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This paper aims examines the role of hierarchical inference in sound change. Through
hierarchical inference, a language learner can distribute credit for a pronunciation
between the intended phone and the larger units in which it is embedded, such as
triphones, morphemes, words and larger syntactic constructions and collocations. In
this way, hierarchical inference resolves the longstanding debate about the unit of sound
change: it is not necessary for change to affect only sounds, or only words. Instead, both
can be assigned their proper amount of credit for a particular pronunciation of a phone.
Hierarchical inference is shown to generate novel predictions for the emergence of stable
variation. Under standard assumptions about linguistic generalization, it also generates a
counterintuitive prediction of a U-shaped frequency effect in an advanced articulatorily-
motivated sound change. Once the change has progressed far enough for the phone to
become associated with the reduced pronunciation, novel words will be more reduced
than existing words that, for any reason, have become associated with the unreduced
variant. Avoiding this prediction requires learners to not consider novel words to be
representative of the experienced lexicon. Instead, learners should generalize to novel
words from other words that are likely to exhibit similar behavior: rare words, and the
words that occur in similar contexts. Directions for future work are outlined.

Keywords: hierarchical inference, sound change, lexical diffusion, frequency effects, usage-based phonology

INTRODUCTION

Research on sound change has been characterized by a tension between the fact that changes affect
specific sounds in phonological contexts, and the fact that changes progress faster in some words
and expressions than in others. For example, a final post-consonantal /t/ is likely to be deleted in
American English, compared to other comparable sounds like /k/ or /p/. At the same time, this
deletion is more likely in a frequent word like most than in an infrequent word like mast (Bybee,
2002). These facts appear to be in conflict because approaches to sound change tend to assume
that there is a particular unit of change, which is either the sound – in approaches growing out of
the Neogrammarian tradition (Osthoff and Brugmann, 1878; Labov, 1981) – or the word, in the
dialectological / lexical diffusion tradition where every word has its own history (Schuchardt, 1885;
Mowrey and Pagliuca, 1995).
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For example, generative grammatical theory (Chomsky and
Halle, 1965), and allied approaches in psycholinguistics (Levelt,
1989; Levelt et al., 1999) have suggested that the long-term
representations of words are composed of a small set of
discrete segments (whether phones, features or syllables). In
this architecture, words are not directly associated with specific
pronunciations, and therefore the pronunciation of a segment
is not lexically specific. As a result, only two types of sound
change are possible – a phonetically abrupt deletion, insertion
or substitution of a segment in the lexical representation of a
particular word, or a continuous drift in the pronunciation of
a particular segment that happens across all instances of the
segment in a particular phonological environment, no matter
what word it is embedded in Labov (1981). This theory has
difficulty explaining how words can influence the pronunciation
of a segment in a gradient manner (Bybee, 2002). For example,
the durations of frequent words are shorter than the durations of
homophonous infrequent words (Gahl, 2008). On the opposite
end of the spectrum is Mowrey and Pagliuca’s (1995) proposal
that words are holistic motor programs specifying the timing
and intensity of nerve impulses to muscles controlling articulator
movement. This approach allows for each word to have its own
history, and for lexical representations to change continuously
rather than in discrete jumps (Mowrey and Pagliuca, 1995; Bybee,
2001, 2002). However, it has the converse problem of being
unable to explain why a word’s pronunciation does not change
uniformly, i.e., why certain sounds are affected more than others.

Pierrehumbert (2002) unifies the segmental and lexical views
of sound change by suggesting that the language system
maintains representations of segmental categories, which are
implemented as sets of exemplars, but that each exemplar of
a segment is tagged with the word in which it occurred. In
production, the selection of a segment exemplar is then driven
both by the identity of the segment and the identity of the word:
both are tags available to cue an exemplar in production. A related
idea is the approach to reduction proposed by Browman and
Goldstein (1989) within Articulatory Phonology, where gestures
are units of change but the timing and magnitude of a gesture can
be lexically specific.

The present paper combines this idea with rational
probabilistic inference (Xu and Tenenbaum, 2007; Feldman
et al., 2009; Perfors et al., 2011; Kleinschmidt and Jaeger, 2015;
O’Donnell, 2015; Harmon et al., 2021). If both the identity
of a segment and the identity of the word that contains it
influence the pronunciation of a segment in a lexical context,
then a rational language learner would use hierarchical inference
to allocate credit for a particular pronunciation between the
two influencers. This paper explores the consequences of this
assumption for articulatorily-motivated sound change.

I focus on articulatorily-motivated changes because the role of
inference in such changes has been underexplored. In the other
major type of change, analogical change, a role for inference
is relatively uncontroversial (e.g., Bybee, 2001). In analogical
changes, words (or other stored forms) that exemplify a minority
grammatical pattern succumb to analogical pressure from the rest
of the lexicon. Low-frequency words succumb to this pressure

more readily than high-frequency words (Phillips, 1984, 2001;
Lieberman et al., 2007; Todd et al., 2019). This is exactly what is to
be expected from hierarchical inference. Because the learner has
little evidence for the behavior of a rare word being idiosyncratic,
such a word is likely to be mistakenly inferred to behave like a
typical word (of the same type).

In contrast to analogical changes, articulatorily-motivated
changes start in frequent words (Schuchardt, 1885; Fidelholtz,
1975; Hooper, 1976; Phillips, 1984, 2001; Mowrey and Pagliuca,
1987, 1995; Bybee, 2001). These are words with which the speaker
has had the most practice. A change that targets a frequent
word or phrase (like going to reducing to a nasal schwa in
some contexts) cannot be due to the learner receiving insufficient
evidence for the original, conservative pronunciation. Instead,
these changes appear to be due to streamlining of articulation
of a word or phrase with extensive practice. This conclusion
is supported by the reductive character of such changes, which
invariably involve temporal and/or substantive reduction of
articulations, or smoothing out of the transitions between
articulatory targets (Mowrey and Pagliuca, 1987, 1995; Browman
and Goldstein, 1989; Bybee, 2001; Kapatsinski et al., 2020).

Most research on articulatorily-motivated sound change
has not considered inference to play a role in this process.
This would be appropriate if the progression of articulatorily-
motivated changes were entirely mechanical, rather than partly
governed by the conventions of the speech community. That
is, if you could perfectly predict the degree of reduction in a
context from the phonetics of the context – the articulatory
routine being automatized – and the amount of practice that
speakers had with it.

However, it is clear that this is not a tenable assumption.
For example, Coetzee and Pater (2011) show that the rate of
reducing /t/ or /d/ at the ends of words like most is affected
by the following phonological context in different ways across
varieties of English. This means that the rate of t/d reduction in
a particular context needs to be learned as part of acquiring a
particular variety of English. Certain segments are more likely to
be reduced than others in a particular language with probability
of reduction varying between languages (e.g., /k/ is reduced in
Indonesian, /t/ in English, and /s/ in Spanish; Cohen Priva,
2017). Furthermore, the same segment in the same context can
be reduced in different ways in different language varieties. For
example, where Americans flap, many Brits would produce a
glottal stop. Thus, a speaker needs to learn what to reduce, how
to reduce, and when / in what contexts to reduce in part from
exposure to what is done in their community.

As discussed above, articulatorily-motivated reductions are
often particularly advanced in specific segments or gestures.
For example, [t] is often reduced to the point of being deleted
in massed, mast or most (Bybee, 2002; Coetzee and Pater,
2011) but [k] in mask or musk is not equally reduced. At the
same time, such changes are also affected by the identities of
the words in which the segment is embedded. Furthermore,
some of this lexical conditioning is idiosyncratic, rather than
attributable to word frequency, suggesting that the effects of
word identity on pronunciation choices also need to be learned
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from exposure to the ambient language variety (Pierrehumbert,
2002; Wolf, 2011). For example, Zuraw (2016) mentions that
the verb to text shows a particularly high rate of final [t]
deletion. Because both segments and words affect pronunciation
choices, a rational learner would use hierarchical inference to
infer how much responsibility for a particular pronunciation rests
at the lexical level.

Contribution of This Paper
In this paper, I consider how automatization of articulation
interacts with learning processes by which the listener infers
when and what to reduce. The principal innovation of the present
paper, in the context of the literature on sound change, is to
model this learning process. In the proposed model, learning is
understood as rational probabilistic inference. That is, the listener
infers the likely combination of causes that resulted in a particular
observed pronunciation. Crucially, this inference process is
argued to be hierarchical in nature (Xu and Tenenbaum, 2007;
Feldman et al., 2009; Perfors et al., 2011; Kleinschmidt and Jaeger,
2015; O’Donnell, 2015; Harmon et al., 2021).

As noted above, since the 1870s, research on sound change
has been dominated by a debate between the Neogrammarian
doctrine of regular sound change, in which the change affects
all instances of a phonological structure at once (“sounds
change”; Osthoff and Brugmann, 1878) and the doctrine of lexical
diffusion, in which words change one by one, so that a sound
change diffuses gradually through the lexicon (“words change”;
Schuchardt, 1885). Hierarchical inference allows the proposed
model to capture the insight that the answer is both. That is, the
likelihood of producing a particular phone in a particular context
is determined both by the phoneme it instantiates, and by the
larger units in which it is embedded (Pierrehumbert, 2002). For
example, even though a /t/, in the right phonological context, is
generally very likely to be realized as a flap in American English,
this likelihood is somewhat lower when the /t/ is embedded in the
formal word emitter.

The model described here captures this effect of lexical identity
on the choice of an articulatory target for a sublexical unit.
It is intended as the simplest possible model incorporating
hierarchical inference into a theory of sound change. The model is
easily extendable to incorporate additional levels in the linguistic
hierarchy as influences on pronunciation, such as phonological
units above the segment, morphemes, or collocations, all of which
influence pronunciation (Mowrey and Pagliuca, 1995). Speakers
and speaker groups can also be incorporated as an additional
random effect specifying knowledge of sociolinguistic variation
to account for speakers’ ability to produce or imitate more than
one dialect (e.g., Vaughn and Kendall, 2019).

A classic problem in sound change is why it does not always
happen, even though the seeds for it are ever present (termed the
actuation problem by Weinreich et al., 1968). Inference appears
to play a crucial role in actuation. For a sound change to take off,
an innovative pronunciation needs to be reproduced, both by the
same speaker and by the speakers s/he talks to. Inference of the
causes of the pronunciation appears to play an important role in
this process. Specifically, experimental research has demonstrated

unconscious imitation of phonetic detail, which shows how
innovative productions can influence both future productions
by the same speaker and those of their interlocutors (Goldinger,
1998). However, the extent and even direction of this influence
can be affected by the listener’s perception of the reason for
which the speaker produced the word in a novel way, or in an
unfamiliar context. For example, when the speaker is perceived
to not be a fully competent speaker of the language, or to be
a carrier of a stigmatized dialect, the listener is less likely to
imitate the production (Babel, 2012; see also Bannard et al.,
2013; Oláh and Király, 2019). The speaker is also less likely to
reuse a pronunciation that has received a negative evaluation by
an interlocutor (Buz et al., 2016). The listener’s evaluation of a
production, and therefore the spread of a change that originates
in production, is thus influenced by a process of inference that
identifies the production’s cause.

The aspect of actuation I focus on here is diffusion of
an innovative pronunciation through the lexicon, rather than
through the community of speakers. In this context, it is
important for a listener who considers adopting a speaker’s
pronunciation to know how far to generalize from the
experienced examples. For example, observing butter produced
with a flap, the listener might think that this is the way that
the speaker pronounced butter, the way they pronounce the
phoneme /t/, the way they pronounce an intervocalic /t/, etc.
Depending on the structure(s) to which credit for the new
pronunciation is assigned, a listener who decides to adopt the
speaker’s innovation might confine it to the particular word in
which it was observed, or generalize it to a larger subset of the
vocabulary (see Xu and Tenenbaum, 2007, for the equivalent
problem in generalizing a wordform to a specific Dalmatian,
all Dalmatians or all dogs). Nielsen (2011) has shown that
unconscious imitation generalizes beyond the experienced word
to other instances of the same phone, and even other phones
sharing phonological features with it. In order to know how far
to generalize a pronunciation, the listener needs to infer what
caused the speaker to produce it. It appears that not only do
listeners make inferences about why a speaker pronounced a
certain segment in a certain way (see also Marslen-Wilson et al.,
1995; Kraljic et al., 2008), this inference also influences their
likelihood of reproducing the pronunciation.

I show that hierarchical inference provides a novel perspective
on the puzzling phenomenon of stable variation. Sometimes,
the diffusion of an innovative pronunciation variant through
the lexicon stalls, resulting in stable lexically specific variation.
A classic example is -ing vs. -in’ in English, which has been
stable for decades. (Labov, 1989; Abramowicz, 2007; Gardiner
and Nagy, 2017). Stable variation presents a challenge to
exemplar-theoretic models of sound change (e.g., Pierrehumbert,
2001) because a consistent leniting bias should eliminate the
conservative variant (Abramowicz, 2007). The proposed model
accounts for how variation can remain stable, even if one of
the variants is already statistically dominant, and articulatory
pressures always favor the dominant variant. The proposed
model is unique in making clear predictions about the conditions
under which stable variation is likely to emerge, and the level
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at which variation is likely to stabilize (Sections “Inference of a
Random Effect of Lexical Identity: Lexicalization, Polarization,
Stable Variation and a U-Shaped Frequency Effect” – “Stable
Variation Depends on the Frequency Distribution and Its Effect
on Reduction”).

An important question begged by suggesting that the language
learner takes words to be samples from a classified lexicon is
whether the learner expect words s/he encounters in the future
to be like the words she has already encountered? Or does s/he
think that the words s/he is about to encounter might differ
systematically from words s/he already knows (see Navarro et al.,
2013, for the latter in learning non-linguistic categories)? In
particular, if frequent words systematically differ from rare words,
does the learner catch onto this fact, extrapolating that newly
encountered (and therefore presumably rare) words are likely not
to be like the frequent words s/he already knows (see also Baayen,
1993; Barth and Kapatsinski, 2018; Pierrehumbert and Granell,
2018)? This hypothesis is compatible with the widely adopted
assumption that the grammar is primarily for dealing with novel
inputs, with known words largely retrieved from memory (e.g.,
Bybee, 2001; Albright and Hayes, 2003; Kapatsinski, 2010a,b,
2018a). If the grammar is there primarily to deal with novel
inputs, then it would be rational for the learner to base their
knowledge of how to deal with novel inputs on experience with
rare/novel inputs. Alternatively, learners may simply learn how
known words and phones are pronounced without inferring
anything about the relationship between word frequency and
pronunciation. I take this to be the standard assumption in usage-
based linguistics (e.g., Bybee, 2001: 12). The proposed model
allocates the most likely amount of credit for a pronunciation
to each of its conceivable causes, where causes are conceivable
if they are considered by the listener. From this perspective, the
question raised in the preceding paragraph reduces to whether
conceivable causes of reduction likely include frequency of use.
I will show that this is necessary for a monotonic relationship
between frequency and reduction to be maintained after the
reduced variant becomes dominant in the lexicon (Section “If
Novel Words Are Thought to be Like Rare Words, Frequency
Effect Will Stay Monotonic”).

Relations to Other Work
The proposed model views language acquisition as a combination
of automatization of production and rational probabilistic
inference. Automatization is often discussed in work on sound
change (Mowrey and Pagliuca, 1995; Pierrehumbert, 2001) as
well as on the effects of experience on production (Tomaschek
et al., 2018). Probabilistic inference is extensively explored in
work on acquiring language from perceptual input (Xu and
Tenenbaum, 2007; Feldman et al., 2009; Perfors et al., 2011;
Kleinschmidt and Jaeger, 2015; O’Donnell, 2015). However, the
interaction of the two mechanisms and its implications for the
structure of language have remained unexplored.

Hierarchical inference conceptualizes sublexical units as
classes of words sharing a particular chunk, and words are
conceptualized as classes of utterances. This view of the nature
of hierarchies aligns with the usage-based view of linguistic
representations in considering linguistic units to be categories of
experienced utterances (Bybee, 1985, 2001; Edwards et al., 2004),

rather than building blocks out of which larger units are
composed. For example, there is nothing in the proposed model
that demands that an utterance be exhaustively parsed into
morphemes. Whatever morphemes affect pronunciation choices
are simply attributes shared by a class of words. Words sharing
the morpheme -ado in Spanish are a class in the same way
that Latinate words are a class in English. Even though the
former are all similar in the same way, and the latter share no
more than a family resemblance, both can affect pronunciation
choices (e.g., lenition of [d] and stress placement, respectively).
Despite the ‘hierarchical’ in the name, hierarchical inference
does not require classes to form a strict hierarchy. In fact,
hierarchical inference is compatible with any model of linguistic
categorization that results in associable categories that share
members. For example, the structural descriptions of rules
in Albright and Hayes (2003) can also be considered word
classes and are potentially subject to hierarchical inference.
In Albright and Hayes (2003), rules associated with the same
change can be nested, so that a more specific rule like “0→ed
after a voiceless fricative” can co-exist with a more general
rule like “0→ed after any consonant”. It is therefore possible
for a learner to use hierarchical inference to allocate credit
for a particular instance of -ed surfacing after a voiceless
fricative across rules that enact the same change (see O’Donnell,
2015, for a model that does this in morphosyntax). However,
the closest work to the present proposal in the literature
is Pierrehumbert’s (2002) hybrid exemplar/generative model
of sound change.

Pierrehumbert (2002) proposed that the speaker stores
tokens of phones, and tags them with the identities of the
words in which they occurred (as well as other contextual
characteristics). From the present perspective, these tags define
partially overlapping classes of pronunciation exemplars. Again,
a strict hierarchy is unnecessary: the class of segment exemplars
tagged with the word cattish and the class of exemplars tagged
with /t/ can co-exist in the model even though not all /t/
exemplars occur in cat and even though exemplars tagged with
cattish also include exemplars of other sounds. Selection of a
pronunciation variant in producing a word is then biased to some
extent by the identity of the word. The model proposed here
builds on Pierrehumbert’s model by incorporating an inference
mechanism, which infers the contribution of a particular class/tag
to a particular pronunciation of a segment. This inference
determines how much the tag should influence the pronunciation
of the segment in the speaker’s subsequent production. In
addition, by treating word identity and phonological context as
independent influences on variant choice, the proposed model
can account for cases in which reduced variants surface in
phonological contexts that otherwise disfavor them. For example,
Shport et al. (2018) show that American English speakers flap the
/t/ in whatever even though flapping is otherwise illegal inside
a word before a stressed vowel. By treating words as a random
effect, the proposed model predicts such cases to be fairly rare and
restricted to frequent words that are likely to be reduced and can
resist the pull of the rest of the lexicon to regress to the mean but,
crucially, does not predict them to be impossible. In addition, the
present model generates stable variation and makes predictions
about when it is likely to emerge.
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THE MODEL

The most basic version of the model thus consists of the following
parts:

(1) there are two pronunciation variants, reduced and
unreduced;

(2) every time a word is used, the likelihood of the reduced
variant of the phone being used in that word is
incremented; as a result, reduction advances further in
frequent words than in rare ones; and

(3) when a learner is exposed to the language, s/he learns not
only an overall probability for each variant but also how
variant probabilities are affected by lexical context.

In other words, the model proposes that the child learns how
often a certain phone is pronounced a certain way and that
some words are pronounced exceptionally. This kind of word-
specific phonetic learning appears to be necessary because lexical
frequency does not account for all between-word variability in
phone pronunciation; a residue of exceptionality remains after
frequency is accounted for Pierrehumbert (2002); Wolf (2011);
Zuraw (2016).

The model assumes that the inference process is functionally
equivalent to hierarchical regression. Below, it is implemented
specifically as a logistic regression because of the first assumption
above, the existence of alternative production targets associated
with a phoneme in context such as an intervocalic /t/, which can
be realized as a flap or a stop in American English. However,
most reductive processes can also be conceived of as phonetically
gradient rather than categorical (e.g., De Jong, 1998, for flapping;
Bybee, 2002, for t/d deletion). Fortunately, the same predictions
would be made by the present model if reduction were assumed to
be continuous. We would simply replace the logistic link function
with the identity link function of linear regression. Nothing
hinges on the choice of the logistic linking function below.

The model was implemented in R (R Core Team, 2020)
and is available at https://osf.io/qt6x4/. For ecological validity,
I elected to simulate real sublexica that might be affected by
a sound change. I considered two sublexica that are on the
opposite ends of a productivity continuum: a large sublexicon
with many rare words and a low maximum token frequency, and
a small sublexicon with few rare words and a high maximum
token frequency. The first sublexicon is the set of words with
an intervocalic /t/ or /d/, followed by an unstressed vowel. The
second sublexicon is the set of words beginning with eth (/ð/).
Words in the first set constitute words in which the /t/ or
/d/ is eligible to be flapped regardless of the broader context
in American English (e.g., Herd et al., 2010). Words in the
second set are eligible to undergo stopping in some dialects
(e.g., Drummond, 2018), though this is not the full set of words
eligible for stopping. However, our aim here is not to model
these specific changes, but rather to ensure that the results of
modeling are robust across sublexica that are maximally distinct
in type frequency and the token/type ratio, which are the only
characteristics of words that the model can see. Where noted,
these sublexica are modified by excluding the most frequent

words, those with frequency above 300, to explore the influence
of these lexical leaders of change on its progression.

The first generation was seeded with one of two sublexica.
The first sublexicon was the full sample of words eligible for
flapping from the Switchboard Corpus (Godfrey et al., 1992).
All words with a flapping context in the CMU Pronouncing
Dictionary (Weide, 1995) were included (N = 762). These words
had a stressed vowel followed by a /t/ or /d/ followed by an
unstressed vowel. Each word occurred in the input with the
frequency with which it occurred in the corpus, which followed
the highly skewed Zipfian distribution (Zipf, 1935): 236 words
were hapax legomena, occurring in the input only once; the most
frequent word, little, occurred 2793 times.

The second sublexicon is the set of English words that start
with /ð/. This set has far lower type frequency (only 24 distinct
wordforms are found in Switchboard). It is also not Zipfian-
distributed because it includes several very frequent words (the,
this, they, than, then, etc.) and a relatively small number of
rare words (theirselves, theirself, thereabouts and thereof are
the only hapax legomena found in Switchboard). The frequent
words in this sublexicon are also far more frequent than the
frequent words in the flap sublexicon. In these respects, it is
representative of a change that affects or is triggered by an
unproductive sublexical unit, and therefore can be seen to lie
on the opposite end of the continuum of productivity from the
flap sublexicon (Baayen, 1993; Bybee, 1995). In principle, any
other lexicon can be substituted: the predictions below are a
necessary consequence of hierarchical inference and a highly
skewed frequency distribution.

The log odds of reduction were seeded as in (1), with b0 set
to either –1 or –3 on the logit scale in the simulations below
(0.27 or 0.05 on the probability scale), the magnitude of the
frequency effect bFreq set to 0.02 or 0.0002. The effects of these
manipulations are discussed below, but it is worth noting that
the values allow the change to progress slowly enough for lexical
diffusion to be observed, and to progress rather than sputtering
out. A substantially higher bFreq can make almost all words have
ceiling rates of reduction, while a substantially lower one can
make them all reduce at the same rate. A substantially lower b0
can lead the change to sputter out rather than progressing, and
a higher b0 means that the change has already affected most of
the lexicon. The random effect of word was set as a random
distribution with a mean of 0 and standard deviation of 0.4. I
have tried reducing the latter to 0.2 and increasing to 0.8 with
little effect. The random effect of word corresponds to whatever
factors influence the likelihood of reducing a word that are not
captured by the word’s frequency. The three numbers mentioned
above are the free parameters of the model, but the qualitative
predictions are unchanged across a range of possible values. The
number of reduced and unreduced tokens for each word was then
generated as a sample from the binomial distribution, as in (2),
with probability of reduction (pred) defined as the inverse logit of
the log odds, (1), and number of trials defined as the frequency of
the word.

(1) pred = logit−1(b0 + bFreq × Freq + N(0, bw))

(2) nred ∝ Binom(pred, Freq).
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FIGURE 1 | The effect of frequency in the first generation, prior to passing the language through inference. Note that the frequency axis is rank-transformed (with the
highest frequency on the right). Boxes consisting only of the median line contain a single word.

The effect of word frequency in this first generation is
illustrated in Figure 1 for b0 = –1 and bFreq = 0.02. The shape
of the effect in Generation 1 represents what one would expect
the shape of the frequency effect to be if inference played no role
in articulatorily-motivated sound change. As one might expect,
the effect of frequency is monotonic, with greater reduction in
frequent words. Because reduction in (1) is proportional to raw
frequency, and the frequency distribution is Zipfian, reduction
probability is much higher in the highest-frequency words than in
the bulk of the lexicon: reduction is nearly categorical in the most
frequent words, while the mean reduction probability is 32%,
close to the expected probability for a word of zero frequency,
b0 = 27%. Lowering b0 lowers the curve, lowering bFreq reduces
its slope, and lowering bw (standard deviation) reduces the degree
to which individual words deviate from the mean reduction
probability at each point along the frequency axis.

Notice that the generative model in (1–2) is exactly that
assumed by mixed-effects logistic regression with a by-word
random intercept. Each generation was therefore assumed to
use logistic regression to infer b0, bw and bFreq or some subset
thereof (Table 1). The regression was implemented using the
lme4 package for R (Bates et al., 2015).1

Each generation then regenerated the corpus. In the model
version that did not infer an effect of frequency (top two rows
in Table 1), the inferred random effects of words replaced
N

(
0, bw

)
in (1), and the inferred fixed-effects intercept replaced

b0 while the original bFreq was retained. This represents the
assumption that the effect of word frequency is due entirely
to articulatory automatization. In the model that did infer the
frequency effect (bottom row in Table 1), bFreq was the sum of
the inferred bFreq and the original bFreq. This corresponds to the
possibility that words can be reduced either because reduction
is inferred to be appropriate in this context, or because of
articulatory automatization.

The language passed through up to 20 (or 100 or 300,
where noted) generations. Iteration was stopped early if average
probability of reduction across the tokens of the regenerated

1glmer(variant ∼ (1 | w) , family = "binomial"). or, if the effect of frequency is
estimated, glmer(variant ∼ (1 | w) + Freq, family = "binomial"). lme4 is used
here because it converges relatively quickly, but informative prior beliefs can be
added by replacing glmer() with brm() from the brms package (Bürkner, 2017)
and specifying the desired prior.

corpus exceeded 99% or fell under 1%, which defined the change
running to completion or sputtering out, respectively.2 100
replications of the iterated learning process were performed for
each parameter setting.

As mentioned above, the hierarchical structure assumed here
is intended to be the simplest possible structure that can illustrate
the effects of hierarchical inference on sound change. Additional
influences on pronunciation can be easily incorporated into the
model as additional fixed or random effects in Equation (1) above.
For example, words can be nested within phonological contexts
or morphemes to capture the fact that some morphemes can favor
reduction across words, e.g., -ado favors Spanish intervocalic stop
lenition (Bybee, 2002). Utterances or word senses can be nested
in words to capture the fact that some uses of a word are more
likely to be reduced. For example, don’t is more likely to be
reduced in I don’t know than in I don’t think and especially if I
don’t know is used to indicate uncertainty (Bybee and Scheibman,
1999). English auxiliaries are more likely to be reduced in some
syntactic constructions than in others (Barth and Kapatsinski,
2017). Speakers (nested in social groups) can also be added as
an additional random effect crossed with words, to implement
inference of who flaps and who doesn’t. Interactions between
random effects can also be added, e.g., to capture knowledge of
differences in the effect of phonological context effects on t/d
deletion across English dialects (Coetzee and Pater, 2011).

SIMULATION RESULTS

Inference of a Random Effect of Lexical
Identity: Lexicalization, Polarization,
Stable Variation and a U-Shaped
Frequency Effect
By treating lexical identity as a random effect, the model sidesteps
the problem of estimating the effects of individual rare words,
assuming that they will behave approximately like the average
word, i.e., their reduction probabilities are drawn toward the
mean reduction probability across all words. Partial pooling is

2The early stoppage rule was introduced because the logistic regression command
produces an error, which stops the iteration over replications when the response is
constant, i.e., sound change has run to completion.
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TABLE 1 | The model versions explored in the present paper.

Learner estimates Reduction is influenced by Section Figures

b0, bw Raw frequency 3.1 2, 3, 5, 7

Log frequency 3.2 9, 10

bw Raw frequency 3.1 4, 6

b0, bw, bFreq Raw frequency 3.3 11

of course necessary for the rarest of the rare, the words that
the speaker has never before encountered, because the model
has no information about whether a novel word favors or
disfavors reduction. However, it is also rational for more frequent
words: the speaker would have considerable uncertainty about the
acceptability of a flap in a word s/he observed two or three times if
s/he could not use information about the acceptability of the flap
in other (similar) contexts to make this determination (Gelman
and Hill, 2007: 252–259).

Treating lexical identity as a random effect means that the
regression model performs partial pooling of the information
about variant probability across words, optimally weighting
information from tokens of the word against information from
tokens of the same sublexical unit occurring in other words
(Gelman and Hill, 2007: 252–259). In partial pooling, the extent
to which a word is drawn to the mean is inversely proportional
to its frequency. The less frequent a word, the less information
we have about the effect of that word on pronunciation (or on
anything else). Thus, to know how an infrequent word behaves,
a rational learner will partially rely on information about the
behavior of other (similar) words. In contrast, to know how a
frequent word behaves it is not necessary to rely on information
about the behavior of other words: tokens of a word are more
relevant for inferring its behavior than tokens of other words,
and so should be relied on to the extent that they are available
in sufficient quantities to draw a reliable inference.

The influence of inference on the word frequency effect
is shown in Figures 2–4. The top panel shows the effect of
frequency after the first pass through the inference process
(Generation 1). At this point, the reduced variant is in the
minority, and therefore the frequency effect is always monotonic,
greater frequency favoring reduction. The middle panel shows
a generation for which the reduced variant has become the
majority variant, but has not yet achieved dominance: for this
generation, the reduced variant accounts for 60–70% of tokens.
The bottom panel shows a generation for which the reduced
variant is statistically dominant, accounting for 90% of tokens.

In Figure 2, the learner estimates b0, an overall probability of
the reduced/innovative variant and the random effect of word on
the choice, but does not estimate bFreq, the effect of frequency.
Reduction results only from use / automatization of production,
increasing with raw frequency as in (1–2). A pronounced U
develops in the shape of the frequency effect (as shown in the
middle and bottom panels of Figure 2). By Generation 9 (middle
panel), the median reduction probability for hapax legomena
(frequency = 1) is much higher than for words that are more
frequent. By Generation 18 (bottom panel), the words with
frequencies below 8 or above 20 are almost always reduced,

but the median reduction probability is at 90–95% for words
of intermediate frequencies. As shown in Figure 3, this U is
caused by the random effect of word, which maintains a set of
exceptionally conservative words. These words must be frequent
enough for their effect on reduction probability to be reliably
estimable, but not so frequent as to become reduced through
automatization of articulation.

The change in this model tends to stall at around 91%
reduction (bottom panels of Figures 2, 3). That is, the model
gradually converges on nearly categorical use of the reduced
variant, but the rate of change slows down dramatically once the
probability of the reduced variant exceeds 90%. An individual
chain can persist in the state shown in the bottom panels of
Figures 2, 3 for a hundred generations. Furthermore, increasing
or decreasing the size of the frequency effect by an order of
magnitude changes how fast the model converges on ∼91%
reduction but does not appear to help the model achieve greater
reduction probability.

Table 2 shows the overall distribution of reduction
probabilities across word types at Generation 100. The
distribution shows what Zuraw (2016) has called polarized
variation, which is characteristic of changes that have become
lexicalized: the distribution of choice probabilities across words
is highly bimodal, with clear peaks at 0 and 100%. A small
number of words show intermediate behavior, with the vast
majority of words (678.55 on average) always occurring with the
reduced variant.

About 10% of the words (63.11 on average) become
exceptionally conservative, reducing 0% of the time, with 4.16
more words reducing with a 1% probability. These are the
outlier points at the bottom of the probability scale in the
bottom panel of Figure 2. These rare reductions occurs because
reduction can result from either inference that the word should
be produced with the reduced variant, or from automatization
of production. The automatization of production is blind to
lexical idiosyncracies, and is always pushing words to reduce.
However, inference resists this push for words that are inferred
to be conservative.

As shown in Figure 3, emergence and persistence of
polarized variation happens because the model learns of a
set of exceptionally conservative medium frequency words
(bottom panel). When most words are reduced 100% of
the time, their random effects are essentially zero. However,
exceptionally conservative words are maintained because their
random effects are strongly negative. As long as these exception
words are frequent enough, it appears that they can be
maintained indefinitely.

Even though change in this model is driven entirely by
frequency of use, the correlation between frequency and
reduction probability weakens dramatically over time. Thus,
log frequency accounts for 27% of the variance in reduction
probability at Generation 2, but only 8% by Generation 9,
and essentially 0 variance by Generation 18 (0.02%). Thus, the
effect of word frequency in this model is expected to weaken
dramatically as an articulatorily-motivated change progresses.
Some support for this prediction can be found in Cohen-
Goldberg (2015), who found an effect of lexical frequency on /r/
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FIGURE 2 | The effect of frequency if the learner estimates overall probability of reduction (b0) and the random effect of word, but not the effect of frequency across
generations. Thick red lines show median probability of reduction at each frequency. Notches show the 95% confidence interval for the median.
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FIGURE 3 | The random effect of lexical identity across generations. A negative random effect for a word indicates that the word is associated with the conservative
variant. A positive one indicates that the word is associated with the innovative variant.
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FIGURE 4 | The effect of frequency if the learner estimates only the random effect of word across generations.
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TABLE 2 | The distribution of reduction probabilities in word types across 100 chains at generation 100.

0 0.01 0.1–0.2 0.21–0.3 0.31–0.4 0.41–0.5 0.51–0.6 0.61–0.7 0.71–0.8 0.81–0.9 1

6311 416 8 16 20 4 27 8 8 2 67855

There are no words with reduction probabilities between 0.01 and 0.13, or between 0.89 and 1.

deletion in a largely rhotic variety but not in a largely non-rhotic
one. Furthermore, findings of weak or non-significant frequency
effects in advanced changes (e.g., American English flapping in
Warner and Tucker, 2011) are to be expected under this model,
and do not provide evidence against articulatorily-motivated
sound change being led by high-frequency words.

In Figures 4, 5, the learner estimates only a random
effect of word, and does not estimate either the effect of
frequency on choice (bFreq), or the overall probability of
reduction (b0). This version of the model behaves like the
model in Figures 2, 3 in developing a U-shaped frequency
effect because the words are still implicitly grouped together
through partial pooling, resulting in the rare words being
pulled toward the mean for the lexicon. However, the pace
of change is slower, and the model does not converge to
strongly favor the reduced variant. Instead, the model oscillates
around a 61–64% reduction probability with the frequency
effect illustrated in the bottom panel of Figure 4 for at least
100 generations.

Thus, this model predicts that stable polarized variation will
eventually develop, and that an initially phonetic change will
become lexicalized, a trajectory that Bybee (2001) has argued
to be a diachronic universal (see also Janda, 2003). The level
at which the change stalls depends on whether the learner
estimates an overall probability for a variant that is independent
of individual words (b0); in other words, estimating which
variant is more likely overall, or if s/he only estimates how
variant choice is conditioned by context. This seems intuitively
satisfying for known cases of stable variation, such as the choice
between -ing and -in’ in English progressives, where the choice
is invariably strongly conditioned by contextual factors such as
register (see Gardiner and Nagy, 2017, for a review). In the
present simulations, the conditioning contexts are lexical, thus
the change becomes lexicalized, but other conditioning variables
can be easily added to the model to investigate how a variant
can become restricted to other environments, like speech styles
or social personae.

The initial random intercepts with which words are seeded
are not strong enough to resist reduction after the innovative
variant becomes the default. How then do exceptionally
conservative words become exceptionally conservative, enabling
the conservative pronunciation to survive indefinitely? The
bottom panel of Figure 5 shows the random effect of word
across the generations in one run of the model from Figure 2.
In this model, when the innovative variant becomes dominant,
most words succumb to the analogical pressure to reduce,
regressing to the mean of the lexicon. However, a minority
of words have random intercepts that are low enough for
them not to regress to the mean of the lexicon at this
point. These words then become “radicalized”: the random

intercepts of these words become ever more extremely negative
in order to account for their lack of reduction. This makes
these words increasingly resistant to reduction, stabilizing the
system. Essentially, as the likelihood of reduction increases,
the learner becomes increasingly confident that there is
something special about the words not affected by reduction
that prevents it from affecting them, resulting in lexicalization of
the sound change.

Radicalization also happens in the model without an overall
intercept shown in Figure 4, although here it is less extreme
and affects both innovative and conservative words. Because
all variability must be attributed to lexical identity, reduction
caused by automatization of production leads to an increase in
the corresponding random intercepts. The random intercepts of
conservative words then must decrease to account for them now
being farther from the lexicon mean. Because there is no overall
intercept favoring the reduced variant across words, analogical
pressure to regress to the mean is weaker, and variation stabilizes
at a less skewed distribution. Interestingly, this distribution is
also somewhat less polarized, with modes at 0.05 instead of zero
and both at 0.95 and 1. Nonetheless, the variation remains stable
after Generation 20.

The results in Figures 1–6 replicate on a different lexicon, the
set of English words that start with /ð/. As mentioned above, this
sublexicon is representative of a change that affects or is triggered
by an unproductive sublexical unit, and therefore can be seen to
lie on the opposite end of the continuum of productivity from
the set of words examined in Figures 1–6 (Baayen, 1993; Bybee,
1995). Nonetheless, the results in this dataset are qualitatively
very similar to those above: a U-shaped frequency effect develops
as the reduced variant becomes dominant (Figure 7), and the
change stalls as it becomes lexicalized, because exceptionally
conservative words become radicalized when the reduced variant
comes to dominate the lexicon. Thus, I expect these predictions
to hold across a wide range of naturalistic sublexica eligible to
undergo a particular sound change.

As with the flap sublexicon, not estimating an overall
probability of reduction results in settling on a lower reduction
probability. Interestingly, the overall reduction probability
stabilizes much longer than individual words do. Thus, although
probability of the reduced variant fluctuates around 0.67 for
a long time, this stability initially masks large changes in the
behavior of individual words from generation to generation
as automatization-driven reduction battles entrenchment in
conservatism for frequent words. Specifically, the mean reduction
probability is about the same in both panels of Figure 7 (0.65 on
the left, 0.68 on the right) but the state represented in the left
panel of Figure 7 is unstable, and the model eventually converges
to the state resembling the right panel, with all frequent words
being categorically reduced.
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FIGURE 5 | Reduction probabilities and random effects of words that had below-average reduction probabilities at Generation 2. One run of the model shown. In
this model, “the middle doesn’t hold”, and variation becomes polarized, with individual words reducing or not reducing close to 100% of the time (top panel). The
bottom panel shows that words favoring reduction favor it because reduction is probable in the lexicon as a whole. The words that disfavor it instead become
“radicalized”, developing very strong negative random effects in favor of the conservative variant.

Stable Variation Depends on the
Frequency Distribution and Its Effect on
Reduction
The behavior of the model is dependent on the assumption that
Equation (1) uses raw frequency and not log frequency. One
might object to this assumption because log frequency is observed
to be a better linear predictor of many behavioral dependent
variables (e.g., Kapatsinski, 2010a, for error rate; Oldfield and
Wingfield, 1965, for production latency). However, interestingly,
this superior fit of log frequency turns out to also be true in the
data generated by (1–2), even though they were generated using
raw frequency: log frequency captures 27% of the variance in the
generated reduction probabilities at Generation 1, compared to
18% captured by raw frequency. Thus, log frequency can fit the
data better than raw frequency even if the data are generated
by a model that is sensitive to raw frequency, i.e., a system in
which every token of experience matters equally (as argued by
Heathcote et al., 2000, for the effects of practice in general). This
happens because there is an upper limit on reduction probability,
so it always looks like the effect of frequency on reduction
decelerates as reduction probability approaches the upper limit.

If log frequency is used in Equation (1), as illustrated in
Figure 8 (cf., Figure 1), the sound change progresses more
quickly (Figure 9), even if mean bFreq × Freq is equal to

mean bFreq × log(Freq). As mentioned earlier, mean reduction
probability is in the 81-91% range across replications by
Generation 20 with raw frequency, and can persist in that
range for a hundred generations. In contrast, sound change
completes at Generation 13–14 when reduction is driven by log
frequency, even though it looks less advanced prior to training
(Figure 8 vs. Figure 1). This is due to the Zipfian distribution
of word frequencies. With raw frequency driving reduction, the
reduced words form a small minority for a long time: for a
randomly chosen word type, the reduction probability is almost
as low as that of a novel word. Therefore, the overall probability
of reduction grows slowly. This allows some words time to
become entrenched in their conservatism: they coexist with
highly reduced frequent words. Furthermore, the frequent words
in Figure 1 are clear outliers relative to the mean of the lexicon.
Their behavior is due to frequency but the learner does not know
this, and therefore attributes it to a random effect of word. As
result, the learner comes to believe that words have substantial
idiosyncrasy: it is possible for a word to be really far from the
lexicon mean in their reduction probability (as far as 5 standard
deviations above in the top panel in Figure 3).

Because word is treated as a random effect, the learner
estimates how variable the population of words is. Because
of partial pooling, outlier words regress to the average
reduction probability across words to the extent that
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FIGURE 6 | Changes in the distribution of reduction probabilities and random effects for words with below-average reduction probability at Generation 2 in the
model without an overall intercept. Negative random effects are in favor of the conservative variant.

FIGURE 7 | Two generations with a similar mean probability of reduction of the /ð/ sublexicon. Note. bFreq was reduced to 0.0002 for this simulation from 0.02 in
Figures 1–6 and b0 was reduced to –3 from –1. This causes the model to converge more slowly, but the results are qualitatively similar if these parameters are
higher.

words in general are tightly clustered around the average
reduction probability. Therefore, estimating that words are
highly variable in reduction probability allows exceptionally
conservative words to not converge to the lexicon mean
(Figures 3, 5), which is what allows the conservative
pronunciations to then be replicated across generations
indefinitely. If reduction is proportional to log frequency,
random effects are not so extreme: words look much more
alike to the learner (Figure 10, which is on the same scale

as Figure 3), hence sound change can run to completion
relatively easily.

In addition, the U-shape predicted to occur in the later stages
of a sound change is reduced, though not eliminated, and occurs
at a higher average reduction probability than if raw frequency
is used in (1). Nonetheless, the qualitative prediction is the
same: once the reduced variant comes to dominate the lexicon,
novel words should be reduced more than conservative medium-
frequency words.
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FIGURE 8 | Effect of frequency on reduction probability for Generation 1 (before the language is subjected to inference) with reduction driven by log frequency in
Equation (1). bFreq = 0.11 rather than 0.02, so that mean bFreq × Freq in Figure 1 is the same as mean bFreq × log(Freq) here.

The difference between the initial distributions in Figures 1, 8
is that, in Figure 1, there are words whose behavior strongly
deviates from that of the majority. This deviation is due to
their higher frequency, coupled with the shape of the effect of
frequency on reduction and the Zipfian distribution of word
frequencies. Because their raw frequency is dramatically higher
than that of the average word, and reduction rate tracks raw
frequency, the frequent words look exceptional to a learner that
cannot conceive of frequency as an explanation for these words’
high degree of reduction.

That is, polarized variation requires the sublexicon of words
affected by a change to contain apparently exceptional words.
Although the first apparently exceptional words are exceptionally
innovative, and these words become unexceptional as the
lexicon approaches their reduction rates over generations, their
existence is what allows for exceptionally conservative words
to emerge and persist. This leads to a rather counterintuitive
prediction: removing the highest-frequency, most reduced words
from the sublexicon affected by a sound change should allow
the sound change to run to completion even if the effect of
frequency on reduction tracks raw frequency. This prediction is
counterintuitive because this change makes the initial average
probability of reduction lower. I have confirmed this prediction
by creating an artificial version of the /ð/ sublexicon by removing
words from the head of the frequency distribution (creating
a ‘headless’ distribution; Harmon et al., 2021). Specifically,
I removed all words with a frequency above 900 tokens in
Switchboard, leaving only the 3 hapax legomena and 7 more
frequent words (with frequencies 3, 4, 7, 9, 20, 30, and 211
tokens). This type of distribution might characterize a rare sound
that occurs only in a small set of borrowed words (which are likely
to be infrequent), such as the /Z/ word onset exemplified by genre.
Even though removing the head of the distribution reduces the
initial probability of the innovative variant, it allows the change
to run to completion, with the innovative variant eventually
dominating the production of all words. In other words, a change
that affects a sublexicon of words of similar frequency is more
likely to run to completion than a change that affects a sublexicon
of words whose frequencies are very diverse. On the other hand,
the change is also more likely to sputter out, with all words
converging to the conservative variant. What does not frequently
happen is a state of stable polarized variation (Table 3, left

column), although two chains did converge on reduction in the
most frequent word and lack of reduction elsewhere.

Similarly, a change is more likely to run to completion
if the size of the effect of practice on reduction is small,
because the small effect size ensures that no words are inferred
to be exceptional. That is, articulatorily-motivated changes to
segments that are less likely to change as a result of practice
paradoxically have a greater chance of running to completion
(although they also have a greater chance of sputtering out).
With bFreq = 0.02, the headless /ð/ sublexicon tends to quickly
become lexicalized because the more frequent words are reduced
much more than the less frequent words (Table 3, right column),
even though the change frequently runs to completion with
bFreq = 0.0002 (Table 3, left column); a significant difference,
p < 0.0001 (Fisher exact test). Because the initial probability of
reduction is low (0.05), the final stable state tends to involve
either 2 or 3 most frequent words categorically adopting the
innovative variant, with the rest being categorically conservative
(24 and 44 chains, respectively). However, occasionally the
innovative variant spreads to most words, with a couple medium-
frequency holdouts (4 chains), and sometimes even runs to
completion (2 chains).

The results are similar with the larger flap lexicon, but
differences in outcome between chains are smaller because
the lexicon is larger, thus estimates of reduction probability
are more stable and less affected by the exclusion of the few
high-frequency words. In particular, strong reduction in the
headless flap lexicon restricted to have the same maximum token
frequency as the headless /ð/ lexicon always converges on stable
polarized variation, but the final probability of reduction is much
less variable, falling within 0.04 of 0.22. Weak reduction can still
both sputter out or run to completion but the pace of change is
much slower than in the /ð/ lexicon.

If Novel Words Are Thought to Be Like
Rare Words, Frequency Effect Will Stay
Monotonic
In all simulations reported above, a U is predicted to emerge in
the shape of the frequency effect when the innovative, reduced
variant becomes the default for the sublexicon. At that point,
novel words would enter the lexicon with the reduced variant,
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FIGURE 9 | The effect of word frequency if reduction is driven by log frequency. The learner does not estimate the effect of word frequency in this simulation.
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FIGURE 10 | Random effects in the model if reduction is driven by log frequency in Equation (1).
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TABLE 3 | The effect of frequency on reduction, and the outcome of change.

Outcome of change Weak reduction
(bFreq = 0.0002)

Strong reduction
(bFreq = 0.02)

Sputtered out 65 0

Run to completion 33 2

Stable polarized variation 2 98

b0 = –3, headless /ð/ lexicon, learners estimate b0 and a random effect of word.

while existing exceptionally conservative words would still be
produced with the conservative variant.

As shown in Figure 11 for the flap sublexicon, this prediction
does not arise if the learner estimate the effect of frequency on
variant choice, thus estimating all three b parameters in (1). In
this model, the choice of the reduced variant can result either
from the speaker’s belief that this variant is more appropriate
/ likely, or from use / automatization of production: for every
generation after the first one, the inferred bFreq is added to
the original bFreq. As can be seen in Figure 11, no U-shape
develops: the effect of frequency remains monotonic through the
generations. The results in Figure 9 do not change substantially
if log frequency is used instead of raw frequency in Equation (1).

If the effect of frequency is estimated, the likelihood of the
change running to completion is strongly dependent on the
size of the frequency effect (bFreq): with a strong reduction
pressure (e.g., 0.1), the change runs to completion regardless
of other parameters. However, with a weaker effect (e.g., 0.02),
change does not run to completion. The change settles into stable
variation at a reduction probability that depends on whether
the learner estimates an overall intercept (b0, the probability
of variant choice). If they don’t, the final reduction probability
is quite high (above 90% in the flap sublexicon). If they do,
then individual chains of learners estimating both bFreq and b0
settle on oscillating around ∼55% of innovative variant choice
with the same parameter setting (bFreq = 0.02). Indeed, average
probability of reduction is able to progress beyond the initial state
in Figure 1 at all in this model only because of the additional
reduction that comes from the incrementation of reduction
probability by automatization of articulation: if only the inferred
bFreq is used, or the inferred and original bFreq are averaged, the
overall probability of the innovative variant does not increase
across generations.

Variation in this model is not polarized: there is little variation
in reduction probability between words of the same frequency;
indeed, the random lexical variation the model is seeded with
(Figure 1) reduces over time (Figure 11). Instead, stability
comes from the model settling into a state in which only the
lowest-frequency words (hapax legomena) are relatively unlikely
to be reduced. The state to which this model converges if it
does not estimate b0 is similar to that shown by flapping in
American English: there are no known words in which it is
categorically impermissible, it occurs > 90% of the time, existing
words reduce at similar rates across most of the frequency
range, but novel words or words are produced with a full stop
more often than known words (Herd et al., 2010; Warner and
Tucker, 2011). The present model suggests that variation does not
become polarized if differences in reduction rates across words

are attributed to something other than their lexical identity.
A rational learner that attributes the differences in reduction
probabilities between frequent and infrequent words to frequency
does not attribute this difference to lexical identity: frequency
explains away apparent lexical idiosyncrasy. The model in
Figure 9 attributes them to frequency, but this is of course not the
only possible factor conditioning variant choice. More generally,
inference predicts that lexicalization should not happen when
there are clear conditioning factors that account for between-
word differences, whether these factors are social, stylistic,
language-internal, or (like the effect of frequency) experiential.

DISCUSSION

This paper has examined the consequences of assuming that
rational probabilistic inference is involved even in sound
changes that are driven by automatization of production. Unlike
analogical changes, these are sound changes that affect frequent
words first (Schuchardt, 1885; Fidelholtz, 1975; Hooper, 1976;
Phillips, 1984, 2001; Mowrey and Pagliuca, 1995; Bybee, 2001). In
usage-based work, such changes have been discussed as resulting
from automatization of holistic production plans associated with
frequent words and collocations (Mowrey and Pagliuca, 1995).
However, this hypothesis did not account for the fact that
certain articulations are more likely to be affected by reduction
than others, in a way that is specific to a particular language
variety (e.g., Cohen Priva, 2017). To account for this property
of change, Pierrehumbert (2002) proposed that articulatorily-
motivated sound change affects sublexical articulatory units
tagged with the larger lexical contexts in which they occur. The
present model builds on this insight by allowing the learner to
optimally allocate credit for an observed pronunciation between
a segment and the larger context using hierarchical inference.
In this paper, I examined how the predicted trajectories and
outcomes of articulatorily-motivated sound change are affected
by the assumption that the first language learner engages in this
type of inference.

Sound change is commonly seen to result in a pattern
of stable, lexicalized variation in which some words remain
exceptionally conservative (e.g., Bybee, 2001). Zuraw (2016)
points out that lexicalization results in a pattern of polarized
variation, where some words occur with one pronunciation
variant 100% of the time or nearly so, and others (almost) never
occur with the variant. A model of articulatory optimization
that does not provide a role for inference predicts that an
articulatorily-motivated sound change will ultimately affect all
words as their productions are optimized over generations.
Hierarchical inference explains why changes might stall, and
how polarized variation arises. Specifically, polarized variation
occurs if articulatory reduction affects different words at very
different rates, and the learner attributes these differences to
lexical identity rather than their true cause. Here, that true cause
is simple frequency of use, but it could also be occurrence in
reduction-favoring linguistic or social contexts (as in Bybee, 2002,
2017; Brown, 2004; Raymond and Brown, 2012). An important
direction for future work is to differentiate between frequency
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FIGURE 11 | The effect of frequency over time if the learner estimates the influence of frequency on variant choice as well as an overall probability of variant and the
random effect of word.
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of occurrence in reduction-favoring vs. disfavoring contexts.
The literature is ambiguous regarding whether occurrence
in reduction-disfavoring (e.g., formal) contexts merely delays
change, or can actually lead the change to reverse direction. That
is, it is not yet clear whether an additional token of occurrence in a
reduction-disfavoring context, should decrement the probability
of using the reduced variant in other contexts. It would be
interesting to examine the consequences of this assumption.

Polarized variation arises through radicalization of
exceptionally conservative words. Radicalization occurs because
of the co-existence of conservative words with exceptionally
innovative words in earlier generations, which leads the
learner to estimate a large random effect of word. As the
innovative pronunciation spreads through the lexicon, previously
innovative words become the new mainstream, but their prior
exceptionality allows exceptionally conservative words to retain
their conservative pronunciations. That is, exceptions beget
exceptions, even though the composition of the set of exceptions
changes radically over time.

Hierarchical inference predicts that an articulatorily-
motivated change can sputter out. Without this mechanism,
articulatorily-motivated change inexorably marches on through
the lexicon, converging to the reduced variant. However, in real
life, the same change can sometimes take off, and sometimes
not. In their foundational monograph on language variation
and change, Weinreich et al. (1968) called this the actuation
problem, and suggested that the answer to it is to be found in
social dynamics – how an incipient change diffuses through
society. The present simulations suggest that actuation also
depends on lexical diffusion of the change: depending on the
frequency distribution in the sublexicon of words that contain
the structure affected by the change, and how the words that tend
to occur in reduction-favoring contexts are distributed over the
frequency spectrum, a change may not take off. In particular,
if the effect of practice on the articulation is relatively weak for
the sound in question, the sublexicon affected by the change
happens to contain few high-frequency words (which are the
words strongly affected by the reductive effect of practice), and
the innovative pronunciation variant is initially rare, the change
often sputters out. I submit that sputtering out is how changes
‘do not happen:’ variants that spread and take over in other
languages arise and then disappear because they are inferred to
have a low production probability. In essence, the speaker guards
against reductions that they consider to be errors, suppressing
their production. Covert error monitoring and suppression is
of course well known to occur in language production (Motley
et al., 1982). The present model shows one diachronic trajectory
by which errors come to be seen as errors. Of course, there is
always a chance for one of these variants to arise again because
automatization of production continues to favor it over the
conventionalized conservative alternative.

What can influence the strength of the influence of practice
on articulation (bFreq)? The most obvious influence on this
parameter is the fact that certain articulations are easier to
produce in the context in which they occur than others.
Articulations would not be particularly subject to the effect of
practice. However, some articulations may also not change much

as a result of practice even though they are not easy to articulate
in context. For example, the tongue blade is a relatively fast,
light and (at least for an adult) easily controllable articulator.
It therefore appears relatively easy to speed up the production
of a blade-raising gesture during the production of an alveolar
stop with practice, turning it into a flap. In contrast, the tongue
body is slow and heavy, making it much harder to speed up
the production of a velar stop. Quantal effects, where certain
articulatory changes lead to large changes in acoustics and other
articulatory changes of the same magnitude do not (Stevens,
1989), can also make certain articulations more malleable due to
absence of corrective feedback from interlocutors or the speaker’s
own perceptual system.

What can influence the initial probability of reduction (b0)?
It seems likely that some changes originate from selection of
variants that fall within a range of acceptable articulations before
the change happens (Blevins, 2004). For example, there is a
wide range of acceptable palatal constriction magnitudes for a
Spanish [j]∼[Z], and selection of variants from within this range
can drive divergence between dialects (Harris and Kaisse, 1999).
Tongue positioning during a vowel is also quite variable, as is
constriction magnitude in the production of an English flap (De
Jong, 1998). In contrast, other changes might originate in speech
errors, which may initially be very rare. A possible example is
[θ] > [f] (Honeybone, 2016), because [f] and [θ] are not part
of a continuous articulatory range of variants. In addition to
changes that are not within an articulatory range associated with
a production target, low initial production probability may hold
for variants that are saliently perceptually different from the
conservative variant, and therefore likely to be noticed by the
listener (and perceived as a mismatch with intended acoustics by
the speaker). Thus, changes that cross a quantal boundary might
start out from a lower production probability. The simulations in
the present paper show that such changes are likely to die out, but
can also gain strength over time and even run to completion.

A take-home point of the present paper is that inference
makes the dynamics of sound change rather chaotic; particularly
so when the sublexical structure affected by the change has a
low type frequency (like an initial /ð/ in English). Depending
on small differences in initial conditions, and noise inherent to
probabilistic selection of variants to produce, the same change
affecting the same lexicon will sometimes go to completion,
sometimes lexicalize, and sometimes sputter out. This is true
in the present simulations even though there is no social
environment to provide an additional source of variation. This
means that the actuation problem is likely unsolvable. We should
not expect to be able to predict whether a change will or will
not happen. However, a theory of sound change can predict the
directions in which change will proceed if it does, and a model
that incorporates inference can help identify the factors that make
a change more or less likely to be actuated, and to be lexicalized.

An intriguing prediction of hierarchical inference is that
exceptionally conservative words should emerge in a ‘sweet spot’
in the frequency range when an articulatorily-motivated sound
change enters a late stage in its development. When the reduced
pronunciation becomes more likely, across the lexicon, than
the original one, new words entering the lexicon should adopt
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the reduced pronunciation. Therefore, these new words should
be more reduced than exceptionally conservative words. An
important direction for future research is to model the impact
of new words entering the lexicon on change. A limitation
of the present implementation is that the lexicon is constant
throughout. However, new words actually enter the lexicon all
the time, and not at a constant rate (Gershkoff-Stowe and Smith,
1997). It would be interesting to see how the trajectory of change
is influenced by state of the sublexicon when a large number
of new words is encountered. An additional complication arises
from the finding that words that have difficult articulations are
especially likely to be replaced with other words because their
articulation difficulty makes it less likely that they are selected for
production (Berg, 1998; Martin, 2007).

Hierarchical inference predicts the effect of word frequency to
be non-monotonic in the later stages of a reductive sound change.
The most frequent words will be reduced because of two reasons:
(1) the articulatory pressure toward reduction, as well as (2)
because they were reduced in the input to the current generation
of learners and thus will be associated with the reduced variant
of the phone. The least frequent words will be reduced because
they are not associated with any variant of the phone, and the
reduced variant is more frequent. At intermediate frequency
levels, some words, which happened to be often used with the
unreduced variant of the phone by previous generations, can
become associated with the unreduced pronunciation variant. As
mentioned earlier, this prediction presupposes that a particular
way of pronouncing a sublexical unit can spread from word to
word, as suggested by Pierrehumbert (2002). This assumption is
supported by the empirical results on new dialect acquisition in
German et al. (2013), where speakers of American English were
shown to rapidly learn new pronunciations for particular phones,
e.g., a glottal stop in place of a flap, with no evidence of learning
being restricted to individual words experienced during training
(see also McQueen et al., 2006; Peperkamp and Dupoux, 2007;
Maye et al., 2008; Nielsen, 2011).

An important contribution of the present simulations is to
show the conditions under which exceptionally conservative
words should emerge. This prediction of a U-shaped frequency
effect in the later stages of an articulatorily-driven sound change
is inevitable as long as (1) the sublexicon affected by the change
includes frequent words that reduce at much higher rates than
the rest of the sublexicon, and (2) the relationship between word
frequency and variant choice is due solely to automatization of
production, rather than to inference. That is, the learner should
assume that novel words are likely to behave like the typical word,
rather than like the typical rare word. This assumption is often
made in research on productivity, because speakers tend to apply
grammatical patterns to novel words based on the proportion
of known words that obey them (see Kapatsinski, 2018b, for a
review). However, Pierrehumbert and Granell (2018) found that
the morphological behavior of hapax legomena is predicted by
the behavior of rare words better than by the behavior of frequent
words (see also Baayen, 1993; Zeldes, 2012; but cf. Albright and
Hayes, 2003). Because productivity of a pattern is defined as
its applicability to novel words, the particular importance of
rare words in increasing productivity of a pattern suggests that

learners infer the behavior of novel words from the behavior
of (other) rare words, rather than from the entire lexicon. The
question is whether speakers also implicitly know that the same
phone (or letter) is likely to be pronounced differently in rare and
frequent words, and make use of this knowledge in production.

It is also possible that speakers infer the likely pronunciations
of words that they encounter more indirectly, by inferring the
word’s provenance. For example, speakers often need to infer
the linguistic origin of a word to know how to pronounce
it ‘properly’. Relatedly, Vaughn and Kendall (2019) show that
American English readers use the orthographic cue of an
apostrophe at the end of a verb like walkin’ to change their
pronunciation of the rest of the utterance in a way that
sounds more casual and Southern. For an adult native speaker’s
extensive experience with the language, the fact that the word
is novel suggests that it is the kind of word that occurs in
contexts with which the speaker has had little experience. For
the typical experimental participant, a native-speaker university
student, most newly encountered likely come from formal,
academic contexts. They may therefore infer a novel word to
likely be of similar provenance and thus pronounce it in a
more formal fashion.

An important direction for future research is to extend the
model to continuous articulatory variability. In principle, nothing
in the proposed model depends on categoricity of the choice. For
example, although we model reduction as the choice of a discrete
variant here, a U-shape should also emerge if it were treated as a
continuous acoustic or articulatory parameter (such as duration
or degree of closure for a stop/flap/approximant continuum). The
U shape depends on treating word as a random effect, and would
emerge whether the learner estimates a logistic regression model
(as here) or a linear regression model, as would be appropriate for
a continuous variable. Nonetheless, a categorical choice produces
certain discretization of the probability space because a difference
in choice probabilities is only observable when it corresponds to
a difference in token counts. This makes extreme probabilities
more likely to converge to zero and 1, especially in rare words
(e.g., Kapatsinski, 2010a). Variation could therefore, perhaps,
be less polarized if the speakers were estimating a continuous
parameter that is faithfully represented in the signal.

CONCLUSION

In this paper, I have explored the role of hierarchical probabilistic
inference in articulatorily-motivated sound change, motivated
by the findings that units at many levels of the linguistic
hierarchy simultaneously influence pronunciation of a sound
embedded in a particular context (Pierrehumbert, 2002). For
example, pronouncing a /t/ as a flap in a particular phonological
context could be due to the high probability of flapping in
a favorable phonological context of a following unstressed
vowel, or a high-frequency or informal word like whatever,
which can lead to reduction outside of favorable phonological
contexts (Shport et al., 2018). Because units at multiple levels
(sublexical, lexical, and collocational) are jointly responsible for a
particular pronunciation, a rational learner should allocate credit
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for a particular pronunciation across the levels via hierarchical
inference. The proposed model provides a way to resolve the
long-standing debate between proponents of regular sound
change and proponents of lexical diffusion: it is not that “sounds
change” or “words change”. It is both. Hierarchical inference
provides a way to estimate the contribution of both sounds and
words to particular pronunciations. The present model suggests
that speakers make use of this power.

The proposed model therefore incorporates the following
assumptions: (1) there are both words and sounds, (2) a word’s
use causes reduction of the sounds in that word, and (3) both
words and sounds (modeled as groups of words) are associated
with reduction probabilities, with rational hierarchical inference
adjudicating how much credit for a particular pronunciation of a
sound in a word is assigned to the word vs. the sound.

The model explains how an articulatorily-motivated change
can become lexicalized, even though there is a consistent pressure
pushing all words to reduce. It also demonstrates the emergence
of polarized variation (Zuraw, 2016). The model makes specific
predictions about the circumstances under which a sound change
can become lexicalized, the conditions under which it can
sputter out, and the conditions under which it is likely to
run to completion. Because chance plays an important role in
determining the outcome of change, even in the absence of social
influences, these predictions require a large-scale study of the
characteristics of sublexica affected by changes that do and do not
become lexicalized.

The hypothesis that speakers infer how to pronounce novel
words based on generalization from a population of known words
begs the question of what the relevant population is. Because
rare words are often systematically different from frequent
words (Bybee, 2001; Pierrehumbert and Granell, 2018), it can
be considered rational for the learner to infer that a novel
word will behave like other rare words, rather than being a
typical representative of the whole sublexicon containing a sound
eligible to undergo a change. When the innovative, reduced
pronunciation becomes the majority variant, a learner who does
not estimate the effect of frequency on pronunciation should
favor the reduced pronunciation in novel words compared to

known exceptionally conservative words. In contrast, a learner
who does estimate the effect of frequency on variant choice
should always show a monotonic frequency effect, with novel
words being the least reduced. This provides another interesting
direction for future empirical work.
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