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This paper explores how the rational theory of memory summarized in Anderson (1991)

can inform the computational psycholinguistic models of human parsing. It is shown

that transition-based parsing is particularly suitable to be combined with Anderson’s

theory of memory systems. The combination of the rational theory of memory with the

transition-based parsers results in a model of sentence processing that is data-driven

and can be embedded in the cognitive architecture Adaptive Control of Thought-Rational

(ACT-R). The predictions of the parser are tested against qualitative data (garden-path

sentences) and a self-paced reading corpus (the Natural Stories corpus).
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1. INTRODUCTION

In the rational theory of cognition, it is argued that cognitive functions are largely shaped by our
adaptation to the environment. In this view, it is assumed that various aspects of our behavior can be
explained as the result of the optimization to the structure of the environment. The rational theory
of cognition has been fruitful in explaining regularities in categorization, learning, communication
and reasoning, among others (Anderson, 1990, 1991; Oaksford and Chater, 1994, 2007; Tenenbaum
et al., 2011; Franke and Jäger, 2016; Piantadosi et al., 2016).

One particularly successful case of the rational theory was its application to the study of human
memory, as summarized in Anderson (1991). Assuming that the human memory should strive to
provide information that is needed at a particular situation and that it is costly and takes time to
retrieve elements from memory, we would expect that the retrieval of an element be related to
the probability that it is needed. That is, elements that are most likely to be needed at a particular
situation will be prioritized in retrieval. Since retrieval is ordered by need probabilities, it is expected
that less needed items require more time to be recalled. Furthermore, if retrieval is abandoned when
the cost for retrieval exceeds some threshold, we expect the less needed an item is, the more likely
it is that its recall fails. These predictions have been largely confirmed, see Anderson (1991).

The rational theory of memory played an important role in the development of the cognitive
architecture Adaptive Control of Thought-Rational, ACT-R (Anderson and Lebiere, 1998;
Anderson et al., 2004), which in turn played an important role in psycholinguistic models of parsing
(Lewis and Vasishth, 2005; Lewis et al., 2006; Reitter et al., 2011; Engelmann et al., 2013; Vogelzang
et al., 2017; Brasoveanu and Dotlačil, 2020). Lewis and Vasishth (2005) and subsequent works
showed, in particular, that the rational theory of memory implemented in ACT-R is insightful in
analyzing the pattern of recall in forming dependencies during parsing, for example, subject-verb
dependency as in (1-a) and antecedent-reflexive dependency as in (1-b) (see also Lewis et al., 2006;
Van Dyke, 2007; Wagers et al., 2009; Dillon et al., 2013; Kush et al., 2015; Lago et al., 2015; Jäger
et al., 2017; Jäger et al., 2020; Nicenboim et al., 2018; Villata et al., 2018; Engelmann et al., 2019;
Vasishth et al., 2019; Smith and Vasishth, 2020, among others).

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.657705
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.657705&domain=pdf&date_stamp=2021-06-23
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.dotlacil@gmail.com
https://doi.org/10.3389/fpsyg.2021.657705
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.657705/full
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(1) Example of dependencies, signaled by arrows.

a. Students rarely know the answer. (subject-verb)

b. The man told the woman about himself.

(antecedent-reflexive)

This brings us to the research topic of this paper, namely,
studying whether other aspects in which parsing has to rely on
memory can also be seen as fitting the research programme of the
rational theory of cognition. In particular, during comprehension
and production, native speakers have to continuously rely on
their past knowledge of parsing rules. For instance, in (1), readers
would not be able to comprehend the sentences correctly unless
they recall that subjects normally precede verbs in English, verbs
are followed by objects, English has prepositions (not post-
positions) etc. From the perspective of the rational theory of
memory, it is expected that the retrieval of parsing rules, such
as these should follow the general considerations highlighted
above, i.e., parsing rules should be retrieved in the order of
their need probability and the order should monotonically
correlate with latencies and accuracies. We will show that it
is indeed possible to construct parsing on the basis of the
rational theory of memory. The resulting model can furthermore
correctly predict qualitative data in psycholinguistics (garden-
path phenomena) and its predictions match behavioral measures
in a psycholinguistic corpus (Natural Stories Corpus, Futrell et al.,
2018).

The structure of the paper is as follows: in the following
section, we briefly introduce the rational theory of memory
as part of the cognitive architecture ACT-R. Next, we
present transition-based parsers developed in computational
linguistics and show how transition-based parsing and cognitive
architectures can be combined. The cognitively informed parser
is then evaluated on garden-path examples and data fromNatural
Stories Corpus. Finally, our research is briefly compared to
related works in computational psycholinguistics.

2. MODELING MEMORY RETRIEVAL IN
RATIONAL THEORY

Adaptive Control of Though-Rational assumes, true to its name,
that various cognitive functions should be modeled as a case of
rational theory of cognition. Here, we will focus on how memory
and memory retrieval are formalized in ACT-R.

ACT-R assumes two types of memory: procedural memory
and declarative memory. We focus here on the latter, the
declarative memory, which is used for the storage of factual
knowledge.1

The goal of the declarative memory system should be to
recall a piece of information i that is needed to achieve the
current goal. As is common in ACT-R, we will formalize pieces
of information as chunks. These are attribute-value matrices, or,
in the terminology of ACT-R, slot-value matrices. An example of

1The procedural memory system stores the knowledge exhibited in automatized,

sequential behavior. This type of memory plays less important role in our models

of parsing. We will briefly come back to it in section 4.

a chunk, representing a simplified piece of information retrieved
in the dependency in (1-a), is shown in (2). In this notation, slot
names appear on the left side and their values on the right side.
The chunk represents the knowledge that a plural subject of the
form students was encountered and stored in memory.

(2) Example of a chunk stored and retrieved in (1-a):




Form students
Function SUBJECT

Number PLURAL





Assuming that retrieving a chunk is costly and takes time,
retrieval frommemory must be constrained. An optimal retrieval
system would prioritize those chunks that are more likely needed
for the current goal. In general, it should hold that the recall of a
piece of information, chunk i, adjusted by the value of the current
goal G should not exceed the cost of the retrieval C.

(3) P(i) · G < C

The task of the rational theory of memory is to find a reasonable
estimation of P(i). In ACT-R, it is assumed that P(i), the
probability that i is needed, is conditionalized on two sources of
information: (i) the historyHi, that is, the past use of i;and (ii) the
current contextQ.We thus need to estimate P(i|Hi,Q), which can
be easily done using Bayes’ rule. However, rather than expressing
the conditional probability directly, it is standard in ACT-R to
estimate log-odds. The estimation is expressed in (4) (ic is the
complement of i, i.e., P(ic) is the probability that i is not needed;
Q, the current context, consists of indices j, which we call cues).

(4) log( P(i|Hi ,Q)
P(ic|Hi ,Q)

) = log( P(i|Hi)
P(ic|Hi)

·
P(Q|i)
P(Q|ic)

) = log( P(i|Hi)
P(ic|Hi)

) +

log(
∏

j∈Q

P(j|i)
P(j|ic)

)

The inference in (4) makes the common assumption that while
the probability that i is being needed is dependent on Hi and
Q, the probabilities of the cues j in the current context Q are
mutually independent and not dependent on the history Hi,
conditional on i (see Anderson, 1991). The log-odds in (4) have a
special status in ACT-R. They are called the activation of i, written
as Ai. The activation consists of two parts: the history component
[the first addend in(4) ] and the context component [the second
addend in(4) ]. In ACT-R, the history component is called base-
level activation, abbreviated as Bi, and the context component is
called spreading activation, which we will abbreviate as Si. We
can rewrite the formula as follows2:

(5) ACT-R activation: log( P(i|Hi,Q)
P(ic|Hi ,Q)

) = Ai = Bi + Si

Let us see how ACT-R estimates the history and the context
components. Before doing so, we want to stress two things. First,
the theory we are to discuss is generally and widely accepted by
the ACT-R research community. Second, it is important to realize
that the estimations of both the history component and the
context component are not just arbitrary equations that happen
to fit memory data. They should reflect the estimations that the

2ACT-R activation also standardly includes noise parameter. In (5), we ignore the

noise parameter ǫ, so that activation is deterministic.
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mind draws from the structure of the environment in order to
arrive at the best estimation of P(i) used in (3), just as a rational
theory of cognition would make us expect. However, we will not
present evidence that the following estimations are generalized
from the structure of the environment since this has been done
elsewhere (see Anderson, 1991).

The base-level activation Bi of a chunk is given in (6) and
captures the fact that the probability that a chunk will be used
next time decreases as a power function of the time since the last
use, but it is also affected by the number of times that the chunk
has been used. The base-level activation is expressed as the log of

the sum of t−d
k

, where tk is the time elapsed between the time of
presentation k and the time of retrieval. d is a negative exponent
(decay), a free parameter of ACT-R, often set at its default value
of 0.5. “Presentation” in ACT-Rmeans two things. Either it refers
to the moment that the chunk was created for the first time
(i.e., someone learns a particular fact), or the moment when
the chunk was successfully recalled from declarative memory to
be used in some context, after which it is stored in declarative
memory again.

(6) Base-level activation: Bi = log

(

∑

k∈H

t−d
k

)

(d – decay, free

parameter)

The second element in the calculation of activation is given
in (7). To keep the calculation manageable, some simplifying
assumptions are introduced (see Anderson, 1991; Anderson and
Lebiere, 1998). First, it is assumed that the cues j in the current
context are independent of each other (and of the history Hi),
conditional on i. Second, the denominator, which should be
P(j|ic), is simplified into P(j) since conditionalizing j on the
irrelevant piece of information ic should not affect probabilities
significantly and can be ignored. The resulting log of probability

ratios, log
P(j|i)
P(j)

is called the associative strength and is standardly

abbreviated as Sji. The equation also includes the weight W,
which is a free parameter weighing the context component
of the activation.

(7) Spreading activation: Si = W · log
∏

j∈Q

P(j|i)
P(j)

=

∑

j∈Q
W · log

P(j|i)
P(j)

=
∑

j∈Q
W · Sji

(W – weight, free parameter)

Finally, the equation in (8) shows how ACT-R estimates the
associative strength Sji. This equation is only used if the cue j is
predictive of the chunk i. If it is not, Sji is set at 0. Simplifying
somewhat, ACT-R assumes that a cue is predictive of a chunk if
the cue appears as a value in the chunk.

(8) Sji = S− log(fanj) (S – maximum associative strength,

free parameter)

S is the log of the size of the declarative memory, but commonly,
it is hand-selected as a large enough value to ensure that Sji is
always positive (see Bothell, 2017). fanj is the number of chunks

in memory that have the cue j as its value. For discussion as

to why (8) approximates log
P(j|i)
P(j)

, see Brasoveanu and Dotlačil

(2020). It might also help to notice that the formula Sji also
expresses the following intuition: the associative strength (and
consequently, activation) will be large when j appears only in
a few chunks since in that case j is highly predictive for each
of those chunks; the associative strength will decrease if there
are more chunks in declarative memory that carry j as its value
(see Anderson, 1974; Anderson and Lebiere, 1998; Anderson and
Reder, 1999 for empirical evidence).

Finally, the formula in (9) shows how Ai is related to the time
it takes to retrieve a chunk from declarative memory, Ti. The
relation between Ai and Ti is modulated by two free parameters,
F, latency factor, and f , latency exponent.

(9) Retrieval time: Ti = Fe−fAi (F, f – free parameters)

When both parameters are set at 1 (their default value), the
retrieval time of a chunk i is simply the exponential of its negative
activation, which is the reverse odds that the chunk i is needed in
the current context [see (4)]:

(10) Retrieval time if F, f = 1: Ti = e−Ai =
P(ic|Hi ,Q)
P(i|Hi,Q)

It follows from (10) that the more a chunk is needed to achieve
the current goal, the faster it will be retrieved.

Let us illustrate how all the equations are put together on an
example from the introduction, the subject-verb dependency.

Assume we comprehend or produce the verb in (11-a) and
want the retrieve the chunk students to resolve the subject-verb
dependency. For the purposes of this illustration, we assume
that the chunk is represented in memory as shown in (11-b),
repeated from (2). The dependency needs to be resolved for
interpretational purposes since listeners need to know who the
agent of know is. It is also necessary for production purposes
since speakers need to know what inflectional form the verb
should have.

(11) a. Dependency:
Students rarely know the answer. (subject-verb)

b. The chunk to be retrieved:





Form students
Function SUBJECT

Number PLURAL





The activation of the subject students, its log-odds that the chunk
is needed, consists of the base-level activation and the spreading
activation. Suppose that 1 s elapsed since storing the chunk in
memory and the chunk was not re-used. Then the base-level
activation, calculated using the equation in (6), is:

(12) Bstudents = log(1−d) = 0

The spreading activation, calculated using the Equations (7) and
(8), is given in (13). Note that the cues [subject], [plural] are the
cues in the current context, i.e., we assume for this example that
these two cues are present in the cognitive context when resolving
the subject-verb dependency.

(13) Sstudents = W · S[subject],students +W · S[plural],students

Let us assume that the free parameter S is set at
1 and so is the weight W. Since both cues appear
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in the chunk students, we have to calculate both
addends as:

(14) Sstudents = 1·(1−log(fan[subject]))+1·(1−log(fan[plural]))

The only part that needs to be decided is the value of the fan
for two cues. Let us assume that in the memory, there is no
other subject and one other plural element. Then the calculation
proceeds as follows:

(15) Sstudents = 1 · (1− log(1))+ 1 · (1− log(2)) ≈ 1.31

Finally, we can calculate retrieval times as follows:

(16) Tstudents = F · e−f ·(0+1.31) ≈ 0.27 s (if F and f set at 1)

Based on the discussion of this example, one might note that the
ACT-R model of declarative memory makes several predictions
regarding retrieval times. Some of those are summarized in the
bullet points below:

• The longer the time elapsed since a chunk was used last time,
the lower base-level activation the chunk has. Consequently,
chunks that were used a long time ago will be retrieved slower
than chunks used recently.

• The less often a chunk was used, the lower base-level activation
the chunk has. Consequently, chunks that are rarely used will
be retrieved slower than chunks used often.

• The more a chunk matches cues of the current context, the
higher the boost from spreading activation. Consequently,
chunks with higher matches with cues should be
retrieved faster.

• Increasing the fan of a cue will increase the time to retrieve
an element. For example, imagine that more chunks with
the value plural were stored in declarative memory. Then,
the associative strength of any chunk with plural would be
lower and consequently, it would take more time to retrieve
such chunks.

To the extent that these qualitative predictions are confirmed,
we have supporting evidence for the rational theory of memory
as implemented in ACT-R. To the extent that quantitative
predictions of the model can be well fit to retrieval data, we also
have evidence that the estimates of the history and the context
component of (4) in ACT-R are on the right track.

Various evidence has been collected showing that qualitative
as well as quantitative predictions of the retrieval model in ACT-
R are justified. Anderson (1991) and Anderson and Lebiere
(1998) present supporting evidence from general cognitive tasks
(independent of language). In psycholinguistics, Lewis et al.
(2006), Jäger et al. (2017); Jäger et al. (2020), among others,
summarize evidence that at least some cases of the retrieval of
dependencies can be modeled as a case of ACT-R retrieval.

The goal of this paper is to apply the retrieval and memory
model of ACT-R to a new domain. We will investigate how
the rational theory of memory can model parsing knowledge
and how the model of parsing can be embedded in ACT-R. We
will show that once one thinks of parsing steps as chunks in
declarative memory whose retrieval is driven by the same rules as
other memory elements, the ACT-R model of memory becomes
directly applicable to syntactic parsing. The activation that is

associated with retrieved parsing steps can then be used to model
the effect of context on processing, e.g., investigations that are
mainly the domain of psycholinguistic parsing theories, such as
the Surprisal Theory (Hale, 2001). To the extent that the resulting
model of parsing makes correct quantitative and qualitative
predictions, we construct evidence that processing difficulties
observed during parsing can be approached from the vantage
point of the rational theory of memory. The hypothesis explored
in this paper is further investigated in Dotlačil (accepted)3, which
also studies how individual components of ACT-R retrieval
system affect the retrieval of parsing steps and how the retrieval
of parsing knowledge interacts with the retrieval of dependencies
in processing.

In section 3, we introduce transition-based parsing and show
how such parsers can be built as a case of declarative memory
in ACT-R. In section 4, we show how the model can be
linked to reaction time data and evaluate its qualitative and
quantitative predictions.

3. TRANSITION-BASED PARSING

We introduce transition-based parsers and show that they can
be, to a large extent, embedded in ACT-R and combined with the
memory structures discussed in section 2. Such a combination
directly delivers behavioral predictions to be tested in the
following sections.

Transition-based parsers are parsing systems that predict
transitions from one state to another, following decisions made
by a classifier. Since the classifier plays a crucial role in this type
of parsers, these parsers are also called classifier-based parsers.

Transition-based parsers are most commonly implemented
for dependency grammars and arguably, they are most successful
and widespread when constructing dependency graphs (Nivre
et al., 2007). However, they have also been applied to phrase-
structure parsing (Kalt, 2004; Sagae and Lavie, 2005; Liu
and Zhang, 2017; Kitaev and Klein, 2018, a.o.). This paper
also develops a phrase-structure transition-based parser. We
introduce a shift reduce variant of the transition-based parsing
algorithm, which is arguably the most common type of
transition-based parser for phrase structures, and show how it
can be understood in terms of memory systems discussed in the
previous section.

3.1. Algorithm of Transition-Based
Phrase-Structure Parsing
The parsing algorithm works with two databases, a stack of
constructed trees S and a stack of upcoming words with their
POS (part-of-speech tags) W . When parsing begins, S is empty
and W carries the upcoming words as they appear in the
sentence, so that the first word appears at the beginning of the
stack, followed by the second word, etc.

Parsing proceeds by selecting actions based on the content of
S andW . Every parsing stepP is a function from S ,W to actions
A, that is, P :S × W ; A. In the variant of the parser that we
consider, there are three actions that the parser can select:

• shift

3Dotlačil, J. (accepted). Parsing as a cue-based retrieval model. Cogn. Sci.
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• reduce
• postulate gap

The first action, shift, pops the top element from the stackW and
pushes it as a trivial tree onto stack S . An element in W is a pair
〈word, POS〉, the tree moved onto the stack is just the POS tag
with the terminal the actual word.

The second action, reduce, pops the top element (if the
reduction is unary) or it pops the top two elements (if the
reduction is binary) in the stack of constructed trees S and creates
a new tree. If the reduction is unary, the new tree has just one
daughter under the root, the tree that was just popped from the
stack. If the reduction is binary, the newly created tree has two
daughters, the two trees that were just popped from the stack.
In either case, the newly constructed tree is pushed on top of
the stack S . It is assumed that all trees are at most binary, so no
further reductions beyond binary reductions are necessary.

Finally, the third action, postulate gap, postulates a gap and
resolves it to its antecedent. Not every parser in computational
linguistics assumes this action, i.e., implemented parsers can
proceed just by shifting and reducing (but see Crabbé, 2015;
Coavoux and Crabbé, 2017a,b as examples of transition-based
parsers that do consider gap resolution). We add gap resolution
to our parser since ignoring gaps would make the parser less
useful for psycholinguistics, which often studies the effect of gap
resolution on processing.

There are several restrictions on the three actions. First, no
shift can be applied when W is empty. When S is empty,
no reduce can be applied and when it has only one tree,
reduce binary cannot be applied. Finally, no more than two
postulate gaps actions can be applied between two shifts. This last
restriction ensures that the system does not fall into the infinite
regress of gap postulation.

We illustrate the steps of the shift-reduce parser on a simple
example: parsing of a boy dances. The phrase structure is shown
in Figure 1 and the parsing steps are:

1. Starting position: S = [],
W = [〈a, DT〉, 〈boy, N〉, 〈dances, V〉]

2. shift S = [〈
DT

a
〉],W = [〈boy, N〉, 〈dances, V〉]

3. shift S = [〈
DT

a
〉, 〈

N

boy
〉],W = [〈dances, V〉〉]

4. reduce (binary) with label NP S = [〈
NP

N

boy

DT

a

〉],

W = [〈dances, V〉]

5. shift S = [〈
NP

N

boy

DT

a

〉, 〈
V

dances
〉]

6. reduce (unary) with label VP S = [〈
NP

N

boy

DT

a

〉, 〈
VP

V

dances

〉]

7. reduce (binary) with label S S = [〈
S

VP

V

dances

NP

N

boy

DT

a

〉]

FIGURE 1 | Phrase structure of a boy dances.

In this illustrative example, we assume that the parser knows
what the right phrase structure is and parses toward that
structure. Of course, the crucial question is what happens
when the phrase structure is unknown and the parser needs
to predict what action to take. This is discussed in the
next section.

3.2. Parsing Steps as Memory Retrievals
The parsing step has to decide which action (among shift,
reduce, and postulate gap) should be taken, and, if reduce is
selected, how should the reduction be done: should it be unary
or binary and what should the root label of the newly constructed
tree be?

We investigate the hypothesis that the parsing step can be
treated as a case of memory retrieval. The past parsing steps
form the declarative memory of the parser. The parser retrieves a
parsing step (or parsing steps) from memory that has the highest
probability of being needed given the current goal. The current
goal, in turn, is to parse the sentence. From this perspective,
parsing is just a particular instantiation of rational theory of
memory and can be embedded in ACT-R. The activation of a
parsing step, i.e., the log-odds that a step is needed, is calculated
from the history component and the context component. The
former is derived from the time elapsed since the step has been
used and re-used, the latter is calculated based on the cues in the
current context and the spreading activation from these cues to
chunks in declarative memory.

While it might be possible to think of the context as complete
trees in S and all information in W , we will limit the amount of
information in the two databases significantly. It will be assumed
that S and W carry only some features about the trees and
upcoming words, listed in (17). Thus, the parser itself never has a
full snapshot of the phrase structure that it is deriving. It only
carries some minimal, local information. The phrase structure
can always be reconstructed through parsing steps the ACT-
R agent (and, arguably, humans) took but there is no single
snapshot in which all the information is available to the agent.
This position is common in ACT-R parsing, see for example,
Lewis and Vasishth (2005).
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(17) Features representing context:

a. 1 upcoming word with its POS.
b. root labels of top 4 elements in S

c. lexical head and the POS of the lexical head for top
4 elements in S

d. left and right children in top 2 elements in S

e. antecedent carried (yes or no), i.e., is there an
antecedent (like a wh-phrase) that needs to be
resolved through a gap and was not resolved yet?

The features should be familiar, maybe with the exception of the
lexical head. The head is a terminal that projects its phrase (a
verb is the head of a verb phrase, a noun is the head of a noun
phrase etc.; see Collins, 1997 on head projection in computational
parsers, which this work follows).

All the features in (17) spread activation to chunks stored in
declarative memory, which in turn represent all parsing steps
completed in the past. Recalling the right parsing step is a
case of memory retrieval that follows the rules in section 2.
Consequently, it is predicted that different parsing steps might
require different amounts of time depending on the time it
takes to retrieve them. Parsing steps with higher activations
will be recalled faster than parsing steps with lower activations.
Activations, in turn, are based on the base-level activation and
spreading activation, i.e., the ACT-R estimates of the history
and the context component in calculating the need log-odds
of a chunk.

4. MODELING READING DATA

We present an implementation of the model of sentence parsing
built on the rational approach to memory and discuss two case
studies testing the implementation.4 Section 4.1 introduces the
model. Section 4.2 investigates whether the parser can predict
processing difficulties for selected garden-path phenomena.
Section 4.3 investigates whether the parser can be used to model
self-paced reading time data from the Natural Stories Corpus
(Futrell et al., 2018).

4.1. Parsing Model
We assume that a declarative memory consists of chunks that
represent correct past parsing steps. These chunks are collected
from the data in the Penn Treebank (PTB) (Marcus et al., 1993).
As is standard, we split the section of the PTB data as follows:
all the sections up to and including section 21 are used to train
the parser, i.e., to collect the correct parsing steps; section 22 is
used for development; section 23 is used to test the accuracy of
the parser. Before training we pre-process and prepare the phrase
structure by (i) transforming phrases into binary structures in the
way described in Roark (2001) (see Roark, 2001; Sagae and Lavie,
2005 on the reasons to do), (ii) annotating phrases with head
information, (iii) removing irrelevant information (coreference
indices on phrases), (iv) lemmatizing tokens so that lexical heads
are stored as lemmas, not as inflected tokens.

4The code for the model is available here: https://github.com/jakdot/parsing-

model-and-a-rational-theory-of-memory.

Parsing novel sentences consist of recalling the needed
chunks, i.e., parsing steps collected from the PTB, from
declarative memory. The recall is driven by the activation of the
chunks. To calculate the activation of each chunk, formulas in
section 2 are applied. We assume that the parser will recall the
three chunks with the highest activations and choose the action
that is the most common one among those three chunks.5 The
parser repeats this procedure until it encounters shift. At that
moment, the parser is done with integrating word n and can
move its attention to word n+1. The activations collected during
the parsing are averaged. They can be used to directly predict
processing difficulties, as in section 4.2, or used to calculate
reaction times, as in section 4.3.

The activation of a chunk is the sum of base-level activation
and spreading activation. For base-level activation, we need
to estimate how often a parsing step has been used in the
past and how much time elapsed. The estimation comes
from the frequency of parsing steps, collected from the PTB.
The frequencies can be transformed into base-level activation
according to the procedure described in Reitter et al. (2011), see
also Dotlačil (2018) and Brasoveanu and Dotlačil (2020). The
procedure is summarized in Appendix A.

The spreading activation is calculated based on the match
between values in chunks and features in the current cognitive
context at the moment when the parsing step is recalled. The
features are summarized in (17).

4.2. Case 1: Garden-Path Sentences
We start the investigations of the predictions of the parser
by considering selected garden-path phenomena, taken from
previous literature (Bever, 1970; Frazier, 1978; Marcus, 1978;
Gibson, 1991; Pritchett, 1992).

We model the predictions for the pairs in (18)–(21). In each
pair, the (a) sentence is a classical example of a garden path. The
(b) sentence carries the same or almost identical interpretation as
the garden path. However, since the disambiguation takes place
early in (b) sentences, no garden-path effect is observed.

(18) a. The horse raced past the barn fell.
b. The horse which raced past the barn fell.

(19) a. While she mended the sock fell on the floor.
b. While she mended, the sock fell on the floor.

(20) a. He convinced her tired children are noisy.
b. He convinced her that tired children are noisy.

(21) a. She gave the boy the dog bit a bandage.
b. She gave the boy that the dog bit a bandage.

We want to see how the parser parses (18)–(21) and what
activation values are predicted for the words in the sentences. We
expect that the activation of the retrieved parsing steps should
be lower for garden-path cases [(a) examples] compared to the
(b) cases. This should happen at the target words, the words at

5Using three chunks, rather than a single chunk, to inform about the action,

makes the parser less error-prone and sensitive to outliers. Adding more than

three chunks does not improve the accuracy of the parser. We briefly discuss the

accuracy of the parser in section 5.
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FIGURE 2 | Activations per word for sentence pairs (18)–(21). The yellow bars represent the activations in the sentences that disambiguate early. The blue bars are

the activations of the garden-path sentences. The ellipses highlight the activations on the words that trigger the garden-path effect.

which processing difficulties should be located in garden-path
sentences. The target words are fell for (18), fell for (19), are
for (20), and bit for (21). We expect the activation to decrease
for garden-path sentences at the disambiguation point because
the base-level activation of parsing steps should be low (garden-
path sentences should not be very frequent in natural data) and
because the spreading activation should be low (garden-path
sentences move us to the syntactic context that cannot find a
good match in the past parsing steps hence not many cues will
spread activation).

The activations per word are graphically summarized in

Figure 2. For this calculation, we assumed default values of free

parameters and we set the maximum associative strength, S,
from the Equation (8) at 20. As we can see, the (a) examples
show lower activations than (b) examples at the target word.
Furthermore, with one exception, the classical pair in (18), the
difference not only goes in the predicted direction, but it is
large at the critical word (2 points of activations or more). Note
also that the contrast in activations usually spills over to the
following words. Since lower activations translate into higher
retrieval times we see that the model is able to predict increased
reading times in garden-path sentences. Furthermore, chunks

with lower activations have higher probability of retrieval failures
(Anderson, 1991; Anderson and Lebiere, 1998). Consequently,
the decrease in activation can explain processing difficulties in
general, in particular, the failure to provide a correct parse for
garden-path sentences (Pritchett, 1992).6

The phrase structures built by the parser are correct for all
the (b) examples with the exception of (21-b) in which the
parser wrongly attaches the noun phrase a bandage inside
the relative clause. For the (a) sentences, the parser struggles at
the disambiguation point and the parsing steps that it retrieves
are not adequate phrase structures. It provides phrase structures
that are incorrect but in which locally built phrases are combined
in a plausible way. The incorrect parses for the (a) sentences were
selected by the parser because they had the highest activations

6The activations are also very low at the beginning of each sentence, irrespective

of whether we deal with a garden-path sentence or not. This is an artifact of the

selected model. Most cues for spreading activation come from the tree structures

already built. Of course, nothing or almost nothing has been built at the beginning

of a sentence, hence there are few cues at the start and consequently, spreading

activation is low. It is possible to avoid this property of the model, for example,

by not counting just matches in built trees, but also matches by the position in a

sentence as cues that can boost activations.
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in the context. This means that if we restricted our attention to
correct parses, the contrast between garden-path sentences and
their (b) counterparts would be even larger at the critical words.

One pair in which the contrast between the (a) and the (b)
examples goes in the right direction but is so small that the
activation contrast is almost irrelevant is the case (18). The fact
that the garden-path sentence almost does not differ from the
baseline might be caused by the fact that we do not model
discourse and semantic phenomena, while Crain and Steedman
(1985) showed convincingly that this garden path is sensitive to
its context. Since the model does not take context into account, it
misses out on discourse effects affecting activations.

To conclude, we see that the contrasts in the activation of
retrieved parsing steps can be tied to processing difficulties and
predict cognitive difficulties observed in garden-path sentences.

4.3. Modeling Corpus Reading Data
4.3.1. Introduction

We study the predictions of the parsing model for the Natural
Stories Corpus (NSC, Futrell et al., 2018). The NSC is a
corpus containing 10 English narrative texts with 10,245 lexical
tokens in total. The texts were edited to contain various
syntactic constructions, including constructions that are very
rare. The corpus was read by 181 English speakers using a
self-paced reading moving-window paradigm and the self-paced
reading data were released along with the texts. Furthermore,
all the sentences were annotated according to PTB notational
conventions by the Stanford Parser (Klein and Manning,
2003) and checked and hand-corrected. The fact that the
NSC has a plethora of syntactic constructions and includes
manually controlled PTB-compatible syntactic parses makes
the corpus particularly usable for the computational modeling
of parsing.

4.3.2. Reading Model

The parser as specified in sections 2 and 3 and implemented
in section 4.1 will be used to model the self-paced reading of
sentences in the corpus. However, to make sure that the parser
does not go astray, at every word, we collect the correct parse
provided by the NSC. This correct parse is used as the context
for retrieval: based on this parse, the parser attempts to retrieve a
parsing step from declarative memory. The declarative memory
consists of parsing steps collected from the PTB, see section 4.1
for details. Then, the average activation of the retrieved chunks
is recorded. After the parse for the word is finished, the correct

parse is considered again for the next word. That means that the
parser will have the correct syntactic structure at every word and
will use the correct context for retrieval.

Importantly, in a self-paced reading task, readers do much
more than just retrieving and applying parsing steps. It seems
uncontroversial that a model simulating self-paced reading
should, at least, attend visually to word n, retrieve lexical
information on that word, parse, press a key (to reveal the next
word) andmove visual attention to the next word, word n+1.We
will add these parts and combine them with the parsing model to
construct a more realistic model of reading. The added parts are
not created ad hoc, they are based on the (simplified) models of
visual attention and self-paced reading (Anderson and Lebiere,
1998; Brasoveanu and Dotlačil, 2020).

The sequential behavior like reading is modeled in ACT-R
as a case of procedural knowledge, which sequences processes,
such as the ones mentioned above and calls various sub-modules
(visual, declarative memory, motor module) to carry out task
specifics. The processes are linked together and controlled by
the procedural system. In Figure 3, we represent the processes
as boxes, which the procedural system lets fire in the order as
signaled by the arrows. It is assumed that these processes are
repeated on every word. Firing each of these processes takes the
same amount of time in the procedural system, specified in (22).

(22) Time to start process: r (r – free parameter)

In addition to that, submodules involved in a process incur extra
processing time based on their own properties.

The process attend word visually attends to a word. To keep
the model simple, we will assume that visual attention takes
a fixed amount of time, in line with basic models of ACT-R
(Bothell, 2017). It is assumed that attending takes 50 ms, the
default value of process firing in ACT-R. Since visual attention is
modeled as a fixed amount of time, any fit of themodel to the data
must be driven only by retrieval processes: the retrieval of lexical
information or the retrieval of syntactic information, which are
the only two retrieval processes considered in this paper.

The processes press key andmove visual attention interact with
the motor module and the visual module, respectively. Press key
is modeled assuming the basic model of motor actions in ACT-
R, which is inspired by the EPIC cognitive architecture (Bothell,
2017). It is assumed that readers have their fingers ready on the
key to be pressed. In that case, the simple model of motor actions
in ACT-R, followed here, postulates that it takes 150 ms to press
the key. Crucially, during this time, the procedural system is

FIGURE 3 | Sequential model of reading on one word. Each box represents one process. Arrows show the order in which the processes fire. There are two arrows

from retrieve parsing steps because retrieve wh-dependent is only triggered when a gap is postulated by the parser.
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free to carry out any other actions in the sequential model. That
means that moving visual attention can happen concurrently
with key presses.

The processes retrieve lex. info, retrieve parsing steps and
retrieve wh-dependent are the processes that depend on
declarative memory. All processes take at least r amount of time
each. Aside from that, they will also take some extra time: the
amount of time needed to retrieve a chunk from declarative
memory. All relevant equations to calculate retrieval time have
been given in section 2. Let us repeat that the retrieval time is
a function of activation of a retrieved chunk and modulated by
two free parameters (23-a). Activation is calculated as the sum of
base-level activation and spreading activation (23-b).

(23) a. Ti = Fe−fAi (F, f – free parameters)
b. Ai = Bi + Si

The base-level activation and spreading activation have been
discussed in detail in section 2. Recall that these activations had
several free parameters: decay d, weightW, maximum associative
strength S. We set the first two parameters at their default value
0.5 and 1, respectively (see Anderson and Lebiere, 1998; Bothell,
2017). The maximum associative strength is set at 20 to ensure
that associative strength is always positive (see Bothell, 2017).
Furthermore, r, the time for the procedural system to fire a
process, see (22), is set at 33 ms, as this was found in Dotlačil
(accepted)3 to be the median value for an ACT-R model that
simulates reading in a self-paced reading experiment. Finally,
the time component needed to calculate base-level activation is
calculated in the same way for the retrieval of lexical information
(words) and the retrieval of parsing steps. It is derived from the
frequencies of words and parsing steps, based on the procedure
summarized in Appendix A.

This leaves us with two parameters needed to estimate
retrieval times from activations: F and f . These will be estimated
with a Bayesian modeling procedure.

4.3.3. Bayesian Modeling

There are two parameters that we need to model to fit the
reading model to the corpus data: F and f . We will estimate them
using Bayesian techniques (see Dotlačil, 2018, Brasoveanu and
Dotlačil, 2018, Brasoveanu and Dotlačil, 2019, Brasoveanu and
Dotlačil, 2020; Rabe et al., 2021 for other examples of combining
Bayesian modeling with ACT-R cognitive models; see Weaver,
2008; Dotlačil, 2018 for arguments why this is necessary).

We assume the structure of themodel as shown in Figure 4. In
this graph, the top layer represents priors, the bottom part is the
likelihood. ACT-R(F;f) is the ACT-R cognitive model of reading
described in the previous section. When run and supplied with
F and f values, it outputs latencies per word. The latencies of
the model are then evaluated against the data assuming the
likelihood is a normal distribution (measured in milliseconds)
with standard deviation 20 ms (the bottom part of the graph).
The actual data that we try to model are mean reading times
(mRT) per word in the self-paced reading corpus. We select the
first two (out of 10) stories for the estimation of the parameters.
In each story, there is an observable effect of speed-up as readers

progress beyond the first few sentences. Since our model does
not represent that, we decided to remove the first 10 sentences
from each story. Furthermore, we model mRTs only starting at
the second word and ending at the second to last word in each
sentence since the first and last words tend to be outliers due to
starting and wrap-up effects. Besides, the starting words are also
outliers in our model (see also text footnote 6).

The following prior structure for the parameters is assumed:

• F ∼ Gamma(α = 2,β = 10)
• f ∼ Gamma(α = 2,β = 4)

Given these priors, the values in the range 0–1 are most likely but
extremely low values are penalized. The priors for the parameters
have the mean values of 0.2 and 0.5, respectively. These priors
take into account previous findings that when F and f are
estimated on language studies, including reading data, they are
below 1 but usually not exceedingly small and F tends to be
smaller than f (Brasoveanu and Dotlačil, 2018, 2020).

The estimation of parameters was done using PYMC3 and
MCMC-sampling with 1,200 draws, 2 chains and 400 burn-in
draws. The sampling chains converged as witnessed by the Rhat
value (Rhat for F was 1.036; Rhat for f was 1.028).

4.3.4. Results

The mean, median and standard deviation values for the latency
factor (F) and latency exponent (f ) of the posterior distributions
can be seen in Table 1.

FIGURE 4 | Bayesian model for parameter estimation of Natural Stories

Corpus.

TABLE 1 | Estimated parameter values.

Mean Median Std

F 0.0139 0.0139 0.001

f 0.661 0.655 0.068

Frontiers in Psychology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 657705

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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TABLE 2 | The linear model with Predictive RT as the only independent variable.

Estimate SE t-Value p-Value

Predictive RT 0.993 0.0024 415.5 p < 0.0001

TABLE 3 | The linear model with Intercept and Predictive RT.

Estimate SE t-Value p-Value

Intercept 248.4 12.7 19.57 p < 0.0001

Predicted RT 0.220 0.040 5.55 p < 0.0001

The mean and median values for F match the estimate in
previous Bayesian + ACT-R reading models (Brasoveanu and
Dotlačil, 2018, 2020). However, the estimate of f is greater than
in previous reading studies. It is possible that this is because
the previous reading studies did not take the retrieval of parsing
steps into account, focusing only on lexical retrieval and that the
previous studies mainly looked at experimental data, while this
study models corpus data.

To further investigate the model, we check samples from
its posterior distribution of predicted RTs (i.e., RTs that the
reading model predicts using the posterior distribution of the
fitted parameters). We expect that these should correlate with
observed meanRTs. This is because the model simulates two
steps in processing, namely, lexical retrieval and parsing. Lexical
retrieval is affected by the activation of words, which depends
on frequency and causes less frequent words take more time
to retrieve than more frequent words (see Appendix A for the
estimation of base-level activation based on frequency). Syntactic
retrieval is affected by the activation of parsing steps, which is the
sum of base-level activation and spreading activation. The base-
level activation is related to frequency just like word activation
and makes less frequent parsing steps take more time to retrieve
(see Appendix A). Furthermore, if a reader is in a rare syntactic
context (i.e., an uncommon syntactic construction), they are less
likely to find parsing steps in the past that would provide a
good match. This results in a decreased spreading activation,
which again affects reading times. Finally, the parser models wh-
dependency and retrieving wh-words will increase reading times
when the wh-words are far away from the gap site, due to the
decrease in their activation.

We now inspect the predictions of the model. First, we run a
simple linear model with predicted RTs per word (i.e., RTs that
the reading model predicts using the posterior distribution of
the fitted parameters) as the independent variable and observed
mean RTs as the dependent variable. We see in the summary of
the linear model given in Table 2 that the Maximum Likelihood
Estimate (MLE) of predicted RT is very close to 1, i.e., in the best
linear fit between the predicted and observed RT, the increase
of 1 ms in predicted RTs corresponds to the increase of 1 ms in
observed RTs. Table 3 shows the fit of the intercept + predicted
RT linear model. As we see, predicted RTs are a highly significant
predictor for observed mean RTs.

TABLE 4 | A full linear model for RTs in the NSC.

Estimate SE t-Value p-Value

Intercept 258.5 17.2 15 p < 0.0001

Story 7.3 1.3 5.5 p < 0.0001

Zone −3.9 0.87 −4.5 p < 0.0001

Position −2 0.7 −3 0.003

Story:Zone −3.3 1.34 −2.5 0.01

Zone:Position 1.65 0.73 2.25 0.02

Nchar 16.3 3.79 4.3 p < 0.0001

Log(Freq) 0.21 0.52 0.4 0.7

Nchar:log(Freq) −0.68 0.22 −3.1 0.002

Log(Bigram) 0.25 0.63 0.4 0.7

Log(Trigram) −0.88 0.48 −1.82 0.07

Predicted RT 0.15 0.04 3.66 0.0003

The finding in Table 3 shows that our reading model can
capture some aspects of self-paced reading data. However, we
want to see that this modeling capability goes beyond what
surface features of a text, i.e., position, word length or string
frequencies, known to influence reading times, can account for.
For this reason, we consider a more complex model, summarized
in Table 4. The confounds we consider are the following: (i)
Story (story 1 or story 2, the former being the reference level),
(ii) ZONE (the word position in its story, z-transformed), (iii)
POSITION (the word position in its sentence, z-transformed),
(iv) the interaction of STORY × ZONE, (v) the interaction of
ZONE × POSITION, (vi) LOG(FREQ) (log-unigram frequency),
(vii) NCHAR (the length of the word in number of characters,
z-transformed), (viii) the interaction of NCHAR × LOG(FREQ),
(ix) LOG(BIGRAM) (log bigram probability), (x) LOG(TRIGRAM)
(log trigram probability). Frequencies and bigram and trigram
probabilities are provided in the NSC. Most of the confounds
that we input are considered when evaluating computational
psycholinguistic models on corpus data (Demberg and Keller,
2008; Boston et al., 2011; Hale, 2014, among others). We see
that even after adding the confounds, predicted RTs remain
a significant predictor and the effect goes in the expected
(positive) direction (t = 3.66, p = 0.0003). Thus, our parsing
model captures aspects of reading data that are not captured by
surface-like factors, e.g., string frequencies, position, number of
characters and the interaction of those.7

To further inspect the predictions of our Bayesian + ACT-R
model and the actual data, we split the predicted and observed
data sets into deciles based on trigrams, word frequencies and the
actual observed mean RTs. The graphical summaries per decile
are given in Figure 5. For trigram probabilities and unigram
frequencies, we see that the data predicted by the model follows
the trend of the actual data and the mean predicted RT is
generally close to the observed mean RT in each decile (with the

7It might seem surprising that the effect of log-frequency is not significant in

Table 4. This is because predicted RTs correlate with frequency and because we

also include the NCHAR × LOG(FREQ) interaction. In a simpler model lacking the

interaction, LOG(FREQ) is significant and goes in the expected direction.
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FIGURE 5 | Mean and standard deviation summaries of model and data split per trigram, frequency and observed mean RT deciles. The x-axis label shows the upper

cut-off point per decile (given in log in case of Frequency). In case of Frequency, only 9 deciles are present. This is because a single word (the) spans the top two

deciles.

slight divergence in the 6th and 7th decile of Frequency, for which
themodel assumesmean RTs faster by 10 and 9ms). In case of the
last graph, in which data are split by observed mean RT deciles,
the model copies the linear trend of the data, i.e., predicted mean
RTs increase per decile. This trend is also confirmed by a highly
significant Pearson correlation between predicted mean RT and
observedmean RT split by decile (r = 0.88, p < 0.001). However,
compared to the actual data, the model has much less extreme
values on both ends of the decile spectrum and as the result.
While it captures the linear trend in the data, it overestimates RTs
in low deciles and underestimates RTs in high deciles.

Finally, we compare the predictions of our model to another
ACT-R model of reading, presented in Boston et al. (2011). The
model of Boston et al. (2011)models the retrieval of dependencies
using the assumptions of the ACT-R rationalmemory. In contrast
to our work, Boston et al. (2011) do not model structure building,
i.e., the knowledge of parsing steps, using the ACT-R memory.8

For this reason, we would expect that the time predictions of
our model remain a significant predictor when the predictions
of Boston et al. (2011) are included in a linear model of the NSC
reading data. To check this, we constructed time predictions of
the ACT-R reading model of Boston et al. (2011) for the NSC

8See also section 5 for comparisons of our model to related works.

sub-corpus that we used for testing (the first two stories).9 We
tested the ACT-R retrieval model of Boston et al. (2011) with
various levels of beam-width k (k = 1, 3, 9, 20, 50, 100), where k
specifies the number of syntactic parses built in parallel. It turned
out that model predictions with low numbers of k (k ≤ 20)
did not show a significant effect on our NSC reading data. For
k = 50 and k = 100, the model showed a very wide range
of predicted reading times (from 50 to 5,000 ms). When we
removed predictions beyond 2,000 ms, the model predictions
were significant (β = 0.005, t = 3.1). Crucially, the predictions
of our model, PREDICTED RT, were also significant (β = 0.2, t =
4.1). This supports the position that our model captures the
properties of reading missing in an ACT-R model that only
simulates the retrieval of dependencies using the ACT-R theory
of memory.

4.4. Summary of the Results
We provided empirical evidence for the parsing model that
is built on the assumptions of the rational theory of memory
proposed in Anderson (1991) and embedded in ACT-R. Two

9We used the code available at https://conf.ling.cornell.edu/Marisa/. To generate

predictions, we made use of the default English training corpus, Brown. We would

like to thank an anonymous reviewer, Marisa Boston and John Hale for discussion

and help.
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Dotlačil and de Haan Parsing Model and a Rational Theory of Memory

types of evidence were collected. First, processing difficulties
of garden-path phenomena correspond to activation drop of
retrieved parsing steps. Second, the parsing model, combined
with some basic assumptions about reading, has been used
to model self-paced reading data from the Natural Stories
Corpus. After fitting two parameters, the resulting model
showed a highly significant correlation with observed reading
times. The model was able to capture aspects of the reading
data that were not captured by other, low-level factors like
string frequencies, position or word length. We leave it open
which particular aspects of the rational memory might play
a dominant role in model fitting, in particular, which of
base-level activation and spreading activation was crucial in
our finding.

5. COMPARISON TO RELATED WORKS

5.1. Parsers in Computational
Psycholinguistics
It is possible to split the computational psycholinguistic
approaches to parsing into two types, experience-based theories
and memory-based theories. In experience-based theories, it
is studied how past experience with syntactic structures affect
parsing, most often because of expectations readers form
during sentence processing. A popular framework belonging to
experience-based approaches is Surprisal Theory (Hale, 2001;
Boston et al., 2008, 2011; Levy, 2008, 2011; Smith and Levy,
2013, among others). Inmemory-based theories, it is studied how
the bottleneck of memory affects storage and retrieval during
processing. Dependency Locality Theory is an example of a
memory-based explanation of processing difficulties (Gibson,
1998), and so are theories studying the effect of integration and
recall of information from parsing stacks (Van Schijndel and
Schuler, 2013; Shain et al., 2016; Rasmussen and Schuler, 2018).
Another memory-based theory is the activation-based approach
to dependency resolution, often implemented in ACT-R (see
Lewis and Vasishth, 2005; Lewis et al., 2006).

The two types of approaches offer different advantages. While
experience-based theories can account for processing difficulties
tied to construction frequency and local ambiguities (garden-
path phenomena), memory-based approaches are used to capture
locality effects. However, the integration of the two accounts
into one framework is arguably still an open issue. In most
accounts, two research lines are simply put together as two
different and separated parts of a model (Demberg and Keller,
2008; Boston et al., 2011; Levy et al., 2013; Van Schijndel and
Schuler, 2013).

In contrast to the just cited approaches, the current account
builds a single analysis of experience-driven and memory-
driven processing difficulties. It is assumed that both difficulties
are driven by memory limitations in retrieval, as predicted
by rational memory systems. The only difference is what
is being retrieved: memory-driven processing difficulties arise
when the memory system tries to recall a recently constructed
phrase/element to satisfy dependency and encounters problems;
experience-driven difficulties arise when the same memory
system tries to recall a parsing step and encounters problems.

The first type of difficulties has been well-investigated in
computational psycholinguistics in general and in the sub-field of
modeling using cognitive architectures like ACT-R in particular
(see Lewis and Vasishth, 2005; Lewis et al., 2006; Dubey et al.,
2008; Reitter et al., 2011; Engelmann et al., 2013; Engelmann,
2016; Vogelzang et al., 2017; Brasoveanu and Dotlačil, 2020).
Crucially, the second type of difficulties has been investigated
much less from this perspective. This paper can be seen as
an attempt to enhance our understanding on this topic. In
this respect, this paper advances current ACT-R analyses of
reading, notably Lewis and Vasishth (2005), which do not
generalize parsing, relying instead only on hand-coded rules
for selected syntactic constructions. An account that offered
one framework for both types of processing difficulties has
been developed in Futrell and Levy (2017), which provides a
computational-level analysis (in contrast to the algorithmic-
level analysis developed here) and comes to the problem from
the opposite direction. Futrell and Levy (2017) provides a
single analysis to processing difficulties by expanding Surprisal
Theory with an extra component (noisy-context) to capture
memory-driven difficulties.

In works within cognitive architectures, a close affinity can be
found between this account and themodels of Reitter et al. (2011)
and Hale (2014).

Unlike Reitter et al. (2011), the current account does not
model production, but focuses on comprehension, and it does
not study priming of syntactic rules. Furthermore, Reitter et al.
(2011) developed a model to generate qualitative effects in
priming, while this paper shows that, through the application
of ACT-R models in a Bayesian framework, it is possible to
model quantitative data patterns. In fact, the presented approach
makes it possible to develop a model in which the reading
profile of experience-driven processing difficulties quantitatively
constrains the reading profile of memory-driven processing
difficulties, since both phenomena are modeled in the same
way and modulated by the same free parameters. This has also
been assumed in this paper (e.g., the parser for the Natural
Stories Corpus assumes the same model for retrieval of wh-
dependency, lexical retrieval and the retrieval of parsing steps).
However, a close investigation of the interaction of different
cases of retrieval in the same model goes beyond the scope
of this paper. See Dotlačil (accepted)3 for more work in this
direction.

Finally, Hale (2014), Chapters 7 and 8, derives experience-
driven processing difficulties as a case of (failed, less likely)
production compilation/cohesion. This position is not
incompatible with the current account, in fact, it complements
it. While this work studies the role of declarative memory on
parsing, Hale (2014) focuses on the role of procedural memory
on parsing. The latter position has arguably been investigated in
much more detail in psycholinguistics and in ACT-R than the
former position since the seminal works of Lewis (1993) and
Lewis and Vasishth (2005). In this respect, the current proposal
can be seen as breaking with this tradition. However, both types
of memory are crucial for ACT-R as well as other cognitive
architectures (see Anderson, 2007) and their interaction is
needed to account for complex learning patterns (Lebiere, 1999;
Taatgen and Anderson, 2002). It is likely that a highly non-trivial
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task, such as syntactic structure-building will benefit from
investigations that do not limit its investigation to the procedural
memory system.

5.2. Transition-Based Parsing in
Computational (Psycho)linguistics
Transition-based parsers were a popular choice of parsers in
computational linguistics, especially for dependency grammars
(see Nivre et al., 2007; Zhang and Clark, 2008; Kübler et al.,
2009). One advantage of transition-based parsers over graph-
based parsing and grammar-based parsing is that they are fast,
incremental and they allows for rich feature representations
(Nivre, 2004; McDonald and Nivre, 2011). Transition-based
parsers have also been applied to phrase-structure parsing (Kalt,
2004; Sagae and Lavie, 2005). The recent neural transition-based
parsers for phrase-structure building have the F1 value around
95% on the PTB section 23 (Liu and Zhang, 2017; Kitaev and
Klein, 2018). Transition-based parsers have also been used in
computational psycholinguistics to model EEG data (Recurrent
neural network grammars; Dyer et al., 2016; Hale et al., 2018)
and reading data (Boston et al., 2008; Rasmussen and Schuler,
2018).10

While the high accuracy of the state-of-the-art transition-
based parsing is encouraging, as it suggests that this line of
parsing can eventually be used to create a very accurate parser,
we should note that our parser is nowhere near this accuracy
performance. When tested on the section 23 of the Penn
Treebank, the parser shows Label Precision as 70.2, Label Recall
as 72.4, F1 as 71.3. When we restrict attention to sentences of 40
words or less, as is common, Label Precision is 73.7, Label Recall
is 75.9, and F1 is 74.8.11

There are arguably several reasons for the low performance.
First, it has been found that one of the disadvantages of
transition-based parsers when compared to another class of data-
driven parsers, graph-based parsers, is that they get worse with
increase in sentence length and increase in dependence, i.e., error
propagation (McDonald andNivre, 2011). Traditional transition-
based parsers, including the parser in this paper, explore just
one path. They have to greedily select what path they will
follow and stick to it until the end of the sentence. Thus,
early mistakes will propagate the error throughout the whole
sentence. Better transition-based parsers mitigate this type of
mistake through beam search or methods to recover from errors.
While the adaptation of these methods could be investigated
for psycholinguistics, we are not primarily interested in the best
accuracy of the parser on the complex Penn Treebank sentences,

10While the mentioned works in computational psycholinguistics make use of

transition-based parsing, they are not closely related to this work. The cited

approaches, unlike the current account, do not construct the parsers inside a

cognitive architecture and their goal is different than developing a single account

for experience-based and memory-based processing difficulties based on the

rational theory of memory.
11Label Precision is calculated as the number of correctly constructed constituents

divided by the number of all constituents proposed by the parser. Label Recall

is calculated as the number of correctly constructed constituents divided by the

number of all constituents present in the gold standard. F1 is the harmonic mean

of the two accuracy measures. For the calculation, only non-terminal constituents

are used for accuracy (i.e., trivial constituents like 〈a,DT〉 are ignored so that the

accuracy measures are not artificially inflated).

but in parsing that is human-like. It is known that a human
processor also shows error propagation in parsing, as witnessed
by the fact that readers struggle to recover from garden path
sentences the longer the wrong interpretation can be held (e.g.,
Frazier and Rayner, 1982). Thus, it is not a priori clear that error
propagation should be avoided.

Another reason why we see a low accuracy is that the
parser assumes a very straightforward relation between memory
instances and a parsing step. A parsing step is simply stored
in declarative memory.12 This is in contrast to complex
training methods commonly assumed in current neural parsers.
Relatedly, current computational parsers assume a much richer
feature system. They are enriched by vector space models
representing lexical information and syntactic information is
usually encapsulated in 200 or more features, while our parser
has 19 features.

In any case, it might be worth pointing out that even though
the accuracy of the parser is not very high, it suffices for
the research presented in this paper. The chosen examples in
section 4.2 are correctly constructed by the parser when they
do not lead to garden path and the parser in section 4.3 was
at the end of every step (word) corrected to match the gold
standard provided in the corpus, ensuring that the constructed
parse is correct.

The decision to have a simple feature model is driven by
the fact that we want to first establish that this model of
parsing can be useful in predicting reading times. For that, it
is preferable to keep the model as comprehensible and simple
as possible, otherwise, it would not be clear whether the results
reported in section 4 are due to the parsing model or some
confound we are not interested in (e.g., meaning similarity
present in word vector spaces). For the same reason, we currently
made use of the bottom-up parsing algorithm, even though
there is a good argument to be made that the bottom-up
parsing algorithm is not cognitively adequate. There are well-
known issues with bottom-up parsing for psycholinguistics: it
accumulates elements on the stack in right-branching structures,
suffers from disconnectedness and has problems when tied to
incremental interpretation (see Resnik, 1992; Crocker, 1999). We
assumed the bottom-up parsing algorithm since it is arguably
the most common parsing algorithm for transition-based phrase
structure parsers and thus, it serves as a very good starting
point. We leave it for the future to see whether other parsing
algorithms, notably, left-corner parsers, can improve on the
current modeling results.

6. CONCLUSION

This paper presented and tested a psycholinguistic parser that
has been developed using insights from the rational theory of
memory. It has been shown that the rational theory of memory

12The parser could be subsumed under a case of memory-based parsing, see

Daelemans et al. (2004). However, unlike the past cases of memory-based parsing,

which were inspired by memory structures to deliver the best accuracy on data-

driven parsing, the current approach is inspired by memory structures to connect

parsing to on-line behavioral measures. Such a link is not considered in the

approach of Daelemans et al. (2004).
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can be combined with transition-based parsing to produce a
data-driven parser that can be embedded in the ACT-R cognitive
architecture. The parser has been tested on garden-path sentences
and it has been shown that the parser to a large extent predicts
processing difficulties at correct disambiguation points. The
parser has also been evaluated on on-line behavioral data from
a self-paced reading corpus and it has been shown that the
parser can be fit to data and model quantitative patterns in
reading times.
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Brasoveanu, A., and Dotlačil, J. (2019). “Quantitative comparison for generative

theories,” in Proceedings of the 2018 Berkeley Linguistic Society 44 (Berkeley,

CA).
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Dotlačil and de Haan Parsing Model and a Rational Theory of Memory

International Conference on Language Resources and Evaluation (Miyazaki),

76–82.

Futrell, R., and Levy, R. (2017). “Noisy-context surprisal as a human sentence

processing cost model,” in Proceedings of the 15th Conference of the European

Chapter of the Association for Computational Linguistics: Volume 1, Long Papers

(Valencia), 688–698. doi: 10.18653/v1/E17-1065

Gibson, E. (1991). A computational theory of human linguistic processing:

memory limitations and processing breakdown (Ph.D. thesis), Carnegie Mellon

University, Pittsburgh, PA, United States.

Gibson, E. (1998). Linguistic complexity: locality of syntactic dependencies.

Cognition 68, 1–76. doi: 10.1016/S0010-0277(98)00034-1

Hale, J. (2001). “A probabilistic Earley parser as a psycholinguistic

model,” in Proceedings of the 2nd Meeting of the North American

Asssociation for Computational Linguistics (Stroudsburg, PA), 159–166.

doi: 10.3115/1073336.1073357

Hale, J., Dyer, C., Kuncoro, A., and Brennan, J. R. (2018). “Finding syntax in

human encephalography with beam search,” in Proceedings of the 56th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers) (Melbourne, VIC). doi: 10.18653/v1/P18-1254

Hale, J. T. (2014). Automaton Theories of Human Sentence Comprehension.

Stanford, CA: CSLI Publications.

Hart, B., and Risley, T. R. (1995).Meaningful Differences in the Everyday Experience

of Young American Children. Baltimore, MD: Paul H. Brookes Publishing.

Jäger, L. A., Engelmann, F., and Vasishth, S. (2017). Similarity-based interference in

sentence comprehension: literature review and bayesian meta-analysis. J. Mem.

Lang. 94, 316–339. doi: 10.1016/j.jml.2017.01.004

Jäger, L. A., Mertzen, D., Van Dyke, J. A., and Vasishth, S. (2020). Interference

patterns in subject-verb agreement and reflexives revisited: a large-sample

study. J. Mem. Lang. 111:104063. doi: 10.1016/j.jml.2019.104063

Kalt, T. (2004). “Induction of greedy controllers for deterministic treebank

parsers,” in Proceedings of the 2004 Conference on Empirical Methods in Natural

Language Processing (Barcelona).

Kitaev, N., and Klein, D. (2018). “Constituency parsing with a self-attentive

encoder,” in Proceedings of the 56 meeting of the Association for Computational

Linguistics (Melbourne, VIC). doi: 10.18653/v1/P18-1249

Klein, D., and Manning, C. D. (2003). “A* parsing: fast exact viterbi parse

selection,” in Proceedings of the Human Language Technology Conference and

The North American Association for Computational Linguistics (HLT-NAACL),

119–126. doi: 10.3115/1073445.1073461

Kübler, S., McDonald, R., and Nivre, J. (2009). Dependency Parsing. Synthesis

lectures on human language technologies. Morgan & Claypool Publishers.

Kush, D., Lidz, J., and Phillips, C. (2015). Relation-sensitive retrieval:

evidence from bound variable pronouns. J. Mem. Lang. 82, 18–40.

doi: 10.1016/j.jml.2015.02.003

Lago, S., Shalom, D. E., Sigman, M., Lau, E. F., and Phillips, C. (2015).

Agreement attraction in spanish comprehension. J. Mem. Lang. 82, 133–149.

doi: 10.1016/j.jml.2015.02.002

Lebiere, C. (1999). The dynamics of cognition: an ACT-R model of cognitive

arithmetic. Kognitionswissenschaft 8, 5–19. doi: 10.1007/s001970050071

Levy, R. (2008). Expectation-based syntactic comprehension. Cognition 106,

1126–1177. doi: 10.1016/j.cognition.2007.05.006

Levy, R. (2011). “Integrating surprisal and uncertain-input models in online

sentence comprehension: formal techniques and empirical results,” in

Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies (Portland, OR), 1055–1065.

Levy, R., Fedorenko, E., and Gibson, E. (2013). The syntactic complexity of Russian

relative clauses. J. Mem. Lang. 69, 461–495. doi: 10.1016/j.jml.2012.10.005

Lewis, R. (1993). An architecturally-based theory of human sentence comprehension

(Ph.D. thesis), Carnegie Mellon University, Pittsburgh, PA, United States.

Lewis, R., and Vasishth, S. (2005). An activation-based model of

sentence processing as skilled memory retrieval. Cogn. Sci. 29, 1–45.

doi: 10.1207/s15516709cog0000_25

Lewis, R. L., Vasishth, S., and Van Dyke, J. A. (2006). Computational principles of

working memory in sentence comprehension. Trends Cogn. Sci. 10, 447–454.

doi: 10.1016/j.tics.2006.08.007

Liu, J., and Zhang, Y. (2017). In-order transition-based constituent parsing. Trans.

Assoc. Comput. Linguist. 5, 413–424. doi: 10.1162/tacl_a_00070

Marcus, M. P. (1978). A theory of syntactic recognition for natural language (Ph.D.

thesis), Massachusetts Institute of Technology, Cambridge, MA, United States.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a

large annotated corpus of english: the PENN treebank. Comput. Linguist. 19,

313–330. doi: 10.21236/ADA273556

McDonald, R., and Nivre, J. (2011). Analyzing and integrating dependency parsers.

Comput. Linguist. 37, 197–230. doi: 10.1162/coli_a_00039

Nicenboim, B., Vasishth, S., Engelmann, F., and Suckow, K. (2018). Exploratory

and confirmatory analyses in sentence processing: a case study of number

interference in german. Cogn. Sci. 42, 1075–1100. doi: 10.1111/cogs.12589

Nivre, J. (2004). “Incrementality in deterministic dependency parsing,” in

Proceedings of the Workshop on Incremental Parsing: Bringing Engineering and

Cognition Together (Stroudsburg, PA), 50–57. doi: 10.3115/1613148.1613156

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kübler, S., et al. (2007).

Maltparser: a language-independent system for data-driven dependency

parsing. Nat. Lang. Eng. 13, 95–135. doi: 10.1017/S1351324906004505

Oaksford, M., and Chater, N. (1994). A rational analysis of the selection task as

optimal data selection. Psychol. Rev. 101:608. doi: 10.1037/0033-295X.101.4.608

Oaksford, M., and Chater, N. (2007). Bayesian Rationality: the Probabilistic

Approach to Human Reasoning. Oxford University Press.

Piantadosi, S. T., Tenenbaum, J. B., and Goodman, N. D. (2016). The logical

primitives of thought: empirical foundations for compositional cognitive

models. Psychol. Rev. 123, 392-424. doi: 10.1037/a0039980

Pritchett, B. L. (1992). Grammatical Competence and Parsing Performance.

Chicago, IL: The University of Chicago Press.

Rabe, M. M., Paape, D., Vasishth, S., and Engbert, R. (2021). Dynamical cognitive

modeling of syntactic processing and eye movement control in reading.

PsyArXiv. doi: 10.31234/osf.io/w89zt

Rasmussen, N. E., and Schuler, W. (2018). Left-corner parsing with distributed

associative memory produces surprisal and locality effects. Cogn. Sci. 42,

1009–1042. doi: 10.1111/cogs.12511

Reitter, D., Keller, F., and Moore, J. D. (2011). A computational

cognitive model of syntactic priming. Cogn. Sci. 35, 587–637.

doi: 10.1111/j.1551-6709.2010.01165.x

Resnik, P. (1992). “Left-corner parsing and psychological plausibility,” in

Proceedings of the Fourteenth International Conference on Computational

Linguistics (Nantes). doi: 10.3115/992066.992098

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Comput.

Linguist. 27, 249–276. doi: 10.1162/089120101750300526

Sagae, K., and Lavie, A. (2005). “A classifier-based parser with linear run-time

complexity,” in Proceedings of the Ninth International Workshop on Parsing

Technology (Vancouver, BC), 125–132. doi: 10.3115/1654494.1654507

Shain, C., Van Schijndel, M., Futrell, R., Gibson, E., and Schuler, W. (2016).

“Memory access during incremental sentence processing causes reading time

latency,” in Proceedings of the Workshop on Computational Linguistics for

Linguistic Complexity (CL4LC) (Osaka), 49–58.

Smith, G., and Vasishth, S. (2020). A principled approach to feature selection in

models of sentence processing. Cogn. Sci. 44:e12918. doi: 10.1111/cogs.12918

Smith, N. J., and Levy, R. (2013). The effect of word predictability on reading

time is logarithmic. Cognition 128, 302–319. doi: 10.1016/j.cognition.2013.

02.013

Taatgen, N. A., and Anderson, J. R. (2002). Why do children learn to say “broke”?

A model of learning the past tense without feedback. Cognition 86, 123–155.

doi: 10.1016/S0010-0277(02)00176-2

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman, N. D. (2011). How

to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285.

doi: 10.1126/science.1192788

Van Dyke, J. A. (2007). Interference effects from grammatically unavailable

constituents during sentence processing. J. Exp. Psychol. Learn. Mem. Cogn.

33:407. doi: 10.1037/0278-7393.33.2.407

Van Schijndel, M., and Schuler,W. (2013). “An analysis of frequency-andmemory-

based processing costs,” in Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies (Atlanta, GA), 95–105.

Vasishth, S., Nicenboim, B., Engelmann, F., and Burchert, F. (2019).

Computational models of retrieval processes in sentence processing. Trends

Cogn. Sci. 23, 968–982. doi: 10.1016/j.tics.2019.09.003

Frontiers in Psychology | www.frontiersin.org 15 June 2021 | Volume 12 | Article 657705

https://doi.org/10.18653/v1/E17-1065
https://doi.org/10.1016/S0010-0277(98)00034-1
https://doi.org/10.3115/1073336.1073357
https://doi.org/10.18653/v1/P18-1254
https://doi.org/10.1016/j.jml.2017.01.004
https://doi.org/10.1016/j.jml.2019.104063
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.3115/1073445.1073461
https://doi.org/10.1016/j.jml.2015.02.003
https://doi.org/10.1016/j.jml.2015.02.002
https://doi.org/10.1007/s001970050071
https://doi.org/10.1016/j.cognition.2007.05.006
https://doi.org/10.1016/j.jml.2012.10.005
https://doi.org/10.1207/s15516709cog0000_25
https://doi.org/10.1016/j.tics.2006.08.007
https://doi.org/10.1162/tacl_a_00070
https://doi.org/10.21236/ADA273556
https://doi.org/10.1162/coli_a_00039
https://doi.org/10.1111/cogs.12589
https://doi.org/10.3115/1613148.1613156
https://doi.org/10.1017/S1351324906004505
https://doi.org/10.1037/0033-295X.101.4.608
https://doi.org/10.1037/a0039980
https://doi.org/10.31234/osf.io/w89zt
https://doi.org/10.1111/cogs.12511
https://doi.org/10.1111/j.1551-6709.2010.01165.x
https://doi.org/10.3115/992066.992098
https://doi.org/10.1162/089120101750300526
https://doi.org/10.3115/1654494.1654507
https://doi.org/10.1111/cogs.12918
https://doi.org/10.1016/j.cognition.2013.02.013
https://doi.org/10.1016/S0010-0277(02)00176-2
https://doi.org/10.1126/science.1192788
https://doi.org/10.1037/0278-7393.33.2.407
https://doi.org/10.1016/j.tics.2019.09.003
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
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APPENDIX A: CALCULATE BASE-LEVEL
ACTIVATION FROM WORD/RULE
FREQUENCIES

Wewant to calculate Bi from frequency. d is a free parameter and
can be ignored in this discussion.

(A1) Bi = log

(

n
∑

k=1

t−d
k

)

(d- free parameter)

Consider a 15-year old speaker. How can we estimate how often

a word/parsing step x was used in language interactions that the
speaker participated in?

First, let’s notice that we know the relative frequency of x. We
collect that from the British National Corpus (for words) and
from the Penn Treebank corpus (for parsing steps).

We know the lifetime of the speaker (15 years), so if we
know the total number of words an average 15-year old speaker
has been exposed to, we can easily calculate how many times
x was used on average based on the frequency of x. A good
approximation of the number of words a speaker is exposed

to per year can be found in Hart and Risley (1995). Based on
recordings of 42 families, Hart and Risley estimate that children
comprehend between 10 million to 35 million words a year,
depending to a large extent on the social class of the family, and
this amount increases linearly with age. According to the study,
a 15-year old has been exposed to anywhere between 50 and 175
million words total. For simplicity, the model will work with the
mean of 112.5 million words as the total amount of words a
15-year old speaker has been exposed to. This is a conservative
estimate as it ignores production and the linguistic exposure
associated with mass media. Furthermore, we assume that each
word is accompanied by one parsing step, so there are as many
parsing steps as words (again, this is a simplification that should
not harm modeling).

We now know how we get from frequency to the number
of usages of x. Simplifying again, we assume that the usages, tk
above, are evenly spread during the life span.

The procedure described here was successfully used in
translating frequencies to activations and ultimately reaction
times in sentence production (Reitter et al., 2011), eye tracking
reading times (Dotlačil, 2018) and reaction times in lexical
decision tasks (Brasoveanu and Dotlačil, 2020).
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