the collaboration
more fluent and effective.

Potential The performance on the collaborative task increases. Both

positive effect partners will be able to work more efficiently, as there is less
idle time, fewer mistakes and more understanding between
the partners

Potential

negative effect

In the process of adapting, there is a risk of making
mistakes. In addition, it takes time to adapt to a working
strategy, which might have negative effects on the
immediate performance.

Use when Team partners need to collaborate but don’t know the best
strategy to complete the task. At the same time, the task
and capabilities of the team members contain many implicit
aspects that are hard to explicitly communicate or make

agreements about.

Example A human and a robot arm have to collaboratively assemble
a product. There are different parts that either of them can
assemble, and some parts need to be jointly assembled;
e.g., the robot needs to hold up a heavy part while the
human adjusts the bottom. If the human has to constantly
provide the robot with instructions, this will slow them
down, so it is useful to let the robot move autonomously
and to synchronize their actions. When they start
collaborating, the human might not trust the robot enough
to adjust the bottom of a part that the robot holds up, in
fear of being crushed underneath the part. The robot might
see the hesitation and move the part upside down, such
that the human can reach the object more easily. In turn,
the human will have to adjust their workflow to do their
task, but the fact that the robot adapted might increase the
trust and understanding between the partners, which can in
turn improve future team performance. While adapting,
however, the human might make the mistake of trusting the
robot too much, and think they can climb on top of the
heavy part whereas the robot is unable to hold that weight.
The co-adaptive process, if done too quickly or
inconsiderate, therefore has the risk of making mistakes
that hamper immediate performance.

Design
rationale

A process of mutual adaptation helps to establish and
maintain common ground, one of the main aspects of
necessary for enabling collaboration between humans and
machines (Klein et al., 2004; Sciutti et al., 2018). This might
also be called mutual understanding, meaning that both
parties are able to predict and/or explain each other’s
actions, leading to trust and eventually smooth collaboration
(Azevedo et al., 2017). In human-only teams, co-adaptation
leads to team adaptation (Burke et al., 2006), which has
shown to be an essential aspect of successful teams.

Type Collective
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Third, the authors outline several inducing conditions, derived
from experimental work, that can be used to ensure a mutually
adaptive process will start, for example that both agents should
be able to take initiative.

We formulated our own requirements for a task environment
that would fit with our research goals of studying co-adaptive
interactions, which include the mixed-initiative requirement as
well as the requirements for dynamic and adaptive behavior
(which we connected to an improvement in team performance).
Moreover, we added two requirements that relate to the presence
of a common ground (general common ground as well as
interaction symmetry). Common ground is considered to be
necessary for any collaboration (Klein et al., 2004), while
interaction symmetry is often used to provide the possibility
for imitation, which can create initial common ground [e.g. in
Sasagawa et al. (2020)]. A full description of these requirements
is given in Table 2.

Interaction Taxonomies

The literature reports two important existing studies into
interaction taxonomies that describe interactions in collaborative
tasks. One of those papers describes a top-down approach of
describing different types of interactive behaviors based on game
theory (Jarrassé et al, 2012); the other describes a bottom-
up approach where interaction behaviors were identified from
empirical observations (Madan et al., 2015). Both taxonomies
were validated on their applicability by successfully classifying
behaviors in different HRI scenarios. Although useful to describe
collaborative behavior, the top-down approach [as used in
Jarrassé et al. (2012)] resulted in a taxonomy that describes
interaction at a high level of abstraction (distinguishing for
example between competitive versus collaborative behavior).
Such a taxonomy can be used to describe the overall behavior
in a task, but it does not provide insights into (atomic)
interactions that drive adaptation. The taxonomy presented
in the other paper (Madan et al, 2015) presents interactions
at various levels of detail, where the highest level of detail
describes categories of interactions (i.e., harmonious, conflicting
or neutral). The lower level interactions are more closely related

TABLE 2 | Task requirements for a collaborative, co-adaptive task environment.

Task requirements

Mixed Initiative Both parties can take the initiative for an interaction at

any point in time [see (Xu et al., 2012)]

Interaction Interaction modalities should have a certain level of

symmetry symmetry, meaning that there is at least some overlap
in the way the two parties can interact with the other, to
enable imitation. Interaction symmetry thereby
contributes to the common ground.

Performance By adapting their individual behavior, team members

improvement can support an improvement in team performance.

Collaborative It must be easier to be successful at the task when

advantage collaborating, as opposed to doing it on your own
Common There must be a common ground between the
ground collaborating partners. In our case this comes from the

physical nature of the task

to what we are interested in. They describe interaction patterns
such as harmonious translation, persistent conflict and passive
agreement. These interaction patterns focus on interactions
related to collaborative object manipulation and were observed
in a specific controlled task environment. This leaves room
to study interactions in other contexts, to investigate a wider
range of possible interaction patterns. Moreover, they do not
provide information on how the different interaction patterns
relate to each other; how they follow each other or how one
pattern leads to a specific other pattern. We believe that the
relations between interaction patterns are especially important
when looking at adaptation. In our study, we take a bottom-up
approach to identifying interaction patterns, which is similar to
the work of Madan et al. (2015). This means that we do not
predefine or design interactions, but that we set up a task that
allows participants to behave as naturally as possible, and treat
the data collection and analysis as an ethnographic study. Since
such an approach requires us to have as little assumptions about
behavior which will be observed as possible, we do not use the
existing taxonomies when identifying interaction patterns. In our
analysis, we focus specifically on adaptive interactions, as well as
on how the different observed behaviors relate to each other. We
will reflect on how our findings overlap or differ to the existing
work in Section “ Relation to Existing Interaction Taxonomies,” to
understand how they might complement or complete each other.

RESEARCH CHALLENGE

The goal of this study is to empirically investigate the interactions
between humans and robots that underly their co-adaptation
when jointly performing a task. A challenge is that the adaptive
intentions and outcomes of interactions are often not directly
clear and observable. Partners may themselves not be aware that
their behavior is an adaptation to the developments, and may be
a response to subtle cues, possibly processed unconsciously. In
order to nevertheless investigate how such important processes
take place in a human-robot team, the approach of observing
and analyzing embodied human-robot team behavior was taken.
Expressivity and intentionality of behavior plays a large role
in embodied interaction (Herrera and Barakova, 2020). It
is believed that in such a setting the subtle and perhaps
unconsciously executed adaptations will be expressed by means
of physical, embodied interactions, hence being accessible for
observation and analysis.

The literature on using embodied intelligence when studying
human-robot interaction shows two main lines of research:

e A line of research that focuses on human cognition:
investigating how computers or robotic interfaces can be
used to understand and extend human cognition and
behavior. An example of this is extending human cognition
through prostheses or sensory substitution [e.g., as in
Kaczmarek et al. (1991); Bach-y-Rita and Kercel (2003);
Nagel et al. (2005)].

e A line of research that focuses on using embodiment to
create more intelligent computers (or machines or robots).
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The robot’s intelligence is ‘grounded’ by a body with which it
can interact with its environment [for example as described
in Duffy and Joue (2000); Kiela et al. (2016)].

Our research approach is not directed at the intelligence of one
particular partner of the team, but at the intelligence emerging
from the interaction of partners. In the first described line of
research (extending human cognition, e.g., using prosthetics),
one of the main aims is to create a unity between the human
and the added technology, such that for the human the artificial
parts feels as though it is part of themselves. We research the
unity of human and technology jointly forming a team, with both
having a certain level of autonomy, and sharing a common goal.
This approach distinguishes between cognition on an individual
level (per agent) and collective cognition, at the team level.
In our work, we focus on the team as a dyad formed by one
human and one robot.

It is believed that studying embodied human-robot
interaction, while they collaboratively perform a task, is an
approach that can help us to discover and understand how a team
adapts to the dynamics of the context, and how this adaptation
emerges from the interactions between the team members.

MATERIALS AND METHODS

Task Environment:
Search-and-Navigation

We have developed a task in which a human and a robot
jointly navigate through a space while searching for objects to
collect additional points. The conditions and interdependencies
described in Table 2 were implemented in this task.

The team of human and robot are given the task of navigating
between two points in space. The team’s assignment is to reach
the goal location with as many points as possible. They start with
60 points, and lose a point each second until they reach the goal
location. Virtual objects were hidden in the task area: some close
to the shortest route to the goal location; others further to the side.
Picking up a virtual object yields the team 10 points. These scores
were chosen after trying out the task several times, such that solely
focusing on the goal would yield approximately the same score as
solely focusing on the objects, while combining the capabilities
of both team members could potentially result in a higher score
than either of the extreme strategies, ensuring a trade-off between
the two. The partners have complementary capabilities: only the
robot knows where the objects are; only the human can oversee
the route and distance to the goal (see Figure 1 for an image of
the field used). A sound cue is given when an object is picked up.

Design of Human-Robot Interaction
We designed and implemented a remotely controlled robot with
aleash (Figure 2). An ambiguous form was selected for the robot,
without anthropomorphic features. This was chosen on purpose,
to allow humans interacting with it to focus on the interaction,
not on its form.

The leash was designed to be the only direct communication
channel between the robot and a participant, to ensure specific

~.

WORLD CHAMPIONS OF

FIGURE 1 | The field on which the task was executed. Participants moved
from the goal on the left to the goal on the right (where the robot is stationed).

FIGURE 2 | Two participants interaction with the robot showing a situation
with a stretched leash and thus in a leading role (top) and situation with a
loose leash and thus a following role (bottom).

evaluation of the interaction through the leash without too much
noise of other interaction modalities. On top of that, the leash
interaction allows for subtle and implicit interactions as both the
participant and the robot can pull the leash more or less. The
robot was explicitly made to be quite large and heavy, to allow
it to pull the participant in a direction as well.

For our study, the robot was remotely controlled by a human
operator (i.e. the experimenter). It is usually preferable that
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—

1

the starting point.

FIGURE 3 | The four predefined maps with the locations of the objects (red circles), including a line indicating the default route of the robot. The bottom of the field is

-

the operator is hidden from the participant, however, due to
technical limitations this was not possible. The human operator
was therefore on the field together with the participant and the
robot during the experiment. A small pilot with two participants
showed that participants only payed attention to the human
operator in the first few seconds of the experiment, after which
they directed their attention to the robot only. Therefore, and for
practical reasons, we decided that it did not pose a problem for
our study goals that the human operator was visible. The human
operator controlled the robot according to a set of pre-defined
rules: to direct the robot to the closest virtual object (following
a default route as much as possible, as specified in Figure 3)
if the leash was held loose by the participant (the operator, in
contrast to the participant, knew the locations of all hidden
virtual objects). If the participant kept a tight leash, the operator
directed the robot to give in and to move toward the participant
until the leash was no longer stretched. A detailed description
of these rules is provided in Table 3. The human operator made
decisions based on visual cues: they carefully watched the leash to
see whether it was stretched. Human response time to visual cues
is known to be on average 0.25 s, therefore, we can assume that
the robot responded to participant behavior with a delay of 0.25 s.

The task and robot were designed such that both partners
had their own knowledge, enabling them to initiate actions that
their partner cannot initiate. The knowledge of both partners
was relevant for the task, making collaboration beneficial and
enabling the partners to learn how to use their knowledge in the
best possible way. All communication and coordination between
the human and the robot took place through the leash, which
ensured that interactions are physically grounded, and allowed
for subtle and implicit interactions.

Experiment Setup and Initial Results

The experimental paradigm described above was previously
used to study leadership shifts and its influence on subjective
Collaboration Fluency in human-robot teams. This section will
explain the experimental protocol used as well as results obtained
in that study. For the current study, we have re-analyzed the
data obtained in the original study to research specifically what

interactions and interaction patterns bring about co-adaptation
in such a task. In Section “Analyzing Behavior to Uncover
Interaction Patterns” and “Data Analysis: Extracting Interaction
Patterns” we will describe in detail how that analysis was done.

Experimental Protocol

Participants were told that they had to perform a collaborative
task together with an intelligent robot, while holding the leash
of the robot. They were presented with the described task and
human-controlled robot, and were given instructions about how
they could score points.

Before the start of the experiment, the participants were given
the possibility to walk from one end of the field to the other with
the robot. This was done to give participants an indication of the
speed of the robot. After that, the first round started. The task
was performed four rounds per participant. The locations of the
virtual objects were different for every round. Four predefined
maps with specified locations of the virtual objects were created
for the human operator (Figure 3). Each of these maps were used
for each participant during one of the rounds. The order of the
maps was randomized for each participant to make sure that

TABLE 3 | The protocol used by the human operator to control the
behavior of the robot.

Situation Resulting Robot Behavior

Follow the human in the direction that
the leash is pulled in

The leash is stretched

The leash is loose AND the
human-robot team is on the
predefined route

The leash is loose AND the
human-robot team is not on the
predefined route AND there are
virtual objects that have not been
picked up

The leash is loose AND the
human-robot team is not on the
predefined route AND all virtual
objects have been picked up

Follow the predefined route

Move toward the nearest virtual object
that has not yet been picked up

Move toward the goal
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the observed behavior would not be influenced by the specific
maps. After each round, participants were asked three interview
questions:

(1) Can you explain the behavior of the robot?
(2) What was your strategy for completing the task?
(3) How did you experience the collaboration?

An overview of the answers given to these questions was
given in van Zoelen et al. (2020). For the analyses described
in the following sections, the answers to these interview
questions were used to support the researchers in interpreting
participant behavior.

Participants

A total of 18 people participated in the experiment (9 male, 9
female), consisting of students from different programs within
Eindhoven University of Technology, with an average age of 23
(SD = 3.9). The participants were told that the person with the
highest number of points on a single run would receive a gift
voucher of €10 to motivate them to perform to the best of their
abilities. Before the start of the experiment, participants gave their
consent after carefully reading the consent form that explained
all details of the experiment except for the focus of the research
(evolving leadership shifts) and the specific behavior of the robot.
After the experiment, they were debriefed on the exact purpose
of the experiment.

Data Analysis: Coding Process

While performing the task, a camera placed in a corner of the
field recorded the behavior of the participants. These videos
were thoroughly analyzed through a process based on Grounded
Theory (Charmaz, 2014), using different stages of open coding,
closed coding, and categorizing. All videos were coded using an
open coding process at first, to get a view on the different kinds
of behavior present among participants as well as on events that
triggered participants to switch between a more leading and a
more following role. Using the results from the open coding, a
coding scheme for closed coding was developed that contained
codes describing task events, robot movement, participant
movement, leash activity and the participant’s location relative to
the robot. Each code was characterized as a leading, following or
neutral behavior (see Table 4).

All videos were then coded again using a closed coding process
using The Observer XT (Noldus, 2019). This was done in an
iterative manner, where each video was watched and coded
again for each code category as specified in Table 4. Codes of
different categories therefore could exist in parallel (e.g., codes
for leash activity and codes for participant movement), while
codes within a category (e.g., loose’ and ‘stretched’) could not
exist in parallel. An exception were the ‘task event’ codes; these
were used to record how long it took participants to finish the
task and to be able to see whether behavior lined up with task
events. This left us with an overview of whether the participant
was in a leading, following or neutral position across the three
variables of leash activity, participant movement and participant
location at each moment during the task. Combined with the
visualization tool in The Observer XT, this enabled us to visually

TABLE 4 | The coding scheme that was developed to analyze the behavior of
participants and the robot in the experiment.

Code Category Code

Task events Task is running
Object sound
Robot movement Standing still

Moving toward object in goal direction
Moving toward object away from goal
Moving toward object across field
Moving with participant

Moving in goal direction

Participant movement Standing still/waiting
Moving around robot
Moving in goal direction*
Moving in robot direction
Moving across field*
Loose

Stretched*

Pulled in direction®

Leash activity

Loosening/stretching
Behind

In front of*

Next to

Participant location relative to robot

Codes marked with a * were considered leading behavior by the participant. The
presence of these codes was taken as an indication for leading behavior in all
further analyses.

analyze the (development of) different behaviors across rounds
simultaneously as well as to quantify the amount of leading
behaviors present in each run. Intercoder reliability for the
duration of sequences with another coder for 5.6% of the data
(videos of 4 runs) was found to be 97.55%.

Previous Results

The task environment presented above has previously been
described in van Zoelen et al. (2020). The main findings focused
on three aspects:

e Interactions that trigger people to reconsider leadership
roles;

e How leader/follower behavior changes over time;

e The interplay between subjective Collaboration Fluency
and shifting leader/follower roles.

As the current paper builds upon and greatly extends the
results presented in the previously published work, we will
summarize these findings in the sections below.

Switch Triggers

An open coding process revealed six types of situations that
typically triggered participants to reconsider whether they should
behave in a more leading or following way. The first of those
situations is at the start of the task, where participants express
their initial idea about the role they should take on. The other
five triggers are the following:

(1) Sound indicating a virtual object;
(2) Aleash pull by the robot;
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(3) The robot deviating from the route that leads to the final
goal without clear leash pull;

(4) Getting close to the goal;

(5) The robot standing still.

Of these five triggers, numbers 1 and 2 are explicitly visible and
clear moments in time, while numbers 3 and 4 are more implicit,
slowly emerge and are harder to observe. Number 5 is a special
case, as the robot standing still was sometimes clearly linked to
the collection of a virtual object, but sometimes emerged more
implicitly from the interactions in the task. Besides grouping
them in explicit versus implicit triggers, they can also be grouped
into task feedback (1 and 4) and partner feedback (2 and 3).

Leading Behavior Development

Apart from direct triggers for reconsidering leadership roles, we
looked at how the level of leadership that participants expressed
developed over the four different rounds in which the task was
executed. Three different dimensions of behavior (leash activity,
participant location relative to the robot, participant movement)
were looked at separately. We found that for all these dimensions,
six types of leadership behavior development could be observed,
namely:

e Mostly following (a);

o Start off following, leading in the middle, following at the
end (b);

o Start off following, increase of leading over time (c);

e Start off leading, increase of following over time (d);

o Start off leading, following in the middle, leading at the end
(e);

e Mostly leading (f).

We categorized each dimension of behavior (leash activity,
participant movement and participant location) into one of those
types of leadership behavior development for each participant.
This resulted in a very wide distribution of behavior, showing
that participants engaged in highly personal ways of dealing
with leadership roles and shifts in the context of the task.
While many participants could be categorized in the same
type of behavior for at least two of the dimensions (meaning
that participants themselves behaved relatively consistently),
the pattern of combined dimensions was unique for almost
every participant. For a distribution of participants across the
behavior development types, see Table 5. To understand how
these types of behavior relate to task performance, we created
a boxplot of the task performance related to each category of
behavior development, using the categorization based on leash
activity (Figure 4). Given the small number of participants,
it is impossible to draw any hard conclusions from this
(especially about category (a) and (b), as only one participant
was categorized in either of those). Realistically, only (d) and (f)
provide relevant information since both these categories contain
6 participants; it is interesting to see that in this case, the category
that is more balanced (d) indeed scores better than the category
in which participants were strongly leading all the time (f).

TABLE 5 | An overview of the distribution of participants across all six behavior
development types for each behavior dimension (leash activity, participant location
and participant movement).

Leash activity Participant Participant
location Movement
relative to
robot
Mostly following (a) 4(n="1) 4,15(n=2) 15,11 (n=2)
Start off following, 13(n=1) 13(n=1) 18,13 (n=2)
leading in the middle,
following at the end (b)
Start off following, 14,1 (h=2) 7,14,10(n=38) 2,12,14,1,10
increase of leading over (n=5
time (c)
Start off leading, 3,16,7,18, 3,18(n=2) 8,6,3,16,7,4
increase of following 15,11 (n=6) (n=6)
over time (d)
Start off leading, 5 12(n=2) 5,12,16, 1 5(n=1)
following in the middle, (n=4)
leading at the end (e)
Mostly leading (f) 9,17,2,8,6, 9,17,2,8,6, 9,17 (n=2)
10(n=6) 11 (n=6)

Each number represents a participant.

Subjective Collaboration Fluency and Leadership
Roles

Besides behavioral data, subjective Collaboration Fluency was
also measured after each round of performing the task using
a questionnaire, based on (Hoffman, 2019). We found that the
score on this questionnaire increases significantly over time. This
effect was visible within three runs of performing the task. This
means that regardless of how people behave, the way in which
participants interacted with the robot enabled them to develop a
more fluent collaboration over time.

We also found that there was a weak (but significant) negative
correlation between the Collaboration Fluency score and the
amount of leading behavior people expressed through the leash
and movement. This means that when participants were less
willing to follow the robot, they also regarded the robot as
less cooperative.

Analyzing Behavior to Uncover

Interaction Patterns

The fact that participants were able to develop a fluent
collaboration with the robot, while still showing a wide variety
of behaviors, prompted us to have a closer look at the specific
adaptive behaviors and interactions that emerged in this task. In
the following sections, we will explain in more detail how we
approached this further analysis as well as the results.

Data Analysis: Extracting Interaction Patterns

Using visualizations of the video coding, we studied the videos
in more detail, paying specific attention to moments at which
adaptations took place (moments at which the codes switched
from aleading to a following code for example). We described the
specific interactions that we observed at such moments, as well
as the interactions of what happened in between those moments.
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FIGURE 4 | An overview of the task performance of participants per category. For each participant, the average score of the four rounds was calculated. The
categorization is based on which category participants were in when looking at their leash activity only: (a) mostly following, (b) start off following, leading in the
middle, following at the end, (c) start off following, increase of leading over time, (d) start off leading, increase of following over time, (e) start off leading, following in

the middle, leading at the end, (f) mostly leading.

In this process, we tried to focus on the smallest relevant
unit of interaction (we will refer to these as unit interactions
later in the paper). If it was unclear what a participant was
doing at a specific instance, we looked at transcriptions of the
interview questions to be able to reliably interpret the intention
behind their actions.

The resulting list of interactions was categorized by manually
clustering them, after which we described all these different
interactions using more general concepts. This process can again
be seen as another iteration of open coding: we carefully read
each observed interaction and created a code (or sometimes a
few codes) to describe the interaction. Within this process we
tried to use similar words as much as possible, to keep the list
of codes as short as possible. With this process, we aimed to
make the interactions less dependent on the specific context of the
task executed in the experiment, and more generally applicable.
Such more generally applicable interactions are usually called
patterns in literature (van Diggelen et al., 2019), and are often
used as reference for designing human-technology interactions
across different contexts. Important to note here is that patterns
are not completely generalizable; they are part of a category
of concepts that are called ‘intermediate-level knowledge’ (H66k
and Lowgren, 2012). They are more abstracted than a single
instance, but are not as generalizable as a theory. Their value
comes specifically from the fact that they are relatively close to an
actual context and task, while being applicable to a range of task
and contexts. We will call the more generalized versions of the
observed interactions interaction patterns. Besides a specification
of these interaction patterns themselves, we have tried to combine
them into sequences to create larger interaction patterns. Also, we
have specified how certain interaction patterns related to others.
The combination of the set of interaction patterns (the interaction
vocabulary) and the details on how they can be combined and
relate to each other will be referred to as the pattern language.

RESULTS: INTERACTION PATTERNS

Below, we will describe in detail the outcomes of the analysis of
the interactions and interaction patterns. As mentioned above,
we will describe exactly what interactions were extracted from
the video data, how they were categorized and generalized
into interaction patterns and how they can be combined into
larger sequences.

Observed Interactions

By analyzing the videos of the collaboration between the human
participants and the robot, a list of 34 types of interactions
could be distinguished. They are the unit interactions: the
smallest relevant co-adaptive interactions than can be described
within the context of the experiment. These interactions were
categorized in four types:

e Stable situations (10 interactions): interactions observed in-
between adaptations, such as the interaction of the human
leading and the interaction of the robot leading.

e Sudden adaptations (17 interactions): interactions in which
the human and/or robot adapted their leader or follower
role, therefore starting a transition from one stable situation
to another. The adaptation happens in a single moment,
over a short period of time, often in response to an event
in the task or partner.

e Gradual adaptations (5 interactions): interactions in which
the human and/or robot adapted their leader or follower
role, therefore starting a transition from one stable situation
to another. The adaptation happens gradually over a longer
period of time, often in response to a newly hypothesized or
discovered property of the partner’s behavior.
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e Active negotiations (2 interactions): interactions in which
there was a sequence of several short adaptations that
eventually also lead to a transition between stable situations.

The full list of these observed interactions and their
categorization can be found in Appendix A, but some examples
are the following;:

e Stable situations: ‘Human speeds forward dragging the
robot along), or ‘robot is in the lead but human actively runs
around robot taking into account the route’.

e Sudden adaptations: ‘Human changes direction, thereby
loosening the leash, setting the robot free¢, or ‘human
pulls the leash and moves to the goal when getting
close to the goal’.

e Gradual adaptations: ‘Gradually the robot leads more’.

e Active negotiations: ‘Alternating pulling the robot in a
specific direction, waiting for the robot to go, then
following the robot’.

The behavior of all participants in the experiment can
be described as sequences of these unit interactions, thereby
generating larger and higher level interactions.

Interaction Patterns for Adaptive

Leader-Follower Behavior

The above described interactions are specifically related to the
experimental task. In order to be able to apply them to other
contexts, it is necessary to describe them in more general terms.
Therefore, we formulated them into general interaction patterns
that can appear in any human-robot collaboration where leader-
follower dynamics are relevant. Appendix A shows how the
observed interactions were described with interaction patterns.
Important to note here is that some of the more complex
interactions were described using two or three interaction
patterns, while some interaction patterns were also used to
describe more than one observed interaction. Table 6 presents
a list of the resulting more generalized interaction patterns,
including their category and a short description.

The relatively long list of sudden adaptations contains a
diversity of interaction patterns. Some of them are triggers
for adaptation (e.g., ‘unexpected action by a team member’),
while others are outcomes (e.g., ‘team member stops with what
they’re doing, waits’). After a closer look at the list we believe
that four components can be distinguished within these sudden
adaptations:

e External trigger: an event outside of the partner (e.g., in the
task, environment or other partner) triggers an adaptation
to a new stable situation;

e Internal trigger: an event inside of the partner (e.g.,
a specific expectation or change of mind) triggers an
adaptation to a new stable situation;

e Outcome: a specific action that is preceded by an internal or
external trigger, that will gradually develop into a new stable
situation afterward;

TABLE 6 | The interaction patterns identified from the behavioral data, including a
description of what they entail.

Category Concept Description
Stable Human following Human lets the robot do its task
situation
Human actively on top of Human is constantly in touch
things, actively supervising with the robot
Active observation by human Human is actively observing
what the robot is doing
Human leading Human leads the robot
Human executing the robot’s Human executes the task of the
task robot
Proactive following by human Human actively predicts and
observes what the robot will do,
following their course of action
Human dragging the robot Human ignores the robot as
along while doing all the work, much as possible while
the robot is a burden focusing on completing the task
Human focuses on their own Human executes their own task
task, but leaving time for the while leaving space for the
robot to catch up robot to follow them in that
course of action
Sudden Unexpected action by a robot The robot does something the
adaptation team member human did not expect, possibly

Human waiting for the robot to
finish their task

Human trying to finish the
robot’s task when the robot is
done

Partner-interfering mistake

Human losing contact with the
robot due to focus on own task

Being close to finishing the task

Human actively making up for
the robot’s limitations

Task achievement

Human urging the robot to be
more active, ‘come on’

Human stops with what they’re
doing, waits

Repeating previous behavior
patterns

triggering a leadership shift
The human waits for the robot
to finish their task, and decides
on a leadership role after that

When the robot has finished
their task, the human takes
over the task to see if it can be
improved upon

The robot makes a mistake that
directly and strongly interferes
with the human’s course of
action

The human focuses very much
on their own task, therefore
lose contact with the robot

The team is very close to
finishing the task, which
possibly triggers a leadership
shift

The human foresees a limitation
of the robot will hinder their
performance, therefore
undertakes action to avoid that

A task achievement is reached,
possibly triggering a leadership
shift

The robot is relatively passive,
causing the human to actively
urge the robot to be more
active

The human suddenly stops with
what they are doing to wait,
after which a new leadership
role is chosen

The human recognizes a
situation similar to an earlier
situation, and repeats the
behavior previously executed

(Continued)
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TABLE 6 | Continued

Category Concept Description
Human recognizing the The human recognizes the
autonomy of the robot autonomous capabilities of the
robot, possibly triggering a
leadership shift
Quick response to leadership Due to continuous contact
shifts due to continuous between the team members, a
connection leadership shift initiated by one
team member is quickly and
smoothly followed by the other
Robot becomes active after After a period of waiting of
being inactive being inactive, the robot
suddenly becomes active
again, possibly triggering a
leadership shift
Gradual Human gradually letting the The human gradually lets the
adaptation robot do more robot do more over time
Human learning to predict the Over time, the human gradually
robot’s behavior gains insight into the robot’s
behavior, thereby enabling them
to better predict their behavior
Human trying to regain control Over time, the human attempts
in different ways until eventually ~ to take the lead and regain
taking the lead control in different ways, to
eventually find a way to keep
taking the lead
Active Human executing leading in The human takes the lead
negotiation short intervals several times in short intervals,

observing what the robot does

TABLE 7 | The interaction patterns that fall in the category of sudden adaptations

described in more detail.

Interaction Pattern

Type of sudden adaptation

Unexpected action by a robot team
member

Human waiting for the robot to
finish their task

Human trying to finish the robot’s
task when the robot is done

Partner-interfering mistake

Human losing contact with the
robot due to focus on own task

Being close to finishing the task

Human actively making up for the
robot’s limitations

Task achievement

Human urging the robot to be more
active, ‘come on’

Human stops with what they’re
doing, waits

Repeating previous behavior
patterns

Human recognizing the autonomy
of the robot

Quick response to leadership shifts
due to continuous connection

External trigger

In-between-situation, preceded by trigger
of the other partner working on a specific
subtask, succeeded by a new stable
situation

External trigger and outcome

External trigger
Internal trigger and outcome

External trigger, followed by any outcome
Internal trigger (expectations) and outcome

External trigger

Outcome, preceded by trigger of the other
being inactive

QOutcome, preceded by any trigger

Outcome, preceded by internal trigger

In-between-situation, preceded by external
trigger (behavior of the other), succeeded
by a new stable situation
In-between-situation, preceded by any
trigger, succeeded by a new stable situation

in the following intervals, to
actively search for and
negotiate a new stable situation

e In-between-situation: a specific action that is preceded by
an internal or external trigger, that serves as a new trigger
for adapting to a new stable situation afterward.

To understand how combinations of these components
constitute an interaction pattern, each interaction pattern has
been described using the above components in Table 7.

Using the extended description of the interaction patterns, we
can create sequences of them to describe and analyze behavior
that participants showed in the experiment. Examples of those
are shown in Figure 5. The sequences shown in the figure
all represent behavior that participants showed at a specific
point in the task. For example, the top sequence is behavior
shown by participant 14 in round 2. They were following the
robot to pick up the object (stable situation, following). At
some point, they were approaching the goal (the robot was
also moving toward the goal), which triggered the participant
to try to take over the robots task by further exploring the
field for objects (sudden adaptation, being close to finishing
the task and trying to finish the other’s task when the other
is done). To urge the robot to follow, the participant pulled
the leash in short intervals, but as the robot had already
collected all objects, it would continue to move to the goal
when the leash was loose (active negotiation, executing leading
in short intervals). This resulted in the participant giving in

Robot becomes active after being
inactive

Outcome and internal trigger

and they again followed the robot (stable situation, following).
Another interesting example is the sequence from participant
5, shown in round 4. The participant was focused on reaching
the goal (stable situation, leading), when the robot drove over
the participant’s feet in an attempt to move with the participant
(sudden adaptation, partner-interfering mistake). This caused the
participant to immediately take over the robot’s task by exploring
the field for objects themselves (stable situation, taking over
the other’s task).

From these examples, it can be seen that sometimes
different stable situations can exist at the same time to
form more complex behavior. Also, different adaptations can
happen after each other before a new stable situation is
reached. This usually happens when a sudden adaptation is
described as an outcome or an in-between-situation. Using
sequences of interaction patterns of varying lengths, we can
look at the dynamics of co-adaptation at different levels of
complexity. This allows us to analyze the effect that small,
short-term adaptations have on the overall development of
leader-follower roles, but also to dissect large sequences of
observed behavior into small units. An explanatory overview
of how the observations translate into sequences of interaction
patterns is given in a video in Supplementary Material
Appendix B.
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FIGURE 5 | Several example sequences of interaction patterns as they appeared in the experiment.
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CONCLUSION AND DISCUSSION

We have studied the process of co-adaptation within the context
of human-robot collaboration. We focused on the adaptations
that emerge within the team as a result of interactions around
dynamic leadership roles and complementary capabilities. An
embodied approach was taken to study subtle and unconscious
interactions that manifest themselves in observable physical
behavior. We believe that the design of our experiment
provides a different way of looking at HRI; one imposes
little assumptions about interactions on the design, and that
allows for natural interactions based on affordances. In the
sections below, we will go into more detail on how the

different aspects of our results can be of use for future HRI
research and design.

Interaction Patterns and Team Design

Patterns

We have extracted a list of interaction patterns from observed
human-robot team behavior. The idea of describing human-
robot or human-agent team behavior with patterns has been
explored before, such as in van Diggelen et al. (2019); van
Diggelen and Johnson (2019); van der Waa et al. (2020), under
the name ‘Team Design Patterns.” In existing research, it is
described how these patterns can be useful for designers of
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human-robot teams, as well as for the actual team members
to recognize what activities they are engaged in. These existing
pattern languages are generally created in a top-down approach.
While (van Diggelen et al,, 2019) mention that Team Design
Patterns can emerge from interactions between the human(s)
and agent(s) in the team, the pattern languages described in
van Diggelen and Johnson (2019); van der Waa et al. (2020)
are still designed by the authors of the paper, although the
design process is not described in detail. We deliberately use a
different name to describe the patterns in our pattern language
(interaction patterns instead of team design patterns), because
our interaction patterns have not been designed. Rather, they
were extracted from existing observations, while they emerged
naturally from the context of the human-robot team task.
While the Team Design Patterns are very useful, we believe
that it is important to also study interactions in human-robot
teams in a bottom-up manner, to represent the processes that
occur naturally within teams when members collaborate in
the real world. The embodied approach of our study enabled
us to generate a new interaction pattern language that is
based completely on empirical data. It describes the interaction
patterns as an emergent feature, while we attempted to keep
our own projections of human-only team interactions out of
the analysis. Therefore, they can be used as a library of existing
natural interactions when designing human-robot interactions;
they provide pointers for what natural and fluent co-adaptive
HRI can look like.

The approach of studying embodied interactions in a natural
setting, and the development of a language to interpret the
observed interactions, enabled us to identify the interaction
patterns that underly the co-adaptation processes taking place
within a team. The interaction patterns can be used in other
contexts, other tasks, and other teams, due to our efforts
to describe them in a way that is as context-independent
as possible. This positions our work as an addition to the
work of other researchers (van Diggelen and Johnson, 2019;
van der Waa et al, 2020) who study team behavior at a
higher level of abstraction, that is more focused on team
composition and task division. In the design of and research
into human-robot or human-agent teams, both types of pattern
languages can be used in different stages of the process.
The high-level pattern languages can be used for deciding
on team composition and general collaborative interactions,
while the elements in the lower level pattern language we
describe can serve as pointers for designing the specific detailed
interactions between the team members that elicit or support
effective team behavior.

Interaction Pattern Language

The interaction patterns that we have described show that leader-
follower dynamics can be described using the concepts of stable
situations, sudden adaptations, gradual adaptations, and active
negotiations. They give us a better understanding of the subtleties
in leader-follower dynamics: very often it is not so much a
matter of leading or following, but a bit of both: leadership
roles constantly shift, and very often leadership is divided across
the team members. The complete pattern language, consisting

of interaction patterns as the vocabulary and the connections
between them as grammar, provides a framework for analyzing
co-adaptive interactions in human-robot collaborations, also in
contexts different from the one used in our experiment. Using
our pattern language to describe interactions can make it easier
to understand why specific role divisions emerge and what can be
done to change them.

Moreover, the pattern language can be used by collaborating
humans and robots for when they want to communicate about
the interactions they are engaged in. The different concepts
described by the pattern language can for example be used in a
knowledge base for the robot (e.g., in the form of an ontology).
This can support the team members in becoming aware of their
current leadership roles and possible developments in those roles,
to give them more agency in making strategic decisions about
the collaboration.

Relation to Existing Interaction

Taxonomies

Our pattern language shows similarities to the interaction
taxonomy described in Madan et al. (2015). More specifically,
their description of harmonious interactions is similar to
what we consider stable situations, while their description of
conflicting interactions has overlap with our sudden adaptations
and active negotiations. Our pattern language therefore partly
confirms, but also extends their interaction taxonomy. We
provide a more detailed description and categorization of their
conflicting interactions, by expressing the difference between
sudden adaptations and active negotiations, and by also adding
gradual adaptations. Related to this, we feel that the term
adaptation is more encompassing than conflict, as not all
adaptive interactions within these categories come from a
directly observable conflict. Moreover, we provide a detailed
and task-independent description of the different types of
sudden adaptations. The extensions originate from the fact that
we explicitly focused on interactions that drive co-adaptation,
rather than collaborative interaction in general. Moreover,
through our extended description of sudden adaptations, we
provide information on how different interaction patterns
relate to each other (ie. the ‘grammar of our pattern
language), where in the work of Madan et al. (2015) only the
taxonomy is provided (i.e. the ‘vocabulary’). Our interaction
patterns are also more detailed than those presented in the
existing literature. They are described in such a way that
they can also be used to design interactions, rather than to
just analyze them.

In terms of the lower level interaction patterns, both the
work of Madan et al. (2015) and our work are to some extent
related to the task used to obtain them. Their interaction
patterns were generated in the context of collaborative object
manipulation, while ours were generated within a collaborative
navigation context. We, however, explicitly formulated the
interaction patterns in such a way that they are generally
applicable outside of this initial context. To understand the
extent of their generalizability, further evaluation in other task
contexts will be useful.
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Limitations
While the list of interaction patterns is quite extensive, it is
probably not complete. The specific task context that we used in
our experiment of course limits the kind of interactions possible.
Also, while the analysis of the data was done in a systematic
manner, it is bounded by the frame of reference of the researcher.
In order to obtain evidence for the relevance of the proposed
language, it is important to attempt to apply the analysis of
interaction patterns used here to other tasks. That will provide
more insights into the extent of the generalizability of the pattern
language, as well as into necessary extensions or adjustments.
Furthermore, there are a few limitations forthcoming from the
manner in which the task in the experiment was executed. We
claim to study human-robot teamwork, butin our experiment a
human operator controlled the robot following pre-configured
rules. It may be that the robot behaved different from how a real
robot would behave. Moreover, the participants were aware of
the fact that the robot was controlled by a human operator, and
even though a pilot study showed us that participants did not
pay much attention to the operator, it may have still influenced
the interactions that emerged. The task was also defined with
a relatively low level of agency of the robot, causing the robot
to initiate few adaptive behaviors. It is likely that participants
noticed this, therefore it might have influenced their initiative
to take or delegate leadership. Moreover, we studied a human-
robot team in the form of a dyad, whereas the dynamics of
team interactions can be very different for other (larger) team
compositions. This again stresses the importance of testing the
results of the present study in other tasks and contexts and,
if possible, with real robots and different team compositions.
Outcomes of such studies will help to elaborate and refine
the interaction pattern language, eventually enabling a better
understanding of co-adaptation in human-robot teams. This, in
turn, will support the design of adaptive human-robot teams that
are able to operate successfully in the complexity of the real world.

Final Conclusion
By observing embodied interactions within a human-robot team,
we have extracted an interaction pattern language that can be
used to describe co-adaptive behavior. This pattern language
consists of a list of interaction patterns (the vocabulary) that
together make up the different elements of co-adaptation. The
interaction patterns can be categorized into stable situations,
sudden adaptations, gradual adaptations and active negotiations.
Furthermore, the sudden adaptations are built up of external
triggers, internal triggers, outcomes and in-between-situations.
These categorizations and concepts can be used to link different
interaction patterns together, to make sequences of co-adaptive
behavior. They can therefore be seen as the grammar of our
pattern language.

In future studies, we will use the pattern language to
analyze co-adaptive behavior in different tasks and contexts. We

will analyze how the presence of certain interaction patterns
influences team behavior and performance, to validate how useful
the different patterns are in creating successful human-robot
teams that make use of fluent co-adaptations.
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