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In this study, 38 young adults participated in a probabilistic A/B prototype category learning 
task under observational and feedback-based conditions. The study compared learning 
success (testing accuracy) and strategy use (multi-cue vs. single feature vs. random 
pattern) between training conditions. The feedback-related negativity (FRN) and P3a event 
related potentials were measured to explore the relationships between feedback processing 
and strategy use under a probabilistic paradigm. A greater number of participants were 
found to utilize an optimal, multi-cue strategy following feedback-based training than 
observational training, adding to the body of research suggesting that feedback can 
influence learning approach. There was a significant interaction between training phase 
and strategy on FRN amplitude. Specifically, participants who used a strategy in which 
category membership was determined by a single feature (single feature strategy) exhibited 
a significant decrease in FRN amplitude from early training to late training, perhaps due 
to reduced utilization of feedback or reduced prediction error. There were no significant 
main or interaction effects between valence, training phase, or strategy on P3a amplitude. 
Findings are consistent with prior research suggesting that learners vary in their approach 
to learning and that training method influences learning. Findings also suggest that 
measures of feedback processing during probabilistic category learning may reflect 
changes in feedback utilization and may further illuminate differences among 
individual learners.

Keywords: strategy development, category learning, feedback processing, feedback related negativity, 
probabilistic learning

INTRODUCTION

The human ability to categorize is a fundamental behavior that supports recognition and 
underlies concept formation (Zentall et  al., 2002; Ashby and O’Brien, 2005; Waxman and 
Gelman, 2009). Categorization helps people recognize that a bird seen for the first time, for 
example, is a bird, even if it is not like any bird the person has ever encountered. Categorization 
can influence decisions based on category membership (e.g., poisonous vs. edible berry) or 
support recognition (e.g., help listeners distinguish familiar and unfamiliar voices). While 
category knowledge is often acquired unconsciously through exposure and experience, category 
knowledge can also be  acquired in more structured ways. Research suggests that the process 
and degree to which a category is learned can depend upon external factors related to category 
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structure and/or method of instruction, and also on factors 
about the learner, such as cognition (Knowlton et  al., 1994; 
Ashby et  al., 2002; Gluck et  al., 2002; Ashby and O’Brien, 
2005; Bozoki et  al., 2006; Ashby and Maddox, 2011; Karcher 
et al., 2019; Feldman, 2021). Particularly in instances of acquired 
brain damage or disease where concepts must be  re-formed, 
re-learned, or reinforced, understanding the interaction between 
external and individual factors that affect the learning process 
can serve to benefit the design of optimal learning conditions 
(Knowlton and Squire, 1993; Bozoki et al., 2006; Karcher et al., 
2019). The present study focused on complex multi-dimensional 
category learning and examined how an external factor, the 
presence or absence of feedback, influenced learning success 
and strategy development. The present study further examined 
how individual differences in feedback processing may relate 
to learning strategy and success during feedback-based 
category learning.

Many of the categories and concepts we  encounter as 
humans are complex, with category membership determined 
by multiple dimensions and/or complex rules that are not 
easily verbalized (Zentall et  al., 2002). Within a research 
context, studies that examine category learning of complex 
categories utilize paradigms such as: information integration 
tasks, in which a category boundary is dependent upon 
multiple dimensions (e.g., the thickness and orientation of 
lines within a geometric shape); prototype-distortion tasks, 
in which a prototypical item is selected and within-category 
items contain minor differences or distortions from the 
prototype; and probabilistic tasks, in which an outcome or 
association is governed by a probabilistic association of a 
certain feature or combination of features with an outcome 
(e.g., cards with diamonds predicting rain on 80% of trials; 
Knowlton and Squire, 1993; Ashby and O’Brien, 2005; Ashby 
and Maddox, 2011). With probabilistic category tasks of this 
kind, information from a single trial is not reliable or sufficient 
to give the learner a full representation of the category 
boundary. Rather, for optimal learning, information must 
be  accrued across many trials (Knowlton et  al., 1994).

Research proposes the existence of two systems that are 
differentially engaged to support category learning: rule-based 
and implicit systems. Rule-based systems are thought to use 
declarative, explicit processes of hypothesis generation and 
testing, and draw upon working memory and executive 
resources to reason through possible category rules and evaluate 
outcomes (Ashby and O’Brien, 2005; Ashby and Maddox, 
2011). Rule-based systems are well-suited for learning categories 
with few dimensions. Alternatively, implicit systems are thought 
to depend upon dopamine-mediated reinforcement learning 
in the basal ganglia, which supports the nondeclarative and 
gradual learning of categories that occurs below one’s conscious 
awareness (Ashby and Maddox, 2011). Implicit systems are 
particularly well-suited for processing and learning complex 
patterns. While certain category structures may be best learned 
via one system vs. the other, and certain tasks may be described 
as either rule-based or implicit, learners differ in their approach 
to learning. For example, a learner may use a rule-based 
approach even for a task that contains too many dimensions 

to integrate effectively via verbalization, hypothesis testing, 
and updating (Gluck et al., 2002; Vallila-Rohter and Kiran, 2015).

Gluck et al. (2002) investigated the strategies that individuals 
used while participating in the weather prediction task (WPT), 
a probabilistic classification task in which individuals are 
instructed to predict outcomes of sun or rain based on 
combinations of cue cards displaying geometric shapes (Knowlton 
et  al., 1994). Challenging the assumption that the probabilistic 
nature of the task leads learners to gradually accrue knowledge 
across multiple dimensions (Gluck and Bower, 1988), the authors 
identified three different approaches/strategies employed by 
their participants: (1) A multi-cue strategy in which participants 
based responses on combinations of cues (i.e., combinations 
of geometric shapes), (2) a one-cue strategy in which participants-
based responses on the presence or absence of a single cue 
within the combination, or (3) a singleton strategy in which 
participants focused learning only when a single cue was 
presented and guessed on trials where two or more were 
presented (Gluck et  al., 2002). The authors also noted that 
some participants demonstrated a shift in strategy from the 
early to the late stages of the task, and those who were using 
a multi-cue strategy during the later phases of learning made 
higher proportions of optimal responses and achieved higher 
accuracy than the singleton strategy users (Gluck et  al., 2002). 
Thus, while the WPT may be  best learned via a multi-cue 
strategy, strategy analyses such as these suggest that category 
structure alone does not determine the system or approach 
utilized to learn a category. Rather, individuals vary in the 
strategies they use to learn, which in turn, influences success. 
This study innovatively used behavioral analyses to specifically 
examine learner strategies and approaches to learning, and 
looked beyond purely learning outcomes. This work demonstrated 
the value of such strategy analyses and laid a foundation for 
future work evaluating learner strategies under a variety of 
learning tasks, with the goal of evaluating whether similar 
patterns arise. For example, studies have applied strategy analyses 
to data from reinforcement learning (Schulz et  al., 2018), 
experience-based decision making (Choung et  al., 2017), as 
well as category learning in children (Visser and Raijmakers, 
2012; Rabi and Minda, 2014), aging individuals (Maddox et al., 
2010), and clinical populations such as aphasia, amnesia, and 
Parkinson’s Disease (Shohamy et  al., 2004; Meeter et  al., 2006; 
Vallila-Rohter and Kiran, 2015). More research, however, is 
needed to understand the variety and consistency of strategies 
utilized when learners approach complex learning tasks and 
how task manipulations and learner factors influence 
strategy development.

Manipulating a category learning task’s conditions has been 
found to influence neural activation (Poldrack et  al., 2001). 
Poldrack et  al. (2001) collected functional magnetic resonance 
imaging data on learners who completed the WPT under 
observational and feedback-based conditions. The authors found 
that the medial temporal lobe showed activation in observational 
learning conditions, while the caudate nucleus of the basal 
ganglia showed activation during feedback-based learning 
(Poldrack et  al., 2001). Manipulating a category learning task’s 
conditions has also been found to influence the behavioral 
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strategies that participants develop and employ (Ashby et  al., 
2002; Vallila-Rohter and Kiran, 2015; Bellebaum et  al., 2016). 
Of particular relevance to the current work, research has found 
that manipulating feedback and response method can influence 
learning processes and success (Ashby and Maddox, 2011). 
Ashby et  al. (2002) examined learning processes and success 
using a category learning task (Ashby and Gott, 1988) under 
two training conditions: feedback training and observational 
training, and across two category structures: a rule-base category 
structure and an information-integration category structure. 
The authors found that for the information-integration category, 
where the category boundary depended upon information 
integrated across multiple dimensions, learning outcomes were 
better following training in which the correct stimulus 
classification was shown after the stimulus itself (the feedback 
condition), relative to training in which the correct stimulus 
classification was shown before the stimulus was presented (the 
observational condition; Ashby et  al., 2002). These findings 
suggest that task condition can influence learning success. 
Further, providing learners with category information during 
the learning process and after they are exposed to exemplars 
may be important for learning: the training condition in which 
the correct classification was shown after the stimulus was 
thought to support the development of optimal strategies, as 
more participants progressed from a simple, unidimensional 
rule to an optimal, multidimensional rule under this condition. 
Strategy analyses offer a window into the process of learning, 
but further research is needed to confirm whether these strategies 
consistently correspond to the recruitment of distinct neural 
mechanisms associated with declarative (explicit) and 
nondeclarative (implicit) learning. While single cue and multi-cue 
strategies have been described as declarative and nondeclarative, 
respectively – as noted by Gluck et al. (2002), it is not because 
a strategy such as a single cue strategy can be easily verbalized 
and consciously recalled that it is always applied declaratively 
by learners.

Learning accuracy and strategy analyses provide 
information specific to learning outcomes, which is undeniably 
valuable. However, these measures do not provide information 
about what occurs during the learning process and, relatedly, 
what occurs during the learning process as a result of 
feedback. Much remains unknown about how individuals 
process feedback and if/how the provision of feedback impacts 
strategy development.

Event-related potentials (ERP) extracted from 
electroencephalography (EEG) by means of signal averaging 
enables researchers to measure how individuals process feedback 
and can provide insights into the mechanisms associated with 
particular strategies during learning. ERPs are temporally-
sensitive patterns of changes in voltage that are evoked by 
discrete events, and are assumed to represent specific cognitive 
processes and reflect brain activity (Kutas et  al., 2006). The 
feedback-related negativity (FRN) ERP was first described by 
Miltner et  al. (1997) who employed a time-estimation task 
guided by feedback. The FRN is a fronto-central negativity 
that peaks between 200 and 300 ms (Miltner et  al., 1997; 
Holroyd and Coles, 2002; Hauser et al., 2014) following external 

feedback, and is larger following negative feedback than positive 
feedback (Holroyd and Coles, 2002; Ernst and Steinhauser, 
2012). The FRN is thought to be  elicited by external error 
feedback (Nieuwenhuis et  al., 2004; Eppinger et  al., 2009) and 
to reflect reward prediction error processing (i.e., when the 
anticipated outcome and actual outcome differ; Holroyd and 
Coles, 2002; Hauser et  al., 2014; Burnside et  al., 2019). The 
FRN has been found to decrease with learning over time, 
which may indicate either that the prediction error becomes 
smaller with learning (Burnside et  al., 2019), or that feedback 
becomes less useful over the course of learning (Holroyd and 
Coles, 2002; Arbel and Wu, 2016). The FRN is thought to 
be generated within the mesencephalic dopamine system, often 
described as important for implicit learning, though theories 
of reinforcement learning relate the FRN to more explicit 
processes of hypothesis testing (see Luft, 2014). The FRN has 
been discussed more recently as reflecting a reward-related 
positivity, or a positivity that is absent or suppressed following 
negative performance feedback, in turn producing a negativity 
(Holroyd et  al., 2008; Proudfit, 2015). Overall, the discovery 
of the FRN has allowed researchers to measure individuals’ 
processing of feedback, and thus, examine the relationship 
between feedback processing and learning outcomes. The 
processing of feedback, especially corrective feedback, is integral 
to successful learning.

There is another ERP that follows the FRN and is also 
related to feedback processing and learning, termed the “P3a” 
by Butterfield and Mangels (2003). The P3a is a fronto-central 
positivity that peaks between 200 and 400 ms following the 
provision of negative feedback and is thought to reflect processing 
of feedback-related and reward-related variables such a feedback 
valence and probability (Butterfield and Mangels, 2003; Arbel 
et  al., 2013; Rustemeier et  al., 2013). The P3a, sometimes 
described as a subcomponent of the P300, has been found to 
be  associated with learning outcomes (Arbel et  al., 2013) and 
is thought to be  the product of attentional orientation with 
the goal of detecting and evaluating unexpected events and 
facilitating performance error correction for subsequent action 
(Friedman et  al., 2001; Butterfield and Mangels, 2003). The 
evaluation of unexpected events (e.g., negative feedback over 
the course of learning) to correct future performance is also 
integral to successful learning.

Few studies have examined how feedback processing relates 
to strategy development. Rustemeier et  al. (2013) set out to 
do so using a modified version of the WPT and evaluating 
measures of feedback processing as a function of strategy. Using 
the strategy analyses introduced by Gluck et  al. (2002) and 
described above, they dichotomized participants into those 
using one-cue or singleton strategies (who they refer to as 
declarative learners), and those using a multi-cue strategy (who 
they refer to as nondeclarative learners). They compared 
electrophysiological responses (FRN and P300) to feedback 
between strategy groups. The authors hypothesized that those 
who used the multi-cue strategy were engaging implicit systems 
and would experience larger FRN amplitudes than those who 
used one-cue or singleton strategies, as the FRN is thought 
to reflect dopaminergic reward input to the anterior cingulate 
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cortex, which is a key component of implicit reward-mediated 
learning (Holroyd and Coles, 2002; Eppinger et al., 2009; Hauser 
et  al., 2014). They also hypothesized that those who used a 
one-cue or singleton strategy were engaging in declarative 
systems and would experience larger P300 amplitudes than 
those who used a multi-cue strategy, as the P300 is thought 
to reflect a more declarative learning approach/process 
(Rustemeier et al., 2013). They did not find strategy associations 
with the FRN, which they conclude may have been due to 
an insufficient number of strategy classifications, and state that 
the addition of a third mixed strategy may have yielded clearer 
group differences in the FRN. Nonetheless, this work set a 
foundation for utilizing the FRN to better understand how 
feedback processing might relate to strategy development and 
use. The authors did, however, find a strategy association with 
the P300. Before detailing their P300 findings, it is important 
to note that Rustemeier et al. (2013) describe a more pronounced 
P300 originating from the frontal electrode, Fz, which is likely 
and more specifically, the P3a (Friedman et al., 2001; Butterfield 
and Mangels, 2003). The authors found that those who used 
one-cue or singleton strategies exhibited a larger P300 (P3a) 
than those who used the multi-cue strategy, and concluded 
that this reflected differential neural mechanisms involved in 
feedback processing between their declarative and nondeclarative 
learners (Rustemeier et  al., 2013).

In sum, researchers have measured learning accuracy and 
conducted strategy analyses to gather information specific to 
learning outcomes. These works have increased the field’s 
understanding of humans’ approaches to and success with 
learning. To further elucidate what occurs during the learning 
process and how the provision of feedback affects the learning 
process, researchers have utilized the ERP methodology. Such 
work has increased the field’s understanding of feedback-based 
learning, as well as how individual differences in feedback 
processing may relate to and help predict learning outcomes. 
Less studied, however, is how individual differences in feedback 
processing may relate to learning approach, i.e., learning strategy, 
and how the provision of feedback influences strategy 
development. While work in this area continues to emerge, 
there is a notable lack of studies that have combined behavioral 
and electroencephalographic measures to study the contribution 
of feedback to the development of learning strategies. The 
novelty of the present study is in its evaluation of changes in 
feedback processing at the electrophysiological level as they 
relate to the development of learning strategies.

The objective of the current study was to examine the 
relationships between learning condition, learning success, and 
strategy development during a complex, probabilistic category 
learning task performed by the same participants under two 
conditions. Additionally, the study set out to explore the potential 
interactions between strategy development and measures of 
feedback processing. To do so, the study examined performance 
on a probabilistic A/B prototype category learning task in young 
adults with no history of neurologic disorder. Participants completed 
observational training (i.e., no feedback) followed by a testing 
phase, and feedback-based training, also followed by a testing 
phase. In analyzing the results, the researchers compared testing 

accuracy following observational and feedback-based training. 
Further, the researchers examined the strategies employed by 
the learners during both testing phases, as well as the strategies 
they employed during training in the feedback-based condition. 
Within the feedback-based training condition, the researchers 
also examined how learners processed positive and negative 
feedback during the early and late training phases via 
electrophysiological measurement of the FRN and P3a.

Behaviorally, the researchers expected participants to achieve 
higher testing accuracy following feedback-based training, as 
prior research suggests feedback-based training (where the 
correct category classification is shown after the stimulus) is 
more effective for learning complex categories that require 
the integration of multiple stimulus dimensions than 
observational training (Estes, 1994; Ashby et  al., 2002). The 
researchers also expected to see a variety of strategy use, 
with a greater number of multi-cue strategy users following 
feedback-based training, because the provision of feedback 
is thought to be  important for the development of multi-
dimensional strategies (Poldrack et  al., 2001; Ashby et  al., 
2002). Consistent with the literature, the researchers expected 
negative feedback to elicit larger FRN and P3a amplitudes 
than positive feedback (Holroyd and Coles, 2002; Butterfield 
and Mangels, 2003; Ernst and Steinhauser, 2012; Arbel et  al., 
2013; Rustemeier et al., 2013). Beyond these expected findings, 
the researchers predicted that multi-cue strategy users would 
demonstrate larger FRN amplitudes, which would reflect 
feedback utilization for optimization and reward prediction 
error processing. Based on the findings by Rustemeier et  al. 
(2013), the researchers predicted that single feature and random 
pattern strategy users would elicit larger P3a amplitudes than 
multi-cue users, which would reflect the formation of explicit 
associations between stimuli and responses, and would 
be consistent with a more rule-based and declarative approach.

MATERIALS AND METHODS

Participants
Thirty-eight young adults (self-identified: 25 women, 10 men, 
and three unknown) with a mean age of 25 years (SD = 3.33) 
from the greater Boston area participated in this study. Racial 
and ethnic demographic information was not collected from 
the participants at the time of data collection. Participants 
provided informed consent according to processes approved 
by the Mass General Brigham Institutional Review Board. All 
participants self-reported to be  right-handed with no history 
of developmental disorders or neurological diagnoses.

Apparatus
To collect and analyze EEG data, the researchers used the 
Geodesic EEG System (GES) 400 by Electrical Geodesics, Inc. 
(EGI) with a 32-channel HydroCel Geodseic Sensor Net that 
followed the international 10–20 system. EEG was recorded 
continuously at a 1,000 Hz sampling rate. Electrode impedances 
were kept below 50 kΩ.
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Stimuli
The stimuli used for this experiment consisted of two sets of 
cartoon animals, which were first introduced by Reed et al. (1999) 
and updated by Zeithamova et al. (2008). The 1,024 cartoon animals 
varied on 10 binary features, including features such as leg length, 
nose shape, foot type, and so on. For example, the animals could 
either have pointed feet or rounded feet (for examples of stimuli, 
see Figure  1). There were two different stimulus sets used for this 
experiment, referred to as Stimulus Set 1 and Stimulus Set 2, that 
were completely distinct and whose stimuli did not share any 
features. Two prototypes, completely opposite of each other in all 
10 features, were chosen for each Stimulus Set and were referred 
to as Prototype A and Prototype B. All other animals were then 
characterized by the number of features by which they differed 
from Prototype A. An animal characterized as being at a distance 
of four from Prototype A, for example, shared all but four of its 
features with Prototype A (meaning that it shared six of its features 
with Prototype A). The four features that it did not share with 
Prototype A, it shared with Prototype B. Prototype B is the only 
animal that differed from Prototype A by all 10 of its features, 
giving it a distance of 10.

Animals at a distance of one, two, three, or four from 
Prototype A, shared 90–60% of their features with Category 
A, respectively, and were coded as belonging to Category A. 
Similarly, animals at a distance of six, seven, eight, or nine 

were coded as belonging to Category B. Animals at a distance 
of five shared equal features with the two prototypes and were 
therefore not shown in training. A 10-digit string based on 
the particular animal’s features was assigned to each animal 
in the set, with binary features represented as 0 or 1 (0 denoting 
a Category A feature, and 1 denoting a Category B feature).

Tasks and Procedures
The study used a quasi-experimental design. Participants visited 
the lab once for a 1-h long session. Trained members of the 
research team applied the 32-channel HydroCel Net on the 
participant’s scalp and recorded EEG while participants completed 
the learning task under two different conditions. Participants 
completed the task sitting in front of a 15-inch computer screen 
in a quiet room at the MGH Institute of Health Professions after 
instruction by a trained task administrator and made responses 
via keyboard clicks. After the nets were applied and impedances 
were adjusted, the task administrator provided verbal instructions 
regarding the task, accompanied by illustrated pictures. Participants 
were told that they would be  shown a series of different animals, 
which either belonged to Category A or Category B, and that 
they would learn to recognize the animals as belonging to one 
of the two categories throughout the course of the task. Participants 
were told not to focus on just one or two of the animal’s features, 
but the entire animal. To support comprehension of the task, 

FIGURE 1 | (Top) Example of the observational training phase (Stimulus from Set 1; Reed et al., 1999; Zeithamova et al., 2008). Participants saw a stimulus and its 
category affiliation simultaneously, followed by a fixation cross between each trial. (Middle) Example of the feedback-based training phase (Stimulus from Set 2). 
Participants saw a stimulus, selected to which category they thought it belonged, and received feedback on their selection. (Bottom) Example of the testing phase 
(Stimulus from Set 1). Participants saw a stimulus, selected to which category they thought it belonged, and did not receive feedback.
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participants were allowed to ask questions and administrators could 
repeat instructions or provide additional examples verbally and 
with pictures. Once participants communicated that they understood 
the task instructions, they moved on to computerized training that 
reinforced task instructions. The two task conditions were 
programmed using E-Prime 2.0 (Psychology Software Tools, 
Pittsburgh, PA; Psychology Software Tools, Inc., 2012),1 which was 
also used to present the stimuli and record responses. Four tasks 
were created: observational learning of Stimulus Set 1, observational 
learning of Stimulus Set 2, feedback-based learning of Stimulus 
Set 1, and feedback-based learning of Stimulus Set 2. Each task 
consisted of an 80 trial, 10-min training phase followed immediately 
by a 50 trial, 10-min testing phase. All participants were instructed 
to make responses via computer button press with the middle 
and index fingers of their right hand. All participants completed 
the observational version of the task (with Stimulus Set 1 or 2) 
first followed by the feedback-based version (with the opposite 
Stimulus Set they saw in the observational task), both of which 
will be  described below. To keep the observational condition free 
of any outcome prediction that might result from exposure to the 
feedback-based (outcome generating) task, participants always 
completed the observational condition first. Participants completed 
one round of each condition and the researchers counterbalanced 
Stimulus Sets across participants.

Observational Training
In the training phase of the observational task, Category A and 
Category B animals were presented one at a time along with a 
label indicating the animal’s designated category affiliation. Participants 
were instructed to press the button that corresponded to the label 
immediately after the animal and its accompanying category label 
appeared on the screen (see Figure  1). They were told that the 
animal and its category label would remain on the screen for a 
fixed number of seconds (7,000 ms, followed by a 1,000 ms fixation 
cross), and were instructed to examine the animals and their 
category affiliation with the goal of later recognizing the animals 
as belonging to one category or the other. In examining the animals, 
participants were instructed to consider all of their characteristics 
rather than focus on one single feature. Vallila-Rohter and Kiran 
(2013) include additional details regarding these methods.

During the 80 trial, 10-min training phase, participants were 
shown 20 different animals, four times each. Ten of the 20 
animals differed from Prototype A by one, two, three, or four 
features, and the other 10 animals differed from Prototype A 
by six, seven, eight, or nine features (meaning that they differed 
from Prototype B by one, two, three, or four features). The two 
prototypical animals were never shown. Features that were 
characteristic of a category were associated with that category 
in 70–80% of instances, and features that were not characteristic 
of a category were associated with that category in 20–30% of 
instances. Immediately following the training phase, participants 
completed a testing phase (described below in Testing Phases) 
that tested their ability to categorize animals, some of which 
were seen during training and some of which were novel.

1 www.pstnet.com

Feedback-Based Training
Similar to the observational task, Category A and Category 
B animals were randomly presented one at a time on a computer 
screen. Once an animal appeared on the screen, participants 
were given 4,000 ms to guess to which of the two categories 
that animal belonged. Pictures and category identifiers in the 
lower left and right corners of the screen indicated that a 
button press “A” corresponded to a choice of Category A and 
a button press “B” corresponded to a choice of Category B. 
Participants received feedback telling them whether their selection 
was correct or incorrect 500 ms after making their response 
(see Figure  1). Feedback was displayed for 3,000 ms. If they 
made an incorrect choice, the correct category was shown 
during the 3,000 ms post-response feedback period. Total time 
per trial matched the total trial time of the observational task.

During the 80 trial, 10-min training phase, participants were 
trained on 20 animals that differed from each prototype by 
one, two, three, or four features. The two prototypical animals 
were never shown. Trained animals were selected so that each 
feature appeared an equal number of times during training. 
Features that were characteristic of a category were associated 
with that category in 70–80% of instances, and features that 
were not characteristic of a category were associated with that 
category 20–30% of instances. Participants were instructed to 
consider all of an animal’s characteristics rather than focusing 
on single features. They were told that in the beginning of 
the task, they would be  guessing category affiliations, but that 
over the course of the task they would begin to recognize 
animals as belonging to one category via feedback and practice. 
Immediately following the training phase, participants completed 
a testing phase that tested their ability to categorize animals, 
some of which were seen during training and some of which 
were novel. No feedback was given during the testing phase.

Testing Phases
The testing phases immediately following the observational and 
feedback-based training phases were structured identically, each 
with 50 trials. The animal stimuli appeared one at a time on 
the computer screen. Ten of the animals were seen during 
training and 40 were novel members of the categories, which 
included the two prototypical animals. Participants were tested 
on their ability to categorize each prototype two to three times 
each for a total of five to six trials, animals that varied from 
Prototypes A and B by one to four features for a total of 40 
trials (including 10 seen during training), and midline animals 
varying from each prototype by five features for a total of 
two trials. These midline animals have no correct category as 
they share an equal number of features with each prototype, 
and were coded as belonging to Category A, with expected 
response accuracy for these midline animals to 
be  approximately 50%.

Participants were given 4,000 ms to select to which category 
they thought the animal belonged. If a participant waited too 
long to make a selection or missed a trial due to a delay in 
selection that exceeded the allotted 4,000 ms, they were 
encouraged by the testing administrator to make a button 
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press indicative of their best guess. No feedback was provided 
during the testing phases. Data were collected on accuracy 
and response time. For the current paper, analyses are limited 
to accuracy rates, as analyses of response time were outside 
of the scope of this paper. In terms of testing accuracy, the 
researchers predicted that the participants would make responses 
that roughly reflected characteristic reinforcement as seen during 
training due to the probabilistic nature of the task (Knowlton 
et  al., 1994). Chance responses would result in 50% accuracy, 
and responses that mirrored characteristic reinforcement would 
result in ~70–80% mean testing accuracy.

Strategy Analysis
For additional characterization of learning, the researchers 
conducted strategy analyses on each participant’s data to examine 
response patterns during feedback-based training, observational 
testing, and feedback-based testing. Observational training was 
excluded from this analysis because during observational training, 
participants simply pressed the corresponding button to the 
correct response shown on the screen, which did not require 
them to make trial-by-trial decisions as they did in the other 
three task phases. For the strategy analyses, the researchers 
examined trial-by-trial responses based on response selection 
(A or B) as they related to individual features. Using the 
models presented by Gluck et  al. (2002) and Meeter et  al. 
(2006), the researchers created multiple model strategies adapted 
to the two tasks and stimuli used for this study. There were 
22 models in total; one optimal, multi-cue strategy, 20 single 
feature strategies, and one random pattern strategy. Recall that 
every animal had 10 features that could vary binarily, with 
one possibility coded as Category A and the other coded as 
Category B. The researchers examined the percentage of “B” 
responses made for each binary feature (e.g., the percentage 
of times a participant select “B” when they saw an animal 
with a blue body, and the percentage of times they selected 
“B” when they saw an animal with a yellow body).

The optimal, multi-cue strategy reflected a response pattern 
that matched the actual “B” reinforcement rate seen during 
training. For example, participants were shown animals with 
a blue body as belonging to Category A in 20% of instances 
to Category B in 80% of instances during training. For all 10 
binary features, the multi-cue strategy modeled response patterns 
that matched each feature’s reinforcement rate during training. 
Actual response rates that matched optimal categorization for 
multiple features resulted in a best fit to the multi-cue strategy. 
The single feature strategies reflected response patterns that 
revealed reliance on the presence or absence of a single feature. 
Two single feature strategy models were built for each of the 
10 features. For example, the A-single feature strategy for the 
feature “blue body” modeled responses in which the participant 
responded with “A” in 95–100% of trials in which a blue body 
was shown on the screen. The B-single feature strategy for 
blue body modeled responses in which the participant responded 
with “B” in 95–100% of trials in which a blue body was 
shown on the screen. Finally, the random pattern strategy 
reflected a response pattern that modeled a 50% B-response 
rate to each feature dimension and is thought to represent 

either no feature-focused strategy, random behavior, or a variety 
of strategies that deviate from multi-cue and single-feature 
(Meeter et  al., 2006; Vallila-Rohter and Kiran, 2015). The 
inclusion of a random model in strategy analyses helps to 
reduce the number of falsely identified multi-cue and single 
feature strategy fits (Meeter et  al., 2006). The study used the 
quantitative methods proposed by Gluck et  al. (2002) and 
adapted by Vallila-Rohter and Kiran (2015) to quantify the 
fit of each participant’s responses to each possible model. The 
researchers used the following calculation to assign each 
participant with a fit score for each model:

( )
( )
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2
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F F M F

F F

B B
M

B

Σ −
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F indicates the feature (10 features, all with binary values); 
#B expectedF,M indicates the amount of times a B-response 
would be  expected for each feature under Model M based on 
reinforcement during training; #B actualF indicates the number 
of B-responses for each feature; and #B presentationsF indicates 
the amount of times the feature B appeared in testing. The 
researchers calculated a fit score between 0 and 1 for each 
strategy model for each participant. The fit score closest to 0 
represented the closest match with ideal model data. Each 
participant’s response data were separated into: early feedback-
based training (training trials 1–40), late feedback-based training 
(training trials 41–80), observational testing, and feedback-based 
testing, and the researchers conducted strategy analyses for 
all four.

Implementing a multi-cue strategy requires attention to 
multiple features at once and requires the tracking of feedback 
and the acquisition of cue-outcome relationships across multiple 
dimensions at one time (Vallila-Rohter and Kiran, 2015). 
Considering the probabilistic nature of the task, the multi-cue 
strategy was expected to lead to higher testing accuracy scores 
(Ashby et  al., 2002). Implementing a single feature strategy 
would mean that the participant determined their responses 
based on the presence or absence of single features. While 
these strategies can lead to adequate learning (i.e., above-chance 
performance) if participants attend to a feature dimension with 
a high proportion of reinforcement with a category, single 
feature strategies are often described as suboptimal because 
selections are based on the presence of a single entity (Shohamy 
et  al., 2004), and focusing on single features does not require 
the tracking of feedback across multiple features at once (Vallila-
Rohter and Kiran, 2015). As previously stated, the implementation 
of a random pattern strategy is thought to represent either 
no feature-focused strategy, random behavior, or a variety of 
strategies that deviate from multi-cue and single-feature (Meeter 
et  al., 2006; Vallila-Rohter and Kiran, 2015).

ERP Data
The 32-channel GES 400 System by EGI was used to collect and 
analyze EEG data for 37 of the 38 participants. One participant’s 
EEG data were lost due to system error. EEG data were filtered 
offline using a bandpass of 0.1–30 Hz. The filtered data were 
segmented into epochs 1,000 ms in duration; 200 ms before and 
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800 ms after the presentation of feedback during the feedback-based 
training phase only. Baseline correction from −200 to −100 ms 
was performed. All epochs were visually inspected for movement 
artifacts and any movement artifacts were removed manually. The 
researchers used an algorithm developed by Gratton et  al. (1983) 
to remove ocular artifacts offline to adjust for blinks and other 
eye movements. Averages were then re-referenced using average 
referencing. Following a jitter latency correction, temporal principal 
component analysis was performed (PCA; Dien et  al., 2005; Arbel 
and Wu, 2016; Arbel et  al., 2017, 2021) on the ERPs from the 
fronto-central recording electrode (FCz) to isolate the FRN and 
the P3a. Seven temporal factors accounted for 88% of the variance 
in the data. Temporal factor 6 peaked at approximately 248 ms, 
reflective of FRN activity. Temporal factor 4 peaked at approximately 
360 ms, reflective of P3a activity. The PCA yielded FRN and P3a 
factor scores for positive and negative feedback (termed: feedback 
valence) during both early and late training trials (termed: 
training phase).

The researchers conducted the PCA using MATLAB and 
all statistical analyses using R (R Core Team, 2020) in RStudio 
(RStudio Team, 2019). The colorblind-friendly color palette 
used to create Figures  2, 3 was found at: www.cookbook-r.
com/Graphs/Colors_(ggplot2)/#a-colorblind-friendly-palette.

RESULTS

Preliminary Analysis
An independent samples t-test confirmed that there were no 
significant differences in mean testing accuracy between Stimulus 
Set 1 and Stimulus Set 2 under the observational condition, 
t(36) = −0.59, p = 0.56, 95% CI [−11.78, 6.46] and the feedback 
condition, t(36) = 0.14, p = 0.89, 95% CI [−5.73, 6.56]. Therefore, 
data across Stimulus Set 1 and 2 were collapsed for 
subsequent analyses.

Testing Accuracy
The researchers conducted a dependent samples t-test to examine 
whether there was a significant difference in mean testing 
accuracy scores achieved under the observational and 

feedback-based conditions. The assumptions of normality of 
difference scores and independence were met. The difference 
in mean testing accuracy scores achieved under the observational 
(M = 69.65, SD = 13.67) and feedback-based (M = 73.24, SD = 9.17) 
conditions was not significant, t(37) = −1.56, p = 0.13, 95% CI 
[−8.25, 1.08], dav = −0.31, 95% CI [−0.64, 0.01].

Strategy Analysis
During the observational testing phase, 50% (n = 19) of the 
participants used a multi-cue strategy, 42% (n = 16) used a 
single feature strategy, and 8% (n = 3) used a random pattern 
strategy. Under the feedback-based testing phase, 68% (n = 26) 
used a multi-cue strategy, 21% (n = 8) used a single feature 
strategy, and 10% (n = 4) used a random pattern strategy (see 
Figure  2). A chi-square goodness of fit test indicated that the 
strategy proportions under the two task conditions were 
significantly different, χ2(2) = 6.85, p = 0.03. Feedback-based 
training resulted in a larger proportion of multi-cue users and 
a smaller proportion of single feature users in the testing phase 
than observational training.

Testing Accuracy by Strategy
Observational Condition
The researchers conducted a one-way, between-subjects analysis 
of variance (ANOVA) to examine whether there were significant 
differences in mean testing accuracy scores depending on 
the participants’ testing strategy (Strategy: multi-cue vs. single 
feature vs. random pattern) under the observational condition. 
Levene’s test was not significant, p = 0.58. There were significant 
differences in mean testing accuracy scores depending on 
the participants’ testing strategy, F(2, 35) = 25.09, p < 0.001, 
η2 = 0.59. Post-hoc analyses using a Holm adjustment revealed 
that mean testing accuracy scores were higher for participants 
using a multi-cue strategy (M = 80.0, SD = 7.27) relative to 
those using a single feature strategy (M = 59.2, SD = 10.52), 
p < 0.001, ds = 2.34, 95% CI [1.46, 3.20], and those using a 
random pattern strategy (M = 59.86, SD = 10.65), p < 0.01, 
ds = 2.62, 95% CI [1.14, 4.06] (see Figure  3), all of which 
is consistent with expectations. The comparison between 
those using a single feature vs. random pattern strategy was 

FIGURE 2 | A chi-square goodness of fit indicated that the strategy proportions under the two task conditions were significantly different, χ2(2) = 6.85, p = 0.03. 
Feedback-based training resulted in a larger proportion of multi-cue users and a smaller proportion of single feature users in the testing phase than observational 
training.
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not statistically significant, p = 0.91, and was associated with 
a marginal effect, ds = −0.06, 95% CI [−1.29, 1.17].

Feedback-Based Condition
The researchers conducted a Kruskal–Wallis test rather than a 
parametric ANOVA, due to heterogeneity of variances in testing 
accuracy between strategy groups, to examine differences in 
mean testing accuracy scores depending on the participants’ 
testing strategy (Strategy: multi-cue vs. single feature vs. random 
pattern) under the feedback-based condition. There were significant 
differences in mean testing accuracy scores depending on the 
strategy, H(2) = 21.62, p < 0.001, with a mean rank accuracy score 
of 25.15 for multi-cue users, 8.38 for single feature and 5.0 for 
random pattern users (with higher mean ranks indicating higher 
accuracy score ranks). Similar to the observational condition 
results, post-hoc analyses using a Holm adjustment demonstrated 
that participants using a multi-cue strategy (Mdn = 76.84, 
IQR = 7.95) achieved higher scores than those using a single 
feature strategy (Mdn = 66.48, IQR = 9.13), p < 0.01 and those 
using a random pattern strategy (Mdn = 58.33, IQR = 17.82), 
p < 0.01 (see Figure 3), all of which is consistent with expectations. 
The comparison between those using a single feature vs. random 
pattern strategy was not statistically significant, p = 0.23.

Event Related Potentials Analyses
Figure  4 presents the grand average waveform from electrode 
FCz where the FRN and P3a are maximal. The factor scores 
of temporal factor 6 generated by the temporal PCA were 
entered into the analysis as the amplitude measure of the 
FRN, and factor scores of temporal factor 4 generated by the 
temporal PCA were entered into the analysis as the amplitude 
measure of the P3a.

Feedback Frequency
To ensure that all participants received an adequate number 
of negative feedback trials in early and late training to detect 
a significant ERP effect, the researchers calculated descriptive 
statistics on the mean, standard deviation, minimum, and 
maximum values of negative feedback trials in early and late 

training (n = 37). In early training, participants received an 
average of 13.58 ± 3.64, a minimum of 7, and a maximum of 
22 incorrect feedbacks. In late training, participants received 
an average of 10.84 ± 5.06, a minimum of 2 and a maximum 
of 23 incorrect feedbacks. Studies show that a minimum of 
six negative feedback trials can be  adequate with a minimum 
n of 12  in order to detect a significant ERP effect (Boudewyn 
et  al., 2018). Six participants received less than six instances 
of negative feedback, therefore, their data were excluded from 
the ERP analyses. With those six participants excluded (n = 31), 
the researchers recalculated descriptive statistics. In early training, 
participants received an average of 14.49 ± 3.56, a minimum 
of 7, and a maximum of 22 instances of negative feedback. 
In late training, participants received an average of 12.42 ± 4.14, 
a minimum of 6, and a maximum of 23 instances of 
negative feedback.

Changes in Feedback Frequency
Individuals’ processing of feedback is largely impacted by 
the frequency of the feedback itself (in this case, the frequency 
of negative and positive feedback; Holroyd et  al., 2003; 
Rustemeier et  al., 2013). Therefore, the groups’ changes in 
frequency of negative (and therefore positive) feedback from 
early to late training were compared, to further contextualize 
the ERP results and increase confidence that ERPs were not 
significantly modulated by reward frequency (Holroyd et  al., 
2003; Rustemeier et al., 2013). First, each participants’ number 
of negative feedback trials in late training was subtracted 
from their number of negative feedback trials in early training. 
This value became their “change in negative feedback score,” 
in which a positive value indicated that they received less 
negative feedback in late training than they did in early 
training (which would be  expected with learning), and a 
negative value indicated that they received more negative 
feedback in late training compared to early training. Then, 
the researchers conducted a factorial ANOVA comparing the 
mean changes in negative feedback between the three strategy 
groups. Levene’s test was not significant, p = 0.16. The ANOVA 
revealed no significant group differences in the change in 

FIGURE 3 | A one-way, between-subjects ANOVA and a Kruskal–Wallis test revealed that participants who used an optimal multi-cue strategy achieved significantly 
greater testing accuracy than those who used single feature and random pattern strategies, in both the observational and feedback-based conditions. Results did not 
indicate significant differences in testing accuracy between participants who used a single-feature or random pattern strategy in either condition. *p < 0.05.
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negative feedback trials from early to late training, F(2, 
28) = 0.63, p = 0.54.

Feedback-Related Negativity
The researchers conducted a 2 (Feedback valence: positive 
vs. negative) by 2 (Training phase: early vs. late) by 3 (Strategy: 
multi-cue vs. single feature vs. random pattern) mixed-design 
ANOVA to examine whether the effects of feedback valence 
and training phase on FRN amplitude varied depending on 
strategy. While group sizes differed for multi-cue (n = 19), 
single feature (n = 8), and random pattern strategy users 
(n = 4), Levene’s test, assessing homogeneity of variance for 
the between-subjects independent variable (Strategy) was not 
significant, p = 0.31. As recommended by Larson and Carbine 
(2017), correlations between repeated measures were calculated. 
The correlation between FRN amplitude following positive 
feedback in early training and FRN amplitude following 
positive feedback in late training equaled 0.38. The correlation 
between FRN amplitude following negative feedback in early 
training and FRN amplitude following negative feedback in 
late training equaled 0.29.

Table  1 contains a complete summary of the mixed-design 
ANOVA results. There was a significant main effect of feedback 
valence on FRN amplitude, F(1, 28) = 7.55, p = 0.01, η2 = 0.05, 
with FRN amplitude to negative feedback (M = −0.38 μV, 
SD = 0.88) significantly larger than to positive feedback 
(M = −0.07 μV, SD = 0.88), dav = −0.36, 95% CI [−0.62, −0.10]. 
There was also a significant two-way interaction between training 
phase and strategy, F(2, 28) = 3.63, p = 0.04, η2 = 0.05. Results 
of post-hoc contrasts calculated using the “emmeans” package 
(Lenth, 2019) revealed that the single feature strategy group 
experienced a significant change in FRN amplitude from early 
to late training, t(28) = −2.62, p = 0.01. More specifically, their 

FRN amplitude was significantly smaller (i.e., it became less 
negative) in late training (M = 0.08 μV, SE = 0.24) than in early 
training (M = −0.63 μV, SE = 0.24), which was associated with 
a large effect (Cohen, 1988), dav = −2.86, 95% CI [−3.97, −1.72], 
as shown in Figure  5. Alternatively, the multi-cue strategy 
group did not experience a significant change in FRN amplitude 
from early (M = −0.19 μV, SE = 0.2) to late (M = −0.33 μV, SE = 0.2) 
training, t(28) = 0.77, p = 0.44, dav = 0.66, 95% CI [0.30, 1.01], 
nor did the random pattern strategy group (Mearly = −0.06 μV, 
SE = 0.3), (Mlate = −0.21 μV, SE = 0.3), t(28) = 0.38, p = 0.70, 
dav = −0.48, 95% CI [−0.27, 1.20].

P3a
The researchers conducted a 2 (Feedback valence: positive vs. 
negative) by 2 (Training phase: early vs. late) by 3 (Strategy: 
multi-cue vs. single feature vs. random pattern) mixed-design 
ANOVA to examine whether the effects of feedback valence 
and training phase on P3a amplitude varied depending on 
strategy. The correlation between P3a amplitude following 
positive feedback in early training and P3a amplitude following 
positive feedback in late training equaled 0.78. The correlation 
between P3a amplitude following negative feedback in early 
training and P3a amplitude following negative feedback in late 
training equaled 0.52. Levene’s test was not significant, p = 0.48. 
The ANOVA results revealed no significant main effects or 
interaction effects of feedback valence, training phase, or strategy 
on P3a amplitude.

DISCUSSION

Results of the current study add to the body of work that 
suggests that humans approach the process of categorization 

FIGURE 4 | (Left) As is standard with ERP plotting, the y-axis has negative amplitude values plotted upwards. Grand average event-related potentials (ERP) data 
from electrode FCz, for positive and negative feedback during early (trials 1–40) and late (trials 41–80) training trails. (Right) Topoplot depicting the difference 
between positive and negative feedback at the peak of the feedback-related negativity (FRN).
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in multiple ways (see Ashby and Maddox, 2011). Consistent 
with prior work (Gluck et  al., 2002; Meeter et  al., 2006; 
Shohamy et  al., 2008; Vallila-Rohter and Kiran, 2015), strategy 
analyses revealed that participants approached this multi-
dimensional category learning task with a variety of strategies. 
Even though the probabilistic, multi-dimensional nature of the 
stimuli used in this study necessitated information accrual 
across multiple dimensions for optimal learning and made it 
such that information from a single trial was not reliable or 
sufficient to give the learner a full representation of the category 
boundary, some participants still tried to apply verbalizable, 
single-feature rules when making responses. The WPT, a 
probabilistic task utilized in many research studies, has often 
been assumed to be  learned in a certain manner. Current 
findings are consistent with studies acknowledging that 
participants vary in their approach to learning probabilistic 
tasks (Gluck et  al., 2002; Meeter et  al., 2006; Vallila-Rohter 
and Kiran, 2015). Thus, even if a structure or task is optimally 
learned a certain way, learners may vary in their approach 
to learning.

Also consistent with prior studies (Ashby et  al., 2002), 
feedback-based training resulted in a greater number of optimal, 
multi-cue strategy users than observational training, which 
provides additional evidence of the importance of feedback 

on the development of multi-dimensional strategies. While 
overall accuracy was relatively matched between the two 
conditions, strategies differed. Previous work has shown that 
providing trial-by-trial feedback results in an ability to learn 
complex category rules that are non-verbalizable, and without 
it, people show a tendency to use simple and verbalizable 
rules (Ashby et  al., 1998). It may be  that the dopaminergic 
reward-mediated system which is well-suited for integrating 
across multiple dimensions is best recruited when learners 
engage in a process of rewarded or un-rewarded prediction. 
Such prediction is less likely to arise in observational contexts 
where correct responses are provided to a learner than those 
in which a learner is required to generate a response before 
receiving feedback or the correct response. Therefore, findings 
provide additional support that although different learners will 
employ different strategies even when completing the same 
task, the provision of trial-by-trial feedback may result in a 
higher likelihood of learners developing an optimal, multi-
dimensional strategy. In terms of accuracy, those identified as 
having used an optimal multi-cue strategy during testing achieved 
significantly higher accuracy than those identified as having 
used suboptimal, single feature or random pattern strategies. 
This is consistent with the findings of Gluck et  al. (2002) in 
which multi-cue users generated a higher proportion of optimal 
responses than one-cue users during the WPT, as well as the 
findings of Vallila-Rohter and Kiran (2015) in which optimal 
strategy users performed significantly better than single feature 
or random pattern strategy users during the same task that 
was used in this study. This study’s findings add evidence that 
strategy use is consequential for outcomes and further solidifies 
confidence in modeled strategies. Overall, more participants 
developed an optimal strategy under feedback-based training 
than observational training, and those who used an optimal 
strategy outperformed those who used suboptimal strategies.

The researchers had hypothesized that participants would 
achieve higher testing accuracy under feedback training. 
While a greater number of participants developed optimal 
multi-cue strategies during feedback learning, this did not 
translate to significant differences in accuracy between 
observational and feedback-based conditions. Stimuli in the 
current task had more dimensions (10 feature dimensions) 
compared with two to four feature dimensions utilized in 

TABLE 1 | Feedback-related negativity amplitude, 2 × 2 × 3 ANOVA table.

Predictor dfNum dfDen SSNum SSDen F p η2
g

(Intercept) 1 28 3.35 39.07 2.40 0.132 0.04
Strategy 2 28 0.23 39.07 0.08 0.921 0.00
Training phase 1 28 0.42 16.02 0.73 0.401 0.01
Feedback valence 1 28 4.03 14.94 7.55 0.010 0.05
Strategy × Training phase 2 28 4.15 16.02 3.63 0.040 0.05
Strategy × Feedback valence 2 28 2.86 14.94 2.68 0.086 0.04
Training phase × Feedback valence 1 28 0.53 7.39 1.99 0.169 0.01
Strategy × Training phase × Feedback 
valence

2 28 1.44 7.39 2.72 0.083 0.02

There was a significant main effect of feedback valence, F(1, 28) = 7.55, p = 0.01, η2 = 0.05, as well as a significant two-way interaction between training phase and strategy, F(2, 28) = 3.63, 
p = 0.04, η2 = 0.05 on FRN amplitude. Bold values indicate the significant main effect of feedback valence and the significant two-way interaction between training phase and strategy.

FIGURE 5 | Single feature strategy users’ FRN amplitude was significantly 
smaller (i.e., became less negative) in late training compared to early training. 
*p < 0.05.
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other studies (Rustemeier et al., 2013; Marchant and Chaigneau, 
2021), which may have contributed to the nonsignificant 
differences in accuracy between observational and feedback 
training conditions. In addition, the probabilistic nature of 
the task makes it such that features are associated more 
frequently with one category or another, making it possible 
to achieve high accuracies even when utilizing single feature 
strategies. Sample size could also be  a factor.

Consistent with expectations and prior literature, FRN 
amplitudes following negative feedback were larger than FRN 
amplitudes following positive feedback – a common characteristic 
of the FRN (Holroyd and Coles, 2002; Ernst and Steinhauser, 
2012). This finding increases confidence that the FRN was 
successfully isolated in this study. Contrary to expectations, 
larger P3a amplitudes to negative feedback than positive feedback 
were not observed. This may be related to the fact that feedback 
in a probabilistic task with multidimensional stimuli is not 
deterministic on a trial by trial basis. Instead, feedback provides 
the learner with information about the accuracy of a single 
response but does not provide the learner with information 
about which stimulus characteristics they classified correctly/
incorrectly in that single trial, meriting a learner’s attention 
to both positive and negative feedback. It is also worth noting 
that evidence for both the presence and direction of a valence 
effect on P3a amplitude is varied (Yeung and Sanfey, 2004; 
Sato et  al., 2005; Wu and Zhou, 2009). While this study’s 
finding of a nonsignificant valence effect on P3a amplitude is 
in contrast to the findings of Rustemeier et  al. (2013) who 
similarly measured P3a amplitude during a probabilistic learning 
task, evidence of a valence effect on P3a amplitude remains mixed.

Contrary to hypotheses that predicted larger P3a in single 
feature strategy users early in training, and larger FRN amplitudes 
in multi-cue users, single feature strategy users were the only 
ones to show significant ERP effects, demonstrating a significant 
decrease in FRN amplitude from early to late training. The 
single feature strategy users’ significant decrease in FRN 
amplitude from early to late training aligns well with the 
utility account of the FRN, which suggests that a decreasing 
FRN over time reflects that the utility of feedback decreases 
over time (Arbel et  al., 2014). In this case for the single 
feature strategy users, a decrease in FRN amplitude in late 
training may reflect their reduced use of feedback to inform 
their responses, as they continued to base category responses 
on a single feature despite receiving negative feedback. For 
example, single feature strategy users who based their responses 
on body pattern (stripes or spots) consistently categorized 
stimuli with stripes in Category A despite receiving negative 
feedback on a proportion of trials. The lack of strategy adaptation 
in the face of negative feedback suggests a decreased dependence 
or utilization of feedback, whether conscious or unconscious. 
The single feature strategy users’ significant decrease in FRN 
amplitude from early to late training may also be  interpreted 
in relation to the expectancy account of the FRN (Ferdinand 
et al., 2012), reflecting a reduced prediction error as described 
in the prediction of response–outcome (PRO) theory (Alexander 
and Brown, 2010, 2011). Within this framework, the case of 
a decrease in FRN amplitude in late training among single 

feature strategy users, irrespective of feedback valence, may 
be  due to the increased predictability of feedback over the 
course of the task. The current study’s findings also differ 
from Rustemeier et  al. (2013) who observed significant group 
differences in P3a amplitude but nonsignificant group differences 
in FRN amplitude. Rustemeier et  al. (2013) suggested that 
incorporating a mixed strategy might have led to significant 
findings with FRN amplitude. The current study incorporated 
a random strategy intended to reduce the number of falsely 
identified multi-cue and single feature strategy fits, and may 
have led to a sharper distinction of single feature and multi-cue 
strategy users that led FRN differences to be  detected even 
in this small pilot sample of participants.

In contrast, multi-cue and random pattern strategy users 
did not show a significant change in FRN amplitude from 
early to late training, suggesting continued use of feedback. 
Similar studies to the current study have examined the FRN 
in the context of learning where feedback is more informative. 
The current study, as well as the study by Rustemeier et  al. 
(2013), uniquely examined the FRN in the context of a 
probabilistic task, where information must be  accrued over 
multiple trials and dimensions. Feedback provided during a 
probabilistic learning task is informative but not deterministic 
on a trial by trial basis. Since information must be  accrued 
over multiple trials and dimensions, it is likely that the multi-cue 
and random strategy users utilized feedback throughout the 
course of learning as learners update a nuanced, multi-
dimensional category representation.

The current study found no significant main effects or 
interaction effects related to the P3a. Therefore, a similar 
relationship between strategy and P3a amplitude as found by 
Rustemeier et al. (2013) was not observed. This may be related 
to the fact that that the stimuli in this study’s task contained 
10 features/dimensions, whereas the stimuli used in the WPT 
by Rustemeier et  al. (2013) contained four dimensions. With 
a greater number of stimulus dimensions, it may have been 
more challenging for participants to evaluate negative feedback 
following a single trial in order to correct their performance 
in subsequent trials, as each selection/trial involved a greater 
number and/or more complex combinations of dimensions to 
consider and evaluate.

There are several potential limitations to note. First, the 
researchers had all participants complete the observational 
condition first and the feedback-based condition second in 
order to keep the observational condition free of any outcome 
prediction that might result from exposure to the feedback-
based (outcome generating) condition. Future iterations of this 
work should consider counterbalancing task order to see if 
the feedback-based condition still results in a greater number 
of multi-cue strategy users. Second, while as few as 6–10 trials 
per condition can be adequate to detect significant ERP effects 
(Boudewyn et  al., 2018), future work should incorporate a 
greater number of training trials. Future directions for this 
work may include: collecting standardized cognitive data from 
participants in order to draw further conclusions about the 
individual learners, and to further relate learning, strategy, and 
feedback analyses to standardized cognitive metrics; collecting 
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qualitative data from participants (e.g., asking them about what 
approach they took during the training and testing phases 
and/or which characteristics they think constitute each category); 
and increasing the study sample size, since stratifying participants 
into strategy/trajectory groups reduces the number of individuals 
within each group used in statistical comparisons.

CONCLUSION

In conclusion, the findings of this study provide further evidence 
that feedback-based training may be  more likely to result in 
optimal strategy development for probabilistic, complex category 
learning. Furthermore, those who developed an optimal strategy 
outperformed suboptimal strategy users, and thus, feedback-
based training may also result in greater learning accuracy 
for probabilistic, complex category learning. Few studies have 
combined strategy analyses with measures of feedback processing. 
This study’s findings suggest that comparing measures of 
feedback processing between early and late-phase training of 
probabilistic, complex category learning tasks may reflect 
processing and utilization of feedback and may further illuminate 
differences among individual learners. However, future studies 
that implement probabilistic tasks involving stimuli with a 
greater number of dimensions, such as the ones used in this 
study, may decide to lengthen their training phases in order 
to allow for higher learning accuracies, which may assist in 
their ability to draw group-level and individual-level differences 
in learning.
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