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The language abilities of young and adult learners range from memorizing specific
items to finding statistical regularities between them (item-bound generalization) and
generalizing rules to novel instances (category-based generalization). Both external
factors, such as input variability, and internal factors, such as cognitive limitations, have
been shown to drive these abilities. However, the exact dynamics between these factors
and circumstances under which rule induction emerges remain largely underspecified.
Here, we extend our information-theoretic model (Radulescu et al., 2019), based on
Shannon’s noisy-channel coding theory, which adds into the “formula” for rule induction
the crucial dimension of time: the rate of encoding information by a time-sensitive
mechanism. The goal of this study is to test the channel capacity-based hypothesis
of our model: if the input entropy per second is higher than the maximum rate of
information transmission (bits/second), which is determined by the channel capacity, the
encoding method moves gradually from item-bound generalization to a more efficient
category-based generalization, so as to avoid exceeding the channel capacity. We ran
two artificial grammar experiments with adults, in which we sped up the bit rate of
information transmission, crucially not by an arbitrary amount but by a factor calculated
using the channel capacity formula on previous data. We found that increased bit rate
of information transmission in a repetition-based XXY grammar drove the tendency of
learners toward category-based generalization, as predicted by our model. Conversely,
we found that increased bit rate of information transmission in complex non-adjacent
dependency aXb grammar impeded the item-bound generalization of the specific a_b
frames, and led to poorer learning, at least judging by our accuracy assessment method.
This finding could show that, since increasing the bit rate of information precipitates
a change from item-bound to category-based generalization, it impedes the item-
bound generalization of the specific a_b frames, and that it facilitates category-based
generalization both for the intervening Xs and possibly for a/b categories. Thus, sped up
bit rate does not mean that an unrestrainedly increasing bit rate drives rule induction in
any context, or grammar. Rather, it is the specific dynamics between the input entropy
and the maximum rate of information transmission.

Keywords: rule induction, entropy, channel capacity (information rate), generalization (psychology), category
formation, bit rate
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INTRODUCTION

Both young and adult learners possess a domain-general
distributional learning mechanism for finding statistical patterns
in the input (Saffran et al.,, 1996; Thiessen and Saffran, 2007),
and a learning mechanism that allows for category (rule) learning
(Marcus et al., 1999; Wonnacott and Newport, 2005; Smith and
Wonnacott, 2010; Wonnacott, 2011). While previously cognitive
psychology theories claimed that there are two qualitatively
different mechanisms, with rule learning relying on encoding
linguistic items as abstract categories (Marcus et al., 1999), as
opposed to learning statistical regularities between specific items
(Saffran et al., 1996), recent views converge on the hypothesis
that one mechanism, statistical learning, underlies both item-
bound learning and rule induction (Aslin and Newport, 2012,
2014; Frost and Monaghan, 2016; Radulescu et al, 2019).
Rule induction (generalization or regularization) has often
been explained as resulting from processing input variability
(quantifiable amount of statistical variation), both in young and
adult language learners (Gerken, 2006; Hudson Kam and Chang,
2009; Hudson Kam and Newport, 2009; Reeder et al., 2013).

This study looks into the factors that drive the inductive
step from encoding specific items and statistical regularities to
inferring abstract rules. While supporting the single-mechanism
hypothesis and a gradient of generalization proposed previously
(Aslin and Newport, 2012, 2014), in Radulescu et al. (2019),
we took a step further in understanding the two qualitatively
different representations discussed in previous research, which
we dubbed, in accordance with previous suggestions (Gomez
and Gerken, 2000), item-bound generalizations and category-
based generalizations. While item-bound generalizations describe
relations between specific physical items (e.g., a relation based
on physical identity, like “ba always follows ba” or “ke always
predicts mi”), category-based generalizations are operations
beyond specific items that describe relationships between
categories (variables), e.g., “Y always follows X where Y and
X are variables taking different values. In order to explain how
and why a single mechanism outputs these two qualitatively
different forms of encoding, Radulescu et al. (2019) proposed an
information-theoretic model of rule induction as an encoding
mechanism. In this model, based on Shannon’s communication
theory (1948), we put together both the statistical properties
of the input, ie., input entropy, and the finite capacity of the
brain to encode the input. In information-theoretic terms at
the computational level, in the sense of Marr (1982), we define
encoding capacity as channel capacity, that is, the finite rate of
information transmission (entropy per unit of time, bits/s), which
might be supported by certain cognitive capacities, e.g., memory
capacity, at the algorithmic level.

Indeed, previous research hinted at cognitive constraints,
i.e, memory limitations, on rule learning: the Less-is-More
hypothesis (Newport, 1990, 2016) proposed that differences
in tendency to generalize between young and adult learners
stem from maturational differences in memory development:
limited memory capacity leads to difficulties in storing and
retrieving low-frequency items, which prompts the overuse
of more frequent forms leading to overgeneralization. A few

studies investigating the nature of these cognitive constraints
showed that, while there is some evidence for the Less-is-More
hypothesis (Hudson Kam and Newport, 2005, 2009; Hudson
Kam and Chang, 2009; Wonnacott, 2011), it is not yet clear
under what specific circumstances and why memory constraints
should drive rule learning (Perfors, 2012; Hudson Kam, 2019).
Cognitive constraints on regularization were also found in
nonlinguistic domains (Kareev et al., 1997; Ferdinand et al,
2019), while constrained regularization tendencies were found to
be similar across language domains, morphology vs. word order
(Saldana et al., 2017).

Nevertheless, the exact cognitive load and mechanisms at
stake in rule induction have yet to be thoroughly specified.
To this end, Radulescu et al. (2019) offer an extended and
more refined information-theoretic approach to the Less-is-More
hypothesis, by proposing an entropy model for rule induction,
which quantifies the specific pattern of statistical variability in
the input (i.e., input entropy, measured in bits) to which the
brain is sensitive, and hypothesizes that rule induction is driven
by the interaction between the input entropy and the finite
encoding capacity of the brain (i.e., channel capacity). Crucially,
the model proposes that rule induction is an automatic process
that moves gradually - bit by bit - from a high-fidelity item-
specific encoding (item-bound generalization) to a more general
abstract encoding (category-based generalization), as a result of
the input entropy being higher than the channel capacity, i.e.,
the maximum rate of information encoding (bits/s). The model
is based on Shannon’s entropy and noisy-channel coding theory
(Shannon, 1948), which says that in a communication system, a
message (or information) can be transmitted reliably (i.e., with
the least loss in bits of information), if, and only if, encoded using
an encoding method that is efficient enough so that the rate of
information transmission (i.e., per unit of time), including noise,
is below the capacity of the channel. If the rate of information
transmission (bit rate) is higher than the channel capacity, then
another more efficient encoding method can be found, but the
channel capacity cannot be exceeded.

Based on these concepts, our entropy model for rule induction
posits that the change in encoding method, i.e., from item-
bound to category-based generalization, is driven by a kind
of a regulatory mechanism, which moves from an inefficient
encoding method (with loss of information), to a more efficient
encoding method, which allows for higher input entropy to be
encoded reliably (with the least loss possible) per second, but
crucially below the capacity of the channel. The reliability of
encoding should be understood intuitively as given by the least
loss of information (caused by noise interference) against the
sent message. Thus, this model adds into the rule induction
“formula” the crucial dimension of time, i.e., the rate of encoding
information by a time-sensitive encoding mechanism, and,
consequently, the decrease in loss of information by moving to
a more efficient encoding.

A few studies used different (not information-theoretic)
methods of quantifying and manipulating a time-dependent
variable to investigate the role it plays in category learning
(exposure time, Endress and Bonatti, 2007; Reeder et al,
2013), in nonadjacent dependency learning (speech rate,
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Wang et al., 2016, 2019) and in auditory statistical learning
(inter-stimulus temporal distance, Emberson et al, 2011).
Although these studies used different designs, stimulus materials,
and forms of operationalization to the temporal variable,
nevertheless, a clear pattern stands out: generally, a shorter time
is beneficial to auditory rule (category) learning. However, the
exact amount of time, and the mechanism and reasons for it
having a positive effect on rule learning are still to be fully
investigated and understood.

In order to address these gaps, this study further extends the
entropy model we proposed in Radulescu et al. (2019), and puts
forth an innovative information-theoretic quantification of the
time-dependent variable, that is not an arbitrary manipulation
of inter-stimulus temporal distance or exposure time, but the
information-theoretic concept of channel capacity and Shannon’s
noisy-channel coding theory.

AN ENTROPY AND CHANNEL CAPACITY
MODEL FOR RULE INDUCTION

Among other studies that used entropy measures to look
into regularization patterns (Perfors, 2012, 2016; Ferdinand,
2015; Saldana et al., 2017; Samara et al, 2017; Ferdinand
et al., 2019), Radulescu et al. (2019) and this study take a
step further and propose an information-theoretic model that
captures the dynamics of the interaction between the input
entropy and the encoding capacity (channel capacity). This model
specifies a quantitative measure for the likelihood of transitioning
from encoding specific probability distributions to category
formation. Specifically, our model hypothesizes that the gradient
of generalization (Aslin and Newport, 2012) results from a bit by
bit increase in input entropy per unit of time, which gradually
adds up to the maximum rate of information transmission
(bits/s), i.e., channel capacity of the learning system.

Given a random variable X, with n values {x;, x» ...
Xn}, Shannon’s entropy (Shannon, 1948), denoted by H(X), is
defined as:

H(X)=—> p(x)logp(x) s

i=1

where p(x;) is the occurrence probability of x;. This quantity (H)
measures the information per symbol produced by a source of
input, i.e., it is a measure of the average uncertainty (or surprise)
carried by a symbol produced by a source, relative to all the
possible symbols (values) contained by the set (Shannon, 1948).
In Radulescu et al. (2019), in two artificial grammar
experiments, we exposed adults to a three-syllable XXY
artificial grammar. We designed six experimental conditions
with increasing input entropy (2.8, 3.5, 4, 4.2, 4.58, and 4.8
bits). The results showed that an increase in input entropy
gradually shaped item-bound generalization into category-based
generalization (Radulescu et al,, 2019). Thus, we obtained a
precise measure of the sensitivity of a learner to the input
entropy: the information load of a learner (=surprise) of the

!Log should be read as log to the base 2 here and throughout the paper.

XXY structure decreases logarithmically as the input entropy
increases. These findings bring strong evidence for the gradient
of generalization depending on the probabilistic properties of the
input, as proposed by Aslin and Newport (2014).

While in Radulescu et al. (2019) we probed the effect of the
first factor (input entropy), in this study we further develop and
test the model by probing the effect of the second factor — channel
capacity - on rule induction.

Channel Capacity in

Information-Theoretic Terms

This section elaborates on the other factor of our entropy
model, namely channel capacity, which is another information-
theoretic concept in Shannon’s noisy-channel coding theory
of a communication system. Shannon (1948) defines a
communication system as having five main components:
an information source (which produces a message), a transmitter
(which encodes the message into a signal), a channel (the
medium used to transmit the signal), a receiver (which does the
inverse operation of the transmitter, that is, decodes the signal to
reconstruct the message), and a destination (the person or thing
for which the message is intended). In short, an information
source produces a message, which is encoded by a transmitter
into a signal that is suitable for transmission over a channel
to a destination. The main factor under investigation here is
the medium used for the transmission of information, i.e.,
the channel, and its capacity for information transmission. It
follows, and it must be specified that the process of information
transmission encompasses all processes starting with the
transmission of information from the source to the destination,
that is, all the transmission and encoding-decoding processes.

In order to define channel capacity, we first have to define the
two main factors that are relevant for channel capacity: the source
rate of information transmission and noise. Since the process of
information transmission occurs in time, Shannon defined source
rate of information transmission as the amount of information
that a source transmits per unit of time. Information is measured
using entropy, so source rate of information transmission (H') is
the amount of entropy that the source produces per unit of time
(bits/s), or the source rate of information production.

The ideal case of a noiseless transmission is nearly impossible
under normal real-life conditions; thus, transmission is affected
by another variable, noise. Noise is defined as any random
perturbations that interfere with the signal, thus rendering a noisy
channel. The noise might perturb the signal during transmission
through the channel or at either terminal end, i.e., transmitter and
receiver’s end. As a result, there are missing bits of information
because of a noisy transmission. Shannon (1948) defined this loss
of information as rate of equivocation (E).

The actual rate of information transmission (R) via a noisy
channel is obtained by subtracting the rate of equivocation
(E) from the source rate of information transmission, H'
(Shannon, 1948):

R=H —E.

Note that actual rate of information transmission (R) is different
from source rate of information transmission (H'), since it takes
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into account the loss of information due to noise (E), which
occurs in the transmission of information from the source to
the destination. Source rate of information transmission (H') is
the rate at which the source produces and transmits information,
while actual rate of information transmission (R) is quantified at
the other terminal end, i.e., the receiver, after the noise had caused
aloss in information (E).

Shannon (1948) demonstrated mathematically that the
capacity of noisy channel should be the maximum possible rate
of information transmission (R), which can be obtained only if
the encoding method is adequate and efficient:

C = Max (R) = Max (H' — E).

The formula above means that the maximum rate of information
transmission, i.e., channel capacity, can be achieved by an
adequate and efficient encoding method. The efficiency of the
encoding method means that the rate of equivocation (E)
is kept at a minimum, in order for the actual information
transmission to be as close as possible to the source rate of
production. That means the received signal matches closely the
sent signal, and, consequently, the message is received with the
least loss of information.

According to Theorem 11 by Shannon (1948), given a certain
source with a rate of information production H’ (entropy per
unit of time), if H' < C, information can be sent through a noisy
channel at the rate C with an arbitrarily small frequency of errors
using a proper encoding method. If H > C, it is possible to
find an encoding method to transmit the signal over the channel,
such that the rate of equivocation is minimum, as specified by
Shannon, less than H — C + e (e stands for errors), but the
rate of transmission can never exceed C. If there is an attempt
to transmit a message at a higher rate than C, using the same
encoding method, then there will be an equivocation rate at least
equal to the excess rate of transmission. In other words, a message
can only be communicated reliably if it is encoded in such a
way, i.e., using an efficient encoding method, so that the rate of
information transmission, including noise, is below the capacity
of the channel. In this study, we will focus on the first factor in
the channel capacity formula, namely source rate of information
transmission.

Main Hypotheses of the Model About the
Effect of Channel Capacity on Rule

Induction

(1) Item-bound  genmeralization and category-based
generalization are outcomes of the same information
encoding mechanism that gradually goes from a high-
specificity form of encoding (item-bound generalization)
to a more general abstract encoding (category-based
generalization), as triggered by the interaction between
input entropy and the finite encoding capacity of the
learning system. The encoding mechanism moves from
item-bound to category-based generalization as input
entropy per unit of time increases and becomes higher
than the maximum rate of information transmission, i.e.,
channel capacity, as follows:

(a)

(b)

If the source rate of information transmission (H'-
input entropy per second) is below or matches
channel capacity, then the information can be
encoded using an encoding method that matches
the statistical structure of the input (the probability
distribution of the specific items). Thus, if H' <
C, the information about specific items with
their uniquely identifying (acoustic, phonological,
phonotactic, prosodic, distributional, etc.) features
and probability distribution (i.e., input entropy) can
be encoded with a high-fidelity item specificity, and
transmitted through the channel, with little loss
of information, at the channel rate, the maximum
rate of information transmission, and encoded by
item-bound generalization. If H' > C, item-bound
generalization is impeded.

If an attempt is made to exceed the finite channel
capacity of the encoding system, that is, the source
rate of information transmission (H'-input entropy
per second) does not match channel capacity, but
it is higher than channel capacity, it is possible
to find a proper method that encodes more
information (entropy), but the rate of information
transmission cannot exceed the available channel
capacity. According to Theorem 11 (Shannon, 1948),
if there is an attempt to transmit information at
a rate higher than C, using the same encoding
method, then there will be an equivocation rate
at least equal to the excess rate of transmission.
In other words, the increased source rate of
information (H' > C) brings higher inflow of
noise, which interferes with the signal and causes
an increased equivocation rate or information loss
(as explained above). Thus, we hypothesize that it
is precisely the finite channel capacity that drives
the restructuring of the information, in order
to find another more efficient encoding method.
A more efficient encoding allows for higher input
entropy per second to be encoded reliably (with the
least information loss possible). As we argued in
Radulescu et al. (2019), information is re-structured
by (unconsciously) re-observing the item-specific
features and structural properties of the input. Noise
introduces random perturbations that interfere with
the signal and feature configuration. This leads to
instability, which unbinds features and sets them
free to interact and bind into new structures.
Then, similarities (shared features) that have higher
significance (i.e., are “stronger” because of their
higher probability) are kept in the new encoding,
while differences between items (unshared features),
which are insignificant features (e.g., low-probability
“noisy” features) are erased or “forgotten.” This
leads to a compression of the signal by reducing
the number of unshared “noisy” features encoded
with individual items (i.e., bits of information)
and grouping them in “buckets” (categories). As a
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result, a new form of encoding is created, which
allows for higher input entropy to be encoded
using the available channel capacity, thus yielding a
more general (less specific) category-based encoding
method. Thus, finite channel capacity is designed
to drive the re-structuring of the information for
the purpose of adapting to noisier (=increasingly
entropic) environments, by the principle of self-
organization in line with Dynamic Systems Theory
invoked in studies on other cognitive mechanisms,
e.g., Stephen et al. (2009).

(2) Channel capacity is used here as an information-theoretic
measure of the encoding capacity used in linguistic rule
induction (at the computational level, in the sense of Marr
(1982))%. In order to identify psychological correlates (at
the algorithmic level), we follow experimental evidence
from the Less-is-More hypothesis line of research, which
suggests that memory constraints drive linguistic rule
induction (Hudson Kam and Newport, 2005, 2009),
and we embed this in classical and recent models of
memory capacity and attention (Miller, 1956; Cowan, 2005;
Oberauer and Hein, 2012; Baddeley et al., 2015). Hence,
we hypothesize that the cognitive capacity that underlies
channel capacity, specifically in linguistic rule induction
(and, implicitly, in category formation), is the attentional
capacity focused on activated representations in long-
term memory, in other words working-memory capacity
(WM), as defined in Cowan (2005). Rule induction
can be argued to rely on the storage and online time-
dependent processing capacities that support the ability to
maintain active goal-relevant information (the rule), while
concurrent processing (of other possible hypotheses and
of noise) takes place (which is what defines WM as well,
Conway et al., 2002). Corroborating evidence comes from
positive correlations found between WM and domain-
general categorization tasks (Lewandowsky, 2011).

Thus, while we generally deem linguistic rule induction
to be supported by a domain-general WM capacity, rather
than language-specific algebraic rule learning as proposed by
early prominent research (Marcus et al., 1999), in this study,
we are exploring specific possible memory components and
WDM-correlated abilities that are directly involved in linguistic
rule induction (besides more general storage and retrieval
components tested in previous studies under the Less-is-More
hypothesis, Hudson Kam and Chang, 2009; Perfors, 2012).
Hence, we specifically predict that one of the components
underlying channel capacity in linguistic rule induction is a
domain-general pattern recognition capacity, given that a rule
induction task can be intuitively envisaged as a task of finding
patterns/rules in the input.

2Although with different definitions and applications, channel capacity has
previously been used in an early study on capacity in memory studies on
psychology (Miller, 1956) and in more recent mathematical modeling for inferring
workload capacity using response time hazard functions (Townsend and Ashby,
1978; Townsend and Eidels, 2011).

A possible candidate test of domain-general pattern
recognition is the RAVENS test (Raven et al, 2000), which
was shown to be based on rule induction (Carpenter et al., 1990;
Little et al., 2012) and to rely on similar storage and online time-
dependent processing capacities to maintain active goal-relevant
information (the rule) while concurrent processing takes place
(Conway et al,, 2002). Although this pattern recognition test
and WM capacity are not identical (Conway et al., 2003), and
apparently WM is not a causal factor for pattern recognition
either (Burgoyne et al., 2019), high positive correlations were
found between measures of WM capacity and tests for this
domain-general pattern-recognition capacity (such as RAVENS,
e.g., Conway et al., 2002; Little et al., 2014; Dehn, 2017).

TESTING THE PREDICTION OF
SPEEDING UP THE SOURCE BIT RATE
OF INFORMATION TRANSMISSION

The goal of this study is to probe the effect of the time-dependent
variable of the second main factor of our entropy model, channel
capacity, on rule induction, by directly increasing source rate of
transmission (H'), in order to attempt to exceed channel capacity.
Theoretically, following the definition of channel capacity and
Shannon’s Theorem 11 (Shannon, 1948), this can be achieved in
two ways: either by increasing the amount of entropy (bits) at a
constant rate or by speeding up the rate of feeding information
(at constant bit value) into the channel. It follows that, practically,
there are two methods to attempt to exceed channel capacity:

(1) Add stimulus-unrelated entropy (noise) in the input
to render a noisier channel, while keeping the time
variable constant. This method aims at exceeding channel
capacity by specifically modulating the noise variable of
channel capacity.

(2) Increase the source rate of information production to
directly modulate the time-dependent variable of channel
capacity. This method reduces the time that the same
amount of entropy is sent through the channel, i.e., speeds
up the bit rate of information transmission.

We employed the first method in another study (Radulescu
etal., 2020 unpublished data), and we found that added stimulus-
irrelevant entropy (noise) drove a higher tendency toward
category-based generalization. In this study, we employed the
second method: we increased the source rate of information
transmission (input entropy per second) in order to directly
modulate the time-dependent variable of channel capacity.
According to our entropy model, speeding up the source rate
of transmission (i.e., to a higher rate than channel capacity)
leads to a change in encoding method, so as to avoid increased
equivocation rate. Why? Because increased rate of equivocation
is in fact information loss. Thus, the encoding method transitions
to another encoding method in order to achieve more efficient
transmission of information: that is, faster encoding rate
with least information loss. Specifically, we hypothesize that
increasing the source rate of information transmission leads to
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higher tendency to move from item-bound to category-based
generalization for the purpose of achieving a more efficient
encoding, with the least loss of information possible.

We tested the effect of speeding up the source rate of
information transmission on both the repetition-based XXY
grammar from the study of Radulescu et al. (2019) and a
more complex grammar, non-adjacent-dependency grammar
(aXb). The learning of a repetition-based XXY grammar requires
learners to abstract away from specific items of the X and
Y categories, and to move from item-bound to category-based
generalization, that is, to learn a same-same-different rule between
categories, regardless of their specific items. A source rate of
transmission higher than channel capacity is hypothesized to
boost this transition and, thus, have a positive effect on learning
an XXY grammar. However, learning a non-adjacent dependency
grammar is a more complex process: it entails learning item-
bound dependencies between specific a and b elements and
category-based generalization of the rich category of intervening
Xs (Gomez, 2002; Onnis et al., 2004; Frost and Monaghan, 2016;
Grama et al,, 2016; Wang et al., 2019). This type of artificial
grammar learning models the mechanisms needed in language
acquisition to acquire rules such as is go-ing, is learn-ing. Thus,
the learning of this type of aXb grammar requires learners to
move from item-bound to category-based generalization for the
X category of middle elements, while, crucially, sticking to item-
bound generalization for specific a_b dependencies. If increased
source rate of information transmission drives category-based
generalization for the X category, it follows that it should impede
item-bound generalization for the specific a_b dependencies of
such an aXb grammar. So how does the model perform when
tested on such a complex type of grammar?

Given an entropy (H) of a source and an average number
of symbols produced by the source per second (m), we can
calculate the source rate of information transmission, H' = mH
(Shannon, 1948). Using this formula, we estimated a source rate
of transmission of information in experiments carried out by
Radulescu et al. (2019). Then, we specifically predicted that, if we
keep the same information content (input entropy) of the lowest
entropy grammar from Radulescu et al. (2019), where there was
no evidence of category-based generalization, but we increase the
source rate of transmission up to the source rate of transmission
of the highest entropy condition from the same study, where that
study found high tendency toward category-based generalization,
then we should see a higher tendency toward category-based
generalizations, even though the statistical properties (entropy)
of the input are the same.

Specifically, let us denote the source rate of information
transmission in the highest entropy grammar from Radulescu
et al. (2019) as H'g = m;Hpy, and the source rate of information
transmission in the lowest entropy version as H'y, = m; Hy.. Note
that the average rate of symbols per second (m;) was the same
in both versions. For the purpose of the manipulation we are
aiming for, we would like to obtain H'yy = H'[, but by keeping Hy,
constant and increasing the average rate of symbols/s to obtain
m; such that my > m;. Thus, in the three-syllable XXY grammar
from Radulescu et al. (2019), for a constant m; (symbols/s):

Hj, = 2.8b/symbol: H'y =my Hy,

Hy = 4.8b/symbol: H'y =m; Hy.

For the purpose of increasing the source rate of transmission
up to Hy while keeping entropy constant (Hy ), and by increasing
the average rate of symbols/s, we calculated the necessary m; as
follows:

my HL = H/H

my Hi, = mi Hy

mz/ m) = HH /HL

my = (4.8/2.8) my

my = 1.71 m;

Thus, we obtained m, = 1.7Im;, and translated it into
duration of syllables and within- and between-string pauses, such
that we sped up all syllables and pauses proportionally by a
coefficient of 1.71. As a result, we created a faster source rate of
information transmission, i.e., entropy per second (H'y, = H'y),
but we kept the entropy per symbol constant Hy = 2.8b/symbol.

Next, for the aXb grammar, we created two versions of the
grammar with different levels of entropy (Hr; Hy), but the same
average rate of symbols/s (m3):

HL = 3.52b/symbol: H/L =m3 HL

Hy = 4.71b/symbol: H'y = m3 Hy.

For the purpose of increasing the source rate of information
transmission up to H'y while keeping entropy constant (Hy),
and by increasing the average rate of symbols/s, we calculated the
necessary my as follows:

may HL = H,H

my HL =m3 HH

m4/ ms = HH /HL

my = (4.71/3.52) ms3

my = 1.34 ms.

Thus, we obtained m4 = 1.34m3, and translated it into
duration of syllables and within- and between-string pauses, such
that we sped up all elements (syllables and pauses) proportionally
by a coefficient of 1.34. As a result, we created a faster
source rate of information transmission, i.e., entropy per second
(H'L = H'n), but we kept the entropy per symbol constant
Hy, = 3.52b/symbol.

Besides probing the direct effect of the time variable of
channel capacity, as presented above, this study also looked
into the effect of individual differences in cognitive capacities
on rule induction, to explore the cognitive capacities that
underlie channel capacity: short-term memory capacity and a
domain-general pattern-recognition capacity, as a component
that reflects the working memory capacity we deem relevant
for rule induction. To this end, we tested each participant on
three independent tests: Forward Digit Span, as a measure of
explicit short-term memory (Baddeley et al., 2015), an incidental
memorization task, which measures implicit memory capacity,
i.e., the ability to memorize information without being explicitly
instructed to do so (Baddeley et al., 2015), and RAVENS Standard
Progressive Matrices (Raven et al., 2000), which is a standardized
test based on visual pattern-recognition (Carpenter et al., 1990;
Little et al., 2014).

We ran two experiments to test the effect of increased rate of
information on rule induction in an XXY grammar and in an aXb
non-adjacent dependency grammar. Importantly, we tested the
same participants in both experiments, which were conducted
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in two separate sessions, on two different days (at least 3 days
between sessions). For practical reasons, all the participants
took part first in the aXb grammar experiment (Experiment
2) and then in the XXY grammar experiment (Experiment 1).
For theoretical presentation reasons, which have to do with the
logic and theoretical development of the entropy model and its
hypotheses, here we present the XXY experiment first, followed
by the aXb experiment.

To the best of our knowledge, these are the first language
learning experiments that investigate the effect of the time-
dependent variable of channel capacity in rule induction by
specifically testing information-theoretic predictions made by
an entropy model.

EXPERIMENT 1

In Experiment 1, the participants carried out three tasks. The first
task presented the three-syllable XXY grammar in two different
conditions: a slow source rate of information transmission
(Slow Rate condition) and a fast source rate of information
transmission (Fast Rate condition). In the Slow Rate condition,
we used the exact stimuli and source rate of information
transmission (H'r) as in the lowest entropy condition from
Radulescu et al. (2019), 2.8 bits. In the Fast Rate condition,
the same stimuli were used (Hy = 2.8), but the source rate
of information transmission was increased by a factor of 1.71
(see section “Testing the Prediction of Speeding up the Source
Bit Rate of Information Transmission”). In the test phases,
the participants heard four different types of test strings (from
Radulescu et al,, 2019), as presented below. The participants
answered a yes/no question to indicate whether the test strings
could be possible in familiarization language.

Familiar-syllable XXY (XXY structure with familiar
X-syllables and Y-syllables), correct answer: accept. This
type of test strings probed the learning of familiar strings. Both
groups were expected to accept these strings as grammatical
because they were encoded as either item-bound generalizations
(Slow Rate condition) or category-based generalizations (Fast
Rate condition).

New-syllable XXY (XXY structure with new X-syllables
and Y-syllables), correct answer: accept. This type tested
whether learners moved from item-bound to category-based
generalization, which enables them to accept XXY strings with
new syllables. We expected that the Fast Rate group was more
likely to accept these strings, as compared with the Slow Rate
group. However, the absolute mean acceptance rate of these
strings does not represent direct evidence for category-based
generalization. As we argued in Radulescu et al. (2019), this rate
should be compared with the mean acceptance rate of Familiar-
syllable XXY strings: if the difference of the mean acceptance rate
between New-syllable XXY strings and Familiar-syllable XXY
strings is significantly smaller in the Fast Rate as compared with
the Slow Rate condition (i.e., effect size), this would suggest
that the Fast-Rate learners were more likely to have formed
category-based generalization than the Slow-Rate learners.

Familiar-syllable X;X,Y (X;X,Y structure with familiar
syllables), correct answer: reject. The participants are expected

to reject these strings because the input was encoded as either
item-bound generalizations (Slow-Rate learners) or category-
based generalizations (Fast-Rate learners). Slow-Rate learners are
expected to reject this type of strings, as their memory trace
of the Familiar-syllable XXY strings is expected to be strong
enough to highlight a mismatch between these strings and the
Familiar-syllable X;X,Y strings. Fast-Rate learners are expected
to form category-based generalizations, thus they should reject
the Familiar-syllable X;X,Y strings as deviant from the same-
same-different rule. However, as argued in Radulescu et al. (2019),
we expect both item-bound and category-based generalization
to support accuracy scores on XI1X2Y strings because of
different reasons: if item-bound generalization is developed, as
(per hypothesis) learners encoded the strings as frozen item-
bound generalization, which highlight clear mismatches between
familiar and noncompliant combinations of specific items.
However, memory traces of familiar items (i.e., syllables) might
prompt incorrect acceptance of familiar-syllable X1X2Y. On the
other side, if category-based generalization is fully encoded, these
strings will be much more frequently rejected as non-compliant
with the same-same-different rule, regardless of any memory
trace. Thus, the higher rejection rate of these strings suggests
stronger category-based encoding.

New-syllable X;X,Y (X;X,Y structure with new syllables),
correct answer: reject. The participants are expected to reject
this type of strings, because the input was encoded as either
item-bound generalizations (Slow Rate group) or category-based
generalizations (Fast Rate group).

The second task was a Forward Digit Span (Baddeley et al.,
2015), and the third task was an incidental memorization
task (Baddeley et al., 2015). According to the hypotheses of
our entropy model, we predicted a negative effect of the
explicit/incidental memory capacities on the tendency of learners
to move from item-bound to category-based generalization.
The rote memorization capacity (Baddeley et al, 2015) is
hypothesized to have a negative effect on the transition from item-
bound to category-based generalization, since a strong memory
capacity for specific items and their probability configuration
would support a higher input entropy to be encoded per unit of
time (i.e., a higher channel capacity, in computational terms).

Participants

Fifty-six adults, Dutch native speakers (10 males, age range
18-72, Mgge = 26.39, SDgge = 11.06) participated. All the
participants were naive to the aim of the experiment, had no
known language, reading, or hearing impairment or attention
deficit, and received €5.

Materials

Task 1: XXY Grammar

Familiarization Stimuli

The participants in both the Slow Rate and the Fast Rate
conditions listened to the same three-syllable XXY’ artificial
grammar used in the low entropy condition of Experiment 2 from
Radulescu et al. (2019). Each string consisted of two identical

3Each letter stands for a set of syllables that do not overlap, that is the subset of
X-syllables does not overlap with the subset of Y-syllables.
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syllables (XX) followed by another different syllable (Y): e.g.,
ke:ke:my, da:da:li. All syllables consisted of a consonant followed
by a long vowel, to resemble common Dutch syllable structure.
Seven X-syllables and seven Y-syllables were used to generate
seven strings (see Supplementary Appendix A for complete
stimulus set). Each string was repeated four times in each of the
three familiarization phases (7 strings x 4 repetitions = 28 strings
in each familiarization phase). The same 28 strings were used
in all three familiarization phases, such that the entropy was the
same, 2.8 bits. The participants were randomly assigned to either
the Slow Rate or the Fast Rate condition, in a between-subjects
design, and the presentation order of strings was randomized
per participant. For entropy calculations, we employed the same
method as in Radulescu et al. (2019), which is a fine-tuned
extension of a related entropy calculation method proposed by
Pothos (2010) for finite state grammars (see Table 1 for complete
entropy calculations). In the Slow Rate condition, there was
a pause of 50 ms between the syllables within strings, and a
pause of 750 ms between the strings. In the Fast Rate condition,
all X and Y syllables, as well as the within-and between-string
pauses, were sped up separately by a factor of 1.71 using Praat
(Boersma and Weenink, 2019).

Test Stimuli

There were three familiarization phases, interleaved with three
intermediate test phases and a final (longer) test phase. Each
intermediate test included four test strings, one of each type.
The final test had eight test strings (two of each type):
4 4+ 4 4+ 4 + 8 = 20 test strings in total (see Supplementary
Appendix A for complete stimulus set). Accuracy scores were
measured as correct acceptance of Familiar-syllable XXY and
New-syllable XXY strings, and correct rejection of Familiar-
syllable X;X,Y and New-syllable X; X, Y strings.

We recorded all the yes/no answers and coded them as
correct/incorrect answers. From all the 20 correct/incorrect
answers for each participant, we calculated a proportion of
correct answers per each type of test item. We performed an
empirical logarithmic transformation on the proportions, to
analyze the data using a linear model.

Task 2: Forward Digit Span

The participants were explicitly told that this was a memory
test, during which a series of digits would be presented aurally,
and that they would have to recall them in the same order. To
prevent the participants from creating a visual pattern on the

TABLE 1 | Entropy value for Experiment 1, taken from Radulescu et al. (2019).

Low entropy

H[bX] = H[7] = —X£[0.143%l0g0.143] = 2.8
HXX] = H[7] = 2.8

HIXY] =H[7] = 2.8

H[Ye] = H[7] =2.8

H[pXX] = H[7] = 2.8

HXXY] = H[XYe] = H[7] = 2.8

Hlbigram] = 2.8

H[trigram] = 2.8

H[total] — H[bigram]EH[trigramj —-28

keypad while listening to the digits, we modified the standard
Forward Digit Span task such that no physical keyboard was
made available to the participants; rather, a row with buttons
for each digit was displayed in a line on the screen only in the
moment when they were asked to enter the digits by clicking
the buttons, and disappeared during the listening phases. We
used the standard scoring method: we measured the highest
span of each participant, and recorded it as one data point
per participant.

Task 3: Incidental Memorization Test

The participants listened to 30 bisyllabic nonsense words
resembling Dutch phonology. Crucially, the participants were
not told in advance that a memory test would be administered.
They were only told that they were about to listen to words from
another forgotten language. They were instructed to imagine
what the word might have meant in the forgotten language and to
pick a category (flower, animal, or tool) based on what the word
sounded like to them. They had 3 s to choose a category for each
word by pressing the button for flowers, animals, or tools.

After this phase, a message informed the participants that
they would be given a memory test, which would check
whether they remembered the words they categorized during
the previous phase. They were instructed to press a yes/no
button on the screen, depending on whether they have heard
the word previously or not. In the memorization test, the
participants gave answers on 13 targets and 13 foils. We
recoded all the correct/incorrect answers into a d’ value for
each participant.

Procedure

The participants completed the tasks in the order presented
above. For Task 1, they were told that they would listen to
a “forgotten language” that would not resemble any language
they might know, and that the language had its own rules and
grammar. The participants were informed that the language had
more words than what they heard in the familiarization phases.
They were told that each intermediate test would be different
from the other tests, and that the tests were meant to check what
they had noticed about the language. They had to decide, by
pressing a Yes or a No button, if the words they heard in the tests
could be possible in the language. This task lasted around 5 min.
For Task 2, they were explicitly instructed that it was a memory
test. For Task 3, they were not told in advance about the memory
test. The entire experiment lasted for about 20 min.

Results

Figure 1 presents the mean correct acceptance rate (proportion of
correct acceptances per group) for Familiar-syllable XXY strings
and New-syllable XXY strings, across the two conditions (Slow
Rate, Fast Rate). The mean correct acceptance rate in the Slow
Rate condition for Familiar-syllable XXY strings was M = 0.96
(SD = 0.1), and for New-syllable XXY strings it was M = 0.75
(8D = 0.27). The mean rate of correct acceptance in the Fast
Rate condition for Familiar-syllable XXY strings was M = 0.99
(SD = 0.04), and for New-syllable XXY strings it was M = 0.9
(SD = 0.18).
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FIGURE 1 | Mean rate of correct acceptance for Familiar-syllable XXY and New-syllable XXY strings in both conditions: Fast Rate and Slow Rate. Error bars show
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FIGURE 2 | Mean rate of correct rejection for Familiar-syllable X1X2Y and New-syllable X1X2Y strings in both conditions: Fast Rate and Slow Rate. Error bars show

New-syll X1X2Y
Error Bars: + /- 2 SE

Similarly, Figure 2 shows the mean correct rejection rate
(proportion of correct rejections per group) for Familiar-syllable
X1X,Y strings and New-syllable X;X,Y strings, across the Slow
Rate and Fast Rate conditions. In the Slow Rate condition, the
mean correct rejection rate for Familiar-syllable X;X,Y strings
was M = 0.93 (SD = 0.24), and for New-syllable X;X,Y strings
it was M = 0.99 (SD = 0.04). In the Fast Rate condition, the

mean correct rejection rate for Familiar-syllable X;X,Y strings
was M = 0.99 (SD = 0.05), and for New-syllable X; XY strings it
was M = 0.99 (SD = 0.08).

Figure 3 shows the distribution of individual mean rates per
test type in both conditions.

In order to probe the effect of channel capacity on rule
induction, we used IBM SPSS 26 to compare the performance
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in the two conditions (Slow Rate and Fast Rate groups) in a
general linear mixed effects analysis of the relationship between
Accuracy (correct acceptance of the grammatical test items and
correct rejection of the ungrammatical ones) and the Rate of
Transmission (Slow Rate, Fast Rate) as well as the Type of
Test Strings (Familiar-syllable XXY, New-Syllable XXY, Familiar-
syllable X;X,Y, New-Syllable X;X,Y). As a dependent variable,
we entered Accuracy score into the model. As fixed effects, we
entered Rate of Transmission, Type of Test Strings, and Rate of
Transmission x Type of Test Strings interaction. As a random
effect we had intercepts for subjects. The scores for Forward Digit
Span, Incidental Memorization Task, and RAVENS tests* were
entered one by one as covariates in the model. An alpha level of.05
was used for all the statistical tests. We started fitting the data
from the intercept-only model and added the random and fixed
factors one by one. The model reported here is the best fitting
model, both in terms of the accuracy of the model in predicting
the observed data, and in terms of Akaike Information Criterion.
We found a significant main effect of Type of test strings
[F(3,213) = 5.742, p = 0.001], a Rate of Transmission x Type
interaction that did not reach significance [F(4,213) = 2.039,
p = 0.09], a non-significant Forward Digit Span effect
[F(1,213) = 0.069, p = 0.793], a non-significant Incidental
Memorization Task effect [F(1,213) = 0.880, p = 0.349], and a
non-significant RAVENS effect [F(1,213) = 2.326, p = 0.129].°
Pairwise comparisons of the Estimated Marginal Means
(adjusted to the mean values of the covariates in the model,

“RAVENS scores were obtained for the participants during the second experiment
presented in this paper, since the same participants participated in both
experiments (see section “Experiment 2” below).

SWe also checked the main effect of Rate of Transmission, and since it was non-
significant [F(1,213) = 2.558, p = 0.111], it did not improve the model, and
it created effects of an overfitted model, we excluded it from the final model
presented here.

i.e. Forward Digit Span 6.68, Incidental Memorization
Task = 1.968, RAVENS = 71.54) revealed a significant difference
between the Rate of Transmission conditions (Fast Rate and Slow
Rate groups) for the New-syllable XXY [M = 0.101, SE = 0.045,
F(1,213) = 4.936, p = 0.027], and a nearly significant difference
for the Familiar-syllable X1X2Y [M 0.085, SE 0.045,
F(1,213) = 3.522, p = 0.062]. For the other two Types of test,
pairwise comparisons of the Estimated Marginal Means adjusted
for the same level of the covariates revealed a non-significant
difference between the Rate of Transmission conditions (Fast
Rate and Slow Rate groups): Familiar-syllable XXY [M = 0.01,
SE = 0.045, F(1,213) 0.051, p = 0.822] and New-syllable
X1X2Y [M = 0.012, SE = 0.045, F(1,213) = 0.069, p = 0.793].

Cohen’s effect size value (d) and the effect-size correlation (r)
for the difference in acceptance between Familiar-syllable XXY
and New-syllable XXY were higher in the Slow Rate condition
(d = 1.03, r = 0.45; large effect size), than in the Fast Rate
condition (d = 0.69, r = 0.32; medium effect size).

Discussion

The results of Experiment 1 show that the mean acceptance of
new XXY strings as grammatical in the familiarization language
was higher in the Fast Rate condition than in the Slow Rate
condition, as predicted by our model. Moreover, there was a
difference between the rates of acceptance of new XXY strings
vs. familiar XXY strings depending on the rate of transmission:
there was a smaller difference between the mean acceptance of
the new XXY strings vs. familiar XXY strings in the Fast Rate
condition compared with the Slow Rate condition. This shows
differences between groups in terms of how they encoded the
input: if learners do not make a clear distinction between a
new XXY string and a familiar XXY string, we conclude that
they encoded the input as category-based generalization, which

Clustered Boxplot of %Accuracy by Type by Group
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FIGURE 3 | On the X-axis the four types of test items: Familiar-Syllable XXY, New-syllable XXY, Familiar-syllable X1X2Y, New-syllable X1X2Y. On the Y-axis the mean
rate of correct answers: correct acceptance for XXY strings (with familiar or new syllables) and correct rejections of X1X2Y (with familiar or new syllables).
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allows them to accept any XXY string based on the same-same-
different rule regardless of new or familiar syllables. Hence, a
smaller difference between the means of acceptance of these test
types in the Fast Rate condition shows a higher tendency toward
category-based generalization than in the Slow Rate condition.
Also the rate of correct rejection of X1X2Y strings with familiar
syllables was higher in the Fast Rate condition than in the
Slow Rate condition, which supports the same hypothesis of our
model: when speeding up the source rate of transmission, learners
formed category-based generalizations, which helped them reject
strings that violated the same-same-different rule, regardless of
their familiar syllables. Thus, these results, together, show that
there was a higher tendency toward category-based generalization
when the source rate of transmission was increased to a rate
higher than channel capacity, even though the input entropy was
the same in both conditions, which supports the predictions of
our entropy model regarding the effect of the time-dependent
variable of channel capacity on rule induction.

We did not find a significant main effect of any of the
individual differences in explicit/implicit memory capacity or
RAVENS, but they improved the model as covariates. A logical
possible explanation under the hypotheses of our model could
be that the effect of the source rate of information was
increased to such a high extent (shown by the almost at ceiling
overall performance in the Fast Rate condition) that individual
cognitive abilities do not make any difference. Alternatively,
these particular cognitive differences do not underlie the channel
capacity relevant for linguistic rule induction.

These results show that, even with a low input of entropy
(Radulescu et al., 2019), increasing the source rate of information
transmission, while controlling for individual differences in
explicit/implicit memory capacity and RAVENS, drives a change
in the encoding method toward a more efficient encoding. As
hypothesized, the same transition to a more efficient encoding
method, from item-bound to category-based generalization, was
obtained by either increasing the input entropy (H) in Radulescu
et al. (2019) or reducing the time that the same input entropy is
fed into the channel, i.e., by speeding up the source bit rate of
information transmission.

EXPERIMENT 2

In Experiment 2, the participants carried out three tasks. In
Task 1, the adults were exposed to an aXb language (Gomez,
2002; Grama et al., 2016) where they had to learn item-bound
dependencies between a and b (item-bound generalization), while
also generalizing a_b dependencies over a category of X words
(category-based generalization). For example, they had to learn
the item-bound dependency tep_jik and generalize it over new
X elements (like nilbo, perxon): tep_nilbo_jik, tep_perxon_jik, etc.

We designed two experimental conditions: a slow source rate
of information transmission (Slow Rate condition) and a fast
source rate of information transmission (Fast Rate condition). As
presented in section “Testing the Prediction of Speeding up the
Source Bit Rate of Information Transmission,” we first created
two entropy versions of the grammar, with the same average rate

of symbols/s (m3), then we increased the average rate of symbols/s
(my), in order to reach the same source rate of information
transmission of the high entropy version while, crucially, keeping
the input entropy low.

Unlike Gémez (2002), we kept X set size constantly high (18
Xs) and manipulated entropy by combining each of the three
a_b frames with different subsets of 6 Xs (3 a_b* 6 Xs), which
generated a rather low entropy grammar version (Hp = 3.52
bits/symbol). For the high entropy condition, the aXb grammar
combined exhaustively each of the three a_b frames with all
the 18 Xs (three a_b* 18 Xs), which resulted in a rather high
entropy (Hy = 4.7 bits/symbol). Since such evaluations of
low/high entropy could be seen as relative, depending on the
grammar/language, we took into account previous studies on
nonadjacent dependency learning (Gémez, 2002; Grama et al.,
2016; Radulescu and Grama, 2020 unpublished data) in order to
estimate the set size and variability necessary to achieve a low
and a high entropy version. For entropy calculations, we used
the same method as in Radulescu et al. (2019), see Table 2 for
complete entropy calculations.

In the Slow Rate condition, we used the low entropy version
as presented above Hp = 3.52b/symbol. In the Fast Rate
condition, the same stimuli were used (Hp = 3.52b/symbol),
but the source rate of information was sped up by a factor of
(Hy/Hy = 4.71/3.52 = ) 1.34 (as per calculations in section
“Testing the Prediction of Speeding up the Source Bit Rate of
Information Transmission”).

In the test phase, the participants were asked to give
grammaticality judgments on aXb strings with either correct
(familiar) or incorrect (unfamiliar) a_b frames. Whereas familiar
a_b frames where the same as presented during familiarization
(ai_bj, where a; predicted b; with 100% probability), unfamiliar
a_b frames consisted of combinations between familiar a and b
elements that were mismatched (a;_bj, where a predicted another
b). Importantly, all test strings (correct and incorrect) included
new X elements that were not present in the familiarization, since
we aimed at testing for generalization of non-adjacencies to new
intervening elements.

Recall that, according to our entropy model, rule induction
is a phased mechanism that moves from the first phase of item-
bound generalization to the next-level phase of category-based
generalization as a function of the interaction between the input
entropy and channel capacity. Learning aXb strings requires both

TABLE 2 | Entropy values for the two entropy versions of the aXb grammar.

Low entropy High entropy

Hlbegin-a] = H[3] =
—X[0.333"0g0.333] = 1.58

H[aX] = H[18] = 4.17

HXb] = H[18] = 4.17

Hib-end] = H[3] = 1.58
Hlbegin-aX] = H[18] = 4.17

HlaXb] = H[Xb-end] = H[18] = 4.17
Hlbigram] = 2.86

H[trigram] = 4.17
H[total] — H[bigram];)—/[trigramj

H[begin-a] = H[3] =
—%[0.333%0g0.333] = 1.58
H[aX] = H[54] = 5.75

HXb] = H[54] = 5.75
Hib-end] = H[3] = 1.58
Hlbegin-aX] = H[54] = 5.75
H[aXb] = H[Xb-end] = H[54] = 5.75
Hlbigram] = 3.67
Hitrigram] = 5.75 )
Hltotal] = w

=3.52 =4.71
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item-bound generalization of the a_b frames simultaneously with
category-based generalization of these frames over a category
of X elements. In this case, if the sped-up source rate of
information transmission drives faster transition to category-
based generalization, the item-bound encoding mechanism for
the specific a_b dependencies might be phased out, and the
encoding method might move to category-based generalization
for the a/b elements as well, not only for the X category.
Specifically, learners might encode the a/b elements as categories,
which do not restrict to a specific a;_b; dependency. That
is, learners might not encode an a; b; relationship, but a
relationship between a category of a elements and a category
of b elements, which also allows for an a;_b; dependency to be
legit (“class-words,” Endress and Bonatti, 2007). To sum up, the
predictions for this task could be opposite for the two types
of relationships encoded in such an aXb grammar: increasing
the source rate of information transmission impedes item-bound
generalization (of the specific a;_b; relationship), but it facilitates
category-based generalization (i.e., generalizing a relationship
between a/b categories over a category of Xs).

The second task that the participants had to complete was
RAVENS Standard Progressive Matrices (Raven et al., 2000).
According to the hypotheses of our entropy model, we predicted
a positive effect of RAVENS on the tendency to move from
item-bound to category-based generalization.

In the third task, the participants completed a word-recall task,
designed to test item memorization, i.e., detailed phonological
representations of the a, b and X elements, in order to test for
a correlation between learners’ representations of specific items
and their accuracy scores. We expected accurate memorization
of the a/b elements to support better learning of the a_b
dependencies and, thus, better accuracy scores. Conversely,
failing to recall Xs would indicate better generalization of the X
category, hence better scores.

Participants

The same 56 participants from Experiment 1 participated in
Experiment 2. We tested one more participant in Experiment
2 (as Experiment 2 was conducted before Experiment 1, one
participant did not return to participate in Experiment 1).
Therefore, in total, 57 adults participated in Experiment 2
(10 males, age range 18-72, Myge = 26.28, SDgge = 11) and
received €10.

Materials

Task 1: aXb Grammar Learning

Familiarization Stimuli

All the a and b elements were monosyllabic nonsense words
(e.g., tep, jik), while all the X elements were bisyllabic nonsense
words (e.g., naspu, dyfo:), based on Grama et al. (2016). Each a_b
pair was combined with a different, non-overlapping set of six
X elements (see Supplementary Appendix B for the complete
stimulus set). In both Slow Rate and Fast Rate conditions, two
versions of the aXb language were used: Language 1 (L1) and
Language 2 (L2). The only difference between L1 and L2 was
the specific legit combination of the three a and b elements

into pairs: tep _leet, sot_ jik, and rak_tuf (L1), and tep _ jik,
sot_tuf, and rak_leet (L2). Therefore, every a; _b; pair in L1
was ungrammatical (a;_b;) in L2, and vice versa. We used
two different versions to prevent an effect of idiosyncrasies of
particular a_b combinations (L1 or L2). Therefore, each version
of the aXb grammar (L1 and L2) consisted of (3 a;_b; * 6
X; =) 18 different a;X;b; strings. Each participant listened to
only one version of the aXb grammar (either L1 or L2), and
to only one source rate of transmission condition (either Slow
Rate or Fast Rate).

The 18 different a;X;b; strings were presented 12 times,
resulting in a total of 216 strings, in a randomized order for
each participant. In the Slow Rate condition, there was a 100-
ms within-string pause, and a 750-ms between-string pause. In
the Fast Rate condition, all the a, b, and X elements, as well as the
within-string and between-string pauses for each aXb string, were
sped up by a factor of 1.34 (see section “Testing the Prediction of
Speeding up the Source Bit Rate of Information Transmission”)
using Praat (Boersma and Weenink, 2019). The duration of each
a, b, and X word was shortened separately by the 1.34 factor, and
then the elements were spliced into the specific aXb strings.

Test Stimuli

Each a_b frame of each language (L1 and L2) was combined with
two novel X elements to yield (6 a_b * 2 X=) 12 new test items
(see Supplementary Appendix B). Each participant listened to 12
new aXb strings: six grammatical and six ungrammatical. The six
new aXb strings that contained the L1 a_b pairs were counted as
ungrammatical for the L2 learners, while the six new aXb strings
with the L2 a_b pairs were ungrammatical for the L1 learners.
Accuracy scores for learning the aXb grammar were calculated
as correct acceptances of the grammatical strings and correct
rejections of the ungrammatical strings.

Task 2: RAVENS

The second task was Raven’s Standard Progressive Matrices
(Raven et al., 2000), for which the participants had to solve 60
matrices by identifying which pattern is missing in a multiple
choice task. Each matrix consists of a set of nine patterns, of
which one is missing, arranged in a particular order according
to some underlying rules. The standard RAVENS allows 50 min
for completion, but after a pilot, we allowed the participants only
35 min, to avoid a time-consuming and exhausting experiment
session. We used the standard scoring method: we counted
all correct answers, and then we used the standard tables to
transform them into age-corrected percentiles.

Task 3: Word Recall Task

The Word Recall task had two tests. In the first test, the
participants were presented visually with 12 familiar two-syllable
X words from the aXb language, and 12 new bisyllabic foils,
similar to the familiar ones, which overlapped in one syllable
with the target words. The second test presented the participants
visually with six monosyllabic familiar a or b elements of the
aXb language, and six new nonsense word foils, which differed
from the target words only by one letter (see Supplementary
Appendix C for stimulus set). The participants had to indicate for
each word whether they heard it during the first task. Accuracy
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scores were measured as correct acceptances of the familiar items
and correct rejections of the foils.

Procedure

Before the familiarization phase of Task 1, the participants were
instructed that they would listen to an “alien language” that does
not resemble any language that they might be familiar with,
and that the language has its own rules and grammar. To avoid
any motivation to explicitly look for patterns in the stimuli, the
participants were not informed of the subsequent test phase until
after the end of the familiarization phase. Before the test phase,
the participants were instructed that they would listen to new
sentences in the same “alien language,” and that none would
be identical to the sentences they had heard before. They were
then asked to decide for each sentence whether it was correct
or not, according to the grammar of the language they had just
heard, by clicking on “Yes” or “No.” They were instructed to
answer quickly and intuitively. Afterward, the other tasks were
administered in the order stated above. Experiment 2 lasted
approximately 1 h.

Results

Table 3 shows the means and standard deviations of accuracy
scores (proportion correct responses) for both conditions (Slow
Rate vs. Fast Rate).

Figure 4 shows a bimodal distribution of individual accuracy
scores in the Slow Rate condition: this shows that most of the
participants either performed around chance level or achieved a
very high accuracy score. Figure 5 shows most of the participants
in the Fast Rate condition performed between 40 and 60%.

Because the data were not normally distributed, a
nonparametric statistical test, a two-tailed one-sample Wilcoxon
signed-rank test, was conducted to assess whether response rates
were significantly different from chance. The accuracy score
of Fast-Rate learners (M = 0.55, SD = 0.5) was significantly
different from chance at the 0.05 level of significance, with a
moderate effect size (p = 0.017, 95% CI for mean difference
0.5 to 0.63, r = 0.45). The accuracy score of Slow-Rate learners
(M = 0.69, SD = 0.46) was significantly different from chance at
the 0.05 level of significance, with a large effect size (p < 0.001,
95% CI for mean difference 0.67 to 0.83, r = 0.73).

To compare performance across the two conditions, we used
R (R Core Team, 2017) and the ImerTest package (Kuznetsova
et al,, 2017) to perform a general linear mixed effects analysis
of the relationship between Accuracy (correct acceptance of
grammatical test strings and correct rejection of ungrammatical
test strings) and Rate of Transmission (Slow Rate, Fast Rate).
As a dependent variable, we entered Accuracy in the model,

TABLE 3 | Descriptive statistics of mean correct score in two conditions of
exposure. Experiment 2.

Condition M SD n SE 95% CI for Mean Difference
Slow rate 0.69 0.46 29 0.09 0.51,0.87
Fast rate 0.55 0.50 28 0.09 0.37,0.74

and as fixed effects we entered Rate of Transmission (Slow Rate,
Fast Rate) and Language (L1, L2), without interaction term.
As random effects we had intercepts for subjects’. An alpha
level of 0.05 was used for all the statistical tests. We started
fitting the data from the intercept-only model and added the
random and fixed factors one by one. The model reported here
is the best fitting model, both in terms of model accuracy in
predicting the observed data and Akaike Information Criterion.
Likelihood Ratio Tests were performed separately as a means
to attain p-value for the effect of each predictor (Rate of
Transmission, Language).

A significant main effect of Rate of Transmission
[x%(1) = 8.43, p = 0.003, conditional R? = 0.1] on Accuracy
was found, indicating that the participants in the Fast Rate
condition had significantly lower Accuracy scores as compared
with the participants in the Slow Rate condition. Language was
not a significant predictor [x3(1) = 3.2, p = 0.07, conditional
R? = 0.09]. Finally, we ran an additional model that included
the interaction between Rate of Transmission and Language
(although this was not the best fitting model, we wanted
to verify that our specific stimuli did not prompt different
performance). No significant interaction effect was found
between Rate of Transmission and Language [x2(1) = 0.14,
p = 0.7, conditional R> = 0.1]. The scores of individual
differences tests (Forward Digit Span, Incidental Memorization
Test, Raven’s Progressive Matrices, Word Recall Test) were
added to this model as fixed factors, one by one. However,
the only one that improved the model was the accuracy score
in the Word Recall Test for a/b (but not X) elements of the
aXb grammar, and it also had a significant positive effect
on the Accuracy scores [x3(1) = 3.8, p = 0.05, conditional
R*=0.1].

Discussion

In Experiment 2, we tested the effect of speeding up the
source rate of transmission on learning a complex aXb
grammar, which required both item-bound generalization of
the specific a_b dependencies and category-based generalization
in order to generalize those dependencies over a category of
intervening X elements. According to our entropy model,
our predictions for this experiment were opposite for the
two types of relationships encoded in an a;Xb; grammar:
increasing the source rate of information transmission
impedes item-bound generalization (of the specific a;_b;
relationship), but it facilitates category-based generalization
(i.e., generalizing a relationship between a and b categories
over a category of Xs). The results showed that there was
indeed a significant effect of increasing the source rate of
transmission on learning the aXb grammar, such that the
Fast Rate group scored lower than the Slow Rate group.
This shows that increasing the source rate of transmission
by a factor of 1.34 in this particular 4;Xb; grammar with an
entropy of 3.52 bits/symbol makes learning of the specific

®Due to convergence issues, random intercepts for items were excluded due to
convergence issues [their estimated variance was zero, they did not improve the
model and their effect was insignificant - ¥ (1) = 0,p=1)].
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a;_b; frames and generalizing them over novel intervening X
elements more difficult than a slower rate of transmission.
Moreover, participants who recalled the a/b elements
better across conditions learned the specific a;_b; frames
better. Thus, the learning of a;Xb; grammar is correlated

with item-specific encoding of the a/b elements. All these
results, taken together, support the predictions of our entropy
model, namely, that an increased source rate of information
transmission impedes item-bound generalization (of the specific
a;_b; relationship).
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As we argued above, if learners correctly accept new aXb
strings with the specific familiar a;_b; dependencies and new X
elements, it shows they were both able to encode item-bound
generalizations (a;_b; frames), and to generalize them over a
category of X elements, i.e., category-based generalization. This is
what happened both in the Slow Rate and Fast Rate conditions.
However, the Fast Rate group had a lower tendency to do so
compared with the Slow Rate group. There could be several
logical interpretations: Fast-Rate learners failed at category-based
generalization of the Xs, they failed at item-bound generalization
of the a;_b; frames, or they were simply confused. Therefore, we
looked into the acceptance/rejection ratios. If the first case was
true, rejection rates should be higher than acceptance rates, since
all the test items had new Xs. This was not the case. Actually, the
Fast-Rate learners show similarly high acceptance rates for both
language-specific a;Xb; strings (specific to the exposure language,
e.g., L1) and language-deviant a;Xb; strings (specific to the other
language, e.g., L2), with a rather high acceptance rate for the
language-deviant a;Xb; strings (Median = 0.58) compared with
the Slow-Rate learners (median = 0.33) (Figures 6, 7). This
points to the fact that the Fast-Rate learners failed to learn the
specific a;_b; dependencies, that is, item-bound generalization
was impaired in the Fast Rate group.

If this was the case, this result can be accounted for by
our entropy model: as we argued in section “Experiment 2”, a
sped up source rate of information transmission precipitates the
transition to category-based generalization faster, such that the
item-bound encoding mechanism for the specific a;_b; frames
might be phased out, and the encoding method moves to
category-based generalization for the a;_b; frames as well. This
would be a case of overgeneralization: categories of the a/b
elements would be inferred (i.e., category-based generalization),
not just the item-bound specific a;_b; frames, so any a could
freely combine with any b, such that the a;_b; frames would also
be accepted (“class-words”). Since all the test items show new
combinations with X elements, the learner might find it highly
probable that the a/b elements could yield new combinations, as
long as they preserve the main aXb order and word characteristics
(i.e., monosyllabic a followed by a bisyllabic X and then a
monosyllabic b).

Following this logic, if the Fast-Rate learners actually
overgeneralized, they must have started the test by accepting both
language-specific and language-deviant aXb strings, and after the
first acceptances they would question why all the test items seem
to be acceptable, which might have led to an increased rate of
rejections in the last part of the test. Alternatively, if the Fast-Rate
learners were just confused, the acceptances should be randomly
scattered over test trials.

An inspection of the acceptance rate of both language-specific
and language-deviant aXb strings, in the Fast Rate condition,
showed a higher tendency to accept all the test strings in the
first three trials of the test [t(11) = —1.951, p = 0.05], regardless
of exposure language, than in the last trials. These results might
point to a case of overgeneralization in the Fast Rate condition.

Thus, it is possible that the source rate of information
transmission was increased to an extent higher than required
to actually learn the a;Xb; grammar, and that it led to

overgeneralization. Further research should specifically test the
overgeneralization hypothesis, and look further into the effect of
sped-up source rate of information transmission at a lower rate,
i.e., a speeding up factor m < 1.34, to find the adequate source
rate of transmission for learning this complex grammar.

GENERAL DISCUSSION AND
CONCLUSION

This article contributes to the ongoing research on the
underlying mechanisms and factors that drive both item-bound
generalization and category-based generalization by extending
further the entropy model for rule induction that we proposed
in Radulescu et al. (2019). Our entropy model offers a more
refined formal approach to the classical Less-is-More hypothesis
(Newport, 1990) and takes a step further by bringing together two
factors in one information-theoretic account based on Shannon’s
noisy-channel coding theory (Shannon, 1948). Specifically, our
model hypothesizes that an increase in the source input entropy
per second to a rate higher than the time-sensitive encoding
capacity of our brain, channel capacity, drives the transition
from item-bound to category-based generalization. In Radulescu
et al. (2019), in two artificial grammar experiments, we found
evidence that an increase in input entropy gradually shapes item-
bound generalization into category-based generalization. Hence,
our model specifically predicts that it is not high entropy in
absolute terms that is the factor at stake in this mechanism.
Rather, our finite entropy-processing channel capacity, places
an upper bound on the amount of entropy per second, which
drives the self-organization of information from an encoding
method to another, in line with Dynamic Systems Theory
(Stephen et al., 2009).

In two artificial grammar experiments, an XXY grammar
and a more complex aXb grammar, we sped up the source
rate of information transmission to tax channel capacity, which
was hypothesized to drive the transition from item-bound
to category-based generalization. Learning an XXY grammar
requires abstracting away from specific items of the X and
Y categories, to move from item-bound to category-based
generalization, that is, to learn the same-same-different rule
between categories, regardless of specific items. The results
showed that this transition was driven by an increase in the source
rate of information transmission, i.e., input entropy per second,
while the statistical properties of the input, ie., input entropy
per symbol, remained constant at a low level, which did not
support the generalization in Radulescu et al. (2019). Crucially,
as hypothesized by our entropy model, moving from item-bound
to category-based generalization was driven by either increasing
the input entropy (H) in Radulescu et al. (2019) or increasing the
time that the same input entropy enters the channel, thus, taxing
the channel capacity in this study.

Learning an aXb grammar requires moving from item-bound
to category-based generalization for the category of middle
Xs, while, crucially, sticking to item-bound generalization for
the specific a_b dependencies. If increased source rate of
information transmission drives category-based generalization for
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the X category, it follows that it should phase out item-bound
generalization for the specific a_b dependencies. Indeed, the
results showed that faster source rate of information caused
lower accuracy than slower source rate of information on
this grammar. As per our model, one logical interpretation
of these results would be that the source rate of transmission
was too high for this type of grammar with the specific input
entropy that we tested (3.52 bits), and that it precipitated the
transition to category-based generalization for the specific a_b
dependencies as well, not only for the X elements. This points to

a possible overgeneralization, where learners might have learned
an AXB grammar, where A and B stand for categories instead of
item-bound relationships between specific a/b elements. Indeed,
it is possible that for this type of grammar fast, but not furious,
might yield better learning. Future research should look into a
slower rate of transmission for an aXb grammar with this specific
entropy (3.52 bits).

Altogether, these results show that, as hypothesized by our
entropy model, rule induction is an encoding mechanism
that moves from item-bound to category-based generalization
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driven by the interaction between the input entropy and the
finite channel capacity. Future research should look into the
exact mathematical relationship between input entropy and
rate of transmission, by also considering the other variable of
channel capacity, i.e., the rate of equivocation caused by noise
interference, in order to calculate an estimation of the channel
capacity for rule induction.

Although having used other methods than information-
theoretic approaches to investigate the effect of a time-dependent
variable on category learning (Reeder et al., 2009, 2013), on non-
adjacent dependency learning (Endress and Bonatti, 2007; Wang
etal, 2016, 2019) and on auditory statistical learning (Emberson
etal., 2011), converging evidence from these studies highlights a
clear pattern: generally a shorter time is beneficial to auditory rule
(category) learning. This hypothesis is also supported by evidence
from neural network research showing that reduced training time
leads to lower generalization error (Hardt et al., 2016). Our study
contributes to this research topic by taking a step further: it
applies a purely information-theoretic measure directly derived
from Shannon’s noisy-channel coding theory and based on the
quantified amount of input entropy per second.

Our model is compatible with another information-theoretic
hypothesis derived from Shannon’s noisy-channel coding theory:
the hypothesis of Uniform Information Density (Jaeger, 2006,
20105 Levy and Jaeger, 2007). Although proposed in a different
domain of application, this hypothesis proposes that in language
production speakers prefer (intuitively) to encode their message
by a uniform distribution of information across the signal,
with a rate of information transfer close to the channel
capacity, but without exceeding it. In other words, language
production is inherently a mechanism designed for eflicient
communication, in that it balances the amount of information
per time or signal (dubbed “information density”), such that
the channel is never under- or overutilized (Jaeger, 2010).
Underutilization means a waste of channel, while overutilization
risks information loss, as per Shannon’s noisy-channel coding
theory, hence, as per the Uniform Information Density. By
posing the noisy-channel capacity as an upper bound of the
rate of information transmission for the purpose of efficient
transmission without information loss, our model accounts for
the Uniform Information Density hypothesis, and takes a step
further by offering a more general domain of application (i.e.,
learning and generalization).

At the algorithmic level (in the sense of Marr, 1982),
our entropy and channel capacity model for rule induction
in artificial grammar is compatible with recent models of
recognition memory (Cox and Shiffrin, 2017) and exemplar
models applied to artificial grammar learning (Jamieson and
Mewhort, 2010). Future research should look into the link
between our entropy model and these formal approaches based
on encoding instances as vectors of features, with generalization
being triggered by vector similarity (Chubala and Jamieson,
2013). Indeed, as we argued in Radulescu et al. (2019), by
refining the feature similarity approach to the category formation
proposed by Aslin and Newport (2012, 2014), our entropy model
suggests that information is re-structured from item-bound to
category-based generalization by (unconsciously) re-observing
the structural properties of the input and identifying similarities

(shared features) and specific differences (unshared features)
between items. Crucially, our model proposes channel capacity
as the upper bound on the amount of similarities/differences
encoded. The degree of specificity of the encoding (i.e., item-
bound specificity) is given by the amount of differences encoded
with specific items, which results from a lower or higher input
entropy (measured in bits of information): the more differences
are encoded (higher input entropy), the higher the degree
of specificity of the encoding (i.e., item-bound generalization).
Conversely, when the degree of specificity of the encoding reaches
the upper bound placed by channel capacity on the number of bits
encoded per second, a reduction or “gradual forgetting” of the
encoded differences is triggered in order to avoid an inefficient,
i.e., noisy, encoding (Radulescu et al., 2019). Hence, more and
more similarities between items are highlighted, which drives an
automatic gradual grouping of items under the same “bucket.”
Hence, the degree of specificity decreases and the degree of
generality increases gradually with each bit of information.
Thus, a gradient of specificity/generality on a continuum from
item-bound to category-based generalizations can be envisaged
in terms of number of bits of information encoded in the
representation (analogous to the degree of stability/plasticity
in terms of strength of memory pathways in neural networks,
Abraham and Robins, 2005).

A follow-up topic would be to better define and specify
channel, be it a communication channel between speakers or an
abstract channel as we mostly hinted in this study: an abstract
channel between an abstract source, a grammar, and a learner.
However, we would briefly suggest a more in-depth and granular
understanding of the abstract concept of channel as a system of
channels: intuitively, and oversimplifying here, the acoustic signal
from the environment enters the acoustic channel of a learner,
which has a specific rate of information transmission, then the
output of this channel becomes the input to the perception
channel, whose output becomes the input to the cognitive
channel. Estimates of the bit rate of information processing by
applying information theory were proposed in some perception
and cognitive domains, e.g., in visual attention (Verghese and
Pelli, 1992), visual processing (Koch et al., 2006), unconscious
vs. conscious processing (Dijksterhuis and Nordgren, 2006), and
cognitive control (Wu et al., 2016). However, we suggest that
the concept of channel should be first and foremost defined and
specified in physical and biological terms (i.e., at the level of brain
structure and neural networks), and further investigated in terms
of its link to the cognitive capacities (at the algorithmic level).
That would mean further investigating and applying Shannon’s
channel and noisy-channel coding theory to recent developments
in neurobiology, where it was shown that artificially induced
forgetting at the cellular level drives generalization (Migues et al.,
2016). Moreover, since information is physical (Laughlin et al,,
1998; Machta, 1999; Karnani et al., 2009), further research should
look into the information-theoretic concept of channel and rate of
information transmission at the level of neural networks. Neural
networks are the physical/biological medium (i.e., channel)
transmitting one form of information (acoustic energy) to the
brain that is transcoded into another form of information (i.e.,
neuronal energy, patterns of electric activity at the neuronal
level). Physical bioprocesses of energy transformation from
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acoustic information into electric signal and transmission
through neural networks were proposed to underlie abstract
memory representations (Varpula et al., 2013).

Before concluding, it is imperative to clarify one aspect.
A model of finite and noisy-channel capacity might lead the
reader to assume a kind of a cognitive limitation as in a flaw of
the cognitive system, which is definitely not the case. We do not
propose a model in which the emergence of rules and categories,
i.e., structure, is merely the side effect of some constraints of a
limited biological system. In accordance with innovative theories
and findings in neurobiology (Frankland et al., 2013; Hardt et al.,
2013; Migues et al., 2016; Richards and Frankland, 2017), we
deem our finite and noisy-channel capacity to be a design feature
of our biological system for adaptive purposes. More precisely,
neurobiological evidence shows that our memory system is
designed to encode memories not as in-detail representations
of the past, but as simplified models better suited for future
generalization in noisy environments (Richards and Frankland,
2017). The brain employs several strategies to undermine
faithful in-detail representations to prevent overfitting to past
events (in accordance with neural networks research (MacKay,
2003; Hawkins, 2004), which promotes better generalization
(among which is noise injection, a neurobiological mechanism
that increases random variability in the synaptic connections,
Villarreal et al., 2002).

Fast but not furious, reads the title of this article. Speed up,
but not wildly and in an unrestrained fashion. The channel
capacity acts as a speedometer, and determines the maximum
rate of information transmission with adequate encoding. In this
study, we proposed an innovative method to increase the rate of
information to tax channel capacity. We found that increasing the
rate of transmission with a specific factor calculated by applying
Shannon’s formula to experimentally obtained data indeed has
the hypothesized effect on rule learning: it drives category-based
generalization, and it interferes with item-bound generalization.
Thus, we deem it necessary to specify that by sped-up bit rate
we do not mean that an unrestrained increased bit rate, in
absolute terms, up to very high bit rates, drives rule induction
in any context, or grammar. In other words, the very specific
dynamics between the input entropy and the maximum rate of
information transmission drive rule induction. Further research
should investigate this sweet spot and find the mathematical
relationship between these two factors.
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