
ORIGINAL RESEARCH
published: 02 August 2021

doi: 10.3389/fpsyg.2021.678712

Frontiers in Psychology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 678712

Edited by:

Vito Pirrelli,

National Research Council (CNR), Italy

Reviewed by:

Jessie S. Nixon,

University of Tübingen, Germany

Kevin Tang,

University of Florida, United States

Valeria Caruso,

University of Michigan, United States

Christina Manouilidou,

University of Ljubljana, Slovenia

*Correspondence:

Simon David Stein

simon.stein@uni-duesseldorf.de

Specialty section:

This article was submitted to

Language Sciences,

a section of the journal

Frontiers in Psychology

Received: 10 March 2021

Accepted: 29 June 2021

Published: 02 August 2021

Citation:

Stein SD and Plag I (2021)

Morpho-Phonetic Effects in Speech

Production: Modeling the Acoustic

Duration of English Derived Words

With Linear Discriminative Learning.

Front. Psychol. 12:678712.

doi: 10.3389/fpsyg.2021.678712

Morpho-Phonetic Effects in Speech
Production: Modeling the Acoustic
Duration of English Derived Words
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Recent evidence for the influence of morphological structure on the phonetic output

goes unexplained by established models of speech production and by theories of

the morphology-phonology interaction. Linear discriminative learning (LDL) is a recent

computational approach in which such effects can be expected. We predict the

acoustic duration of 4,530 English derivative tokens with the morphological functions

DIS, NESS, LESS, ATION, and IZE in natural speech data by using predictors derived from a

linear discriminative learning network. We find that the network is accurate in learning

speech production and comprehension, and that the measures derived from it are

successful in predicting duration. For example, words are lengthened when the semantic

support of the word’s predicted articulatory path is stronger. Importantly, differences

between morphological categories emerge naturally from the network, even when no

morphological information is provided. The results imply that morphological effects on

duration can be explained without postulating theoretical units like the morpheme,

and they provide further evidence that LDL is a promising alternative for modeling

speech production.

Keywords: speech production, linear discriminative learning, acoustic duration, morphological theory, derivation,

mental lexicon

INTRODUCTION

Recent findings in morpho-phonetic and psycholinguistic research have indicated that phonetic
detail can vary by morphological structure. For example, the acoustic duration of English
word-final [s] and [z] differs depending on morphological status and inflectional function (Plag
et al., 2017, 2020; Seyfarth et al., 2017; Tomaschek et al., 2019). For derivation, too, studies have
demonstrated effects of morphological structure on phonetic output. For example, morphological
geminates in English differ in duration depending on morphological category and informativity
(Ben Hedia and Plag, 2017; Ben Hedia, 2019), and phonetic reduction in various domains can
depend on how easily speakers can decompose a complex word into its constituents (e.g., Hay,
2003, 2007; Plag and Ben Hedia, 2018; Zuraw et al., 2020).

These findings raise several problems at the theoretical level. The observation that phonetic
detail varies systematically with morphological properties is unaccounted for by traditional and
current models of the morphology-phonology interaction and of speech production (e.g., Chomsky
and Halle, 1968; Kiparsky, 1982; Dell, 1986; Levelt et al., 1999; Roelofs and Ferreira, 2019; Turk and
Shattuck-Hufnagel, 2020). This is because these models are either underspecified regarding the
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processing of complex words, or do not allow for post-lexical
access of morphological information. For example, feed-forward
models of the morphology-phonology interface (e.g., Kiparsky,
1982) assume that morphological brackets around constituents
are “erased” in the process of passing on a word through
morphological and phonological levels of processing. This means
that no trace of morphological structure should be left at the level
of phonetic realization. Similarly, established psycholinguistic
models of speech production (e.g., Levelt et al., 1999) assume
thatmorphological units select general phoneme templates which
are then passed on to an articulator module to be realized
phonetically. Again, no morphological information is encoded in
these templates, meaning that no systematic differences between
morphological properties are expected at the phonetic level.

Yet, morphological effects on the phonetic output have
repeatedly been observed, which is incompatible with these
assumptions. For example, the observation that complex words
are more acoustically reduced when they are less decomposable
into their constituents (Hay, 2003, 2007; Plag and Ben Hedia,
2018; Zuraw et al., 2020) seems to suggest that information about
morphological boundaries must somehow still be present at the
phonetic level. From the perspective of the speech production
models and theories of the morphology-phonology interaction
outlined above, such effects are unexpected, and the mechanisms
behind them are unclear. To better explain the morphology-
phonetics interaction at the theoretical level and to understand
the patterning of durations in complex words from a new
perspective, we need alternative approaches.

One such approach is to model phonetic detail based on
the principles of discriminative learning (see, e.g., Ramscar and
Yarlett, 2007; Ramscar et al., 2010; Baayen et al., 2011). Such
an approach sees form-meaning relations not as compositional,
but as discriminatory instead. That is, form-meaning relations
are created in a system of difference, which distinguishes
between features based on their similarity and dissimilarity
and connects them to each other in a learning process. In
discriminative approaches, “signs” in the semiotic sense of
relations of form and meaning (de Saussure, 1916) are not
fixed units. Discriminative models refrain from sub-lexical static
representations such as morphemes or roots in the lexicon.
Instead, speech comprehension and production are the result
of a dynamic learning process where relations between form
and meaning are constantly recalibrated based on the speaker’s
experience. How strong associations between given forms and
meanings are in the system depends on how often specific forms
occur together with specific meanings, and on how often they
fail to occur together with others. Each time a speaker makes a
new experience, i.e., encounters a form together with a specific
meaning, all associations of forms and meanings in the system
are updated to reflect this new state of learning. An association
strength increases when a “cue” (such as a specific form) occurs
together with an “outcome” (such as a specific meaning), and an
association strength decreases when a cue does not occur with
the outcome.

Such an approach has clear advantages if we are to explain the
evidence that morphology directly affects phonetic realization. A
discriminative learning model lacks a feed-forward architecture

which divides speech processing into separate levels. It is an
end-to-end model that goes directly from form to meaning
and from meaning to form. This means that the loss of
morphological information between levels, e.g., through bracket
erasure or phoneme template selection, is no longer an issue.
Moreover, discriminative learning refrains from postulating
morphemes or phonemes as psychologically relevant units in
the first place. This opens the way for interpreting acoustic
differences from a new perspective. In a discriminative approach,
differences between morphological functions are expected to
emerge naturally from sublexical and contextual cues. If we
can model systematic acoustic variation between morphological
functions with measures derived from a discriminative network,
it is possible to explain potential effects by its theoretical
principles of learning and experience.

While discriminative approaches have already been used to
model other morphological correlates, such as reaction time (e.g.,
Baayen et al., 2011), the question arises whether a discriminative
approach is able to successfully predict phonetic variation.
Recently, Tomaschek et al. (2019) employed naïve discriminative
learning (NDL) to model the duration of English word-final
[s] and [z] of different morphological status. The measures
derived from their network were predictive and indicated that
a higher certainty in producing a morphological function leads
to lengthening. While Tomaschek et al. (2019) focused on
inflection, it is necessary to also test how well discriminative
approaches can deal with derivational morphology. The present
paper aims to account for this gap.

Our study investigates the durational properties of derived
words in English. We modeled word durations for 4,530 tokens
with the derivational functions DIS, NESS, LESS, ATION, and IZE

from the Audio BNC (Coleman et al., 2012), using multiple
linear regression models and mixed-effects regression models.
The crucial predictors in our models are measures derived from
the computational framework of linear discriminative learning
(Baayen et al., 2019b).

Linear discriminative learning (LDL) is a new variant of naïve
discriminative learning. Like NDL, it is discriminative because its
system of form-meaning relations is generated by discriminating
between different forms and meanings instead of building them
from compositional units. Like NDL, LDL is a system of learning
because the association strengths between forms and meanings
are continuously recalibrated in a process of experience. This
learning is simple and interpretable because, in contrast to deep
learning, it features just two layers, an input layer and an output
layer, both of which are linguistically transparent. Unlike NDL,
however, LDL is linear and no longer “naïve.” Its networks are
linear mappings between form matrices and meaning matrices
(which serve as either the input layer or the output layer,
respectively). In this approach, forms are represented by vectors,
and meanings are also represented by vectors, similarly to
approaches in distributional semantics. The idea is that if we
can express both forms and meanings numerically, we can
mathematically connect form and meaning. In LDL, the network
is no longer naïve because where NDL represents word meanings
with binary vectors, LDL uses real-valued vectors, taking into
account that words cannot only be similar in form, but also in

Frontiers in Psychology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 678712

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Stein and Plag Modeling Derivative Durations With LDL

meaning. How this is implemented is explained further below in
the section Materials and Methods.

Our aim in this study is, first, to investigate how well
LDL can account for the durational variation in our data.
Second, we investigate what the effects of the LDL-derived
measures tell us about the mechanisms of speech production.
How can we interpret potential effects conceptually? Third, as
we are interested in exploring how these findings relate to
morphological functions, we also investigate how the results
differ depending on how much information the network has
about these functions. For this purpose, we initially trained
three different LDL networks, two of which contain explicit
morphological information. The first network does not include
any information about morphological category and treats all
derivatives as idiosyncratic (the Idiosyncratic Network). The
second network uses vectors that include semantic information
about the derivative and about the morphological category it
belongs to (the Morphology Network). The third network uses
vectors that include semantic information about the base word
(instead of the derivative) and about the morphological category
(the Base Network).

We hypothesize that LDL-derived measures can successfully
(i.e., significantly) predict derivative durations. If they do,
the effects of LDL-derived measures should be interpretable
with regards to speech production (for example, they should
mirror the finding by Tomaschek et al. (2019) that higher
certainty is associated with longer durations). Lastly, we
explore whether there are differences between the networks
that contain information about the morphological category a
derivative belongs to and the network that does not contain
such information.

To preview our results, three key findings emerge from
the analysis. First, all LDL networks achieve high learning
accuracy and the proportion of variance in duration explained
by the LDL-derived predictors is comparable to that explained
by traditional predictors. Second, the effects of LDL measures
highlight important patterns of speech production. For example,
they suggest that words are lengthened in speech production
when the semantic support of the word’s predicted articulatory
path is stronger (i.e., when certainty is higher), mirroring the
finding by Tomaschek et al. (2019). Third, we find that, even
though we did not provide the Idiosyncratic Network with
any information about the morphological category a word
belongs to, these categories still emerge from the network. For
instance, the different morphological categories are reflected in
the distributions of the correlation strength of a word’s predicted
semantics with the semantics of its neighbors. This corresponds
to what we would traditionally describe as the differences in
semantic transparency between affix categories.

The remainder of this paper is structured as follows. The
section Materials and Methods describes our methodology,
illustrating the procedure of collecting the speech data (the
section Speech Data), building the LDL networks (the section
Linear Discriminative Learning), the variables used (the section
Variables) and the modeling procedure (the section Modeling
Word Durations). The section Results outlines our results,
followed by a discussion and conclusion in the section Discussion
and Conclusion.

MATERIALS AND METHODS

Ourmethodology consists of threemain steps: first, retrieving the
speech data for the durational measurements for the response
variable, second, building the LDL networks to retrieve LDL-
derived predictors of interest, and third, devising regression
models to predict derivative durations from various predictors.
All data, scripts and materials can be found at osf.io/jkncb.

Speech Data
The speech data was obtained from the Audio BNC (Coleman
et al., 2012). This corpus consists of both monologues and
dialogues from different speech genres of several British
English varieties. It comes phonetically aligned by an automatic
forced aligner. Containing about 7.5 million words, it is
large enough to yield enough observations per derivational
function. A corpus approach has the advantage that that
we are not only able to analyze a lot of data, but also
that the type of data is conversational speech. This enables
us to investigate a more authentic process of language
production than with carefully elicited speech. It has been
argued (e.g., Tucker and Ernestus, 2016) that research on
speech production in particular needs to shift its focus to
spontaneous speech to be able to draw valid conclusions about
language processing.

The morphological categories selected for investigation are
DIS, NESS, LESS, ATION, and IZE. We use the term morphological
category in the traditional sense, referring to words that share
a particular morphologically expressed meaning. We do not
use the term morpheme because it is usually employed to
denote a minimal sign combining a form and a meaning
(e.g., /-l@s/ “without,” see, e.g., Plag and Balling, 2020). We
use the term function to refer to the semantic or grammatical
contribution of a particular affix or process. LDL does not assume
any fixed relationship between form and meaning. Meanings
are dynamically mapped onto a stream of forms (overlapping
triphones in our case), but never defined as being tied to strings
that we would traditionally describe as being “morphemic.” The
terms function and category better reflect the fact that in LDL,
derived words might be grouped into categories sharing similar
semantics or features (cf. Word and Paradigm Morphology)
but are not “composed” of form-meaning building blocks (cf.
morpheme-based morphology). LDL’s lexomes are pointers to
meanings only, not to forms.

The five categories DIS, NESS, LESS, ATION, and IZE were
chosen, first, because they featured sufficient token counts in the
Audio BNC and are attested in Baayen et al.’s (2019b) vector
space (explained in the section Training Data). Second, they were
chosen because they cover a wide spectrum of characteristics
traditionally considered important for affix classification. For
example, following Bauer et al. (2013) and Plag (2018),
the affixes corresponding to those categories differ in their
semantic transparency: -ness, -less, and dis- produce mostly
transparent derivatives, whereas -ize and -ation are overall a
little less transparent in comparison. They vary in the range
of their meanings, from relatively narrow and clearly definable
semantics (e.g., the privative meaning of -less or the negative
meaning of dis-) to more varied semantics (e.g., -ness denoting
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abstract states, traits, or properties) to highly multifaceted
semantics (-ize can have locative, ornative, causative, resultative,
inchoative, performative, or similative meaning, -ation can
denote events, states, locations, products or means). They
also differ in their productivity, with -ness and -less being
considered highly productive, and -ize, -ation, and dis- being
somewhat less productive. Lastly, they also differ phonologically.
While -ness, -less, and dis- are not (obligatorily) subject to
phonological alternations and not involved in resyllabification
processes, -ize and -ation can cause stress shifts and other
phonological alternations within their bases, and resyllabification
is commonplace.

We obtained speech data for these morphological categories
by entering pertinent query strings into the web interface
of the Audio BNC and extracting the resulting wordlist and
associated recordings and textgrids. These query strings searched
for all word tokens that begin or end in the orthographic
and phonological representation of each of the investigated
derivational function. We manually cleaned the datasets by
excluding words which were monomorphemic (e.g., bless, disk,
station), whose semantics or base were unclear (e.g., harness,
disrupt, dissertation), or which were proper names or titles (e.g.,
Guinness, Stenness, Stromness).

Before starting the acoustic analysis, manual inspection of
all items was necessary to exclude items that were not suitable
for further analysis. This was done by visually and acoustically
inspecting the items in the speech analysis software Praat
(Boersma and Weenik, 2001). Items were excluded that fulfilled
one or more of the following criteria: the textgrid was a duplicate
or corrupted for technical reasons, the target word was not
spoken or was inaudible due to background noise, the target
word was interrupted by other acoustic material, laughing, or
pauses, the target word was sung instead of spoken, the target
word was not properly segmented or incorrectly aligned to the
recording. In cases where the alignment did not seem satisfactory,
we examined the word-initial boundary and the word-final
boundary in order to decide whether to exclude the item. We
considered an observation to be correctly aligned if none of
these boundaries would have to be shifted to the left or right
under application of the segmentation criteria in the pertinent
phonetic literature (cf. Machač and Skarnitzl, 2009; Ladefoged
and Johnson, 2011). Following Machač and Skarnitzl (2009), we
considered the shape of the sound wave to be the most important
cue, followed by the spectrogram, followed by listening.

In a final step, the dataset was reduced to only those words
that were attested in the TASA corpus as well as in CELEX, and
whose base was simplex (this step is explained in the section
Training Data). The final dataset of derivatives that entered
the models comprised 4,530 tokens and 363 types. Table 1

gives an overview of the data in each morphological category.
Further descriptive statistics of the datasets are provided in the
Supplementary Material.

Linear Discriminative Learning
Our aim is to predict the durational patterning in the 4,530-
token dataset described above with measures derived from an
LDL network. These measures can be calculated on the basis of

TABLE 1 | Overview of tokens and types per morphological category.

DIS NESS LESS ATION IZE

Tokens 233 344 145 3,403 405

Types 35 49 31 209 39

a transformation matrix that maps a cue matrix C for forms onto
a semantic matrix S for meanings (for comprehension), and the
semantic matrix S onto the cue matrix C (for production). The
basic building blocks used to construct the meaning dimensions
in matrix S are referred to as lexomes. Lexomes are atomic units
of meaning in an LDL network and serve as pointers to semantic
vectors. In comprehension, they are also the “outcomes” in the
S matrix, which are predicted from the “cues” in the C matrix.
Lexomes can for example correspond to words (content lexomes,
such as LEMON), but also to derivational or inflectional functions
(function lexomes, such as NESS).

It is important to note that function lexomes correspond
to morphological categories, but are not the same thing as
morphemes. In LDL, morphological categories (like NESS) are
coded as semantic vectors and are not units of form and
meaning, but units of meaning only. How these lexomes and
their vectors were obtained, how the matrices were constructed
and how they were mapped onto each other is illustrated in the
following sections.

Training Data
To construct a linear discriminative learning network, it is
necessary to obtain semantic vectors that represent the words’
meanings (this will be explained in more detail in the section
Matrices for Form and Meaning). For this, we made use of
the vectors generated by Baayen et al. (2019b) from the TASA
corpus, who used an algorithm to predict words in each sentence
of the corpus from other words in that sentence (this will
be explained further below). To make sure that we can use
these semantic vectors for our derivatives, we first reduced our
speech data set from the Audio BNC to those derivatives that
are attested in TASA (losing 352 words). In a second step,
we used the CELEX lexical database (Baayen et al., 1995) to
obtain phonological transcriptions for the words in our data
set. These transcriptions are necessary for constructing the
matrices. Since CELEX did not have transcriptions for all words,
this step led to a slight reduction of our data set (losing 9
words). In a final step, we excluded all derivatives (49 words)
whose bases were already complex, i.e., all derivatives that
have more than one derivational function (e.g., stabilization,
specification, attractiveness, disclosure, disagreement). One reason
for excluding these derivatives is that it is currently not clear
how to build their semantic vectors. Another reason is that
multi-affixed words in corpora are comparatively infrequent. Too
infrequent derivatives might require a corpus even bigger than
TASA from which to construct reliable semantic vectors.

The resulting dataset contained 363 unique derivatives (i.e.,
types). This dataset consists of all derivatives from the Audio
BNC that are also attested in TASA. One problem with this
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TABLE 2 | Schematic examples of a cue matrix C (left) and a semantic matrix S (right) for the words cat, happiness, walk, and lemon.

Schematic example of a C matrix Schematic example of an S matrix

#k{ k{ t {t# #h{ h{p CAT HAPPINESS WALK LEMON

k{t 1 1 1 0 0 k{t 0.000000 −6.24e-05 4.71e-05 −0.000138

h{pInIs 0 0 0 1 1 h{pInIs −0.000110 0.0000000 0.000194 −2.20E-05

w$k 0 0 0 0 0 w$k 0.000304 −0.0002335 0.000000 −3.74E-05

lEm@n 0 0 0 0 0 lEm@n −7.28e-05 −2.41e-07 −2.68e-05 0.00000

Note that for the triphones in the C matrix, word boundaries are also counted, represented by a hash (#). The DISC phonetic alphabet is used for computer-readable transcription

(Burnage, 1990).

dataset is that it would be rather unrealistic as training data. This
is because a speaker encounters far more than just a few hundred
words during their lifetime, and not all these encountered words
contain one of the five investigated morphological categories
DIS, NESS, LESS, ATION, and IZE. We therefore decided to
merge this dataset with all words in TASA that had already
been coded in Baayen et al. (2019b) for derivational functions
(function lexomes) and phonological transcriptions (4,880 more
words). This dataset contained 897 derivatives with the 25
derivational function lexomes AGAIN, AGENT, DIS, EE, ENCE,
FUL, IC, INSTRUMENT, ATION, ISH, IST, IVE, IZE, LESS, LY, MENT,
MIS, NESS, NOT, ORDINAL, OUS, OUT, SUB, UNDO, and Y, as well
as 3,983 monomorphemic words. Derivational functions were
coded irrespective of variation in affix spelling. Most of these
words are not attested in our speech data and therefore not of
interest for the durational modeling, but including them makes
the training itself more realistic.

The resulting 5,176 unique word forms were then used for the
C matrix, and the 5,201 unique lexomes (comprising the vectors
for the 5,176 content lexomes and the 25 derivational function
lexomes) were used for the S matrix. The next section illustrates
what these matrices are and how they are constructed.

Matrices for Form and Meaning
In an LDL network, features of a word are represented by a
vector for this word in a multidimensional space. Each word
has a vector that specifies its form features, and a vector that
specifies its semantic features. We therefore need two matrices:
a cue matrix C for the words’ forms and a semantic matrix S for
the words’ meanings.

The cue matrix C contains in rows the words’ phonological
transcriptions, and in columns form indicators that are either
present or absent in those words. As shown in Arnold et al.
(2017) and Shafaei-Bajestan et al. (2020), it is possible to use real-
valued features extracted directly from the speech signal instead
of discrete features. In the present study, we use triphones as
form indicators, following Baayen et al. (2019b). These triphones
overlap and can be understood as proxies for transitions in
the articulatory signal. Each cell in the matrix codes in a
binary fashion (1 for present or 0 for absent) whether the
respective triphone string (specified in the column) occurs in the
phonological transcription of the word (specified in the row). An
example of the layout of the C matrix is given in Table 2 on the

left-hand side. For the C matrix in this study, we used the 5,176
unique word forms mentioned in the section Training Data.

The semantic matrix S contains in its rows the words’
phonological transcriptions, and in its columns the semantic
dimensions, or lexomes, with which the words are associated.
In the present study, these lexomes correspond to interpretable
linguistic items, such as words and derivational functions.
Each cell in the S matrix contains a real number, which
represents the association strength of a word (specified in the
row) to a lexome (specified in the column). As mentioned
in the Introduction, this is an important difference of LDL
compared to NDL, where word meanings are initially coded
as binary-valued vectors similar to the cue matrix. LDL, on
the other hand, starts out with real-valued association weights.
An example of the layout of the S matrix is given in Table 2

on the right-hand side. For the S matrix in this study, we
used the 5,201 unique lexomes mentioned in the section
Training Data.

Where do these association weights come from? In the present
study, we used association weights that were generated from
word co-occurrence in real language data. For this, Baayen et al.
(2019b) trained an NDL network on the TASA corpus (Ivens and
Koslin, 1991; Landauer et al., 1998). This NDL network operated
on an established learning algorithm (Widrow and Hoff, 1960)
that incrementally learns association strengths between lexomes.
In such an approach, words in a sentence are predicted from
the words in that sentence. While the network goes through
the sentences in the corpus, the associations strengths of the
lexomes with each other are continuously adjusted over time.
As language learning is about learning which connections are
relevant, the association strength of lexomes that often occur
together will be strengthened. As discriminative learning is also
about unlearning connections which are irrelevant, similarly,
the association strength of lexomes will be weakened each
time they do not occur together. For the implementational
and mathematical details of this procedure, as well as for the
validation of the resulting semantic vector space, the reader is
referred to Baayen et al. (2019b). Importantly for the present
study, Baayen and colleagues included lexomes not only for
words, but also for derivational functions corresponding to
suffixes and prefixes. This enables us to build LDL networks
that take into account morphological categories shared between
derivatives (in addition to an LDL network that does not take
these into account and treats all words as idiosyncratic, i.e., as
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having a unique semantics that is not related to the semantics of
constituents below the word level).

The so-called lexome-to-lexome matrix resulting from this
learning process is a vector space in which each lexome vector
represents a certain association with the meanings of all other
lexomes. According to the idea that “you shall know a word by
the company it keeps” (Firth, 1957), each value in the vector
of a lexome represents the association strength of this lexome
to the meaning of another lexome in TASA. Following Baayen
et al. (2019b), we used a version of their lexome-to-lexome
matrix which was trimmed to about five thousand dimensions
and whose main diagonal was set to zero.1 From this lexome-
to-lexome matrix, we extracted the vectors for our 5,201 unique
lexomes (described in the section Training Data), which we then
used for the Smatrix.

For the present study, we built three different LDL networks:
one which contains no information about the morphological
category a derivative belongs to but treats all derivatives as
idiosyncratic, one in which the vectors contain information about
the derivative and about themorphological category it belongs to,
and one in which the vectors contain information about the base
of a derivative and about the morphological category it belongs
to. For each of these networks we need a matrix S and a matrix
C. We will refer to the matrices with idiosyncratic derivatives as
matrix SI and matrix CI , to the matrices with information about
the derivative and its morphological category as matrix SM and
matrix CM , and to the matrices with information about the base
and the morphological category as matrix SB and matrix CB. We
will refer to the networks as a whole as the Idiosyncratic Network,
theMorphology Network, and the Base Network, respectively.

The Idiosyncratic Network withmatrices SI andCI considered
only the semantic vector of the derivative lexome (e.g., only the

vector for HAPPINESS, which can be represented as
−−−−−→
happiness).

This vector was taken as is from the lexome-to-lexome matrix
and straightforwardly entered matrix SI for each word. This
way, the vector contains only idiosyncratic information, and no
information about any shared morphological category.

TheMorphology Network with matrices SM and CM made use
of the semantic vector of the content lexome of the derivative
(e.g., the vector for HAPPINESS, i.e.,

−−−−−→
happiness) and the semantic

vector of the corresponding derivational function lexome (e.g.,

the vector for NESS, which can be represented as
−−→
NESS).2 We took

both these vectors from the lexome-to-lexome matrix, and the
sum of these two vectors entered matrix SM for each word. That
is, the semantic vector associated with the word happinesswas the

sum of the vectors for HAPPINESS and NESS:
−−−−−→
happiness +

−−→
NESS.

This way, the resulting vector contains idiosyncratic information,
but also information about the morphological category it shares

1The main diagonal of a lexome-to-lexome matrix represents the association

strengths of each word to itself. Each word occurring in a sentence naturally

predicts itself very well to occur in that sentence, but this value is not very

informative about the word’s relation to other words. Baayen et al. (2019b)

therefore argue that when the researcher is interested in semantic similarity, they

should replace these values with zero values.
2Note that the form matrices CI , CM , and CB are identical, as the networks only

differ in their construction of semantic vectors, not of form vectors.

with other derivatives. While it is also conceivable to add to
the vector of NESS the vector of HAPPY (instead of HAPPINESS),
taking HAPPINESS better reflects the fact that derived words
most often still carry some idiosyncratic meaning, i.e., signify
more than merely the sum of their parts. The combination of
HAPPINESS and NESS, thus, takes into account the morphological
category NESS that the word shares with other derivatives, but
still acknowledges that English derivatives are not characterized
by strictly compositional semantics.

The Base Network with matrices SB and CB uses the semantic
vectors of the content lexomes of the bases of derived words and
the vectors of the derivational function lexomes. That is, instead
of adding the derivational lexome vector to the lexome vector
of the derivative as in the Morphology Network, in the Base
Network we add the derivational lexome vector to the content
lexome vector of the derivative’s base. For instance, the semantic
vector associated with the word happiness in matrix SB is the sum

of the vectors for HAPPY and NESS:
−−−→
happy +

−−→
NESS. This way, the

resulting vector contains information about the morphological
category it shares with other derivatives, like in the Morphology
Network. But unlike the Morphology Network, it contains no
idiosyncratic information at all. The meaning of complex words
in the Base Network is assumed (against our better knowledge)
to be strictly compositional. In principle, this property makes
this network unattractive and less suitable for predicting word
durations, but it can be fruitfully used to gain further insights into
the differences between architectures.

We now have three matrices (for each morphological setup,
respectively) of the layout shown in Table 2. We have the C
matrix, containing information about form, and the S matrix,
containing information about meaning. These matrices can now
be mapped onto each other.

Comprehension and Production Mapping
In speech comprehension, a listener encounters a form and
needs to arrive at the corresponding meaning. Therefore, for
comprehension we calculate a transformation matrix F which
maps the semantic matrix S onto the cue matrix C, so that

CF = S. (1)

In speech production, on the other hand, a speaker starts
out with a meaning and needs to find the right form to
express this meaning. Therefore, for production we calculate a
transformation matrix G which maps the cue matrix C onto the
semantic matrix S, so that

SG = C. (2)

Mathematically, the transformation matrices F and G can
be calculated by multiplying the generalized inverse (Moore,
1920; Penrose, 1955) of C with S (for comprehension) and
the generalized inverse of S with C (for production). The
transformations are visually illustrated in Figure 1.

As soon as we have obtained the transformation matrices, we
can use them to estimate what forms and meanings the network
would predict. For this, we calculate the predicted matrices Ŝ and
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FIGURE 1 | Comprehension and production mapping, adapted from Baayen

et al. (2019b). For comprehension, transformation matrix F transforms the cue

matrix C into the semantic matrix S. For production, transformation matrix G

transforms the semantic matrix S into the cue matrix C.

Ĉ. For comprehension, we multiply the form matrix C with the
transformation matrix F, i.e., we solve Ŝ = CF. For production,
wemultiply the semanticmatrix Swith the transformationmatrix
G, i.e., we solve Ĉ = SG. It is important to keep in mind
that the mappings are simple linear transformations that are
achieved by matrix multiplication (for an introduction in the
context of LDL, see Baayen et al., 2019b). It is possible to think
of the transformation matrices F and G like coefficients in linear
regression, which try to approximate the target matrix but will
not produce exactly the same values. This is true especially for
large datasets like in the present study. The predicted matrices
Ŝ and Ĉ are thus not exactly the same as the original matrices S
and C.

We can also use the predicted matrices to evaluate model
accuracy. To see how well the model predicts the semantics of an
individual word in comprehension, we can multiply an observed
form vector c from the cuematrix with the transformationmatrix
F to obtain a predicted semantic vector ŝ. We can then see
how similar this predicted semantic vector ŝ is to the target
semantic vector s. For production, in turn, we can multiply an
observed meaning vector s from the semantic matrix with the
transformation matrix G to obtain the predicted form vector ĉ,
which represents the estimated support for the triphones.We can
then see how similar this predicted form vector ĉ is to the target
form vector c. If the correlation between the estimated vector
and the targeted vector, i.e., between ŝ and s or between ĉ and c,
respectively, is the highest among the correlations, a meaning or
form is correctly recognized or produced. The overall percentage
of correctly recognized meanings or forms is referred to as
comprehension accuracy and production accuracy, respectively.

To obtain the mappings, we used the learn_comprehension()
and learn_production() functions from the R package
WpmWithLDL (Baayen et al., 2019a). Accuracy estimations
were obtained with the functions accuracy_comprehension()
and accuracy_production(). Finally, the measures of interest
which we use to predict the durations were extracted from
the networks with the help of the comprehension_measures()
function and the production_measures() function. While we

model word durations in the present study, which are the
result of speech production, both speech production and speech
comprehension mappings produce relevant measures for the
analysis of production data. This is because the emergent
structure of the learner’s lexicon is determined both by the
association of forms with meanings and of meanings with forms.
In LDL, like in human learning, production and comprehension
are inextricably linked to each other (see Baayen et al., 2019b for
discussion). We will now describe the LDL-derived measures, as
well as other used measures, in more detail.

Variables
As described above, many potentially useful LDL measures can
be extracted automatically from the matrices by the package
WpmWithLDL (Baayen et al., 2019a). However, some of the
variables provided by this package capture similar things and are
strongly correlated with each other. Careful variable selection,
and sometimes adaptation, was therefore necessary. Further
below we illustrate our selection and explain the conceptual
dimensions we aim to capture with each variable.

Conceptually, it is desirable to not have any traditional
linguistic covariates in the models that are not derived from
the network, such as lexical frequencies, neighborhood densities,
or bigram frequencies. It is important to build models instead
which contain LDL-derived variables only. This is because, first,
we are interested in how well an LDL network fares on its
own in predicting speech production. Second, many traditional
covariates bring along implicit assumptions that LDL does not
want to make, such as the existence of discrete phonemic and
morphemic units. Third, it is unclear how these traditional
measures contribute to learning and processing. At the same
time, however, the traditional measures might tap into properties
of the linguistic signal that are picked up in a discriminative
learning process. Hence, LDL measures often correlate with
traditional measures.3

The models of interest therefore only include LDL-derived
variables (described in the section LDL-Derived Predictor
Variables), with one exception: the one important non-LDL
variable that needs to be taken into account is SPEECH RATE. This
is an influence that is beyond the control of the network.

In addition, we built models with just non-LDL variables
(we describe these variables in the section Traditional Predictor
Variables). This is to compare the explanatory power of the
LDL-derived models with traditional models used in morpho-
phonetic research.

Response Variable

Duration Difference
One important problem in analyzing spontaneous speech is that
which words are spoken is uncontrolled for phonological and
segmental makeup. This problem is particularly pertinent for
the present study, as our datasets feature different affixes whose
derivatives vary in word length. To mitigate potential durational
differences that arise simply because of the number and type

3Correlation matrices and variable clustering trees for both LDL-derived variables

and traditional variables are documented in the Supplementary Material.
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of segments in each word, we refrained from using absolute
observed duration as our response variable. Instead, we derived
our duration measurement in the following way.

First, we measured the absolute acoustic duration of the word
in milliseconds from the textgrid files with the help of scripts
written in Python. Second, we calculated the mean duration
of each segment in a large corpus (Walsh et al., 2013) and
computed for each word the sum of the mean durations of
its segments.4 This sum of the mean segment durations is
also known as “baseline duration,” a measure which has been
successfully used as a covariate in other corpus-based studies
(e.g., Gahl et al., 2012; Caselli et al., 2016; Sóskuthy andHay, 2017;
Engemann and Plag, 2021). It would now be possible to subtract
this baseline duration from the observed duration, giving us
a new variable that represents only the difference in duration
to what is expected based on segmental makeup. However, we
found that this difference is not constant across longer and
shorter words. Instead, the longer the word is on average, the
smaller the difference between the baseline duration and the
observed duration. In a third and final step, we therefore fitted
a simple linear regression model predicting observed duration
as a function of baseline duration. The residuals of this model
represent our response variable. Using this method, we factor
in the non-constant relationship between baseline duration and
observed duration. We named this response variable DURATION

DIFFERENCE, as it encodes the difference between the observed
duration and a duration that is expected on the basis of the
segmental makeup.

LDL-Derived Predictor Variables

Mean word SUPPORT
MEAN WORD SUPPORT is a measure that we introduce to capture
how well-supported on average transitions from one triphone to
the next are in the production of a word. Taken together, these
transitions are referred to as an articulatory “path.” MEAN WORD

SUPPORT is calculated based on the variable PATH SUM from
the package WpmWithLDL. PATH SUM refers to the summed
semantic support that a given predicted articulatory path receives
from its corresponding predicted semantic vector ŝ, i.e., the path
from one triphone to the next in the predicted form of a word.
This is illustrated in Figure 2 with the toy example lawless. Each
node in the path, i.e., each triphone, has a certain probability
of being selected against all the other possible triphones when
trying to produce a word based on its semantics. The maximum
value per transition is therefore 1, i.e., a 100% probability of
being selected. However, with longer words, there are also more
transitions. For example, if a word’s form is perfectly predicted
across all triphone transitions, but there are five such transitions,
PATH SUM would take the value 5. Thus, the problem with
PATH SUM is that it increases not only with higher support,
but also with increasing segmental length of words. This would
not be ideal as a measure of semantic support when modeling
durations, since durations naturally increase with longer words.
The interpretation of PATH SUM as a measure for mere semantic

4We used a different corpus than the Audio BNC for this task because the

Audio BNC does not provide this information in an accessible and reliable form.

FIGURE 2 | Toy example of an articulatory path for the word lawless. Each

connection between a triphone node is assigned a probability of being

selected against other triphones.

support would be difficult. Therefore, we decided to divide each
value of PATH SUM, i.e., each summed support of a word’s path,
by the number of path nodes in a word. This new variable MEAN

WORD SUPPORT controls for path length and only reflects the
average transition support in each word. MEAN WORD SUPPORT

can be read as a metaphor for certainty. The higher the average
transition probabilities in a word, the more certain the speaker
is in pronouncing this word based on its semantics. Based on
previous studies which have found higher certainty of various
operationalizations to be associated with lengthening (Kuperman
et al., 2007; Cohen, 2014, 2015; Tomaschek et al., 2019; Tucker
et al., 2019), words with higher MEAN WORD SUPPORT can be
expected to be longer in duration.

Path Entropies
Like MEAN WORD SUPPORT, PATH ENTROPIES considers the
transition probabilities between nodes in the path from one
triphone to the next in the predicted form of a word. PATH

ENTROPIES is the Shannon entropy calculated over the support
that a given path in the predicted form vector ĉ receives from
its corresponding predicted semantic vector ŝ. Entropy is a
measure of the uncertainty in the choice of one of several
alternatives. Higher entropy generally means a larger number of
possibilities of similar probabilities, in other words, less certainty.
Similarly to MEAN WORD SUPPORT, this measure is thus related
to certainty, albeit in a conceptually different way. The higher
the entropy, the less certain the speaker is in producing a word,
because there is not much informational value in the path
support differences. Higher PATH ENTROPIES thus indicate more
uncertainty. Based on the above-mentioned previous studies on
certainty (Kuperman et al., 2007; Cohen, 2014, 2015; Tomaschek
et al., 2019; Tucker et al., 2019), words with higher PATH

ENTROPIES can thus be expected to be shorter.

Frontiers in Psychology | www.frontiersin.org 8 August 2021 | Volume 12 | Article 678712

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Stein and Plag Modeling Derivative Durations With LDL

Semantic Vector Length
SEMANTIC VECTOR LENGTH refers to the L1 distance, also
known as taxicab distance, Manhattan distance, or city-block
distance, of ŝ. It thus measures the length of the predicted
semantic vector by summing the vector’s absolute values. We
decided to use the L1 distance instead of the correlated L2
distance, as the former does not lose information by smoothing
over the city-block distance. The longer the predicted semantic
vector becomes, the stronger the links to other lexomes become.
SEMANTIC VECTOR LENGTH can thus be understood as a
measure of semantic activation diversity. It is the extent to which
a given word predicts other words. As a result, it can also
be understood as a measure of polysemy. The more semantic
dimensions a speaker is active on for a word and the more other
meanings the word can predict, the more collocational relations
it has and the more varied and confusable the meanings of this
word are (cf. Tucker et al., 2019, also cf. the notion of “sense
uncertainty” in Filipović Durdević and Kostić, 2021). Following
Tucker et al. (2019), words with higher activation diversity can
be expected to be shorter: the speaker is more uncertain when
more meanings are activated and therefore invests less energy in
maintaining the signal.

Semantic Density
SEMANTIC DENSITY refers to the mean correlation of ŝ with
the semantic vectors of its top 8 neighbors’ semantic vectors.
A strong average correlation of the estimated semantic vector
with the vectors of its neighbors means that the neighboring
words are semantically very similar to the word in question.
The higher the density, the more semantically similar these
words are. SEMANTIC DENSITY applied to derived words is thus
an important measure of semantic transparency: Words in a
dissimilar neighborhood are idiosyncratic and their meaning is
not predictable. Words in a semantically similar neighborhood
are semantically transparent, i.e., mathematically shifted in the
same direction. It is currently unclear whether one should expect
a facilitatory or inhibitory effect of measures related to semantic
transparency on duration. We explore this question in more
detail in the discussion in the section Discussion and Conclusion.

Target Correlation
TARGET CORRELATION refers to the correlation between a word’s
predicted semantic vector ŝ and the word’s target semantic vector
s. This is a measure for how accurate the network is in predicting
meaning based on form. The closer the predicted meaning to
the actual targeted meaning, the more successful is the model,
and the better is the learner in making the correct connection
between form and meaning. Being better in making the correct
connection between form andmeaning could be expected to have
a facilitatory effect in both comprehension and production, i.e., in
our case, to lead to shorter durations.

Traditional Predictor Variables

Speech Rate
SPEECH RATE is the only covariate in our LDL-derived models,
and the only predictor that is not derived from the LDL networks.
It is, of course, also used in the traditional models. The duration

of a word is naturally influenced by how fast we speak. SPEECH
RATE can be operationalized as the number of syllables a speaker
produces in a given time interval (see, e.g., Pluymaekers et al.,
2005b; Plag et al., 2017). In the window containing the target
word plus 1 s before and 1 s after it, we divided the number
of syllables by the duration of this window. This is a good
compromise between a maximally local speech rate which just
includes the adjacent segments, but allows the target item to
have much influence, and a maximally global speech rate, which
includes larger stretches of speech but is vulnerable to changing
speech rates during this larger window. The number of syllables
in the window and the duration of this window were extracted
from the textgrids with a Python script. A higher speech rate (i.e.,
more syllables being produced within the window) should lead
to shortening.

Word Frequency
WORD FREQUENCY has been shown to affect acoustic durations
(and processing in general) in many different studies (for an
overview, see, e.g., Baayen et al., 2016). Higher word frequency
is expected to lead to shorter durations. We extracted the
WORD FREQUENCY, i.e. the frequency of the derivative, from
the Corpus of Contemporary American English (COCA, Davies,
2008), with the help of the corpus tool Coquery (Kunter, 2016).
Derived words are often rare words (see, e.g., Plag et al., 1999).
For this reason, very large corpora are necessary to obtain
frequency values for derived words. We chose COCA because
this corpus is much larger than the BNC, and therefore had
a much higher chance of the words and their bases being
sufficiently attested. We prioritized covering a bigger frequency
range with more tokens. Following standard procedures, we log-
transformed WORD FREQUENCY before it entered the models
instead of using raw frequency. We added a constant of+1 to the
variable in order to be able to take the log of the zero frequency of
non-attested derivatives (cf. Howes and Solomon, 1951; Baayen,
2008).

Relative Frequency
RELATIVE FREQUENCY refers to the frequency of the base word
relative to the frequency of its derivative from COCA (Davies,
2008), calculated by dividing BASE FREQUENCY by WORD

FREQUENCY. It is a frequency-based measure for morphological
decomposability. Morphological decomposability, or
segmentability, has been found to affect duration in a number of
studies (Hay, 2003, 2007; Pluymaekers et al., 2005b; Schuppler
et al., 2012; Zimmerer et al., 2014; Ben Hedia and Plag, 2017;
Plag and Ben Hedia, 2018; Zuraw et al., 2020). The higher the
relative frequency, the more decomposable the item is assumed
to be. According to Hay (2001, 2003, 2007), more decomposable
words should feature longer durations (although some studies
have also found the opposite). We added a constant of +1 and
log-transformed the variable.

Bigram frequency
BIGRAM FREQUENCY refers to the frequency of the target
derivative occurring together with the word following it in the
COCA (Davies, 2008). It has been found that the degree of
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acoustic reduction can be influenced by the predictability of the
following context (see, e.g., Pluymaekers et al., 2005a; Bell et al.,
2009; Torreira and Ernestus, 2009). It is thus expected that the
higher the bigram frequency, the shorter the duration. We added
a constant of+1 and log-transformed the variable.

Mean Biphone Probability
The variable BIPHONE PROBABILITY refers to the sum of all
biphone probabilities (the likelihood of two phonemes occurring
together in English) in a given target derivative. It has been
found that segments are more likely to be reduced or deleted
when they are highly probable given their context (see, e.g.,
Munson, 2001; Edwards et al., 2004; Turnbull, 2018; also see
Hay, 2007 on transition legality effects on reduction). Thus,
biphone probability can be expected to negatively correlate
with duration: the more probable the biphones, the shorter
the durations. Biphone probabilities were calculated by the
Phonotactic Probability Calculator (Vitevitch and Luce, 2004).
For this, we first manually translated the target derivatives’
ASCII transcriptions of the Audio BNC into the coding referred
to as Klattese, as this is the computer-readable transcription
convention required by this calculator.

AFFIX
AFFIX is a categorical variable coding which affix category
the derivative belongs to. This is to account for any potential
idiosyncrasies in durations of affix categories.

Modeling Word Durations
Due to the distributional properties of the words in our
dataset, we decided to fit both standard multiple linear
regression models and mixed-effects regression models to
the data. In our dataset, we have many types that are
attested only once, which precludes the use of mixed-effects
regression.5 Having many single observations for one type
involves the danger that certain word types may become
too influential in the model. Mixed-effects regression, on the
other hand, can prevent certain word types from being too
influential in the model but necessitates the exclusion of
items for which no repeated measurements are available. We
decided to address this problem by fitting and documenting
both types of model. All regression models were fitted in
R (R Core Team, 2020), using the lme4 package (Bates
et al., 2015) and lmerTest (Kuznetsova et al., 2016) for the
mixed models.

In the course of fitting the regression models, we trimmed
the dataset by removing observations from the models whose
residuals were more than 2.5 standard deviations away from the
mean, which led to a satisfactory distribution of the residuals
(see, e.g., Baayen and Milin, 2010). For the standard regression
models, this resulted in a loss of 82 observations (1.8% of the
data) for the model based on the Idiosyncratic Network, and
74 observations (1.6% of the data) for the models based on the
Morphology Network and the Base Network.

5We provide plots illustrating the frequency distribution in our data in the

Supplementary Material.

For the mixed models, we only included word types
that occurred more than once (reducing our dataset from
363 to 261 types, or from 4,530 to 4,358 observations).
The trimming procedure resulted in a loss of 71
observations (1.6% of the data) for the models based on
the Idiosyncratic Network and the Base Network, and 70
observations (1.6% of the data) for the model based on the
Morphology Network.

From our experience, LDL-derived variables are often strongly
correlated with each other. As explained in the section Variables,
we made sure to select variables that are not highly correlated
and that had least conceptual overlap with each other, in terms
of representing specific concepts such as certainty or semantic
transparency. Still, we used variance inflation factors to test for
possible multicollinearity of the remaining variables. All of the
VIF values were smaller than 2, i.e., far below the critical value of
10 (Chatterjee and Hadi, 2006).

The initial models were fitted including all variables described
in the section Variables. The models were then simplified
according to the standard procedure of removing non-significant
terms in a stepwise fashion. An interaction term or a covariate
was eligible for elimination when it was non-significant at
the 0.05 alpha level. Non-significant terms with the highest
p-value were eliminated first, followed by terms with the
next-highest p-value. This was repeated until only variables
remained in the models that reached significance at the 0.05
alpha level.

RESULTS

General Comparison of the Networks
Network accuracy was generally satisfactory, with
comprehension accuracies at 81, 82, and 83% for the
Idiosyncratic Network, the Morphology Network, and the
Base Network, respectively, and production accuracies at 99, 99,
and 98%, respectively.

Before turning to the regression models that predict duration,
let us compare the predicted semantic matrices Ŝ of the three
networks. This can be done by calculating the correlation
of each predicted semantic vector ŝ from one network with
its corresponding predicted semantic vector ŝ from the other
two networks, and then taking the mean of these correlations
for all words. Comparing the semantic vectors ŝI of the
Idiosyncratic Network to the semantic vectors ˆsM from the
Morphology Network, we find that they are on average very
weakly correlated: the mean correlation between the vectors of
the ŜI matrix and the ˆSM matrix was r = 0.08. This means that
the matrices are rather different. Likewise, the mean correlation
between the vectors of the ŜI matrix and the ŜB matrix is
weak (r = 0.1).

However, the mean correlation between the vectors of
the ˆSM matrix and the ŜB matrix is extremely high (r =

0.9). This indicates that it is probably the information about
derivational function that differentiates the semantic vectors of
the Idiosyncratic Network from the semantic vectors of the other
two networks. Morphological category matters.
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TABLE 3 | Final standard linear regression models reporting effects on duration difference with variables from the three networks.

Idiosyncratic Network model Morphology Network model Base Network model

Estimate SE Estimate SE Estimate SE

Intercept 0.216901 0.026210 *** 0.090708 0.025887 *** 0.408246 0.029999 ***

MEAN WORD SUPPORT 0.170726 0.023507 *** 0.250262 0.020700 *** 0.050723 0.012716 ***

PATH ENTROPIES −0.008688 0.002242 *** −0.008442 0.002309 *** −0.009342 0.002259 ***

SEMANTIC DENSITY −0.043545 0.008925 *** 0.033868 0.012372 ** −0.093906 0.025844 ***

SPEECH RATE −0.058757 0.001148 *** −0.058602 0.001159 *** −0.058702 0.001171 ***

N 4,448 4,456 4,456

R2 adjusted 0.3778 0.3742 0.3623

Full models are documented in the Supplementary Material. Significance codes: *** < 0.001, ** < 0.01, * < 0.05.

TABLE 4 | Final mixed-effects regression models reporting effects on duration difference with variables from the three networks.

Idiosyncratic Network model Morphology Network model Base Network model

Estimate SE Estimate SE Estimate SE

Intercept 1.328e-01 4.601e-02 ** 2.146e-01 6.024e-02 *** 2.595e-01 2.510e-02 ***

MEAN WORD SUPPORT 2.722e-01 4.600e-02 *** 2.535e-01 4.572e-02 *** 1.211e-01 2.654e-02 ***

PATH ENTROPIES −1.173e-02 5.625e-03 * −1.163e-02 5.633e-03 *

SEMANTIC VECTOR LENGTH −1.606e-02 6.860e-03 * −3.294e-02 1.550e-02 *

SPEECH RATE −5.944e-02 1.116e-03 *** −5.937e-02 1.116e-03 *** −5.936e-02 1.117e-03 ***

N 4,357 4,358 4,357

R2 marginal 0.3690016 0.3638608 0.3487138

R2 conditional 0.5198377 0.5168201 0.5200542

Full models are documented in the Supplementary Material. Significance codes: *** < 0.001, ** < 0.01, * < 0.05.

Predicting Durations With LDL Variables
Let us now turn to the regression models predicting duration.
Tables 3, 4 report the final models regressing duration difference
against the LDL-derived variables and SPEECH RATE.

The model in Table 3 reports the results of the standard
regression models. As we can see, of the LDL-derived
variables, MEAN WORD SUPPORT, SEMANTIC DENSITY, and
PATH ENTROPIES significantly affect duration in the regression
models of all three networks. In addition, SPEECH RATE is
significant in all three models. The variables SEMANTIC VECTOR

LENGTH and TARGET CORRELATION, on the other hand, did
not reach significance and were therefore excluded from these
final models.

The model in Table 4 reports the results of the mixed
models. These models are very similar to the standard
regression models, with two important differences. The variables
MEAN WORD SUPPORT and SPEECH RATE display the same
effects as in the standard models. PATH ENTROPIES also
displays the same effects for the Idiosyncratic Network and
the Morphology Network (it was only marginally significant
for the Base Network and therefore excluded). However,
SEMANTIC DENSITY does not reach significance in the mixed
models. Instead, there is a significant effect of SEMANTIC

VECTOR LENGTH in the models derived from the Idiosyncratic
Network and the Morphology Network, but not in the
Base Network.

Before taking a look at the effects of individual variables,
let us first examine how much variation is actually explained
by the models. Tables 3, 4 show that for all three networks
in both types of model, the R2 of the fixed effects is between
0.36 and 0.37, i.e., about 36–37% of the variance in duration
is explained by the predictors (the marginal R2 of the mixed
model for the Base Network is an exception, being slightly
lower with about 35%). To put this number into perspective,
we compared the explained variance of the LDL-derived
models to that of a model containing predictor variables that
are traditionally used in morpho-phonetic corpus studies of
duration. We fitted a standard linear regression model and
a mixed model including the traditional predictors from the
section Traditional Predictor Variables. These variables were
fitted to the response variable DURATION DIFFERENCE. Some
observations were lost due to the same trimming procedure
as explained in the section Modeling Word Durations (80
observations, or 1.8% of the data, for the standard model,
and 74 observations, or 1.7% of the data, for the mixed
model). For the sake of comparison of the explanatory power
of individual predictors, we did not remove insignificant
variables from the models. The models are summarized
in Table 5. WORD FREQUENCY, RELATIVE FREQUENCY, and
BIGRAM FREQUENCY were not significant in the models,
while MEAN BIPHONE PROBABILITY, some levels of AFFIX,
and SPEECH RATE were. We can see that about the same
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TABLE 5 | Standard linear regression model and mixed-effects regression model reporting effects on duration difference with traditional, non-LDL predictors.

Traditional standard regression model Traditional mixed-effects model

Estimate SE Estimate SE

Intercept 3.888e-01 8.345e-03 *** 4.159e-01 1.106e-02 ***

WORD FREQUENCY 4.970e-08 3.764e-08 −2.608e-07 2.328e-07

RELATIVE FREQUENCY −2.136e-05 4.166e-05 −1.446e-05 8.931e-05

BIGRAM FREQUENCY −6.542e-07 6.293e-07 7.978e-07 6.382e-07

MEAN BIPHONE PROBABILITY −5.188e+00 8.872e-01 *** −7.167e+00 1.545e+00 ***

AFFIX ATION

DIS 8.145e-03 6.700e-03 −1.405e-03 1.438e-02

IZE −2.316e-02 5.251e-03 *** −1.491e-02 1.377e-02

LESS −5.749e-02 8.226e-03 *** −7.569e-02 1.524e-02 ***

NESS −5.473e-02 5.700e-03 *** −3.630e-02 1.295e-02 **

SPEECH RATE −5.893e-02 1.163e-03 *** −5.986e-02 1.116e-03 ***

N 4,450 4,354

R2 adjusted/marginal 0.3731 0.3705799

R2 conditional 0.5344904

Full models and ANOVAs are documented in the Supplementary Material. Significance codes: *** < 0.001, ** < 0.01, * < 0.05.

TABLE 6 | Relative importance of variables in the models for the overall explained variance (marginal variance for mixed models).

Relative importance metrics (lmg)

Idiosyncratic Morphology Base Traditional

Network Network Network model

lm lmer lm lmer lm lmer lm lmer

MEAN WORD SUPPORT 0.0089 0.1649 0.0148 0.0956 0.0025 0.1641

PATH ENTROPIES 0.0023 0.0031 0.0023 0.0017 0.0030

SEMANTIC DENSITY 0.0067 0.0020 0.0014

SEMANTIC VECTOR LENGTH 0.0064 0.0399

SPEECH RATE 0.3605 0.1946 0.3556 0.2266 0.3559 0.1845 0.3561 0.2140

WORD FREQUENCY 0.0007 0.0065

RELATIVE FREQUENCY 0.0006 0.0044

BIGRAM FREQUENCY 0.0007 0.0034

MEAN BIPHONE PROBABILITY 0.0025 0.1178

AFFIX 0.0136 0.0246

Total variance explained 0.3778 0.3690 0.3742 0.3639 0.3623 0.3487 0.3731 0.3706

proportion of the variance is explained by the traditional
models (R2 = 0.37).

Partitioning how much each of the predictors contributes
to the proportion of explained variance, using the lmg metric
(Lindeman et al., 1980) from the relaimpo package (Grömping,
2006) and the calc.relip.mm function (Beresewicz, 2015) reveals
that in both the traditional models and the LDL models,
by far most of the variance is explained by speech rate
(which alone explains about 35% of the total variance in
the standard regression models and about 20% in the mixed
models). This is shown in Table 6. The variables of interest
MEAN WORD SUPPORT, PATH ENTROPIES, SEMANTIC DENSITY,
and SEMANTIC VECTOR LENGTH are all comparable in their
explanatory power to the categorical AFFIX variable and

MEAN BIPHONE PROBABILITY, and often better than the three
frequency measures WORD FREQUENCY, RELATIVE FREQUENCY,
and BIGRAM FREQUENCY. While the small differences in the
explained variance between the LDL-derived variables and
the traditional variables after factoring out the contribution
of SPEECH RATE are not large enough to truly say which
set of variables is “better,” they clearly show that they are
in the same ballpark. We can thus say that LDL-derived
variables can compete against traditional variables frommorpho-
phonetic studies.

We can now take a closer look at the effects of each of
the variables. Figure 3 (for the standard regression models)
and Figure 4 (for the mixed models) plot the effects of the
LDL-derived variables and SPEECH RATE on duration. Figure 5
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FIGURE 3 | Effects on duration difference in the standard linear regression models for the Idiosyncratic Network variables (left column), the Morphology Network

variables (middle column) and the Base Network variables (right column).

displays the density distributions of the variables in all three
networks. We will discuss the two variables relating to certainty
in the articulatory path first (MEAN WORD SUPPORT and PATH

ENTROPIES), followed by a discussion of the two variables
relating to the semantic relations between words (SEMANTIC

DENSITY and SEMANTIC VECTOR LENGTH). The covariate
SPEECH RATE and the variable TARGET CORRELATION will not
be further discussed, as SPEECH RATE behaves as expected (see
the bottom rows of Figures 3, 4) and TARGET CORRELATION was
not significant in any of the models.

Mean Word Support and Path Entropies
As explained in the section LDL-Derived Predictor Variables,
the two variables MEAN WORD SUPPORT and PATH ENTROPIES

both reflect properties of the semantic support for the predicted
articulatory path, and they both tap into articulatory certainty.
Given that the way these variables are calculated, MEAN WORD

SUPPORT is a measure of certainty, while PATH ENTROPIES is
a measure of uncertainty, they should mirror each other by
showing opposite effects on duration.We find that this is the case.

Let us start with MEAN WORD SUPPORT. This variable has
a significant effect on duration difference in all models. We
can see from the coefficients in Tables 3, 4 as well as from
its positive slope in the top row of Figures 3, 4 that higher
MEAN WORD SUPPORT is significantly associated with longer
durations. The higher the average semantic support of a word’s
predicted triphone path, the longer this word is pronounced.
This means that the more certain the speaker is in producing
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FIGURE 4 | Effects on duration difference in the mixed-effects regression models for the Idiosyncratic Network variables (left column), the Morphology Network

variables (middle column) and the Base Network variables (right column). Red regression lines indicate significant effects from the final models, gray regression lines

indicate non-significant effects from the initial models before the non-significant predictors were excluded.

the word, the more the articulation is durationally enhanced.
In other words, more certainty is associated with lengthening.
Interestingly, if we look at the distribution of MEAN WORD

SUPPORT in the top row of Figure 5, we can see that mainly two
derivational functions are responsible for this effect: Whereas the
paths of IZE and ATION words are always very well-supported
(as well as the paths of DIS in the Idiosyncratic Network and
in the Morphology Network), paths of NESS and LESS words
often feature weaker transition probabilities between triphones.
The distributional differences of each of these two categories
compared to the others are significant (Mann-Whitney, p <

0.001). This is true for all three networks. However, it is notable

that the mean support of words is generally lower in the Base
Network, especially for IZE, NESS, and LESS words. We will come
back to these differences between morphological categories and
between networks in the discussion.

If MEAN WORD SUPPORT indicates that with greater certainty,
durations become longer, our next predictor PATH ENTROPIES

should indicate that with greater uncertainty, durations become
shorter. This is the case. Moving on to the second row in
Figures 3, 4, we can observe negative slopes for the effect of PATH
ENTROPIES, which was significant in the models (marginally
significant in the mixed model for the Base Network). The
higher the Shannon entropy of the semantic support for the
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FIGURE 5 | Density distributions of variables by derivational function in the Idiosyncratic Network models (left column), the Morphology Network models (middle

column), and the Base Network models (right column). Note that in the first two panels in the top tow, the density curves around 1.0 are calculated over a single value.

predicted articulatory paths becomes, i.e., the more variation
of support there is in the system, the shorter the durations
are. More uncertainty is associated with reduction. In other
words, a speaker’s lower certainty in production means the
articulatory signal is less strengthened or less enhanced. Again,
there are differences between morphological categories in all
three networks. For example, words with IZE are characterized
by more diverse and informative support values, while the other
categories often feature more entropic supports across the paths,
especially LESS and DIS. All differences in the distributions are

significant at p < 0.001, except for the non-significant difference
between LESS and DIS in the Idiosyncratic Network and the
Morphology Network, and the difference between NESS and DIS

in the Base Network.

Semantic Density and Semantic Vector Length
Let us now look at the two variables that capture the semantic
relations to other words, SEMANTIC DENSITY and SEMANTIC

VECTOR LENGTH.
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SEMANTIC DENSITY is significant in the standard regression
models, but did not reach significance in the mixed models. Its
coefficients in Table 3 show that while it has a negative effect on
duration when derived from the Idiosyncratic Network and the
Base Network, it has a positive effect on duration when derived
from theMorphologyNetwork. This is illustrated in the third row
of Figure 3. For the Idiosyncratic Network and the Base Network,
the stronger an estimated semantic vector correlates with its
neighbors, the shorter becomes the duration of a word. For the
Morphology Network, the stronger an estimated semantic vector
correlates with the semantic vectors of its neighbors, the longer
becomes the duration of a word. High-density words live in a
space more semantically close to other words, i.e., they can be
said to be less idiosyncratic and, due to their being derived words,
more semantically transparent. Higher transparency can thus
lead to both lengthening and shortening, depending on how the
network is constructed.

Investigating the distribution of this variable, we observe that
SEMANTIC DENSITY shows differences between the networks.
The data points in Figure 3 and the distributions in Figure 4

show that density is lowest in the Idiosyncratic Network,
higher in the Morphology Network, and highest in the Base
Network. This means that density increases with the amount of
morphological structure we encode in the networks. SEMANTIC

DENSITY also shows differences between derivational functions.
Especially in the Idiosyncratic Network, this difference is very
pronounced. This is again illustrated in Figure 5 (third row,
first column). Words with LESS and IZE have particularly
high densities, whereas densities are lower for DIS and NESS

words, and lowest for ATION words. All of the distributions
are significantly different from each other at p < 0.001. The
fact that these morphological categories cluster so distinctly
is particularly surprising, given that the Idiosyncratic Network
was not provided with any information about these categories.
We will return to the peculiar behavior of this variable in
the discussion.

Turning to the second semantic variable, we can see that
SEMANTIC DENSITY is replaced by SEMANTIC VECTOR LENGTH

in the mixed models: SEMANTIC VECTOR LENGTH, while
not significant in the standard regression models, reaches
significance in the mixed models for the Idiosyncratic Network
and the Morphology Network (Table 4 and third row in
Figure 4). When derived from these networks, SEMANTIC

VECTOR LENGTH has a negative effect on duration. Recalling that
this variable captures activation diversity, we can say that being
active onmore semantic dimensions as a speaker has a facilitatory
effect in production. The more collocational relations a word has
to other words and the more meanings are activated, the shorter
it is pronounced.

Investigating the distribution of SEMANTIC VECTOR LENGTH

(Figure 5, fourth row), we observe that the estimated semantic
vectors are generally longer in the Morphology Network and the
Base Network than in the Idiosyncratic Network. Not only are
they longer on average, they also cluster more closely together
in terms of their length: the L1 distance in the Morphology
Network and the Base Network covers a range from about
2 to 3, while in the Idiosyncratic Network, it is spread out

across a range from about 0 to 2.5. One reason for this may
be purely mathematical: The vectors in the two networks with
information about the morphological category can often be
longer because the vector for the derivational function lexome
is added to the vector of the derived word’s content lexome.
However, the vectors are not just generally longer in these
networks, but the spread of the datapoints is also narrower.
This indicates that the words cluster more closely together. Since
SEMANTIC VECTOR LENGTH can represent activation diversity,
this is expected: If words share a morphological function with
other words, they become more similar to each other, hence are
more likely to be semantically active when a member of their
category is accessed. In the Idiosyncratic Network, words do
not explicitly share a morphological category, hence members
of a given category are not as likely to be co-activated. Again,
the distributions show that vector lengths cluster differently
depending on derivational function, meaning that different
morphological categories are characterized by different degrees
of semantic activation diversity.

It is interesting to note that when modeling durations, it is the
Base Network that seems to behave differently from the other two
networks, even though it shares with theMorphologyNetwork its
property of having information about morphological categories.
The mixed model based on the variables from the Base Network
is the least successful, as two predictors that are significant in
the other networks (PATH ENTROPIES and SEMANTIC VECTOR

LENGTH) do not reach significance in the Base Network. In
the section Matrices for Form and Meaning, we have already
discussed that the Base Network is conceptually unappealing
and theoretically flawed, as it wrongly assumes that the meaning
of a derived word is strictly composed of the meaning of its
base word and the meaning of the affix. However, we now
find that it also seems to perform less optimal in modeling
durations. Importantly, it is surprising that the Base Network
shows a facilitatory effect of SEMANTIC DENSITY similar to the
Idiosyncratic Network, instead of behaving like the Morphology
Network, i.e., showing an inhibitory effect. This is despite the
fact that the distribution of SEMANTIC DENSITY is very similar
in the Base Network and in the Morphology Network, but very
different in the Idiosyncratic Network (see again Figure 5, third
row). Moreover, it was the ˆSM matrix and the ŜB matrix which
are extremely highly correlated with each other (see the section
General Comparison of the Networks) and not at all correlated
with the ŜI matrix.

Exploring the aberrant behavior of the Base Network further,
we investigated the semantic space of the Base Network in
more detail and found that the clustering of words in the
semantic space is detrimental. This is exemplified in Table 7,
which shows an extract from the list of closest semantic neighbors
to words with DIS in the three networks. Quite expectedly,
the Idiosyncratic Network features a lower number of DIS

words as neighbors of target DIS words than the other two
networks. And there are more neighbors featuring DIS in the
Base Network than in the Morphology Network. This increase
of the number of DIS words as neighbors across the three
networks mirrors the increasing role of explicit morphological
information encoded in these networks. There is an important
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TABLE 7 | Extract from the closest semantic neighbors of DIS words in the three networks.

Word Phones Neighbors

Idiosyncratic network

disarm dIs,m m1d1 kInt w{m m{mb5 kr{NkI n5zI bl{NklI

disband dIsb{nd m1d1 kInt bl{NklI w{m m{mb5 kr{NkI pIpIn

discard dIsk,d dIs@r1 dIst1st dIskrEdIt dIsgr1s dIskVmf@t $l dIs@b1

discharge dIsJ,= dIsl2k dIsQnIst dIstrVst dIs@gri dIskVmf@t dIsgr1s dIsk@ntEnt

disclose dIskl5z m1d1 kInt m{mb5 w{m bl{NklI n5zI SIt

discount dIsk6nt dIsQnIst dIskVmf@t dIsgr1s dIsk@ntEnt dIstrVst dIst1st dIsg2z

discourse dIsk$s dIs@r1 dIst1st dIskrEdIt dIsgr1s dIskVmf@t dIsp{r@tI dIslQ=

disease dIziz dIskVv@R dIs@p7R dIs$d@R dIsJ,= dIsl2k dIsk6nt dIs@gri

disgrace dIsgr1s dIst1st dIskVmf@t dIs@r1 dIskrEdIt dIs@b1 dIslQ= dIsp{r@tI

disguise dIsg2z dIskVmf@t dIsgr1s dIst1st dIs@r1 dIsQnIst dIsk@ntEnt dIskrEdIt

dislike dIsl2k dIsQnIst dIskVmf@t dIsgr1s dIstrVst dIsk@ntEnt dIst1st dIsg2z

Morphology network

disarm dIs,m dIsjun@tI dIs5n dIsb{nd dIs@r1 dIskrEdIt dIsp{r@tI dIs@b1

disband dIsb{nd dIsjun@tI dIs5n dIs,m dIs@r1 dIskrEdIt dIs@b1 dIsp{r@tI

discard dIsk,d dIskVmf@t dIsgr1s dIst1st dIsQnIst dIs@r1 dIsk@ntEnt dIslQ=

discharge dIsJ,= dIsl2k dIsQnIst dIstrVst dIs@gri dIskVmf@t dIsgr1s dIsk@ntEnt

disclose dIskl5z dIs@r1 dIs5n dIs,m dIskrEdIt dIsjun@tI dIsb{nd dIsp{r@tI

discount dIsk6nt dIskVmf@t dIsQnIst dIsgr1s dIsl2k dIs@gri dIstrVst dIsg2z

discourse dIsk$s dIskVmf@t dIsgr1s dIst1st dIsQnIst dIsk@ntEnt dIs@r1 dIsrIg,d

disease dIziz dIskVv@R dIs@p7R dIs$d@R dIsJ,= dIsl2k dIsk6nt dIs@gri

disgrace dIsgr1s dIst1st dIskVmf@t dIs@r1 dIskrEdIt dIs@b1 dIslQ= dIsp{r@tI

disguise dIsg2z dIskVmf@t dIsgr1s dIst1st dIs@r1 dIsQnIst dIsk@ntEnt dIskrEdIt

dislike dIsl2k dIskVmf@t dIsQnIst dIsgr1s dIstrVst dIs@gri dIsk@ntEnt dIsg2z

Base network

disarm dIs,m dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIspl1s

disband dIsb{nd dIsg2z dIsp{r@tI dIs@r1 dIsgVst dIsl2k dIspl1s dIs@bidj@ns

discard dIsk,d dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIspl1s

discharge dIsJ,= dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIsQnIst

disclose dIskl5z dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIslQ=

discount dIsk6nt dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIsQnIst

discourse dIsk$s dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIspl1s dIs@bidj@ns dIsQnIst

disease dIziz dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIsQnIst

disgrace dIsgr1s dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIsl2k dIs@bidj@ns dIsQnIst

disguise dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIsl2k dIsQnIst dIslQ=

dislike dIsl2k dIsg2z dIsp{r@tI dIsgVst dIs@r1 dIs@bidj@ns dIslQ= dIsQnIst

difference, however, between the Morphology Network and the
Base Network. While in the Morphology Network, the DIS

neighbors consist of many different word types with DIS, in
the Base Network these are very often exactly the same word
types. A type analysis of the neighbors for all morphological
categories in the three networks confirms this impression:
Figure 6 shows that the Base Network is characterized by
the least diverse neighbor space of the three networks, and
that this is true for every investigated morphological function.
Given this behavior, it is thus no longer surprising that
measures derived from the Base Network might behave strangely
or not display effects. We conclude that the Base Network
is not only theoretically the least appealing of the three
networks, but that these problems also lead to an empirically
unattractive model.

DISCUSSION AND CONCLUSION

This study set out to explore how morphological effects on the

phonetic output, which have been frequently observed in the

literature, can be explained. From the perspective of current

speech production models and theories of the morphology-

phonology interaction, such effects are unexpected, and the
mechanisms behind them are unclear. Our study investigated
whether we can successfully model the durations of English
derivatives with a new psycho-computational approach, linear
discriminative learning. We hypothesized that measures derived
from an LDL network are predictive of duration. We also
explored what insight their effects can give us into the
mechanisms of speech production, and whether the measures
derived from these networks differ in their predictive power
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FIGURE 6 | Type count of top 8 neighbors by network and morphological function.

depending on the kind of information they have about
morphological functions.

Our study demonstrated that LDL-derived variables can
successfully predict derivative durations. The mean semantic
support of a word’s articulatory path, the entropy of a word’s path
supports, the mean correlation of a word’s predicted semantics
with the semantics of its neighbors, and the distance of the
semantic vector in the semantic space all significantly affect
duration. We have also shown that these measures explain a
reasonable proportion of the durational variance, in the sense
that their contribution to the explained variance is comparable to
the contribution of traditional linguistic variables used in corpus
studies of duration. The present study thus contributes to the
growing literature that demonstrates that LDL is a promising
alternative approach to speech production which can explain the
variation in fine phonetic detail we find in different kinds of
words, be they simplex, complex, or non-words (cf. Baayen et al.,
2019b; Chuang et al., 2020).

Regarding the question what the effects of LDL-derived
variables can tell us about speech production, we find that two
important concepts relevant for production are the certainty
in the association of form with meaning and the semantic
relations of words to other words. The positive effects of
MEAN WORD SUPPORT and the negative effects of PATH

ENTROPIES on duration both indicate that generally, higher
certainty in the association of form and meaning is associated
with longer durations. The better an articulatory path is on
average semantically supported, and the less these supports
vary over the path, the more strengthened the articulation
becomes. It is important to note that the metaphor of “certainty”
which is ascribed to these measures can generate two opposing
expectations, both of which are intuitive in their own way. On
the one hand, it could be assumed that the more certain a
speaker is, the more strengthened the signal will be, leading to
longer durations. This may be because a speaker invests more
energy in maintaining duration when they are certain, and less
energy when they are uncertain, in order to not prolong a
state of uncertainty (Tucker et al., 2019). On the other hand,
it could be assumed that the more certain a speaker is, the
more efficient they can articulate, leading to shorter durations.

This may be because more certainty could enable a speaker
to select the correct path more quickly. The present results
provide support for the first interpretation rather than the
second one.

This interpretation is in line with the findings for other
measures that have been interpreted with reference to the concept
of certainty. Tomaschek et al. (2019), for instance, found that
with higher functional certainty, gauged by the support for
a word’s inflectional lexome and the word’s overall baseline
support, segment durations of different types of English final S
are lengthened. Kuperman et al. (2007) found that with higher
certainty, gauged by the paradigmatic support (probability)
of Dutch compound interfixes, these interfixes are realized
longer. Cohen (2014) found that higher certainty, gauged by
the paradigmatic probability of English suffixes, is associated
with phonetic enhancement, i.e., again with longer durations.
Cohen (2015) found that higher paradigmatic support can also
enhance Russian vowels. Tucker et al. (2019) found that with
higher support for tense and regularity (more certainty), acoustic
duration of stem vowels increases, and with greater activation
diversity (more uncertainty), acoustic duration decreases. In
sum, regarding the question whether certainty has an effect
of enhancement or reduction, recent evidence—including the
present study—points toward enhancement.

The significant effects of SEMANTIC DENSITY and of
SEMANTIC VECTOR LENGTH indicate that a second relevant
factor in the production of derivatives is the semantic relation
of a word to other words. Starting with SEMANTIC DENSITY,
depending on the architecture of the network, the average
semantic similarity of a word’s neighbors to this word can
lead to both longer and shorter durations. If the network
has information about the semantics of the morphological
category of the derivative and of the derivative itself, higher
densities are associated with longer durations. If the network
has no such information and treats all words as idiosyncratic,
or if the network has information about the morphological
category and the semantics of the derivative’s base word, higher
densities are associated with shorter durations. In order to get
a better understanding of this somewhat puzzling finding, three
observations are helpful.
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Let us first compare the Idiosyncratic Network and the
Morphology Network. We can see in the data points in Figure 3

as well as in the density plots in Figure 5 that SEMANTIC

DENSITY is distributed very differently when derived from the
Idiosyncratic Network than when derived from the Morphology
Network (both the model results as well as the distributions
are plotted on the same x-axis scale, respectively, for easier
comparison). For the Idiosyncratic Network, there are hardly
any data points above 0.8 and the vast majority of data points
have density values below 0.4. For the Morphology Network, on
the other hand, the vast majority of data points show densities
above 0.8. At the conceptual level this makes sense: We would
expect words sharing the semantics of their morphological
category to be closer to their neighboring words, i.e., to be
more transparent and less idiosyncratic. This means that if the
model has information about morphological categories, density
should be generally higher. This is the case. In contrast, words in
the Idiosyncratic Network are generally more dissimilar to each
other because they do not share the semantic information that
comes with belonging to a particular morphological category.
This difference between the two networks is also illustrated by
the example of DIS neighbors in Table 7, which shows that in the
Morphology Network a larger proportion of nearest neighbors
comes from the morphological category of the target word.

Returning to the relation between SEMANTIC DENSITY and
duration, we can now see in Figure 3 that the contradictory
effects happen at different ends of the distribution. The negative
effect found in the Idiosyncratic Network is carried by the low-
density words, while the positive effect of semantic density on
duration is carried by the high-density words. The positive
effect of densities above 0.8 is even visible in the Idiosyncratic
Network: the residuals in that range are clearly skewed toward
higher durations. If we attempt an interpretation of the relation
of SEMANTIC DENSITY and word duration across these two
networks, we can say that the shortest durations are found in
the middle of the semantic density range. Having many close
semantic relatives slows down articulation, and so does having
very few relatives.

What about SEMANTIC DENSITY in the Base Network?
SEMANTIC DENSITY in this network is distributed similarly
to the Morphology Network, yet the effect is similar to the
Idiosyncratic Network, as it negatively affects duration. However,
our exploration of the type diversity in the semantic space of
the networks in the section Semantic Density and Semantic
Vector Length has shown that the neighbors that are behind
these semantic densities are not at all diverse in the Base
Network. This was true to such an extent that for the DIS

words, for example, the Base Network considered the same
few words (especially disguise, disparity, disgust, disarray) to
be the closest neighbors for the vast majority of the target
words. We consider this clustering to be rather unrealistic.
Most likely, it is the consequence of the questionable premises
underlying this network architecture discussed earlier. Overall,
we conclude that the effect of SEMANTIC DENSITY in this
network is not interpretable.

The question remains how we can understand the opposite
effects of SEMANTIC DENSITY in the Idiosyncratic Network and
the Morphology Network. If our interpretation that SEMANTIC

DENSITY captures semantic transparency is correct, we would
expect higher densities to lead to longer durations. More
transparent words should be more protected against phonetic
reduction because they feature a stronger morphological
“boundary,” i.e., they are more decomposable. Such lengthening
effects induced by supposedmorphological boundaries have been
observed in several studies (e.g., Hay, 2001, 2003, 2007; Plag and
Ben Hedia, 2018). If we assume that the theoretical concept of
a morphological boundary and the similarity of a word to its
neighboring words capture the same underlying dimension of
semantic transparency, we should still be able to replicate this
effect. However, it is not entirely clear why a higher degree of
semantic transparency would lead to lengthening. Given that a
higher semantic transparency means that more words will be
more strongly activated, we would rather expect durations to
shorten. This is because semantic activation diversity has been
found to be associated with reduction (Tucker et al., 2019).
This reduction in speech production is mirrored in reaction
time experiments that have found shorter reaction times with
larger morphological family sizes (Schreuder and Baayen, 1997;
Bertram et al., 2000). This family size effect has been interpreted
as a semantic effect arising through activation spreading between
morphologically related words. Interestingly, in the study by
Bertram et al. (2000), the effect was restricted to transparent
family members. This is an indication that the effect may not be
as linear as standardly assumed.

A non-linear, U-shaped effect of transparency on reaction
times was observed by Plag and Baayen (2009). These authors
demonstrated that suffixes that are either very easily segmentable
or hardly segmentable have lower processing costs (as gauged
by shorter reaction times in lexical decision) than suffixes in
the middle of the segmentability range. Plag and Baayen (2009)
interpreted this as an effect of the opposing forces of storage and
computation. Assuming that our high-density words are those
that are easily segmentable, while our low-density words are the
ones that are not segmentable, we can come up with the tentative
interpretation that the short durations in the mid-range of
density are a reflection of the higher processing costs incurred by
the forms in the middle of the segmentability scale. One problem
with this account is, however, that higher processing costs in
lexical decision seem to be correlated with shorter durations
in production, but with longer latencies in comprehension.
This contradiction can only be solved if we know more about
the specific processing differences between production and
comprehension, or about the specific processing stages involved
in lexical decision vs. freely generated conversational speech. We
leave this issue to be explored in future studies.

The second variable capturing the semantic relation between
words that this study has shown to be able to successfully
predict duration is SEMANTIC VECTOR LENGTH. Compared to
SEMANTIC DENSITY, the effect of SEMANTIC VECTOR LENGTH is
more straightforward to interpret. A longer semantic vector, i.e.,
a higher activation diversity, is associated with shorter duration.
Tucker et al. (2019) argue that the more semantic dimensions a
speaker is active on for a word, the more confusable the meanings
of this word are. When more meanings are activated and these
meanings are more confusable, the speaker is more uncertain
and therefore invests less energy in maintaining the signal. In this
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account, our finding that words with higher activation diversity
are shorter is thus expected.

Let us now return to the role of morphological information
in our networks. Importantly, our results for the two semantic
variables show that differences betweenmorphological categories
can emerge even from the network without any information
about derivational functions. For example, semantic density is
significantly higher for words with the derivational functions
NESS, LESS and DIS than for words with ATION. This is
in accordance with traditional descriptions of the semantic
transparency of affixes, which posit -ness, -less, and dis- as
producingmostly transparent derivatives, while words with-ation
are assumed to be less transparent (Bauer et al., 2013; Plag,
2018). Only IZE does not fit that pattern, as many IZE words
are characterized by high densities but are considered about
as transparent as -ation (however, -ize is considered to be
more productive than -ation). Another interesting example of
this is the distribution of SEMANTIC VECTOR LENGTH. The
longer the vector of a word, the higher its semantic activation
diversity becomes and the more collocational relations it has
to other words, i.e., the more polysemous it is. The average
vector length was highest for IZE and ATION words. This
reflects traditional descriptions of -ize and -ation having highly
multifaceted semantics (cf. the locative, ornative, causative,
resultative, inchoative, performative or similative meaning of
-ize, and the meanings of -ation denoting events, states, locations,
products, or means; Bauer et al., 2013; Plag, 2018). The affixes
-less, dis-, and to a lesser extent -ness, on the other hand, have
comparatively clearer and narrower semantics. In sum, these
differences betweenmorphological categories in the Idiosyncratic
Network demonstrate that LDL can discriminate derivational
functions from sublexical and contextual cues alone.

Our results have implications for morphological theory and
speech production models. First, the acoustic properties of
morphologically complex words can be modeled successfully by
implementing a discriminative learning approach. Traditional
approaches were largely unable to accommodate effects of
morphological structure on the phonetic output production
(Chomsky and Halle, 1968; Kiparsky, 1982; Dell, 1986; Levelt
et al., 1999; Roelofs and Ferreira, 2019; Turk and Shattuck-
Hufnagel, 2020). Many theories of morphology-phonology
interaction assume that morphological boundaries are erased
in the process of passing morphemic units on to phonological
processing. And many models of speech production assume an
articulator module that realizes phonemic representations with
pre-programmed gesture templates independently of morphemic
status. These approaches lack explanations for the fact that
a word’s morphological structure or semantics can cause
differences in articulatory gestures, as they do not allow for a
direct morphology-phonetics interaction. In LDL, however, such
interaction is expected and can be explained by its underlying
theoretical principles of learning and experience.

Second, our implementations show that morphological
functions can emerge as a by-product of a morpheme-free
learning process. Morphology is possible without morphemes.
Given the many problems with the morpheme as a theoretical
construct (see, e.g., Baayen et al., 2019b), this is a welcome
finding. Finding morphological effects on phonetic realization

need not lead to the conclusion that these effects must originate
frommorphemes. They can also emerge in the mapping of forms
and meanings that have no information on morphology at all
(see, e.g., Baayen et al., 2011 et seq. for more examples of this).
As Divjak (2019) puts it, “it is not because a phenomenon can be
described in a certain way that the description is psychologically
realistic, let alone real” (p. 247). Of course, the success of
LDL in this study and others does not allow us to infer that
there is no cognitive plausibility to these structural units at
all. If LDL is modeling rather how children learn languages,
adult speakers may learn differently once they have explicit
knowledge of morphemic structure. Such structure might also be
acquired after-the-fact, when a speaker has seen enough words
to start seeing analogies, or after learning about this structure
explicitly. The morpheme might be epiphenomenal rather than
superfluous. However, LDL does demonstrate that such fixed
units of form and meaning are at the very least not obligatory.
The connection between form and meaning can be dynamic and
relational, allowing morphological theory to reframe its semiotic
legacy. In fact, it has been argued that since its discriminative
underpinnings emphasize that language is a system of différence,
discriminative learning elegantly carries the discipline back to its
Saussurean heritage (Blevins, 2016).

There are several potential future directions for discriminative
learning studies on the phonetics of derived words. First, it
would be interesting to model the durations of more derivational
functions in a larger dataset. Investigating more than the five
morphological categories of the present study might reveal
further important differences between these categories. Second,
one issue that we would like to resolve in future studies concerns
the response variable. In a corpus study of duration with
different word types, it is essential to control for phonological
length. This is why instead of duration, we decided to model
duration difference, i.e., the residuals of a model regressing a
word’s absolute duration against the sum of its average segment
durations. However, for an LDL implementation, this response
variable is not optimal, since strictly speaking it still implicitly
assumes segmental structure. It would be desirable to control for
segmental makeup without actually having to refer to segments.
Third, we think it could be fruitful to investigate how best to
construct vectors for words with multiple derivational functions.
This would enable us to gain more insight into the complex
interplay of morphological categories. And, finally, we think
that to further test how well LDL can predict durations when
the semantics of derivatives are strictly compositional (like in
the Base Network), one interesting avenue for future research
would be to use vectors that already assume this compositionality
when generating lexome-to-lexome vectors.6 That is, while in
the present study we used lexome vectors that Baayen et al.
(2019b) generated by using the Widrow-Hoff algorithm to
predict function lexomes in addition to content lexomes for
words in a sentence, it is conceivable to use vectors generated
by predicting function lexomes in addition to content lexomes

for bases in a sentence. The lexome vector
−−−→
happy, for instance,

would then capture relations to contextual lexomes surrounding

6Thanks are due to Reviewer 2 for this suggestion.

Frontiers in Psychology | www.frontiersin.org 20 August 2021 | Volume 12 | Article 678712

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Stein and Plag Modeling Derivative Durations With LDL

the word happiness as well. Similarly, one could generate vectors
of derived words to use in the Idiosyncratic Network that do not
capture cues of any functional lexomes by refraining from coding
them altogether in the training data. We leave this interesting
option to be explored in future studies.

To summarize, this study modeled the acoustic duration
of 4,530 English derivative tokens with the morphological
functions DIS, NESS, LESS, ATION, and IZE in natural speech
data, using predictors derived from a linear discriminative
learning network. We have demonstrated that these measures
can successfully predict derivative durations. They reveal that
more semantic certainty in pronunciation is associated with
acoustic enhancement, i.e., longer durations, which is consistent
with previous studies of paradigmatic probability and semantic
support measures. We have also shown that differences between
morphological categories emerge from the network, even without
explicitly providing the network with such information. This
further strengthens the position of LDL as a promising theoretical
alternative for speech production, and provides further evidence
that morphology is possible without morphemes.
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