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Looking for goal-relevant objects in our various environments is one of the most

ubiquitous tasks the human visual system has to accomplish (Wolfe, 1998). Visual

search is guided by a number of separable selective-attention mechanisms that can

be categorized as bottom-up driven – guidance by salient physical properties of the

current stimuli – or top-down controlled – guidance by observers’ “online” knowledge of

search-critical object properties (e.g., Liesefeld and Müller, 2019). In addition, observers’

expectations based on past experience also play also a significant role in goal-directed

visual selection. Because sensory environments are typically stable, it is beneficial for

the visual system to extract and learn the environmental regularities that are predictive

of (the location of) the target stimulus. This perspective article is concerned with one of

these predictive mechanisms: statistical context learning of consistent spatial patterns of

target and distractor items in visual search. We review recent studies on context learning

and its adaptability to incorporate consistent changes, with the aim to provide new

directions to the study of processes involved in the acquisition of search-guiding context

memories and their adaptation to consistent contextual changes – from a three-pronged,

psychological, computational, and neurobiological perspective.

Keywords: visual search, selective attention, contextual cueing, associative learning, memory systems,

spike-timing dependent plasticity

INTRODUCTION

Extracting statistical regularities from a scene is a central capacity of the human visual system (e.g.,
Bar, 2004; Oliva and Torralba, 2007; Chetverikov et al., 2016; Hansmann-Roth et al., 2021). For
example, if a searched-for target is repeatedly encountered in an invariant arrangement of distractor
elements, observers can learn these configurations and use them to expedite search – an effect
termed “contextual cueing” (Chun and Jiang, 1998). Contextual cueing is usually quite effective: it
becomes evident after just a few repetitions and persists for at least a week (Chun and Jiang, 2003),
with the underlying memory system exhibiting a rather high capacity (Jiang et al., 2005). However,
context memory has also been shown to be severely limited (e.g., Manginelli and Pollmann,
2009; Makovski and Jiang, 2010; Conci et al., 2011; Zellin et al., 2011, 2013a,b, 2014; Conci
and Müller, 2012; Annac et al., 2017). For instance, while observers are relatively quick to form
long-term distractor-target memories for search guidance in an initial training phase, changes of

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.650245
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.650245&domain=pdf&date_stamp=2021-03-01
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:geyer@lmu.de
https://doi.org/10.3389/fpsyg.2021.650245
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.650245/full


Geyer et al. Plasticity of Memory-Guided Search

the target location (in a subsequent test phase) within a repeated,
that is, unchanged, distractor layout are difficult to incorporate
within an established memory representation and adaptation to
the change occurs only very slowly [see, e.g., Annac et al. (2017),
for a representative meta-analysis of seven studies with N = 85
observers]. We have recently referred to this as the “down-side”
of spatial context learning (Zinchenko et al., 2020a).

Here we consider possible reasons for the lack of adaptability
of the contextual-cueing effect, focusing on the potential
functional mechanisms, a related computational algorithm, and
their possible neurobiological implementation. In a nutshell,
from a neuro-cognitive perspective, we consider contextual
cueing to reflect the ability to incidentally (effortlessly) extract
and encode repeatedly encountered distractor-target relations in
spatial long-term memory, the latter likely involving the medial
temporal lobes (MTL). Once established, these memories are
retrieved automatically by the search display presented on a
given trial, with the activated contextual (distractor-to-target)
associations providing pointers to the target location (and thus
enhancing its activity) within the search-guiding attentional-
priority map. Once consolidated, these representations come to
generate memory-related costs in situations requiring contextual
adaptation, that is, when the target is consistently repositioned
to some other, “new” location within an otherwise unchanged
distractor layout: in this case, the distractor context points to
the “old” target location, thus cueing attention to the “wrong”
location. Given that these memory-based (mis-) guidance
signals are triggered automatically, it takes extensive practice to
overcome them (cf. Shiffrin and Schneider, 1977). As we will
argue below, this view lines in well with current theoretical
and computational memory models that assume that contextual
cueing is supported by relatively inflexible – that is, automatically
acting – memory representations.

A FUNCTIONAL PERSPECTIVE UPON

CONTEXT ADAPTATION

Cognitive theories of learning and memory play an important
role for understanding contextual cueing and its resistance to
adaptation in search tasks. For example, according to associative
learning accounts (e.g., Rescorla and Wagner, 1972), frequent
re-exposure to invariant distractor-target arrangements would
strengthen the underlying representations of these items in
memory. In this view, during the initial learning of repeated
spatial layouts, associations are formed between the local, and/or
global, distractor configuration and the target position (see,
e.g., Brady and Chun, 2007; Shi et al., 2013; Beesley et al.,
2015), and these learnt associations in turn facilitate search.
However, associative learning can interfere with the acquisition
of alternative associations in memory, a pattern referred to
as associative blocking. Blocking occurs when a new cue is
consistently paired with an outcome, given another cue has
already proven to provide a valid predictor of that outcome
(Kamin, 1968). As a result, the association between the second
cue and the outcome is blocked. Applied to contextual-cueing
in a training-phase/test-phase design, it is possible that the

initially learned distractor-target associations dominate over
potential associations incorporating the relocated target – hence,
re-associating an “old” configuration with the changed target
location will be blocked.

Blocking presupposes that the brain registers the changed
target position in terms of somemismatch (or “prediction error”)
signal between the current display input and the expected, that
is, initially learned, target position. This mismatch signal would
eventually also promote new learning, that is, the adaptation
of contextual cueing to the changed distractor-target relations.
Recent evidence suggests that the brain indeed works along these
lines. For instance, in a recent study (Zinchenko et al., 2019), we
applied repetitive transcranial magnetic stimulation (rTMS) over
the left lateral frontopolar cortex (FPC), a structure known to
be involved in the control of attention (Corbetta and Shulman,
2002). Stimulation of the FPC was compared to a posterior
control site, and a no-rTMS baseline condition in a between-
group manipulation, in order to examine how frontopolar
cortex is involved in the updating of context-based memories
subsequent to a target location change. The learning phase
rendered reliable contextual cueing, with the cueing benefit being
comparable across the three experimental groups. In the test
phase, however, the recovery of cueing was critically dependent
on stimulation site: while there was evidence of context
adaptation toward the end of the experiment in the occipital-
and no-rTMS groups, observers with FPC-rTMS showed no
evidence of relearning whatsoever after target location changes.
This finding shows that FPC plays an important role in both
the representation and regulation of mismatch signals arising
from changed target positions in repeated distractor layouts,
suggesting that FPC is crucially involved in associative blocking.

Moreover, the degree to which blocking occurs might be
dependent on the reliability of prediction errors (Friston, 2010;
Hohwy, 2013), that is, their reliability determines whether
errors are ignored or, respectively, used as learning signals
for contextual adaptation (Friston, 2010; Hohwy, 2013). For
instance, over the course of learning, observers may come to form
predictions about regularities in the displays (or their absence)
that then determine how a given search display is processed. For
instance, a standard, “baseline” search experiment with typically
(only) 50% repeated displays may not lead to the prediction
that the sensory environment in which the system operates
is “statistically rich.” As a result, learning may be turned off
(Junge et al., 2007) – for instance, because contextual learning
is resource-demanding (Annac et al., 2013; Travis et al., 2013). In
terms of prediction errors, the turning-off of learning would be
equivalent to the maintenance of the already established context
memory “prior.”

That is, despite consistent repositioning of the target in the
test phase, observers still exhibit a strong tendency to expect,
and search for, the target at the initially learnt target location
(see Manginelli and Pollmann, 2009; Zinchenko et al., 2020b, for
relevant evidence).

Such an active-perception view of associative learning
presupposes that contextual cueing will vary with sensory factors
impacting on participants’ implicit beliefs about contextual
regularities in the current search environment, such as the
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relative proportion of repeated vs. non-repeated displays (signal
vs. no-signal trials) or the rate of change between these displays
(environmental stability/ volatility; e.g., Summerfield et al.,
2011; Vaskevich et al., 2020). Having recently confirmed these
predictions for initial context learning (Zinchenko et al., 2018),
we are currently extending this approach to contextual re-
learning.

In sum, associative learning models assume that a cueing
effect develops for the initial target position, while responding
to re-positioned targets should be slower and comparable to
baseline, non-repeated, displays, due to the acquisition of the
now-changed distractor-target regularities being blocked by the
previously acquired contextual cues. Moreover, the relative
strength of acquired context-target associations is determined
by an observer’s (implicit) “belief” about the general level of
regularity prevailing in the current sensory environment, with
potential implications for overcoming associative blocking and
enabling contextual re-learning.

THE VIEW FROM COMPUTATIONAL

NEUROSCIENCE

One promising computational mechanism that potentially
mediates contextual cueing is spike-timing dependent plasticity
(STDP; Markram et al., 2012; Goujon et al., 2015). A key feature
of neurons equipped with STDP is that they are sensitive to
repeated spike patterns (e.g., triggered by the repeated distractor-
target arrangements). Accordingly, in a recent simulation (Seitz
et al., 2021), we observed that a neural network equipped
with STDP can effectively mimic human performance data in
a contextual-cueing task. The network implemented by Seitz
et al. (2021) consisted of over 2,000 neurons with an input
and output layer and an additional hidden layer with sparse
hidden-layer connectivity. Synaptic connections between the
hidden layer and the output layer were learned with STDP. We
analyzed the oculomotor scan-paths of human observers, which
provide a potentially sensitive measure of the inspection – and
importantly: the re-inspection on repeated encounters – of a
given display (e.g., Noton and Stark, 1971). The analysis of
human performance data showed the scan-paths to becomemore
similar over successive viewings of a given repeated display.
This finding was well-captured by a model equipped with STDP,
but not by an alternative, control model without STDP. Thus,
according to computational evidence, contextual cueing may
be based on STDP mechanisms that change synaptic efficacies
and thus equip neurons with the ability to become sensitive
to repeated spatial patterns. However, once established, STDP-
related memories may have a relatively long lifetime (e.g., Billings
and van Rossum, 2009) and thus be resistant to updating.

CONTEXT ADAPTATION FROM A

NEUROBIOLOGICAL PERSPECTIVE

Despite the simplicity and persuasiveness of associative-learning
models, considerations based on imaging and patient studies lend
support to an alternative account of the (lacking) adaptability

of contextual cueing. The relevant findings suggest that the
relational memory underlying contextual cueing should in
principle be flexible and thus be able to incorporate target
position changes into previously acquired context memories. For
instance, a bulk of neuroscientific data suggest that contextual
cueing is supported by the medial temporal lobe (MTL), and
especially the hippocampus (HC; e.g., Chun and Phelps, 1999;
Greene et al., 2007; for review, see, e.g., Hannula and Greene,
2012), that is, memory structures that display representational
flexibility in terms of the ability for re-combining information
from past encounters with new events to adjust behavior
(e.g., Wallenstein et al., 1998). However, these supramodal
structures may work in tandem with other MTL structures,
such as the parahippocampus (PHC; see Manns and Squire,
2001; Preston and Gabrieli, 2008; Geyer et al., 2012) – where
PHC is usually considered as an automatic, rigid, or unitized
memory system (Henke, 2010). Difficulties in adaptation might
then be due to the relative dominance of one – inflexible
– over the other – flexible – memory system in contextual
cueing. Another possibility is that distractor-target associations
are initially encoded in both the HC and PHC systems, along
with the build-up of new (or the strengthening of existing)
HC-PHC connections. Importantly, during frequent encounters
of repeated sensory arrays, these connections might render
inflexible PHC context memories independent of flexible HC
memories [see, e.g., Frankland and Bontempi (2005), for this
view, albeit in relation to other forms of – explicit – memory].
The latter idea also presupposes that the HC is only a
temporary buffer and HC-buffered distractor-target associations
are handed over to more durable, though inflexible, PHC
memory structures, for instance, through memory consolidation
during sleep (Geyer et al., 2013; Zellin et al., 2014).

Irrespective of the type of – HC and/or PHC –memory system
supporting contextual cueing, a model of the memory-guided
search must specify how and when context-based memories
interact with basic visual-search processes. This question was
addressed in a series of recent electrophysiological and patient
studies showing that long-term memory for scenes aids visual
processing very rapidly, with the earliest electrophysiological
markers of guidance becoming evident only 80ms post display
onset at occipital electrodes contralateral to the hemifield of
the target (Zinchenko et al., 2020b; see also Olson et al., 2001;
Chaumon et al., 2008, 2009; Summerfield et al., 2011). Of
note, Zinchenko et al. (2020b) found these early bias signals
to persist even following consistent re-positioning of the target
to another location within a previously learnt display layout.
That is, learnt target positions can become very salient in search
guidance, acting like an internal, memory-based (rather than an
external) “singleton distractor” diverting attention away from
the (now consistently changed) target location – a kind of
induced “attentional-capture” effect (e.g., Theeuwes, 1992). The
latter result is also important for understanding why contextual
cueing is rather inflexible. Given that the existing memory
triggers an automatic orienting response to the initially learnt
target position, explicit awareness of the new target position
(which would arise at the time of target selection) is only
of limited effectiveness for unlearning the old position, thus
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delaying the incorporation of the changed position into the
existing memory representation. This proposal refers back to
“classical” work on associative learning that attributes a role to
perceptual saliency of “attention” for explaining cue-competition
effects [see, e.g., Kamin (1969), advocating that learning a novel
cue is also a function of attention paid to that cue]. Automatic
attraction of attention by learnt context cues also lines in well
with reports suggesting that cueing manifests in the absence of
explicit knowledge about the repeated displays (e.g., Colagiuri
and Livesey, 2016; Spaak and de Lange, 2020; though see Kroell
et al., 2019; Geyer et al., 2020, for explicit memory effects in
contextual-cueing studies).

CONCLUSIONS AND OUTLOOK

The phenomenon of contextual cueing illustrates that the human
visual system constantly generates predictions from repeatedly
encountered events and scenes in our environment that help
us to rapidly detect and respond to critical target objects in
familiar contexts (Chun and Jiang, 1998). However, changes of
the target position in a previously learnt display array abolish
the search (i.e., response-time) benefits rendered by repeated
contexts, and facilitation for the new position recovers, or
develops, only slowly, over the course of massive practice on
the relocated displays (Zellin et al., 2013a,b, 2014). Here, we
argue that the lacking adaptability of contextual cueing observed
in training-phase/test-phase designs can be viewed at three
distinct, though interrelated, levels of explanation: the functional
perspective, that of (neuro-)computational theory, and that
of the neurobiological implementation of contextual cueing.
The functional view assumes associative learning mechanisms
involving reinforcement and prediction: once established, a given
distractor-target association exerts its influence and interferes
with the build-up of novel associations by processes of associative
blocking. Importantly, though, whether or not blocking occurs
may be a function of the regularity prevailing in the sensory
environment, i.e.,: observers’ evaluation of (the reliability of)
prediction errors and thus their eventual use of these signals
for efficient context adaptation. Computational theory holds
that STDP is the mechanism reliably implicated in statistical

context learning in search tasks. Importantly, STDP-encoded
memories would also be resistant to disruption, rendering the
adaptation of cueing to changed contexts inefficient. The core
assumption of the neurobiological view is the existence of
both flexible and inflexible relational long-term memories and
the contribution of both types of memory to the contextual-
cueing effect (in various mixture ratios). Lack of adaptation
could then result from the relative dominance of one (inflexible:
PHC) over the other (flexible: HC) memory system during the
re-learning phase.

We argue that, considered together, these perspectives can
provide new impetus for research on the task factors that
regulate the interplay of the two types of representation and
the effects of more HC-dependent or more PHC-dependent
representations on initial contextual learning and subsequent
contextual adaptation (for first demonstrations, see, e.g.,:
Lleras and Von Mühlenen, 2004; Annac et al., 2017; Higuchi
and Saiki, 2017; Luque et al., 2017; Chen et al., 2019;
Higuchi et al., 2019; Wang et al., 2020; Zinchenko et al.,
2020a).
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