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New types of artificial intelligence products are gradually transferring to voice interaction

modes with the demand for intelligent products expanding from communication to

recognizing users’ emotions and instantaneous feedback. At present, affective acoustic

models are constructed through deep learning and abstracted into a mathematical

model, making computers learn from data and equipping them with prediction abilities.

Although this method can result in accurate predictions, it has a limitation in that it lacks

explanatory capability; there is an urgent need for an empirical study of the connection

between acoustic features and psychology as the theoretical basis for the adjustment

of model parameters. Accordingly, this study focuses on exploring the differences

between seven major “acoustic features” and their physical characteristics during voice

interaction with the recognition and expression of “gender” and “emotional states of

the pleasure-arousal-dominance (PAD) model.” In this study, 31 females and 31 males

aged between 21 and 60 were invited using the stratified random sampling method for

the audio recording of different emotions. Subsequently, parameter values of acoustic

features were extracted using Praat voice software. Finally, parameter values were

analyzed using a Two-way ANOVA, mixed-design analysis in SPSS software. Results

show that gender and emotional states of the PAD model vary among seven major

acoustic features. Moreover, their difference values and rankings also vary. The research

conclusions lay a theoretical foundation for AI emotional voice interaction and solve deep

learning’s current dilemma in emotional recognition and parameter optimization of the

emotional synthesis model due to the lack of explanatory power.

Keywords: voice-user interface (VUI), affective computing, acoustic features, emotion analysis, PAD model

INTRODUCTION

Nowadays, the core technologies of artificial intelligence (AI) are becoming increasingly mature.
People face a new bottleneck in giving the “emotional temperature of humans” to a cold,
intelligent device (Yonck, 2017). The conversational voice-user interface (VUI) is the most natural
and instinctive interactive mode for humans. Recently, natural language processing (NLP) has
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improved significantly due to the development of deep
learning (DL) technology. The VUI demands of the new type
of intelligent products transform communication to include
emotional listening and feedback of users (Hirschberg and
Manning, 2015; Dale, 2016; Chkroun and Azaria, 2019; Harper,
2019; Nguyen et al., 2019; Guo et al., 2020; Hildebrand
et al., 2020). Giving computers similar emotional mechanisms
and emotional intelligence concepts as humans is becoming
increasingly critical in the information and cognitive sciences.
The goal of “affective computing” is to endow computers with
abilities of understanding and generating affective characteristics.
Finally, the computer can become intimate with the nature
and makeup of vivid interactions, like people. This involves
interdisciplinary study in the areas of psychology, sociology,
information science, and physiology (Picard, 2003, 2010) and
is becoming a hot spot of laboratory research in academic and
industrial circles (Bänziger et al., 2015; Özseven, 2018). Although
VUI has considerable potential, effective semantic and emotional
communication not only requires the subtle understanding of the
physics and psychology of voice signals but also needs a method
of extracting and analyzing voice features from human voice data
(Picard, 2003; Guo et al., 2020; Hildebrand et al., 2020).

Affective computing is crucial to implementing man–machine
emotional interactions through intelligent products (Picard,
2010; Dale, 2016). In the past, many studies of emotional voice
recognition and synthesis have been reported. Nevertheless,
they mainly establish acoustic models and systems based
on information science. Abundant voice data have been
input into the DL core of AI and several affective factors of
acoustic features summarized from the 3-D pleasure-arousal-
dominance (PAD) emotional state model on a “continuous
dimension.” A mathematical model was constructed and
abstracted using mathematical knowledge and computer
algorithms. Subsequently, the computer was able to learn from
the data and make predictions by combining training data and
its large-scale operation capability (Ribeiro et al., 2016; Rukavina
et al., 2016; Kratzwald et al., 2018; Vempala and Russo, 2018;
Badshah et al., 2019; Heracleous and Yoneyama, 2019; Guo et al.,
2020). Although these practices can gain accurate prediction
results quickly, they do not provide an understanding of where
the results come from (e.g., black box) and lack explanatory
ability (Kim et al., 2016; Ribeiro et al., 2016; Murdoch et al.,
2019; Molnar, 2020). As a result, understanding how to adjust
the model parameters is a problem that has yet to be solved,
requiring an urgent empirical study of the connection between
acoustic features and psychology as the theoretical basis for
adjustment of model parameters (Ribeiro et al., 2016; Skerry-
Ryan et al., 2018; Evans et al., 2019; Molnar, 2020). Research
into voice rhythms from the cognitive psychology perspective
has mainly focused on fundamental frequency, sound intensity,
voice length, and other features (Juslin and Scherer, 2005).
Emotional classifications are described quantitatively, which is
different from the “continuous dimension” in existing intelligent
systems. None of these studies yields 3-D coordinates through
transformation to provide affection matching.

As a result of these shortcomings, an empirical study on
the correlation between information enabling the emotional

evaluation of acoustic features concerning emotional voice state
and psychology is required in AI emotional voice interaction
using a PAD model, which is the theoretical basis for adjustment
of model parameters (Ribeiro et al., 2016; Skerry-Ryan et al.,
2018; Evans et al., 2019; Molnar, 2020). Different average
speech characteristics between males and females in human
conversations have been reported in most studies (Childers
and Wu, 1991; Feldstein et al., 1993). Furthermore, males
and females show different emotional expressions. This study
connected emotional states and voice features of male and female
users through cross informatics and cognitive psychology from
the voice interaction application scenes of intelligent products.
Hence, this study focuses on the influences of “gender” and
“emotions” on the “physical features of voices” in human–
computer interactions as well as the quantitative expressions
of the “physical features of voices.” The research conclusions
lay a theoretical foundation for AI emotional voice interaction
and solve DL’s current dilemma in emotional recognition and
parameter optimization of the emotional synthesis model due to
lack of explanatory powers.

LITERATURE REVIEW

Studies on Emotions and Classification
According to research within psychology and the neurosciences,
there is extensive interaction between the emotions and cognition
of humans (Osuna et al., 2020), displaying behavioral and
psychological features (Fiebig et al., 2020) that have a profound
impact on the expression, tone, and posture behavior of people
in daily life (Scherer, 2003; Ivanović et al., 2015; Poria et al.,
2017). In the past 20 decades, studies on emotions have
increased significantly (Wang et al., 2020). At present, there are
two mainstream affective description modes. One is to make
a qualitative description of an emotional classification using
adjectives from the perspective of “discrete dimensions,” such as
the six basic emotion categories proposed by Ekman and Oster
(1979). The other is to describe the consequence determined
by common affective factors of a “continuous dimension.” The
emotional states can be characterized and divided by quantitative
emotional coordinates on different dimensions (Sloman, 1999;
Bitouk et al., 2010; Chauhan et al., 2011; Harmon-Jones et al.,
2016; Badshah et al., 2019). Specifically, 1-D space focuses on
positive or negative emotional classification, and 2-D spatial
emotional states are generally expressed by two coordinates, such
as peace–excitement and happiness–sadness. The 3-D space is
proposed by Schlosberg (1954), Osgood (1966), Izard (1991),
Wundt and Wozniak (1998), and Dai et al. (2015), respectively.

Quantitative measurement of emotions is a requirement
of affective computing (Dai et al., 2015). Because three-
dimensional space is easy to compute, computational models of
emotion (CMEs) in the current AI system adopt the continuous
dimension; the most used is the PAD model proposed by
Mehrabian and Russell in 1994. The PAD model hypothesizes
that users have three emotional states according to the situation
stimulus, including pleasure, arousal, and dominance. These 3-
D axes act as an emotional generation mechanism (Mehrabian
and Russell, 1974; Wang et al., 2020). For example, emotions are
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TABLE 1 | Mapping of the eight Mehrabian basic emotions in PAD space.

Trait combination Emotional state

P (pleasure-displeasure): emotional

state’s positivity or negativity

+P+A+D Exuberant

–P–A–D Bored

A (arousal-nonarousal): physical

activity and mental alertness

+P+A–D Dependent

–P–A+D Disdainful

D (dominance-submissiveness):

feeling of control

+P–A+D Relaxed

–P+A–D Anxious

+P–A-D Docile

–P+A+D Hostile

Datasource: Mehrabian (1996b).

divided into eight states with eight blocks of 3-D negative (–)
and positive (+) combinations in the three dimensions as seen
in Table 1 (Mehrabian, 1996b).

As a CME, PAD can distinguish different emotional states
effectively (Russell, 1980; Gao et al., 2016) and break from
the traditional tag-description method. As one of the relatively
mature emotional models (Mehrabian and Russell, 1974;
Mehrabian, 1996a; Gunes et al., 2011; Jia et al., 2011; Chen
and Long, 2013; Gao et al., 2016; Osuna et al., 2020; Wang
et al., 2020), the PAD model measures the mapping relationship
between emotional states and typical emotions by “distance” to
some extent, thus transforming the analytical studies of discrete
emotional voices into quantitative studies of emotional voices
(Mehrabian and Russell, 1974; Mehrabian, 1996a; Gunes et al.,
2011; Jia et al., 2011; Chen and Long, 2013; Gao et al., 2016; Osuna
et al., 2020; Wang et al., 2020). It has been extensively applied
in information processing, emotional computing, and man–
machine interaction (Dai et al., 2015; Weiguo and Hongman,
2019). PAD is beneficial for establishing an external stimulus
emotional calculation model to realize emotional responses
during personalized man–machine interaction (Weiguo and
Hongman, 2019).

Affective Computing and Emotions in Voice
Interaction
Voice signals are the most natural method of communication for
people (Weninger et al., 2013). On the one hand, voice signals
contain the verbal content to be transmitted. On the other hand,
rhythms in the vocalizations contain rich emotional indicators
(Murray and Arnott, 1993; Gao et al., 2016; Noroozi et al.,
2018; Skerry-Ryan et al., 2018). Each emotional state has unique
acoustic features (Scherer et al., 1991; Weninger et al., 2013; Liu
et al., 2018). For example, various prosodic features, including
different tones, velocity, and volume, can express the speaker’s
different emotional states (Apple et al., 1979; Trouvain and Barry,
2000; Chen et al., 2012; Yanushevskaya et al., 2013).

Huttar (1968) further demonstrates that prosodic features of
voice play an important role in emotions and suggests simulating
these features (e.g., tone, velocity, and volume) in the interface
by using artificial voices to express the emotional states of the
speaker (Sauter et al., 2010). Subsequently, Professor Picard

proposed affective computing (Picard, 2000) and attempted
to endow computers with a similar affective mechanism to
intelligently understand human emotions in man–machine
interactions and, thus, realize effective interactions between
an artificial voice and users. It is necessary to gain a subtle
understanding of voices using an interdisciplinary approach,
including physics and psychology, to understand how to extract
and analyze phonetic features (Schwark, 2015; Guo et al., 2020).
In addition to the automatic speech recognition (ASR) and text-
to-speech (TTS) found in artificial speech, the process involves
the emotional analysis of users (Tucker and Jones, 1991; Guo
et al., 2020; Hildebrand et al., 2020). In Figure 1, the relationship
between artificial acoustic waves and emotional states and the
role of artificial acoustic waves in the voice interaction systems
of intelligent products are reviewed. Specifically, a user’s current
emotional state in the PAD model is identified through affective
computing according to emotional acoustic features in voice
interactions. The user receives responses in an empathic voice
expression of the computer in the AI product.

A Dimensional Framework of the Acoustic
Features of Emotions
From a physiological perspective, loosening and contracting the
vocal cords leads to rhythm changes in the voice, indicating
emotions (Johar, 2016). From the perspective of psychology,
relevant studies have proved that prosodic features of voices, such
as basic frequency, velocity, and volume, are closely related to
any emotional states (Williams and Stevens, 1972; Bachorowski,
1999; Kwon et al., 2003; Audibert et al., 2006; Hammerschmidt
and Jürgens, 2007; Sauter et al., 2010; Quinto et al., 2013; Łtowski,
2014; Johar, 2016; Dasgupta, 2017; Hildebrand et al., 2020;
Kamiloglu et al., 2020). Murray and Arnott (1993) introduce the
concept of utterances and people’s emotions, finding three major
aspects that influence voice parameters of emotional impacts:
utterance timing, utterance pitch contour, and voice quality.
Among them, utterance timing and utterance pitch contour are
prosodic features. In the past, most studies focused on prosodic
features. Although these parameters gave certain differences in
emotional distinction, some studies also find disadvantages for
intelligent products in judging the emotions of the speaker,
including voice quality (spectrum) (Toivanen et al., 2006).
Jurafsky and Martin (2014). Experts in both linguistics and
computers point out that each acoustic wave can be described
completely by the four dimensions of time, frequency, amplitude,
and spectrum. Connections between these four dimensions of
acoustic waves and emotions in relevant studies are summarized
in Table 2.

The first dimension is time, determined by the duration of a
vibration from the sound maker (Sueur, 2018; Wayland, 2018)
and measured in seconds or milliseconds of acoustic waves.
Previous studies explore the influence of gender on velocity.
Some studies demonstrate that the velocity ofmales is higher than
females (Feldstein et al., 1993; Verhoeven et al., 2004; Jacewicz
et al., 2010); however, most studies on people who speak English
find no differences between males and females (Robb et al.,
2004; Sturm and Seery, 2007; Nip and Green, 2013). Velocity
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FIGURE 1 | The relationship between artificial acoustic waves and emotional states in the voice interaction systems of intelligent products. Source: Drawn by

the authors.

TABLE 2 | Connections between the four dimensions of acoustic features and emotions.

Dimensions Acoustic features Emotional state correlations Selected research

Time Velocity of speech: average

time per word (seconds)

anger (+), competence (+), contemplation (–),

dominance (–), enthusiasm (+), extraversion (+),

fear (+), happiness (+), persuasiveness (+),

sadness (–), stress (+), tenderness (–) competence

(–), contemplation (+), extraversion (–)

Williams and Stevens, 1972; Miller et al., 1976;

Brenner et al., 1994; Tusing and Dillard, 2000;

Mohammadi and Vinciarelli, 2012; Dasgupta, 2017

Frequency Mean Pitch: Fo (Hz) anger (+), competence (–), confidence (–), empathy

(–), extraversion (+), fear (+), happiness (+),

nervousness (+), persuasiveness (–), sadness (–),

stress (+), tenderness (–), trustworthiness (–)

Williams and Stevens, 1972; Apple et al., 1979;

Scherer and Giles, 1979; Brenner et al., 1994;

Kwon et al., 2003; Bänziger and Scherer, 2005;

Quinto et al., 2013; Bowman and Yamauchi, 2016;

Guyer et al., 2019

Fo SD: Pitch variability anger (+), extraversion (+), happiness (+), sadness

(–), shyness (–), sociability (+), tenderness (–)

Apple et al., 1979; Ray, 1986; Burgoon et al., 1990;

Abelin and Allwood, 2000; Juslin and Laukka, 2003

Amplitude Intensity: mean-sones

intensity (dB)

aggression (+), anger (+), annoyance (+),

dominance (+), extraversion (+), fear (–), happiness

(+), tenderness (–), sadness (–), shyness (–),

stress (+)

Mallory and Miller, 1958; Scherer and Giles, 1979;

Brenner et al., 1994; Johnstone and Scherer, 1999;

Kwon et al., 2003; Scherer, 2003; Asutay and

Västfjäll, 2012; Quinto et al., 2013

Spectrum Jitter%: a ratio of variation of

fundamental frequency and

mean

anger (+), annoyance (+), happiness (+), sadness

(–), stress (+)

Johnstone and Scherer, 1999; Li et al., 2007

Shimmer%: intensity

perturbations

anger (+), confidence (+), joy (–), stress (+), Juslin and Laukka, 2003; Li et al., 2007; Jacob,

2016; Jiang and Pell, 2017

HNR: Proportion of periodic

part and noises in

signals (dB)

confidence (+), happiness (+), interest (+), lust (–),

pleasure (+)

Jiang and Pell, 2017; Kamiloglu et al., 2020

Data source: organized in this study.

can indicate the emotional state of the speaker, generally with a
high velocity in positive and negative emotional states (e.g., anger,
fear, and happiness), but a low velocity in low-wakefulness states
(Juslin and Laukka, 2003).

The second dimension is frequency, expressed by the number
of vibrations of the acoustic wave per second (unit: Hz). The
scale of this objective physical quantity corresponds to the
fundamental frequency (Fo) of the vocal cord vibrations. Pitch is
a subjective psychological quantity of sound, its value determined

by the frequency of the acoustic waves (unit: Mel) (Juslin and
Laukka, 2003; Colton et al., 2006). Pitch can represent different
emotional states. The pitch is increased when a person is feeling
anger, happiness, or fear and decreased when a person is sad or
bored (Murray and Arnott, 1993; Johar, 2016). With respect to
gender, the Fo of a male adult’s voice is often lower than a female
adult’s voice (Mullennix et al., 1995; Pernet and Belin, 2012).

The third dimension is amplitude, which determines the
intensity of sound (unit: dB). Loudness is the scale of a subjective
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psychological index of intensity and results from a subjective
judgment of a pure tone (unit: phon) (Sueur, 2018; Wayland,
2018). Generally speaking, the loudness of people is about 70 dB
(Awan, 1993; Brown et al., 1993). Higher loudness is generally
believed to relate to greater dominant traits or aggressiveness
(Scherer and Giles, 1979; Abelin and Allwood, 2000; Asutay
and Västfjäll, 2012; Yanushevskaya et al., 2013); relatively low
loudness indicates people are fearful, sad, or gentle (Johar, 2016).
Additionally, males’ intensity of sound is slightly higher than that
of females (Awan, 1993; Brockmann et al., 2011).

The fourth dimension is spectrum, referring to the energy
distribution of signals (e.g., voice) in the frequency domain; it
is expressed in graphs by analyzing perturbations of acoustic
waves or periodic features (Sueur, 2018). The degree of “sound
instability” during the formation of voices has been summarized
(Hildebrand et al., 2020), reflecting voice quality (Kamiloglu
et al., 2020). Vocal jitter is a measure of the periodic variation
in fundamental frequency, indicating uneven tones of the
speaker. A nervous speaker has instability in the voice (high
perturbations) and a quiet speaker has a steady and stable sound
(low perturbation) (Farrús et al., 2007; Kamiloglu et al., 2020).
Specifically, jitter percentage expresses each basic frequency
period’s irregularity, that is, the degree of frequency perturbation.
It is the ratio between the fluctuations of the fundamental
frequency and mean values. A high numerical value indicates
that the tone quality is unstable. Shimmer percentage refers to
differences in repeated amplitude changes, that is, the degree
of amplitude perturbation. It describes the ratio of the mean
amplitude variation and respective mean. A high numerical
value of shimmer percentage indicates greater changes in sound
volume. HNR reflects the ratio of periodic segments and noises
in signals (unit: dB). Lower noise energy in voices reflects fewer
components of noises and better sound quality (Baken and
Orlikoff, 2000; Ferrand, 2007). Some studies have proved that
gender has no significant influences on jitter percentage, shimmer
percentage, or HNR (Wang and Huang, 2004; Awan, 2006;
Brockmann et al., 2008; Ting et al., 2011).

Research Directions on Connections of
Acoustic Features and Emotional States
Studies on the emotional rhythm of voice have pointed out that
people’s sounds, characterized by pitch, loudness or intensity,
and velocity, transfer different emotional information to listeners
(Sauter et al., 2010). During a conversation, emotions can be
recognized from video clips as short as 60ms (Pollack et al.,
1960; Pell and Kotz, 2011; Schaerlaeken and Grandjean, 2018).
The same words and phrases can be expressed differently
through fluctuation of different emotional states (Dasgupta,
2017); for example, rumination is related to low velocity and an
extended dwell time. Anger is generally related to the loudness
of voice (Juslin and Laukka, 2003; Clark, 2005). Fear is related
to variations in pitch (Juslin and Laukka, 2003; Clark, 2005).
The affective computing team from MIT analyzed variations
in acoustic parameters, such as fundamental frequency and
duration, during different emotional states; their results show
that acoustic features of affective sounds (e.g., happy, surprise,

and anger) are similar with the sad acoustic feature being
relatively obvious (Sloman, 1999). In brief, the formation of
human spoken language involves the interaction of individual
traits and emotional states, used as a communication means
to understand voices. To recognize and extract information for
voice analysis, it is necessary to measure voice quality properties
(Johar, 2016; Schaerlaeken and Grandjean, 2018).

To effectively establish an emotional identification and
expression system, emotional identification and synthesis
based on DL have considerable potential in human–machine
interactions (Schuller and Schuller, 2021). Recognizing emotions
through the automatic extraction of acoustic features and
generating expressions through emotions are the main strategies
for relevant research development. It has been proven that a
generative adversarial network (GAN) can improve themachine’s
performance in emotional analysis tasks (Han et al., 2019).
Additionally, people begin to think about transfer learning
applications in relevant tasks and voice emotional computing
modes (Schuller and Schuller, 2021).

Based on the above literature review, research can primarily
presently be divided into two types. On the one hand, some
studies based on information science strive to gain accurate
emotional identification and natural voice expressions through
DL. However, these studies lack the explanation for establishing
a mathematical model (Ribeiro et al., 2016; Murdoch et al.,
2019), thus resulting in the absence of a theoretical foundation
for parameter optimization and adjustment. On the other hand,
some studies are based on cognitive science and emotional states
from the “discrete dimension.”Most of these studies use prosodic
features only and have shortages in emotional identification and
expression (Toivanen et al., 2006). Studies rarely use the PAD
model’s emotional states in the intelligent product VUI as the
framework for incorporating acoustic features of the spectrum
and gender impacts. Hence, interdisciplinary studies are needed
to solve the black box problems caused by DL.

METHODS

This study aims to connect humans’ emotions and acoustic
features from across information, acoustics, and psychology
disciplines based on acoustic and cognitive psychology concepts.

Research Design
Both the purpose of this study and the literature review
results have directed the current research to investigate the
correlation of two independent variables, namely “gender” and
“emotional state.” The emotional state, different from other
emotional classification models, considers each emotion has sole
coordinates in the PAD space, enabling different emotions to
show acoustic features independently. Therefore, the PADmodel
uses the eight basic emotions for emotional classification and
neutral emotions as the benchmark. The dependent variables are
seven main features associated with emotional states in the four
dimensions of emotional voice sound waves.
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Subjects and Materials
A total of 31 male and 31 female respondents were recruited by
the stratified random sampling mode. Respondents have clear
cognition with the nine basic emotions of PAD and display
explicit oral expression. This study focuses on vocalizations
from voice signals, and verbalizations are not transmitted;
therefore, the recording of voice data used neutral words
and verbalizations transmitted by “ ” (Chinese). Because
it is easy to induce and simulate emotional recordings that
can express real and natural emotions to some extent, PPT
was used to provide films as the emotional stimuli to
induce and guide recording of the participant (Figure 2). The
provided film was confirmed by three relevant experts and
then predicted and modified to assure effective induction
and prompts.

Setting and Program of Experiments
Setup of experiments for data acquisition: An empirical study
using laboratory experiments was carried out. All respondents
engaged in the experiments, and voices were recorded in the
same environment using the same settings. The input sound
volume was fixed at 70 dB SP. The recording formula was

mono channel; sampling frequency: 44.1 kHz; and resolution:
16 bits and WAV file. The relevant program is shown in
Figures 3, 4.

The audio recording process: First, selected respondents,
in the closed experimental space without disturbance, were
introduced to the experimental process and audition by
the same prompts. Second, respondents wore a headset
microphone in a closed space, and a provided laptop played
the stimulus and prompted the film using Adobe Audition
2019. Respondents provided data of nine emotions: neutral,
exuberant, bored, dependent, disdainful, relaxed, anxious, docile,
and hostile. The content of the audio recordings from each
respondent was then confirmed, and residual contents were
preprocessed, including polishing and numbering. Finally,
acoustic features were analyzed using the Praat 6.13 voice
software (Figure 5).

Analysis of the spectrum was done using the calculation
formulas of jitter percentage, shimmer percentage, and HNR as
outlined below (Boersma, 1993; Fernandes et al., 2018; Sueur,
2018). Nine emotional voices were selected and analyzed by
Praat, and characteristic parameter data of seven emotional
voices were directly extracted.

FIGURE 2 | Emotional induction and guidance cases during voice recording of different emotions. (A) Emotional stimulus is induced. (B) Text to remind the emotion,

and then record. Subsequently, (C) Interval shady, and then enter the next emotional stimulus to induce. The complete contents are shown in the Appendix:

Supplementary Material.

FIGURE 3 | Data collection procedure. Source: drawn by the authors.
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FIGURE 4 | Oscillograph comparison of different emotional voices of respondents. The Y-axis of the oscillograph expresses time (unit: s). The X-axis, amplitude, has

different units of expressions, either decibel (dB) or relative values; it ranges between [−1, 1] and can be expressed by a percentage or frequency value (Sueur, 2018;

Wayland, 2018). From the left to the right, a respondent records nine emotions of “ ” from ID.1 to ID.9.

FIGURE 5 | Comparison of spectrographs of respondents among different emotions. The Y-axis of the spectrograph is the same as the waveform and expresses the

amplitude. The X-axis represents frequency (unit: Hz). The frequency spectrum is the variation of voice energy with frequency. In addition, different amplitudes (or

loudness) were expressed by the color gradient of data points.

In phonetics, jitter reflects the fast repeated changes
of the fundamental frequency, and it primarily describes
the variation amplitude of any fundamental frequency. As

shown below,

jitterabsolute =
∑

N
i=2 |Ti − Ti−1 / (N − 1) (1)
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Ti is the duration of the pitch period i (unit: ms), and N is the
quantity of all pitch periods. Jitterabsolute calculates the absolute
mean of differences between any two adjacent pitch periods. The
mean period is calculated using

meanPeriod =
∑

N
i=1Ti/N (2)

The jitter percentage is calculated using

jitter% = jitterabsolute/meanPeriod (3)

The jitterabsolute is divided by the meanPeriod, deriving the
ratio between perturbation of fundamental frequency and mean
during the pronunciation.

Calculation of Shimmer Percentage
Shimmer percentage reflects changes of amplitude among
different periods and is calculated using

shimmerabsolute =
∑

N
i=2

∣

∣Ak − Ak−1

∣

∣ / (N − 1) (4)

meanShimmer =
∑

N
i=1Ak/N (5)

Shimmer% = shimmerabsolute/meanShimmer (6)

The mean of amplitude changes between two adjacent periods
is calculated from shimmerabsolute. The Shimmer% is the ratio
between the mean variation of amplitudes and the average value.

Calculation of HNR
HNR refers to the ratio of the periodic and noise parts in speech
signals, and it primarily reflects the hoarse degree of voices. The
calculation used to determine HNR is explained below.

The autocorrelation function (r(x)) of the voice delay signal x
is defined as

r (x) =

∫

s (t) 2(t + X)dt (7)

where s(t) is the stable time signal, and the function achieves
the global maximum when x = 0. If the function has global
maximum points at other moments in addition to x = 0, a period
of T0 is assumed. For any positive integer (n), then

r (nT0) = r(0) (8)

If no other global maximum points in addition to x = 0 are
detected, then other local maximum points may exist, where

r′ (τ ) = rx(x)/r(0) (9)

s(t) is defined as the periodic signal with a period of T0, and
N(t) is a noise signal. At x = 0, the voice signal is r (0) =

TH (0) + TN (0). As r (0) = rH (0) + rN(0), the following
equations can be applied:

r′ (Xmax) = rH(0)/r(0) (10)

1− r′ (Xmax) = rH(0)/r(0) (11)

r′ (Xmax) describes the size of the relative energy of periodic parts
in the voice signals and its complementary set 1 − r′ (Xmax)

describes the size of the relative energy of noises in the voice
signal. HNR can be further defined as

HNR (in dB) = 10 ∗ log10
r
′

x(τmax)

1− r
′
x(τmax)

(12)

The function has a global maximum when τ = 0, where x(t) is a
steady time signal and a global maximum when τ = 0.

RESULTS

The extracted seven-feature data of different emotions of
different genders were analyzed using SPSS V.26 to conduct
a two-way ANOVA, mixed design. Gender was used as the
independent variable, and emotional state was used as the
dependent variable to understand the variation in seven acoustic
features of different genders under different emotions.

General Conditions of Respondents
A total of 62 respondents, including 31 males and 31 females,
were recruited. These participants can be grouped according to
age: 21–30 years old: nine females and eight males; 31–40 years
old: eight females and eight males; 41–50 years old: eight females
and eightmales; and 51–60 years old: six females and sevenmales.

Difference Test Analysis of the Acoustic
Parameters
To show significant differences in acoustic features under
different emotions and gender, the same respondents were
repeatedly measured, testing the seven acoustic features of
emotions. Results of the correlation analyses are shown below.

Velocity: relevant data of seconds per word are listed in
Tables 3, 4.

The interaction tests for gender and emotional state (SS =

0.01; Df = 2.53; MS = 0.00; F = 0.25; P > 0.05) did not yield
any significant results, i.e., participants’ velocity in expressing

TABLE 3 | Fine grids and marginal means of emotional states and gender on

acoustic features.

Gender Marginal means

Female Male

State Neutral 0.29 0.26 0.28

Exuberant 0.28 0.24 0.26

Bored 0.52 0.48 0.50

Dependent 0.38 0.36 0.37

Disdainful 0.29 0.25 0.27

Relaxed 0.34 0.30 0.32

Anxious 0.26 0.21 0.23

Docile 0.33 0.28 0.31

Hostile 0.28 0.24 0.26

Marginal means 0.33 0.29 0.29
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the nine different emotions was not significantly correlated
to gender.

Gender main effect: The influence of velocity on overall
emotional states varies significantly between males and females
(F = 2587.76, p < 0.05). The velocity (M = 0.33) of female
respondents under different emotional states is significantly
lower than that of males (M = 0.29).

State main effect: Velocity under different emotional states
varies significantly for the overall factor, gender (F = 76.37, p <

0.05). According to the multiple comparison, the state anxious
(M= 0.23) shows the highest velocity, followed by exuberant and
hostile (M = 0.26), disdainful (M = 0.27), neutral (M = 0.28),
docile (M = 0.31), relaxed (M = 0.32), dependent (M = 0.37),
and bored (M = 0.5), successively.

Fo (Hz): The interaction test showed significant results
for both gender and emotional state (SS = 72887.47; Df
= 1.85; MS = 39437.31; F = 15.90; p < 0.05; ω2 =

0.21), i.e., participants’ Fo (Hz) varied across gender and
emotional state. Relevant data abstracts of mean pitch are listed
in Table 5.

Gender simple main effect: Females show significantly
different effects of Fo on emotional states (F = 111.30, p < 0.05),
according to the results of post hoc comparisons: (1) > (4); (2)
> (1)–(6), (9); (3) > (5); (4) > (5); (6) > (1), (3) (5); (7) > (1),
(3)–(6), (9); (8)> (1), (3)–(6), (9); (9) > (1), (3)–(5). Males (F
= 103.96, p < 0.05) also show differences, according to results
of post hoc comparisons: (1) > (4); (2) > (1)–(6), (8), (9); (3)
> (4); (5) > (1), (3), (4); (6) > (1), (3)–(5), (8)–(9); (7) > (1),
(3)–(9); (8) > (1). (3)–(5), (9); (9) > (1). (3)–(5). These results
demonstrate that ranks of emotional states are different between
males and females.

State simple main effect: With respect to influences of
Fo (Hz) on gender under different emotional states, F-values
of neutral, exuberant, bored, dependent, relaxed, disdainful,
anxious, docile, and hostile states are 198.83, 113.02, 147.32,
324.47, 49.67, 51.28, 43.98, 66.71, and 207.12, respectively (p <

0.05). According to the results of post hoc comparisons, females
have a significantly higher Fo than males.

Fo SD: The interaction test was significant across gender and
emotional state (SS = 13144.75; Df = 3.67; MS = 3586.29; F

TABLE 4 | Two-way ANOVA abstract of emotional states and gender on velocity.

Variable SS Df MS F post hoc comparisons

Gender 0.24 1 0.24 2587.77*** Female > Male

Stateb 3.37 2.53 1.33 76.37*** (1) > (2); (2) > (7); (3) > (1)-(9); (4) > (1)-(2), (6)-(9); (5) > (7), (9); (6) > (1)-(2), (5),

(7), (9); (8) > (1)-(2), (5), (7), (9); (9) > (7);

Gender X state 0.01 2.53 0.00 0.25

Block 1.24 60 0.02

Error 2.65 151.75 0.02

It indicates that b is the interval design factor (dependent factor).

(1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

***p < 0.001.

TABLE 5 | Test of simple main effect in the mixed design of gender and emotional state in Fo.

Variable SS Df MS F post hoc comparisons

State

Female 621352.46 1.59 391784 111.30*** (1) > (4); (2) > (1)-(6), (9); (3) > (5); (4) > (5); (6) > (1), (3)-(5); (7) > (1), (3)-(6), (9);

(8)> (1), (3)-(6), (9); (9) > (1), (3)-(5).

Male 372745.37 1.54 241754 103.96*** (1) > (4); (2) > (1)-(6), (8), (9); (3) > (4); (5) > (1), (3), (4); (6) > (1), (3)-(5), (8)-(9); (7)

> (1), (3)-(9); (8) > (1). (3)-(5), (9); (9) > (1). (3)-(5).

Gender

Neutral 93367.55 1 93367.55 198.83*** Female (M = 214.73) > Male (M = 137.12)

Exuberant 143410.15 1 143410.15 113.02*** Female (M = 314.45) > Male (M = 218.26)

Bored 100950.05 1 100950.05 147.32*** Female (M = 214.73) > Male (M = 134.03)

Dependent 142056.14 1 142056.14 324.47*** Female (M = 215.45) > Male (M = 118.72)

Disdainful 39185.22 1 39185.22 49.67*** Female (M = 188.35) > Male (M = 138.03)

Relaxed 89769.08 1 89769.08 51.28*** Female (M = 283.05) > Male (M = 205.95)

Anxious 129113.74 1 129113.74 43.98*** Female (M = 309.57) > Male (M =218.30)

Docile 290924.98 1 290924.98 66.71*** Female (M = 309.00) > Male (M = 171.10)

Hostile 188635.07 1 188635.07 207.12*** Female (M = 279.94) > Male (M = 169.62)

(1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

***p < 0.001.
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= 10.80; p < 0.05; ω2 = 0.15), i.e., participants’ Fo SD varied
across gender and emotional state. Relevant data abstracts of
pitch variability are listed in Table 6.

Gender simple main effect: Females show significantly
different effects of Fo SD on emotional states (F= 2.43, p> 0.05),
according to the results of post hoc comparisons: (1) > (4)–(6);
(2) > (1), (4)–(8); (3) > (1), (4)–(8); (6) > (4); (7) > (1), (5); (8)
> (4)–(6); (9) > (1), (4)–(8). Males (F = 2.43, p > 0.05) show no
significant differences.

State simple main effect: Concerning influences of Fo SD on
gender under different emotional states, F values of exuberant,
bored, dependent, and hostile states are 47.88, 92.90, and 9.52,
respectively (p < 0.05). According to the results of post hoc

comparisons, females give significantly higher values than males;
however, males> females with respect to the dependent variable.

Intensity (dB): The interaction test was significant across
gender and emotional state (SS = 7624.57; Df = 1.99; MS =

314.08; F = 9.25; p < 0.05; ω2 = 0.13), i.e., participants’ intensity
varied across gender and emotional state. Relevant data abstracts
of mean-sones intensity are listed in Table 7.

Gender simple main effect: Both males and females show
significantly different effects of intensity (dB) on emotional states:
Females (F = 64.11, p < 0.05) and males (F = 52.60, p < 0.05).
According to post hoc comparisons, results of females are (1)
> (3)–(4), (7)–(8); (2) > (1)–(8); (4) > (3); (5) > (1), (3)–(4),
(7)–(8); (6) > (1), (3)–(4), (7)–(8); (7) > (3); (8) > (3); (9) >

TABLE 6 | Simple main effect test of mixed design of gender and emotional states in Fo SD.

Variable SS Df MS F post hoc comparisons

State

Female 19634.95 2.75 7153.90 24.69*** (1) > (4)-(6); (2) > (1), (4)-(8); (3) > (1), (4)-(8); (6) > (4); (7) > (1), (5); (8) > (4)-(6);

(9) > (1), (4)-(8).

Male 3935.73 2.45 1605.58 2.43

Gender

Neutral 53.16 1 53.16 0.17

Exuberant 2462.42 1 2462.42 47.88*** Female (M = 33.86) > male (M = 21.25)

Bored 8920.32 1 8920.32 92.90*** Female (M = 37.20) > male (M =13.21)

Dependent 858.95 1 858.95 9.52** Male (M =20.75) > Female (M = 13.30)

Disdainful 2.74 1 2.74 0.01

Relaxed 381.33 1 381.33 3.92

Anxious 17.25 1 17.25 0.08

Docile 11.01 1 11.01 0.15

Hostile 6328.66 1 6328.66 15.38*** Female (M = 37.57) > male (M = 17.36)

(1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

**p < 0.01; ***p < 0.001.

TABLE 7 | Simple main effect test using mixed design of gender and emotional states on intensity (dB).

Variable SS Df MS F post hoc comparisons

State

Female 5071.70 1.41 3596.94 64.11*** (1) > (3)-(4), (7)-(8); (2) > (1)-(8); (4) > (3); (5) > (1), (3)-(4), (7)-(8); (6) > (1), (3)-(4),

(7)-(8); (7) > (3); (8) > (3); (9) > (1), (2) -(8).

Male 2939.66 2.26 1300.21 52.60*** (1) > (3)-(4), (7); (2) > (1), (3)-(9); (3) > (7); (4) > (7); (5) > (1), (3), (4), (7); (6) > (1),

(4)-(8); (8) > (3), (4), (7); (9) > (3), (4), (5), (7), (8).

Gender

Neutral 151.32 1 151.32 3.55

Exuberant 143.85 1 143.85 2.20

Bored 820.46 1 820.46 17.46*** Male (M = 69.65) > Female (M = 62.38)

Dependent 363.48 1 363.48 8.23** Male (M = 69.52) > Female (M = 64.68)

Disdainful 80.62 1 80.62 1.24

Relaxed 261.91 1 261.91 3.58

Anxious 45.29 1 45.29 1.42

Docile 546.12 1 546.12 9.88** Male (M = 71.71) > Female (M = 65.78)

Hostile 0.15 1 0.15 0.00

(1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

**p < 0.01; ***p < 0.001.
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(1), (2)–(8). Results of males are (1) > (3)–(4), (7); (2) > (1),
(3)–(9); (3) > (7); (4) > (7); (5) > (1), (3), (4), (7); (6) > (1),
(4)-(8); (8) > (3), (4), (7); (9) > (3), (4), (5), (7), (8). The results
demonstrate that ranks of emotional states are different between
males and females.

State simple main effect: Concerning influences of intensity
(dB) on gender under different emotional states, F-values
of bored, dependent, and docile are 17.46, 8.23 and 9.88,
respectively (p < 0.05). According to the results of post hoc
comparisons, males give significantly higher results than females.

Jitter%: The interaction test resulted in significant outcomes
considering gender and emotional state (S = 230.33; Df = 2.60;
MS = 88.67; F =32.05; p < 0.05; ω2 = 0.35), i.e., participants’
Jitter% varied across gender and emotional state. Relevant data
abstracts of the ratio between the fundamental frequency changes
and the mean are listed in Table 8.

Gender simple main effect: With respect to Jitter% of males
and females under different emotional states, females (F = 25.87,
p < 0.05) and males (F = 37.01, p < 0.05) both have significant
effects. According to post hoc comparisons, females show (1) >

(2), (8); (3) > (2), (8); (4) > (2), (8); (5) > (2), (8)-(9); (6) > (1)–
(5), (7)–(9); (7) > (1)–(5), (8)–(9). Males show (1) > (2)–(6), (9);
(2) > (5)–(6), (9); (4) > (3)–(6), (9); (7) > (1)–(6), (8)–(9); (8)
> (2)–(6), (9). These results demonstrate that ranks of emotional
states are different between males and females.

State simple main effect: Concerning influences of Jitter%
on gender under different emotional states, F-values of neutral,
exuberant, bored, dependent, relaxed, anxious, and docile are
82.90, 63.04, 8.11, 14.52, 23.77, 35.51, and 65.22, respectively (p<

0.05). According to the results of post hoc comparisons, females
> males for relaxed and males > females for the remaining six
emotional states.

Shimmer%: The interaction test yielded significant results
considering gender and emotional state (S= 1712.65; Df = 4.29;

MS = 399.46; F = 49.4; p < 0.05; ω2 = 0.45), i.e., participants’
Shimmer % varied across gender and emotional state. Relevant
data abstracts of intensity perturbations are listed in Table 9.

Gender simple main effect: With respect to Shimmer% of
males and females under different emotional states, females (F =

240.70, p < 0.05) and males (F = 241.26, p < 0.05) both have
significant effects. According to post hoc comparisons, females
show (1) > (2), (4), (8)–(9); (2) > (8)-(9); (3) > (2), (4), (8)-(9);
(4) > (8)–(9); (5) > (1)–(4), (8)–(9); (6) > (1)–(4), (8)–(9); (7)
> (1)–(4), (8)–(9); (8) > (9). Males show (1) > (2)–(9); (2) >

(8)–(9); (3) > (2), (8)–(9); (4) > (2)–(3), (6), (8)–(9); (5) > (2),
(6), (8)–(9); (6) > (8)–(9); (7) > (2)–(9); (8) > (9). These results
demonstrate that ranks of emotional states are different between
males and females.

State simple main effect: Concerning influences of
Shimmer% on gender under different emotional states, F-
values of neutral, exuberant, bored, dependent, disdainful,
relaxed, anxious, docile, and hostile are 82.90, 63.04, 8.11,
14.52, 19.99, 23.77, 35.51, 65.22, and 7.58, respectively
(p < 0.05). According to post hoc comparison results,
females are significantly higher than males concerning
disdainful and relaxed, which is the opposite of the remaining
emotional states.

HNR: The interaction test yielded significant results
considering gender and emotional state (SS = 1071.63; Df
= 3.76; MS = 284.69; F = 37.42; p < 0.05; ω2 = 0.38), i.e.,
participants’ HNR varied across gender and emotional state.
Relative data abstracts of the ratio of periodic part and noise in
signals are listed in Table 10.

Gender simple main effect: With respect to HNR of males
and females under different emotional states, females (F = 45.87,
p < 0.05) and males (F = 30.90, p < 0.05) both show a significant
effect. According to post hoc comparisons, females show (1) >

(3), (5)–(7); (2) > (1), (3)–(7); (3) > (6)–(7); (4) > (3), (5)–(7);

TABLE 8 | Simple main effect test of mixed design of gender and emotional states in Jitter%.

Variable SS Df MS F post hoc comparisons

State

Female 78.25 2.66 29.372 25.87*** (1) > (2), (8); (3) > (2), (8); (4) > (2), (8); (5) > (2), (8)-(9); (6) > (1)-(5), (7)-(9); (7) >

(1)-(5), (8)-(9).

Male 419.94 1.88 223.091 37.01*** (1) > (2)-(6), (9); (2) > (5)-(6), (9); (4) > (3)-(6), (9); (7) > (1)-(6), (8)-(9); (8) > (2)-(6),

(9).

Gender

Neutral 78.81 1 78.81 82.90*** Male (M = 4.19) > Female (M = 1.93)

Exuberant 16.00 1 16.00 63.04*** Male (M = 2.59) > Female (M = 1.57)

Bored 2.01 1 2.01 8.11*** Male (M = 2.33) > Female (M = 1.97)

Dependent 11.24 1 11.24 14.52*** Male (M = 2.89) > Female (M = 2.04)

Disdainful 0.01 1 0.01 0.02

Relaxed 18.76 1 18.76 23.77*** Female (M = 3.18) > Male (M = 2.08)

Anxious 124.25 1 124.25 35.51*** Male (M = 5.70) > Female (M = 2.87)

Docile 130.76 1 130.76 65.22*** Male (M = 2.10) > Female (M = 1.75)

Hostile 1.86 1 1.86 2.61

Note. (1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

***p < 0.001.
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TABLE 9 | Simple main effect test of mixed design of gender and emotional states in Shimmer%.

Variable SS Df MS F post hoc comparisons

State

Female 7026.62 2.69 2617.24 240.70*** (1) > (2), (4), (8)-(9); (2) > (8)-(9); (3) > (2), (4), (8)-(9); (4) > (8)-(9); (5) > (1)-(4),

(8)-(9); (6) > (1)-(4), (8)-(9); (7) > (1)-(4), (8)-(9); (8) > (9).

Male 9662.34 3.42 2825.46 241.26*** (1) > (2)-(9); (2) > (8)-(9); (3) > (2), (8)-(9); (4) > (2)-(3), (6), (8)-(9); (5) > (2), (6),

(8)-(9); (6) > (8)-(9); (7) > (2)-(9); (8) > (9).

Gender

Neutral 1276.10 1 1276.10 184.14*** Male (M = 18.73) > Female (M = 9.65)

Exuberant 22.72 1 22.72 5.78* Male (M = 9.24) > Female (M = 8.03)

Bored 320.89 1 320.89 7.45** Male (M =11.12) > Female (M = 9.84)

Dependent 320.89 1 320.89 45.81*** Male (M = 12.93) > Female (M = 8.38)

Disdainful 218.49 1 218.49 19.99*** Female (M = 15.55) > Male (M = 11.79)

Relaxed 50.92 1 50.92 6.48* Female (M = 12.30) > Male (M =10.48)

Anxious 94.24 1 94.24 9.02** Male (M = 15.81) > Female (M = 13.34)

Docile 0.05 1 0.05 11.33** Male (M = 0.33) > Female (M = 0.28)

Hostile 0.03 1 0.03 7.58** Male (M =.28) > Female (M = 0.24)

(1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

*p < 0.05; **p< 0.01; ***p < 0.001.

TABLE 10 | Simple main effect test of mixed design of gender and emotional states in HNR.

Variable SS Df MS F post hoc comparisons

State

Female 1500.08 1.99 754.38 45.87*** (1) > (3), (5)-(7); (2) > (1), (3)-(7); (3) > (6)-(7); (4) > (3), (5)-(7); (5) > (6)-(7); (8) >

(1)-(7); (9) > (1), (3)-(7).

Male 759.60 2.92 259.89 30.90*** (2) > (1), (7); (3) > (1)-(2), (4)-(5), (7)-(9); (4) > (1); (5) > (1), (7); (6) > (1)-(2), (4),

(7)-(9); (8) > (1)-(2), (7); (9) > (1)-(2), (7).

Gender

Neutral 369.81 1 369.81 62.35*** Female (M =13.08) > Male (M = 8.19)

Exuberant 261.34 1 261.34 40.59*** Female (M =15.14) > Male (M = 11.03)

Bored 38.21 1 38.21 8.50** Male (M = 12.99) > Female (M = 11.42)

Dependent 65.90 1 65.90 18.12*** Female (M =13.54) > Male (M = 11.48)

Disdainful 3.56 1 3.56 0.44

Relaxed 246.12 1 246.12 49.74*** Male (M = 13.09) > Female (M = 9.10)

Anxious 10.16 1 10.16 4.02

Docile 210.75 1 210.75 22.60*** Female (M =15.97) > Male (M = 12.29)

Hostile 132.10 1 132.10 15.43*** Female (M =14.93) > Male (M = 12.01)

(1) neutral (2) exuberant (3) bored (4) dependent (5) disdainful (6) relaxed (7) anxious (8) docile (9) hostile.

**p < 0.01; ***p < 0.001.

(5) > (6)–(7); (8) > (1)–(7); (9) > (1), (3)–(7). Males show (2)
> (1), (7); (3) > (1)–(2), (4)–(5), (7)–(9); (4) > (1); (5) > (1),
(7); (6) > (1)–(2), (4), (7)–(9); (8) > (1)–(2), (7); (9) > (1)–(2),
(7). These results demonstrate that ranks of emotional states are
different between males and females.

State simple main effect: With respect to influences of HNR
on gender under different emotional states, F-values of neutral,
exuberant, bored, dependent, relaxed, docile, and hostile are
62.35, 40.59, 8.50, 18.12, 49.74, 22.60, and 15.43, respectively (p
< 0.05). According to the results of post hoc comparisons, males
give significantly higher values than females in terms of bored
and relaxed although the opposite phenomenon is observed for
the remaining five emotional states.

DISCUSSION AND CONCLUSIONS

This study focuses on physical quantities of acoustic features
and their differences according to gender and the emotional
states of the PAD model during emotion–voice interactions of
AI. The study found significant differences in users’ gender and
emotional states of the PAD model with respect to seven major
acoustic features: (1) With respect to gender and emotional
states, Fo (Hz), Fo SD, intensity (dB), Jitter%, Shimmer%, and
HNR have interactions, and velocity displays no interaction.
(2) There are significant gender differences in terms of velocity
of eight emotional states in PAD. Moreover, males show
significantly higher velocity (M = 0.29) compared to females
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(M = 0.33). (3) Males show no significant differences in six
of the acoustic features, except Fo SD. Looking at the gender
simple main effect, there are significant gender differences in
terms of degree and ranking of emotional states. Looking at the
state simple main effect, Fo (Hz) shows significant differences
among different emotional states. Fo SD is significantly different
in terms of exuberant, bored, dependent, and hostile states.
Intensity (dB) is significantly different with respect to bored,
dependent, and docile states. There are significant differences in
Jitter% in neutral, exuberant, bored, dependent, relaxed, anxious,
and docile states. Shimmer% has significant differences. HNR
presents significant differences in neutral, exuberant, bored,
dependent, relaxed, docile, and hostile states. The above analyses
found physical quantities of relevant parameters and rankings as
shown in the results. Specifically, the voice-affective interaction
of intelligent products was used as the preset scene. Therefore,
the PAD model is different in terms of emotional classification
from the emotional classification found in the literature review
(Williams and Stevens, 1972; Johnstone and Scherer, 1999; Abelin
and Allwood, 2000; Quinto et al., 2013; Bowman and Yamauchi,
2016; Dasgupta, 2017; Hildebrand et al., 2020). Moreover, some
acoustic features are different, and it is impossible to compare
directly. Directionality of classification is compared with research
results, which has not been investigated in past empirical
studies; however, there are significant differences in rhythms of
different emotions. For gender, previous studies mainly found
that men speak more quickly than women (Feldstein et al., 1993;
Verhoeven et al., 2004; Jacewicz et al., 2010), but it has also
been found that there is no significant difference between men
and women (Robb et al., 2004; Sturm and Seery, 2007; Nip
and Green, 2013). This study further compared expressions of
emotional states and concluded that men speak more quickly
than women.

We comprehensively explored the influence of eight
emotional states of the PAD model and gender on affective
recognition and expression of acoustic features (e.g., velocity,
Fo, frequency spectra) in a systematic method. In terms
of theoretical implications, the PAD model of intelligent
products provides an emotional model that is different from
previously used models. In emotional computing, the PAD
model is conducive to understanding the influences of gender
and emotional states on the connection between acoustic
features and psychology in AI affective-voice interaction,
including physical variables and their differences. This aids
in understanding the acoustic features of affective recognition
and expression. In terms of practical applications, in view
of the development trends of intelligent products on the
market, man–machine interaction will be popularized in
intelligent-home life, travel, leisure, entertainment, education,
and medicine in the future. This study will help to improve
the affective-voice interaction scenes of intelligent products
and connections between the emotional states and acoustic
features of the speaker. The analysis of acoustic features under
different emotions and genders provides an empirical foundation

for adjusting the parameters of the affective-voice interaction
mathematical models and offsets limitations of current deep
learning acoustic models’ “explanatory” power. The research
results can provide a reference for the adjustment of model
parameters during optimization of affective recognition and
affective expression.

This study was designed for theoretical and practical
application; however, the recorded voices only used Chinese
materials. There may be some differences with different
languages, which deserves particular attention for generalization
of the results. Subsequent studies can further investigate
correlations between emotional classification of PAD and
voice rhythm of different genders in the PAD model to
provide a theoretical basis and supplement shortages of
deep learning. This study aims to strengthen emotional
integration during man–machine interaction, allowing users and
products to generate the empathy effect and, thus, expand
the human–computer relationship and highlighting the value
of products.
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