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A novel social interaction is a dynamic process, in which participants adapt to, react

to and engage with their social partners. To facilitate such interactions, people gather

information relating to the social context and structure of the situation. The current study

aimed to deepen the understanding of the psychological determinants of behavior in a

novel social interaction. Three social robots and the participant interacted non-verbally

according to a pre-programmed “relationship matrix” that dictated who favored whom.

Participants’ gaze was tracked during the interaction and, using Bayesian inference

models, resulted in a measure of participants’ social information-gathering behaviors.

Our results reveal the dynamics in a novel environment, wherein information-gathering

behavior is initially predicted by psychological inflexibility and then, toward the end of the

interaction, predicted by curiosity. These results highlight the utility of using social robots

in behavioral experiments.

Keywords: social interaction, dynamics of interaction, curiosity, psychological inflexibility, social robots, human-

robot interaction

1. INTRODUCTION

Human beings, like other organisms, are driven to reach, explore and engage with their
surroundings by their very nature (Berlyne, 1950; Hebb, 1955; Spielberger et al., 1994). As
observations on infants confirm, we are attracted to novel, ambiguous and complex stimuli by an
intrinsic drive for self-expansion (Switzky et al., 1974; De Charms, 2013). Social interaction with
other novel and lively agents manifests these attributes even more, due to the highly ambiguous
nature of the other social agents, which possess their own differentiated will, and therefore can act
in unexpected ways. Exploratory behaviors of humans and animals have been studied in the past in
the context of approach and avoidance behaviors (Berlyne, 1954; Kreitler et al., 1974; Power, 1999).
These behaviors were also examined as part of social interactions with humans and other life-like
objects such as virtual characters and social robots (Satake et al., 2009; Leite et al., 2013). Less is
known about individual psychological differences that influence behavior in a novel interaction,
and especially those that influence the approach behaviors that will be selected by the individual.
As De Jaegher et al. (2010) proposed, it is possible that the best way to learn about social cognition
is through a deeper investigation of the interactions themselves.

1.1. The Use of Social Robots
In the current study we wish to utilize a dynamic systems tool approach for analyzing the structure
of the interaction patterns, as suggested by De Jaegher et al. (2010). For this purpose, we have
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selected to use social robots as the social partners for the human
participant. But can social robots be used for studying human
psychological aspects? Several studies suggest that this is indeed
the case.

In the context of trustworthiness, analyzing human non-
verbal gestures enabled the programming of a humanoid
robot to use similar gestures, resulting in similar human
responses and perceptions (DeSteno et al., 2012). Using
multi-modal human-human-robot interactions datasets for
studying personality and engagement showed that using data
from human-human interaction resulted in similar personality
classification as human-robot interaction, suggesting that people
exhibit similar personality-related behaviors in both scenarios
(Celiktutan et al., 2019).

A large survey of non-verbal behaviors (Saunderson and
Nejat, 2019), including robot gestures, proxemics, tactile
interaction and time-experiencing interaction (e.g., hesitation)
has shown that humans easily perceive these interactions and
respond to them in similar ways they respond to humans
performing the same actions.

Moreover, recent studies have shown that when robots behave
socially toward other robots, their anthropomorphism increases,
and when they behave socially toward people, participants
are more willing to interact with them (Fraune et al., 2020).
Thus, we assume that the person’s exploratory tendencies
in novel social interactions will be manifested also when
interacting with partially inanimate agents, such as social robots
(Auvray et al., 2009; De Jaegher et al., 2010).

While studies have shown that stress can affect the
initial perception of social robot poses’ valence and arousal
(Thimmesch-Gill et al., 2017), a brief interaction with a social
robot was shown to decrease uncertainty and increase reported
social presence (Edwards et al., 2019), alluding to a rapid
acceptance of social robots as social partners. Finally, social
robots have been used to study human curiosity expressions
(Epstein and Gordon, 2018).

Social robots have several compelling attributes that make
them advantageous to human confederates in studying social
interactions:

1. Social robots are fully autonomous agents with whom a person
could socially interact.

2. They drastically reduce potential noise factors that exist
in interactions with actual humans. More specifically,
when dealing with the measurement of social traits, the
experimenter who runs it and the confederates who take part,
can pose considerable confounding factors.

3. They enable full control over various interaction parameters,
such as non-verbal behaviors, social feedback and information
content.

4. A completely autonomous experimental setup enables cleaner
measurements of the human participant’s behavior, as all other
factors are known and controlled by the setup itself.

5. Social robots’ behavior is completely repeatable and
unwavering for the entire course of a long study, enabling
more robust measurements of the dynamical nature of the
interaction.

Hence, we have chosen to use social robots as the research tool,
more specifically the NAO humanoid robot (Beck et al., 2010;
Häring et al., 2011; Erden, 2013).

The aim of the current study is to deepen the understanding of
the psychological factors that influence behavior in a novel social
interaction. More concretely, these behaviors address inferring
the attitudes of the social agents present in the social interaction
toward each other and toward the participant.

The study covers two main psychological domains which are
dominant in the context of novel environments: (1) curiosity and
(2) psychological inflexibility. These domains will be examined
through an interaction with social robots, where we chose to
focus on non-verbal behaviors, to reduce the complexity of verbal
communication and content-related biases.

1.2. Non-verbal Behaviors
Humans and social robots use non-verbal behaviors to
communicate. However, since social robots offer full control
over their poses and gestures, their perception by their human
partners is of equal importance (Saunderson and Nejat, 2019).

Robot’s use of gestures have been shown to have effects in the
context of learning and memorization of story details (Bremner
et al., 2011; Huang and Mutlu, 2013); increased collaborative
task performance (Breazeal et al., 2005), and induce higher
level of engagement (Sidner et al., 2005; Gielniak and Thomaz,
2012). Furthermore, it has been shown that non-verbal gestures
are perceived more positively when combined with speech,
compared to only speech (Aly and Tapus, 2013).

To better replicate human gestures, learning from
demonstration has been used and has been shown to create
the same valence perception as human gestures (Seo et al., 2015).
Furthermore, parameterizing mood behavior in humanoid
robots has also been shown to foster mood contagion of the
human partner, exhibiting similar effects to interacting with
humans (Xu et al., 2015).

It has been shown that specific gestures can communicate
better, based on the appropriate scenario, for example, exhibiting
(i.e. grasping and lifting an object) works better when initially the
object is not in the line of sight of the listener, whereas presenting
an object (gesturing towards an object with a full extension of the
fingers) works well when the referrer is distant from the objects
(Sauppe and Mutlu, 2014). Recently, a large database of gestures
was collected for human-robot interaction (de Wit et al., 2020).
However, these gestures were for specific task-related scenario,
such as words gestures (Hayes et al., 2013; de Wit et al., 2020)
or joint attention (Sauppe and Mutlu, 2014), but not non-verbal
communication gestures that express attitudes.

Since the current study utilizes only non-verbal robot
behaviors, it was imperative to fully describe and analyze the
perceptions of the behaviors used (see Section 2).

1.3. Curiosity
Curiosity has been defined as the recognition, pursuit, and
desire to explore novel, uncertain, complex and ambiguous
events (Gordon, 2018; Kashdan et al., 2018). Other definitions
include an approach-oriented behavior, a derivative of an inner
motivation that makes us want to seek, gather and assimilate
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new information and experiences (Ryan and Deci, 2000). Several
theories attempt to explain information seeking behavior, such
as uncertainty reduction theory (Berger and Calabrese, 1975;
Bradac, 2001) and information gap theory (Loewenstein, 1994).
The latter resulted in both quantitative measurement tools (Jirout
and Klahr, 2012) and the emergent field of curious robots
(Gordon, 2020).

People with greater curiosity expand their psychological
resources by engaging in activities that are personally and socially
enriching (Silvia, 2006). Brain imaging studies have shown that
induced “curiosity states” result in improved learning (Gruber
et al., 2014). However, exploration occurs mainly when one
feels secure (Ainsworth and Bell, 1970). Considering these
facts, curious people are more likely to be more engaged in
information-gathering behaviors during social interactions, once
they are accustomed to them.

1.4. Psychological Inflexibility (PI)
Psychological flexibility is a complex term that captures a group
of psychological traits and certain cognitive styles, which lead
to dynamic processes that unfold over time and show the way
people cope with daily experiences (Bonanno et al., 2004; Hayes
et al., 2004). PI includes difficulty in adapting to new situations,
and approaching them with anxiety and distrust. Psychologically
flexible people can better adapt to changing situational demands,
showing less rigidity in their cognitive style, relying less on
heuristics and stereotypes and managing their mental resources
and behavior (Kashdan and Rottenberg, 2010). One of the
main building blocks of psychological flexibility is executive
functioning (Kashdan and Rottenberg, 2010), i.e., the ability to
inhibit dominant behaviors, shift between strategies and control
attention. In a social interaction, a situation that may invoke also
negative feelings, flexible people probably have more executive
resources and hence can choose more freely to interact.

1.5. Dynamical Nature of Social Interaction
The aforementioned studies of curiosity and PI hint toward
their influence on the dynamical nature of social interaction.
Thus, for example, PI mainly manifests when something changes
(Kashdan and Rottenberg, 2010), e.g., during the beginning of
a new interaction. On the other hand, curiosity requires the
subjective feeling of security to manifest (Ainsworth and Bell,
1970), which may occur after an initial interaction and not at the
beginning of it (Edwards et al., 2019).

Moreover, high uncertainty (Edwards et al., 2019) and
anticipation toward an interesting novel event increases learning
(Gruber et al., 2014), thus may introduce an association between
curiosity and learning only at the beginning of the interaction,
and not after it has continued.

However, the direct quantitative investigation of social
interaction dynamics and personality traits is still lacking.

1.6. The Current Study
Here, we considered a quantitative model-based approach
to social interaction. Our model enabled us to dissociate
information-gathering (IG) behaviors from learning. Here we
define IG behaviors as actions that result in acquiring new

information, and learning as using the new information to solve
a task.

By tracking participants’ gaze and using Bayesian inference
models, we were able to compute a distance metric from the
“optimal information gathering agent,” called Information-
Gathering Behavior Error (BE). By directly asking the
participants how they perceive the social structure, we were
able to measure their learning. These behavioral and cognitive
correlates enabled us to track the dynamic nature of a novel social
scenario, and study the influence curiosity and PI may have on
them. Based on the aforementioned literature, we hypothesize
that:

(H1) There will be a positive association between curiosity
and information gathering behaviors, with a stronger
association later in the interaction, due to increased sense
of security (Ainsworth and Bell, 1970) and decreased
uncertainty (Edwards et al., 2019).

(H2) There will be a negative association between psychological
inflexibility and information gathering behaviors, with
a stronger association during the beginning of the
interaction (Kashdan and Rottenberg, 2010).

(H3) There will be a positive association between curiosity and
learning, with a stronger association during the beginning
of the interaction (Gruber et al., 2014).

To run the study, we first had to create a social interaction
among robots and a human participant that enabled a dynamical
investigation of a social structure. In this human-robot-robot
study, robots interacted with one another, as well as interacting
with the human participant.

Hence, we first conducted an on-line study (“Preliminary
Study”) to validate the non-verbal robot-robot behaviors and
their perception by human observers. The study resulted in
perceptual probability distributions that enabled us to use
Bayesian models for the generation and assessment of non-verbal
behaviors’ attitude meanings.

We then conducted our main study to investigate how human
participants explore and learn dynamical social structures, by
viewing and participating in a human-robot-robot non-verbal
social interaction.

2. PRELIMINARY STUDY: VALIDATION OF
NON-VERBAL ROBOT-ROBOT
EXPRESSIVE BEHAVIOR REPERTOIRE

The preliminary study addresses the design of robot gestures
toward other robots that can convey a large variety of attitudes’
valence and ambiguity toward another agent. To validate these
designs, we performed an on-line study with videos of robots
gesturing toward one another and asked naive raters to rate their
perceived attitudes’ valence, Figure 1.

2.1. Methods
We used the NAO robot as the robotic platform for its
humanoid form, its prevalence in human-robot interaction
studies and its ease-of-use for generating gestures (Beck et al.,
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FIGURE 1 | On-line questionnaire example (in Hebrew, the native language of

the rates). The question reads: Please rate the attitude of the robot on the right

to the robot on the left. The 7-point Likert scale ranges from “very negative” on

the left to “very positive” on the right.

2010; Häring et al., 2011; Erden, 2013; Thimmesch-Gill et al.,
2017; Marmpena et al., 2018). We created 16 different gestures
using Aldebaran Choregraphe, based on the social meanings of
nonverbal behaviors in humans (Rashotte, 2002), Figure 2. Naive
raters were used to obtain ground truth for the valence that each
robot gesture expresses. 16 short videos (15–30 s long) which
present the gestures performed by one robot toward another were
presented in a random order. Following each video, the raters
were asked to answer a single question to indicate the attitude
of the gesturing robot to the other robot (“Indicate what was
the relation of the right robot toward to left robot”). The answer
used a 7 point Likert-scale ranging from Negative to Positive
(“Very negative,” “Negative,” “Pretty negative,” “Neutral,” “Pretty
positive,” “Positive,” “Very positive”). There was no time limit for
the questions and the raters could watch the videomultiple times.

To screen for raters that were not performing the task
adequately, we performed two filters. We added a trap-question
after the seventh video. In that video, it was written on the
screen with bold letters exactly how to fill the following scale.
We removed raters who did not answer the question correctly.
Furthermore, we removed raters whose total time for the rating
was under 180 s (which is the total minimal time it takes to watch
all videos).

2.1.1. Participants
One hundred and five naive raters were recruited from our
university. The final data contained 94 participants, including 43
females and their average age was 28 (±7) years. They all signed
a consent form and the study was approved by the Institutional
IRB.

2.2. Results
We normalized the 7 point Likert scale to a range of [−1, 1] and
then computed a histogram of ratings for each gesture. Dividing

all the histogram data by the number of observations, resulted
in the probability of perceiving the attitude’s valence given the
gesture.

From this probability distribution p(v), v ∈ [−1, 1], we
extracted two important parameters: the expected value of
the attitude, A =

∑

vp(v), which accounts for the valence
axis; and the normalized entropy of the distribution, H =
∑

p(v) log2 p(v)/log2(1/7), which accounts for the ambiguity of
the gesture, ranging from H = 0 for a clear gesture, to H = 1 for
a completely ambiguous gesture, where all attitude values have
1/7 probability.

Figure 2 shows the gestures and their probability
distributions; Figure 3 shows their position on the valence-
ambiguity plane. The 16 gestures (number in parenthesis)
covered a large range of positive (6), neutral (1) and negative (13)
attitudes. Furthermore, there was also a large variability in clarity
of gestures, as is evident from the spread across the entropy
axis, from clear gestures (4) to almost completely indiscernible
gestures (14).

2.3. Discussion
While the preliminary study has involved videos and an on-line
survey, and not live interactions with robots, this methodology
has been used extensively in the human-robot interaction
community, also to explore non-verbal interactions (Erden, 2013;
Hayes et al., 2013; Sauppe and Mutlu, 2014).

We have based the 16 robot gestures on the social meanings
of non-verbal behaviors in humans, reported in Rashotte (2002).
While the list of behaviors were stated to convey different
attitudes on the positive-negative axis, we have shown that there
is also an important aspect of ambiguity (Sauppe and Mutlu,
2014). In contrast to previous studies, which have performed
extensive research on emotional expression of individual robots
(Erden, 2013; Marmpena et al., 2018), we have focused on
interpersonal gestures, between two robots. Thus, we introduced
new important gestures, such as pointing, nodding, leaning, that
have a different meaning in a singular scenario. Furthermore,
the videos presented only robots, meaning the participants
experienced our desired scenario of seeing and rating robots
communicating between themselves.

We have found that robot gestures of attitudes do relate to
human gestures (Rashotte, 2002), in contrast to automatic gesture
recognition, as reported in Hayes et al. (2013). Thus, nodding (5,
6) and leaning toward the other robot (7, 8) were perceived as
positive gestures, whereas aggressive (13) and shy/embarrassed
(12) gestures were perceived as negative.Moreover, some gestures
were clearly neutral, such as head scratching (4), whereas other
gestures, such as pointing (15) and reaching (14), were perceived
very differently by various people. Future studies should also
consider the cultural background of the participants, as the
valence of a given gesture may be perceived differently by people
from other cultures.

Compared to previous studies of emotional expressions of
robots, which resulted in a list of gestures per emotional state
(Beck et al., 2010; Häring et al., 2011; Erden, 2013), this
study has resulted not just in the perceived aspect of each
gesture, but also a quantitative probability distribution of its
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FIGURE 2 | Robot gestures and attribute valence (X) probability (Y) distribution (two robots were always present in the videos).

FIGURE 3 | Robot gestures on the valence-ambiguity plane (gesture numbers

refer to Figure 2).

perception (Marmpena et al., 2018). This can be used not only
in understanding how people perceive robots’ gestures, but also
to generate appropriate gestures based on required attitudes,
while maintaining variability and engagement. Based on this
analysis, we have discarded gestures 7, 10, 14, 15 due to their high
ambiguity, and used the other gestures’ probability distributions
in Study 2 to generate a random gesture based on required
attitude.

3. MAIN STUDY: INFORMATION
GATHERING BEHAVIORS AND LEARNING

3.1. Overview
In this study we addressed the issue of human-robot-robot
interaction in a complex, fully autonomous setup with four Nao
robots and a single human participant. An important aspect of
our study is the (almost) non-existent intervention of humans.
One Nao robot was the experimenter, and aside from the human
experimenter greeting the participants into the room toward
the setup and calibrating the sensors, all the rest of the study,
including instructions and clarifications, was performed by the
Nao experimenter. This resulted in an all-robot experimental
setup, thus eliminating any human-related biases. The study itself
was composed of three Nao robots non-verbally communicating
toward one another and the human participant, using gestures
from the preliminary study and a Bayesian-based algorithm.
The goal of the participant was to infer the “relationship,” i.e.,
attitudes, of the robots toward one another. In other words, the
human participants were part of an all-robot social scenario,
which they had to decipher. We used eye-tracking to measure
which robot the person was looking at, which in turn dictated
which robot gestured next. Hence, while the human participants
perceived the robot-robot social interaction, their gaze had
influenced the interaction itself. In this way, the interaction
and the information supplied was reciprocal, such that the
human participant was also part of the flow. The interaction
repeated several times, in order to measure any learning effects
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FIGURE 4 | The experimental setup.

the participants may have in inferring the attitudes the robots
conveyed toward each other.

3.2. Experimental Setup
A video presenting the experimental setup is available here.

Robots: The experimental setup consisted of four fully
autonomous NAO robots, a tablet and a Pupil eye tracking
sensor (Kassner et al., 2014), programmed via ROS and Python.
The participant sat in front of a table where three NAOs were
positioned so that they were conducting a non-verbal interaction.
The tablet was placed on the table in front of the participant
and the fourth NAO stood to the left of the participant and
served as the (robot) experimenter, Figure 4. The (human)
experimenter sat behind the participant, out of his line of
sight and monitored the interaction, but did not interact with
the participant.

During the experiment, the robots socially interacted among
themselves and with the participants. This conversation was
a “silent” conversation which meant that the communication
between the robots was based only on non-verbal cues (gestures)
(Burgoon et al., 2016).

Relationship matrix: A relationship matrix was configured
for each round of the experiment that described the relationship
between every two entities (robot → robot / robot → human
participant). The matrix dimensions represent the relationships
which we can define—the three robots (3) relate to each other
and to the human (4) (we cannot define how will a participant
relate to the robots)—thus a (3X4) matrix was created, where the
diagonal of the matrix is set to zero (since the robots do not relate
to themselves). The matrix values,Mi,j ranged from 0 to 1 (with 9
discrete values), where 0 reflects a strong negative relationship or
attitude, from i to j, and 1 represents a strong positive relationship
from i to j. Each experiment round used a different matrix to
define the relationship. In order to create matrices which are
identical in their learning complexity (how hard it will be to learn
them) we used a permutation of [0.27, 0.61, 0.94, 0.16, 0.94, 0.05,
0.5, 0.72, 0.5] in order to create all matrices. e.g., one permutation

of these parameters can generate the following matrix:

Mi,j =





0 0.50 0.72 0.50
0.61 0 0.27 0.05
0.94 0.16 0 0.94



 (1)

We chose five matrices out of the many permutations in the
following way: First, to create realistic matrices, we eliminated all
permutations that created matrices where | Mi,j − Mj,i |> 0.25,
i.e., the difference between the way two robots feel about one
another cannot be larger than 1

4 in the scale of relationships.
Second, we classified each matrix to the binary relationship it
represents, i.e., which robot received the highest “aggregated
attitude” from the other robots and which received the lowest
aggregated attitude from the other robots. For example, for the
relationship matrix shown above the aggregated attitude is [1.55,
0.66, 0.99] and the binary relationship it represents is [1, −1,
0], i.e., the first robot received the most positive attitude, the
second the most negative and the third in the middle. Finally, we
chose from each 6 binary relationship representation the matrix
which has the highest aggregated attitude standard deviation,
thus taking from each family of possible relationships, the matrix
that will be the easiest to learn.

Robot gestures: The robot gestures were taken from the
preliminary study, i.e., we took the probability distributions from
Figure 2, which gave us the probability of a relationship given
a gesture. Using conditional probabilities and the probability
distribution computed above, we calculated the probability to
choose each gesture based on the relationship parameter—the
relationship to gesture probability database [RGPD].

We programmed the robots, using the naoqi API and ROS,
to move in a life-like manner using two schemes. First, based on
eye blinking research (Bentivoglio et al., 1997; Yoshikawa et al.,
2007) we configured the robots to blink with a time between
blinks drawn from an exponential distribution with: λ = 3.5s
in normal mode and λ = 2.5s when the robot’s relationship to
the interaction subject was > 0.5, thus expressing an increased
blinking for positive attitudes.

Second, the robots moved their heads in a life-like way by
performing random micro-movements with a velocity and range
that changed depending on the robot’s relationship toward the
other participants (robot/human) that interacted with them, thus
expressing a slower and smaller range movement for positive
attitudes (Hadar et al., 1985).

Sensors: For the purpose of knowing where a participant is
looking, we used the Pupil Labs eye tracker. Using the pupil
capture software and by placing markers on the robots, we
configured each robot as an identifiable surface, thus we knew
in real-time where the participants were looking and if they were
looking at one of the robots.

This setup enabled us to assess the participants’ learning and
exploration behavior when introduced to a novel mapping, in
repeated rounds.

3.3. Protocol
The protocol was composed of three separate sections, namely,
pre-study (at home), preparation and study.
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FIGURE 5 | Main study protocol.

3.3.1. Pre-study
Forty-eight hours prior to the experiment, participants got via
email a link to fill out an online questionnaire, which included a
consent form. At the end of this questionnaire, they got a unique
code which they brought with them to the experiment.

3.3.2. Preparation
After signing another consent form, related to the study itself,
and validating the home questionnaire code, participants were
presented with general information about the experiment stage:
an interaction with robots, a cognitive task and in the end, filling
out several more questionnaires. Calibration for the Pupil eye
tracking was done using the manual marker calibration method,
and then participants were seated next to the table with the other
robots. Once done, the experimenter told the participants that
in this part of the experiment (interacting with the robots) the
robot to their left (the blue robot) will give all the instructions
and will act as the experimenter, and when the experiment starts
they will be notified by the robot experimenter. The (human)
experimenter said he had to complete some administrative tasks
and did not instruct the participants at all.

3.3.3. Study
The study was based on human-robot-robot interaction, which
was composed of 6 rounds, Figure 5. Each round was composed
of a varied number of turns which lasted about a minute. We
chose this setup for the interaction since we saw it enabled us to
collect sufficient data without exhausting the participants. In each
turn, a different robot (dubbed “the main robot” for this turn)
gestured expressively toward one of the other robots, conveying
a non-verbal message. In response, the other two robots used
gestures in order to convey their matrix-based relationship
toward the main robot. The main robot was preselected for every

round. A unique turn also occurred, in which all three robots
looked at the participant, in expectation for hermovements. After
a 5 s long interval, each of the three robots behaved according to
their attitude, given by the current round’s relationship matrix
and the RGPD.

In every round there were three types of turns: (i) Initial
robot turn; (ii) Human turn: the “unique” turn where the human
participant was the main character. This kind of turn occurred
once or twice in each round, in preselected turns and; (iii)
Dynamic main robot turn: for the other turns in each round
[those in which neither (i) nor (ii) were preselected], the main
robot was selected based on the participant’s behavior in the prior
turn. Based on the pupil eye tracker data we calculated which
robot (but not the main robot) got the maximum attention from
the participant (i.e., the participant looked at it for the longest
accumulated time). This robot was the next turn’s main robot.
This was done for two reasons, namely, to simulate an interaction
where attention creates action and to give the participant control
over the information she was going to receive next.

The first round of the interaction started immediately,
where the robots performed a non-verbal interaction using
gestures from Study 1 and based on their relationship matrix.
Thus, initiating the first assessment of unprompted exploration,
namely, what will participants do when not instructed to do
anything, yet the robots interacted in front of them. We decided
on having the first round without giving the participants explicit
instructions in order to simulate the scenario where a human
encounters several robots interacting, without knowing their
mode of interaction.

During the first, taskless round, there were four turns, where
the third was the Human Turn. Afterwards, the robots stopped
the interaction, but still seemed alive—using blinks and micro-
movements of the head, and the experimenter robot started a
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social interaction by explaining what is going on: “Hello, how are
you? I’m Roby and I’m running the experiment. Before I start
to explain the experiment, I do not know if you noticed, but
while you were waiting, there was a social interaction between the
robots. I will now ask you some questions about the interaction.
Please answer using the tablet, and if you do not know the answer,
that’s fine.”

This introduction was followed by the robot asking four
questions:

1. Which robot demonstrated the most positive attitude (relative
to the rest of the robots)?

2. Which robot demonstrated the most negative attitude? (to the
other robots)

3. Which robot demonstrated the most positive attitude towards
you?

4. Which robot demonstrated the most negative attitude towards
you?

The participant then answered the questions using a tablet, which
presented the three robots and an option to select “I don’t know”
as the answer.After answering each question, the experimenter
robot gave a feedback based on the participant’s answer: “Well
done, excellent” and “Good work, you recognized correctly”—for
a correct response; “Not true, but nice try” and “Wrong answer,
but that’s OK, it’s hard”—for an incorrect response. The three
robots also conveyed this feedback, wherein the correct answer’s
robot raised its hand and the other two robots looked at it.
Inquiring the participants about the interaction constituted our
measure of learning, i.e., did the participant learn the relationship
matrix and can she answer questions which require aggregated
data from that matrix.

The first round was followed by the experimenter robot’s
explanation: “That’s it, we’ve finished the questions. So let’s
start, I’ll explain to you the course of the experiment. This
part of the experiment is divided into several rounds. On each
round, the robots and you will have a “silent” conversation.
At the end of the interaction, I will ask you questions, as I
did before. Some important points: Note that the relationship
between the robots themselves and between the robots and you
varies from round to round. The conversation is mute, which
means that only body language will be used. Last thing, in
every turn of the conversation, the next robot to talk is the
robot that got the most attention from you.” In some cases
participants requested to hear the instructions again, since they
were not listening the first time due to possible excitement or
inattention. Therefore we decided to play the instructions twice
for all participants.

Following this explanation, the participants took part in four
more rounds of interaction, each consisted of eight turns and the
same four questions at the end of each round. During each round,
a new relationship matrix was used.

The participants then took part in the sixth and last round
which was not limited by time. In this last round, the participants
were instructed as follows: “Youmay now interact with the robots
for as long as you want. Please let the experimenter know when
you are finished. You will not be asked any questions after this
round ends.”

To summarize, the participants took part in six rounds: An
initial round with no instructions, 4 rounds with instructions,
and a last “free exploration” round. These six rounds constitute
the basis for the analysis of perception of attitudes and dynamics
of learning. The entire interaction was done in Hebrew, the
participants’ native language, and the average interaction length
was about 20 min.

The participants then filled out several questionnaires using
Qualtrics and performed the WCST computerized task (see
below).

3.4. Instruments
3.4.1. Questionnaires
All questionnaires were translated from English into Hebrew and
then back-translated twice by two independent English-Hebrew
bilinguals. Cronbach’s Alpha values for the current study’s sample
are noted.
Psychological Inflexibility: AAQ-2: Participants completed the
Acceptance and Actions Questionnaire-II, which measures
psychological inflexibility (Bond et al., 2011). It includes 10 items
on a 7-point Likert scale from 1 = “never true” to 7 = “always true”
(α = 0.87). A higher score indicates that a person is less flexible.
Curiosity: CEI-2: Participants completed the Curiosity and
Exploration Inventory II (Kashdan et al., 2009), which is
composed of two subscales: stretching (α = 0.79) and embracing
(α = 0.74) and a total score scale (α = 0.83). There are 10 items
with 5 for each subscale scored on a 5-point Likert scale from 1 =
“very slightly” to 5 = “extremely.”
Human-robot interactions: NARS: Participants completed the
Negative Attitude toward Robots Scale (Nomura et al., 2006),
which helps determine whether the participant has a general pre-
existing negative attitude toward robots. The scale is composed
of three subscales: Negative Attitudes toward Situations and
Interactions with Robots (NARS “situations,” α = 0.76), Negative
Attitudes toward Social Influence of Robots (NARS “social,” α =
0.73), Negative Attitudes toward Emotions in Interaction with
Robots (NARS “emotions,” α = 0.76) and a NARS total score scale
(α = 0.86). Altogether there are 14 items on a 5-point Likert scale
from 1 = “strongly disagree” to 5 = “strongly agree.”
Godspeed: Participants completed the so called “Godspeed” scale
(Bartneck et al., 2009), in which the participant reports about his
perception of and feeling about the robots after the interactions.
The scale is composed of 5 subscales: Anthropomorphism (α
= 0.78), Animacy (α = 0.83), Likeability (α = 0.86), Perceived
Intelligence (α = 0.65) and Perceived Safety (α = 0.77, after the
removal of item number 24). Participants responded to 24 items
on a 5-point semantic differential scale.

3.4.2. WCST Task
Participants completed a computerized version of the Wisconsin
Card Sorting Task (Heaton, 1981) provided by Inquisitlab. The
sorting task includes 128 trials that are divided into two blocks of
cards (two decks of cards). Each card represents three categories-
shape, color and number, and every group of consecutive cards
has at least one category in common. In every trial the participant
was required to sort a single card into one of four piles of cards by
a given rule (the common category), but every few trials the rule
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changed (the rule was set to change after 10 consecutive rounds
in which the participant sorted correctly). The participant was
given a feedback after every round (“Right” or “Wrong”) and
had to try to match as many cards as possible while adjusting
to the changing rules. In order to succeed in the task, it is
necessary to inhibit the automatic response, and to shift the
cognitive set in order to avoid perseverative and rigid responses.
These abilities are part of the executive functions, and as already
mentioned, psychological flexibility is strongly associated with
executive functions (Kashdan and Rottenberg, 2010). The WCST
was used to objectively assess psychological inflexibility. The sum
of perseverative errors (sum PE) was calculated from the task
data. A higher score on this measure indicates that a person is
less flexible.

3.5. Data Analysis
All scales were calculated with the Python Pandas package, and
all analyses were executed with SPSS R©v22.

We have used the eye-tracking data to extract quantitative
model-based measures of information gathering behavior. We
describe below the data processing, calculations, and measures
we have used in the study.

The Pupil Labs eye tracker sent the tracking information at
30 frames-per-second. From these data, we analyzed whether the
participant was gazing at a robot at that time and if so, we logged
it as xt ∈ {1, 2, 3}, i.e., which robot the participant looked at, at
time t. The data were segmented to each round, and within each
round- to turns. During each turn, we flagged each data point
if, at the time that the participant was looking at the robot, the
robot conveyed information regarding the relationship matrix,
i.e., performing an informative gesture.

Thus, our basic data structure for each participant i, round
s and turn z was a sequence of robots xt that the participant
looked at, and the flag f ∈ {0, 1} which represents if this look
was informative or not (xi,s,zt , f i,s,zt ).

From each round, we extracted the following measures: We
calculated the optimal estimation of the relationship matrix,
based on the sequence of tracked gazes performed by the
participant. This was done by applying Bayes’ theorem and the
given RGPD. In other words, we first defined a probability
distribution over all possible relationship values, for each element
of the relationship matrix, pj,k(v), where v ∈ (0, 1). Starting with
a uniformly distributed probability distribution for each element,
whenever the participant looked at a robot that expressed its
relationship via a gesture g, i.e., not the main robot, we updated
the appropriate probability distribution based on Bayes theorem:
pj,k(v|g) = pj,k(v)p(g|v)/p(g), where the likelihood was taken
from the RGPD. To obtain the participant’s relationship matrix
we calculated the expectation values: M̃j,k =

∑

vpj,k(v). Thus, for
each subject and round, we obtained amatrix trajectory with each
tracked gaze at time t = 1, ...,T, M̃i,s,t

j,k
.

Given two matrices, we defined their distance via:

d(M(1),M(2)) =
∑

j,k

‖M
(1)
j,k

−M
(2)
j,k
‖/12 (2)

The real matrix is henceforth defined to beM.

The participants’ behavior, i.e., their directed gaze, is thus
influencing directly the dynamic nature of their matrix. This,
together with the definitions above, enabled us to define the
information-gathering behavioral error measure, labeled by us as
“BE”:

BEsi = (1/T)
∑

t

d(M̃s,t
i ,Ms,t

i,global
), (3)

where Ms,t
i,global

is the greedy global-optimal matrix at each point

in time. It is calculated by selecting the best gaze, at each point
in time, starting from the first gaze. In other words, throughout
the entire round, which robot will give the most information in
each point in time. The BEsi is a measure of distance from global
optimality.

While the BE measure relates to the chosen behavior, we
defined a measure relating to the learning process. At the end of
the first five rounds, participants were requested to answer four
questions. The answers were of a categorical type, and there was
only one right answer for each question. The participants were
requested to enter their answers into a tablet. In the tablet screen,
a schematic picture of the three robots that corresponded to the
way they were situated was shown, and the participants entered
their answer by selecting one of the robots, or by choosing
an “I don’t know” option. After they entered their response,
the participants got immediate feedback from the experimenter
robot, indicating whether they were right or wrong. In total, each
participant could get a score of 0–4 for each of first five rounds,
and a maximum of 20 correct answers for the whole interaction.
The sum of correct answers, which was labeled by us as “L,”
represented to what extent the participants learned the pattern of
relationships between the social robots; a larger L indicated that
the participant learned more during the interaction.

3.6. Participants
Based on the most relevant prior research (Epstein and Gordon,
2018), we estimate correlations on the order of R2 = 0.15. For
typical values of α = 0.05 and β = 0.2 (Type-II error), the
required sample size is 62.

We first ran a pilot study, with 38 participants, to calibrate
the experimental setup. We then conducted the main part of
the study, with 84 participants. They were offered a payment
of $30 for a total of 1 h that included questionnaires and a
short interaction with social robots, and could register themselves
via online platform. Participants were screened by language and
previous participation in similar studies in the lab. Proficiency
in Hebrew was required since the instructions were given in
Hebrew, and since all of the questionnaires were translated into
Hebrew. Participants who already took part in a previous lab’s
study could not participate in the current study, since it was
important that they would not be able to guess the study’s aim.

Participants from both studies, pilot and main one, (N
= 122) completed the entire study, including filling up the
questionnaires, completing the computerized version of the
Wisconsin Card Sorting Test (WCST) and interacting with the
robots. Two participants did not complete the WCST task.

For the instruments’ analysis, we included participants from
both studies (N = 122; Females: N = 80, Age: M = 26.2, SD

Frontiers in Psychology | www.frontiersin.org 9 June 2021 | Volume 12 | Article 669198

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Eshed et al. Dynamics of Human Information Gathering Behaviors

TABLE 1 | Sample properties.

Age (M) Age (SD) %Males %Females

122a 26.1 5.9 34.4 65.6

59 b 26.5 7.1 37.3 62.7

aTotal participants, from pilot and main studies.
bParticipants without technical issues.

TABLE 2 | Internal measures (N = 59) means (M) and standard deviations (SD).

Measure M SD

BE1 0.016 0.012

BE2 0.011 0.009

BE3 0.009 0.009

BE4 0.012 0.011

BE5 0.020 0.015

BE6 0.017 0.013

L1 1.470 1.194

L2 2.240 1.006

L3 2.460 0.934

L4 2.290 1.084

L5 2.680 1.074

BE, Behavioral Error measure; L, Learning measure, with the numbers referring to the

rounds.

= 6; Males: N = 42, Age: M = 25.8, SD = 5.9). Although
the advertisement was not limited to students alone, most
of the participants were undergraduate students from Tel-
Aviv University, Israel (N = 106, 86%), who attended four
different faculties (37% Exact sciences; 25% Social sciences; 13%
Humanities and 11% Medicine). As participants were also asked
whether they were diagnosed with ADHD, 13% of them reported
positively (officially or self-diagnosed).

Analysis of the interaction with the robots included
participants only from the main study (N = 84). Twenty-
five participants were excluded due to technical difficulties: 4
participants did not take part in the interaction due to network
communication problems; 16 participants had only partial eye-
tracking data, which was only found after the study was finished;
5 participants encountered various other technical issues, such
as power shortages etc. In total we had reliable data from 59
participants (Females = 37, Age: M = 27.3, SD = 8.1; Males:
N = 22, Age: M = 25.3, SD = 5.1). The majority of these
participants were students (N = 47, 79%), which came from
four different faculties (23% Exact sciences; 34% Social sciences;
20% Humanities and 23% Medicine). 18.7% of the participants
reported that they had been diagnosed with ADHD (officially or
self-diagnosed). The descriptive data is summarized in Table 1.

All participants signed a consent form and the study was
approved by the Institutional IRB.

4. RESULTS

The study results can be divided into two main groups of
measures: internal experiment measures of the participants’

TABLE 3 | Means (M) and Std. Deviations (SD) of the external measures and

demographics.

Measure
N = 59 N = 122

M SD M SD

AAQa 2.5 .99 2.6 .99

WCST sum PEb 6.8 2.8 7.1 2.5

CEI total scorec 3.4 0.6 3.5 0.6

CEI embracingc 3.1 0.7 3.2 0.7

CEI stretchingc 3.8 0.7 3.8 0.7

NARS total scored 2.6 0.6 2.6 0.6

NARS emotionsd 2.8 0.9 2.87 0.87

NARS situationsd 2.3 0.7 2.3 0.7

NARS sociald 3.0 0.8 2.9 0.77

Godspeed safety 3.3 0.6 3.10 0.7

Godspeed likeability 3.4 0.7 3.3 0.8

Godspeed animacy 2.8 0.7 2.8 0.78

Godspeed antro.e 2.5 0.8 2.4 0.8

Godspeed int.e 3.1 0.6 3.1 0.6

GPA 77.2 26.2 80.8 19.2

PET score 589.4 210.4 627.5 153.38

aAcceptance and Actions Questionnaire-II. bWCST, Wisconsin card sorting task; PE,

perseverative errors. cCuriosity and Exploration Inventory-II. dNARS situations, Negative

Attitudes toward Situations and Interactions with Robots; NARS social, Negative Attitudes

toward Social Influence of Robots; NARS emotions, Negative Attitudes toward Emotions

in Interaction with Robots. eAntro., Antropomorphism; Int., Intelligence.

TABLE 4 | Correlations of PI measures with curiosity (N = 122)d.

CEI stretchingc CEI embracingc CEI totalc

AAQa −0.164 −0.09 −0.142

WCST sPEb −0.115 −0.037 −0.084

a Acceptance and Actions Questionnaire-II. b WCST, Wisconsin card sorting task; sPE,

sum of perseverative errors. c Curiosity and Exploration Inventory-II. d All of the correlations

above were not found significant, p > 0.05.

performance in the interaction with the robots; and external
measures, which include the self-report questionnaires and the
WCST task. All measures’ descriptive statistics are reported in
Tables 2, 3. General correlations analysis between the external
measures are reported in Table 4.
General descriptive statistics (Table 3) show little difference
between the two samples (N = 59 vs. N = 122) regarding the
measures’ averages and variability.

The internal measures are represented by two main variable
groups: BE measures which stand for the participants’ behavior
(behavioral error) as it wasmeasured by eyemovement detection,
and Lmeasures which stand for the participants’ learning (correct
answers) as it was measured by the participants’ answers to the
questions that were asked after each round. Since the interaction
was composed of six consecutive rounds, each internal variable
was divided into six sub-variables: BE1 to BE6, and L1 to L5 (there
is no L6, since the last round did not include any questions).
Since our main hypotheses involve dynamics of novel social
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situations, we first analyze the dynamics of the interaction itself.
The dynamics of learning and behavioral measures are analyzed
separately first in Section 4.1, followed by analyses of their
correlates to personality measures in Section 4.2. Implications of
using social robots are analyzed in Section 4.3.

4.1. Dynamics of Behaviors and Learning
As can be seen in Figures 6, 7, the distinctions between the six
rounds of the interaction were in changes of both behavioral
(BE) and learning (L) measures’ average values. The six rounds
could be divided into three sections: initial exploration (round
1), exploration at the middle (rounds 2-5) and later exploration
(round 6). These data gave us a first glimpse at the participants’
dynamics throughout the interaction.

A significant difference in the participants behavior was
observed between round 1 and round 2 [BE: t(58) = 3.30, p =

0.002, d = 0.429, paired t-test]. At the middle section (rounds
2–5) there were no significant changes in the participants’ BE
measures. However, a specific significant change was observed
between rounds 4 and 5 [BE: t(58) = 3.36, p = 0.001, d = 0.437,
paired t-test].

With respect to learning, or completing the task, the first
round, in which the participants were not aware of the task at
hand, shows no learning as it was not-significantly different than
random choice [t(58) = 0.9, p = 0.367, one sample t-test].

However, Figure 7 clearly shows a significant learning trend
as a function of rounds [F(3.48, 201.9) = 12.6, p < 0.001, η2 =

0.177 ANOVA with repeated measures with a Greenhouse-
Geisser correction]. Indeed the first round, unsurprisingly, shows
significantly lower learning than the consecutive four rounds
[t(58) = 4.5, d = 0.597, t(58) = 4.8, d = 6.3, t(58) = 3.9, d = 5.1,
t(58) = 6.4, d = 8.9, p < 0.001 for pairwise comparisons of
round 1 and rounds 2–5, respectively]. Moreover, while rounds
2–4 do not show a significant increase, there is a significant
increase from round 2 to round 5 [t(58) = 2.33, p = 0.023, d =

0.3 pairwise comparison]. Finally, rounds 2–5 show significantly
higher learning compared to random choice [t(58) = 6.9, d = 0.9,
t(58) = 9.2, d = 1.2, t(58) = 6.7, d = 0.9, t(58) = 9.6, d = 1.25
and p < 0.001 for rounds 2, 3, 4, and 5, respectively, one sample
t-test].

These results show that participants both improved in the task
(Figure 7), but also changed their behavior (Figure 8).

4.2. Dynamics of Correlates to Personality
Measures
When inspecting the associations between the behavioral and
learning measures, and the external measures, clear correlations
could be found reflecting the dynamics of the internal measures
(Figures 8, 9).

Results of a Pearson correlation indicated that there was a
significant negative association between the CEI measure and the
fifth round’s behavioral measure (BE5 & CEI: r(59) = −0.29, p =

0.02). This result supports hypothesis H1.
Results of a Pearson correlation indicated that there was a

significant positive association between the sum PE measure on
both the first (BE1 & sumPE: r(59) = 0.37, p = 0.004) and
second (BE2 & sumPE: r(59) = 0.27, p = 0.04) behavioral

measures. These results support hypothesis H2. However, results
of a Pearson correlation indicated that there was a significant
negative association between AAQ measure and the first round’s
behavioral measure (BE1 & AAQ: r(59) = −0.36, p = 0.004), thus
not supporting hypothesis H2.

As for the learning measures, results of a Pearson correlation
indicated that there was a significant negative association
between CEI and the first round [L1 & CEI: r(59) = −0.32, p =

0.013], i.e., participants who self-report being more curious, were
less correct during the first round, thus refuting H3. Moreover,
while not significant, a positive association between self-report
curiosity and learning appears in the fourth round [L4 & CEI:
r(59) = 0.129, p = 0.329, Pearson correlation].

Results of a Pearson correlation indicated that there was a
significant positive association between the fifth round’s learning
measure and AAQ [L5 & AAQ: r(59) = 0.295, p = 0.024].

Finally, the within-subject (repeated measures) test results
revealed no significant interaction between the participants’ sex
or age and the internal measures (BE and L) in all of the
interaction’s rounds.

4.3. The Nature of Interacting With Robots
In the experiment we wanted to present the participants with
a novel social interaction. Yet, it cannot be ignored that
the interaction involved robots and not humans, which have
unique properties that do not exist in other social interactions.
In that sense, the robots could have served as a potential
confound. Therefore the following analyses tested whether the
unique perceived properties of the robots had any effect on the
interaction.

In order to test whether the fact that robots were used has any
significant influence on the interaction, the associations between
the external robot associated measures (NARS and Godspeed
questionnaires) and the internal robot interaction measures were
directly tested. In that way we could get a preliminary picture of
the amount of influence that these measures had on the internal
measures. When the robot questionnaires were put together as
predictors of the internal measures in a single model, the model
was found significant only for L2 [F = 3(8, 50), p = 0.007,R2 =

0.32, adj.R2 = 0.22] when the Godspeed anthropomorphism
scale was found to be a significant predictor (β = −0.44, t(49) =
−2.1, p = 0.039) and so were the NARS emotions scale [β =

−0.52, t(49) = −3.4, p = 0.001] the NARS situations scale
[β = 0.54, t(49) = 3.2, p = 0.002] and the NARS social scale
[β = −0.52, t(49) = −2.8, p = 0.007]. The model accounted for
a total of 32% of the variance of L2. This finding suggests that the
attitude toward robots was meaningful especially regarding the
participants’ learning at the beginning of the interaction, after the
participants became aware of the fact that they will be inquired
about the robot’s interrelations following each round.

In addition, the associations between PI and curiosity and
the internal measures were tested for moderation effects by
the robot associated measures. The HC3 heteroscedasticity
consistent standard error and covariance matrix estimator were
used (Long and Ervin, 2000). We sought to find the most
prominent effects the robots had on the predictive power of each
group of independent variables. The results show that only PI
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FIGURE 6 | Average behavioral error (BE) measure values across trials (error bars denote standard deviation). **p = 0.002, ***p = 0.001.

FIGURE 7 | Average learning measure (L) values across trials (error bars denote standard deviation). *p < 0.05, ***p < 0.001.

measures were significantly affected: The sum PE measure was
affected by the Godspeed intelligence and by the NARS social
scales as a predictor of behavioral error (BE1). The AAQ scale was
affected by the NARS social scale as a predictor of learning (L5).
Data for the interaction coefficient, the yielded R2 change and the
interaction direction is provided in Table 5 (only the significant
effects are reported).

In sum, the data shows that the NARS social and the Godspeed
intelligence measures were the most prominent moderators. The
NARS emotions and the Godspeed likability, animacy and safety
had only minor effects. Secondly, the NARS measures tended to

affect the associations at higher scores (e.g., when robots were
perceived more negatively) and similarly the Godspeed measures
tended to affect them at lower scores (e.g., when robots were
perceived less positively). Thirdly, the robot associated measures
did not significantly moderate the curiosity measures (CEI).

5. DISCUSSION

In the current study, we investigated the determinants of human
information-gathering behavior in a novel social interaction.
We hypothesized that curiosity and psychological inflexibility
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FIGURE 8 | R2-values (BE) across trials. *p = 0.02 (CEIs), *p = 0.04 (sPE); **p = 0.004.

FIGURE 9 | R2-values (L) across trials. *p = 0.01 (CEIs); *p = 0.02 (AAQ).

TABLE 5 | Moderation effects by the robot associated measures (NARS and Godspeed).

Category Independent Dependent Moderator β F R2 1R2 Effect type

PI AAQa L5 NARS socialb −0.24* 3.4 (3,54) 0.14 0.05 L/+

sum PEc BE1 NARS socialb 0.33** 15.8 (3,54) 0.24 0.1 H/+

sum PEc BE1 Godspeed int.d −0.16*** 32.6 (3,54) 0.19 0.045 L/+

*p = 0.013, 95% CI[−0.4,−0.05]; **p = 0.02, 95% CI[0.05,0.51]; ***p = 0.02, 95% CI[−0.35,−0.02].

H/+, higher moderator values imply a significant positive association; L/+, lower moderator values imply a significant positive association. aAcceptance and Actions Questionnaire-II.
bNARS social, Negative Attitudes toward Social Influence of Robots. cWisconsin card sorting task; PE, perseverative errors. d Int., Intelligence.
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would have a significant influence. As revealed by the results, our
hypotheses were partially confirmed.

5.1. Roles of Curiosity and Psychological
Inflexibility as Predictors of Learning
Dynamics
The results suggest that the social task was indeed learnable, yet
not implicitly so. We have found that the first taskless round was
not significantly different than random selection, but participants
improved in the task with continuing rounds. These unsurprising
results set the stage for the non-trivial relation between self-
report curiosity, as measured by the Curiosity and Exploration
Inventory-II questionnaire (CEI), and learning the task. We
found that there is a significant negative association between self-
report curiosity and learning during the first round. This may
be due to the novelty effect as reported by Smedegaard (2019),
wherein participants were excited about the new situation they
encountered, where more curious people experiencing this with
a stronger magnitude. Other studies have reported a negative
association between novelty and learning, especially so with
social robots (Gordon et al., 2015).

An interesting association between PI, measured by the
Acceptance and Actions Questionnaire-II questionnaire (AAQ),
and learning was revealed. This positive association “rumps”
up during the interaction, culminating in a significant positive
association during the last round. This suggests that a more rigid
approach to solving the social task is beneficial.

5.2. Roles of Curiosity and Psychological
Inflexibility as Predictors of
Information-Gathering Behaviors
We found that both curiosity and PI had significant associations
with the participants’ information-gathering behavior, although
only at specific times during the interaction. Our results show
an opposite trend between self-report PI (assessed by the
AAQ questionnaire) and objectively measured PI (assessed
by the WCST task’s sum PE measure). A general significant
positive association was revealed between participants with
higher objectively measured psychological inflexibility and
high behavioral errors at the beginning of the interaction,
whereas an opposite association was found between their
self-report PI. This finding is partly consistent with hypothesis
H2. It partly corroborates our notion that flexible people
can handle novel situations better than inflexible ones,
and novel social interactions in particular. The effect of
psychological flexibility was dominant at the beginning of
the interaction with the robots, when the participants had to
gather their emotional regulation and cognitive capabilities
in order to fully invest themselves in becoming familiar with
a novel and complex situation. As the participants became
familiar with the interaction, the effect of psychological
flexibility decreased.

However, contrary to PI, curiosity was found to be most
meaningful at the end of the interaction and not at the
beginning (Ainsworth and Bell, 1970). This finding is consistent
with hypothesis H1 and with the early research on curiosity

conducted by Hebb (1955) and Berlyne (1954). According to
their model of curiosity, the association between curiosity and
arousal could be described by an inverted U-shaped function,
meaning that the level of curiosity increases as the level of
arousal increases, but that it also decreases if the arousal level is
too high. This is consistent with our finding that psychological
inflexibility was dominant at the beginning of the interaction,
which implies that the participants experienced relative high
levels of anxiety at that time. And indeed, if the anxiety
levels were too high at the beginning of the interaction, it
means that the arousal level was also too high for curiosity to
take place as a motivational factor. Apparently, a habituation
period was needed before the participants could freely explore
the situation.

5.3. Opposite Patterns of the
Behavioral-Error and Learning Measures
The distinct trends between the Behavioral-Error (BE) and
Learning (L) measures, and their personality-based correaltions
indicate a substantial difference between them, which was at the
level of consciousness to which they addressed: the participants
were probably unaware of the eye tracking device during the
interaction, which determined the behavioral measure as an
implicit measure. On the other hand they were going through
an explicit process when they were answering the questions
that followed each round of the interaction, which determined
the learning measure as an explicit measure. The differences
between explicit and implicit learning were widely researched in
the cognitive psychology domain (Reber et al., 1980; Willingham
and Goedert-Eschmann, 1999; Batterink et al., 2015).

5.4. Study Limitations and Future Work
The current study aimed to investigate human information
gathering behavior, using social robots. While several studies
have shown that humans can treat social robots as they do
humans (DeSteno et al., 2012; Celiktutan et al., 2019; Saunderson
and Nejat, 2019), one cannot ignore this possible confound.
However, our analysis of the effects of robot-specific attitudes and
perceptions (NARS and Godspeed, respectively) shows that their
effect is relatively small, occurs mainly in the beginning of the
interaction (Edwards et al., 2019) and does not affect expressions
of curiosity.

Furthermore, we have used non-verbal gestures, whose
valence was quantified in the preliminary study, but also blinking
and head movement, to convey positive or negative relationship.
While we believe the effects of blinking and head movements
were relatively minor, the distinct effect of each specific gesture
on the interaction, as well as the direct effect of blinking
and head movements, was left for future work. Integrating
verbal communication, with nuances of speech intonation and
emotional complexion was also beyond the scope of the current
study.

The social robot experimenter framed the other robots’
behaviors as “social interaction” in its introductory explanation.
This may have primed the human participant to a specific
perceptual path. Previous studies have shown that priming for
curiosity, for example, can influence learning (Sher et al., 2019).
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Future studies can investigate framing of the interaction and its
effect on information gathering behaviors.

Finally, the experimental setup was not 100% robotic,
since the human experimenter still introduced the setup and
remained in the room during the study. This may have
had an effect, which will be studied in future work to
better understand the implications of a truly full robotic
experimental setup.

6. CONCLUSIONS

Curiosity and psychological inflexibility did manage to predict
the extent to which the participants manifested information-
gathering behavior during the interaction, but only at specific
times. While psychological inflexibility was found to be a
significant predictor at the beginning of the interaction, curiosity
was found significant toward the end of it. These findings
emphasize the complexity of social interactions, even when they
are held with robots, and revealed possible dynamics of human
exploration and engagement.

The current study’s method was limited in two substantial
aspects: the first is the relatively small study group, where
a much larger scale incorporating non-student and non-
tech-oriented participants should be performed. The second
is that the social interaction was only non-verbal, whereas
typical human interaction is mainly based on the verbal
components. With improved speech recognition and natural
language processing technologies, a more natural interaction
should be studied.

The current study explored in more fine-grained detail the
dynamics of social interaction, as opposed to only pre-post
tests. The psychological determinants of moment-by-moment
social cognition should be further explored. Moreover, we have
expanded on an emerging field of using social robots to study

human psychology, such as trustworthiness (DeSteno et al., 2012)
and curiosity (Epstein and Gordon, 2018). We suggest that this
effective tool has great promise in facilitating more bias-free
psychological studies.
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