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Recent research has shown that seemingly identical suffixes such as word-final /s/
in English show systematic differences in their phonetic realisations. Most recently,
durational differences between different types of /s/ have been found to also hold for
pseudowords: the duration of /s/ is longest in non-morphemic contexts, shorter with
suffixes, and shortest in clitics. At the theoretical level such systematic differences are
unexpected and unaccounted for in current theories of speech production. Following a
recent approach, we implemented a linear discriminative learning network trained on real
word data in order to predict the duration of word-final non-morphemic and plural /s/ in
pseudowords using production data by a previous production study. It is demonstrated
that the duration of word-final /s/ in pseudowords can be predicted by LDL networks
trained on real word data. That is, duration of word-final /s/ in pseudowords can be
predicted based on their relations to the lexicon.

Keywords: morphology, speech production, linear discriminative learning, computational modelling, pseudoword
paradigm, subphonemic differences

INTRODUCTION

Many studies on the acoustic properties of phonologically homophonous elements have shown
unexpected effects of their morphological structure on their phonetic realisation. Such effects were
shown for seemingly homophonous lexemes (Gahl, 2008; Drager, 2011), for free and bound variants
of stems (Kemps et al., 2005a,b), and for prefixes (Ben Hedia and Plag, 2017; Ben Hedia, 2019).

For the level of individual segments, a number of studies have shown that the acoustic realisation
of word-final /s/ and /z/ (henceforth S) in English depends on its morphological status and category.
Corpus studies (Zimmermann, 2016; Plag et al., 2017) found that non-morphemic word-final
S shows longest acoustic durations, followed by suffixes, which in turn are followed by clitics.
Experimental studies (Walsh and Parker, 1983; Hsieh et al., 1999; Seyfarth et al., 2017; Plag et al.,
2020) confirm durational differences between different types of S. However, their results are mostly
not as clear as those by previous corpus studies. That is, only recently a study by Schmitz et al. (2020)
on word-final S in pseudowords confirmed the pattern of durational differences found previously
only in corpus studies.

Frontiers in Psychology | www.frontiersin.org 1 August 2021 | Volume 12 | Article 680889

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.680889
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2021.680889
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.680889&domain=pdf&date_stamp=2021-08-09
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.680889/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-680889 August 3, 2021 Time: 20:18 # 2

Schmitz et al. Modelling Morpho-Phonetic Effects in LDL

Most importantly, none of the aforementioned studies on the
matter of word-final S was able to explain found differences on a
theoretical level. Traditional models of speech production come
with the assumption of having no morphological information
in phonetic processing (Levelt et al., 1999; Roelofs and Ferreira,
2019; Turk and Shattuck-Hufnagel, 2020), thus rendering an
explanation on the basis of differing morphological categories
improbable. Other accounts, e.g., standard feed-forward theories
of morphology-phonology interaction (e.g., Chomsky and Halle,
1968; Kiparsky, 1982) or prosodic phonology (e.g., Booij, 1983;
Selkirk, 1996; Goad, 1998, 2002), do not offer a satisfying
explanation for such durational differences, either.

Only recently, Tomaschek et al. (2019) analysed durational
differences between types of S by means of an implementation
of naïve discriminative learning (Ramscar and Yarlett, 2007;
Ramscar et al., 2010; Baayen et al., 2011). Their results indicate
that the duration of a word-final S in English can be sufficiently
approximated by considering the support for its morphological
function from the word’s sublexical and collocational properties.

This paper continues this line of evidence by making use of the
computational model of linear discriminative learning (Baayen
et al., 2019b; Chuang et al., 2020), the more advanced successor
of naïve discriminative learning. We analyse the durational
differences between non-morphemic and plural word-final /s/
found not in real words, but in pseudowords. By using nonce
words, we want to rule out potentially confounding effects of
the lexical and contextual properties of the individual utterances
(e.g., Caselli et al., 2016). Making use of measures derived
from this implementation of linear discriminative learning, the
present study demonstrates that the effects found by Tomaschek
et al. (2019) can be confirmed. Differences in phonetic duration
emerge from differences in the strengths of associations between
form and meaning.

We proceed as follows. The next section will give an overview
on studies on the duration of word-final S, and possibilities
and obstacles of theoretical accounts. Section “Introduction to
LDL” introduces linear discriminative learning on a theoretical
level, while Section “Combining Real Words and Pseudowords in
an LDL Implementation” presents the implementation of linear
discriminative learning used in the present study. The analysis
and results of our study are given in Sections “Analysis” and
“Results.” A discussion of the obtained results and a conclusion
follow in Section “Discussion.”

WORD-FINAL /s/ AND ITS DURATION

A number of morphological categories can take the phonological
form of /s/ in English, i.e., plural, genitive, genitive plural, third
person singular, and the clitics of is, has, and us. In itself, there
is nothing in the phonological form of these morphological
categories that indicates systematic differences in realisation on
the phonetic level between different S morphemes or a non-
morphemic S. Yet, a number of studies report on durational
differences between different types of S.

Corpus studies on word-final S in English find differences
in duration between non-morphemic, suffix, and clitic variants.

Zimmermann (2016) on New Zealand English, and Plag et al.
(2017) and Tomaschek et al. (2019) on North American English
find that non-morphemic S (as in grace, cheese, bus) shows longer
durations than plural S and the clitic S of has and is, while plural
S in turn shows longer durations than clitic S.

Turning to experimental studies, results are not as consistent.
Walsh and Parker (1983) conducted a production experiment
with three homophonous word pairs with all words ending in
either a non-morphemic or morphemic word-final S. Tested
in three different contexts, they find durational differences in
two of them. They conclude that morphemic S in English is
systematically lengthened by speakers (Walsh and Parker, 1983:
204). However, their conclusion relies on only a small number
of 110 observations, a mixture of common and proper nouns as
items, and lacks appropriate inferential statistical methods as well
as an integration of covariates.

Hsieh et al. (1999) find that plural S is longer than third
person singular S in child-directed speech. However, as their data
was originally elicited for another study (Swanson and Leonard,
1994), half of all plural items occurred sentence-finally, while
almost all third person singular items occurred sentence-medial.
Thus, the durational differences found by Hsieh et al. (1999) may
be attributed to effects of phrase-final lengthening (e.g., Klatt,
1976; Wightman et al., 1992) rather than to phonetic differences
between different types of S.

In another study, Seyfarth et al. (2017) conducted a production
experiment on word-final /s/ and /z/ in non-morphemic, plural,
and third person singular contexts. Their results indicate that
non-morphemic S is shorter than morphemic S. However, they
do not find a difference between voiced and voiceless instances,
even though previous studies confirm differences dependent on
voicing (e.g., Plag et al., 2017). With only six items ending in /s/,
but twenty items ending in /z/, it is questionable how meaningful
their results on different types of S are.

Comparing affixes, Plag et al. (2020) find that plural
and genitive plural S differ in duration. That is, in their
study the genitive plural suffix shows a longer duration than
the plural suffix.

Most recently, Schmitz et al. (2020) conducted a production
experiment on pseudowords carrying either a non-morphemic,
plural, or is- or has-clitic S. Their results are in line with those of
aforementioned corpus studies. That is, non-morphemic S shows
longest S durations, followed by plural S, which in turn is followed
by clitic S, while there is no significant durational difference
between the two clitics. An overview of the durational differences
found in corpus and experimental studies is given in Table 1.

There is a noteworthy discrepancy between experimental
results and the results based on conversational speech data.
Results of corpus studies are in line with each other, but they
might be flawed due to imbalanced data sets. Experimental
studies, on the other hand, often rely on small data sets,
and lack phonetic covariates, appropriate statistical methods,
or a proper distinction of voiced and voiceless segments.
Additionally, previous experimental studies rely on different
experimental methods, making their results subject to their
pertinent limitations. Another crucial difference between corpus
and experimental studies is the use of homophones. While corpus
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TABLE 1 | Overview of durational differences of word-final /s/ found in
previous studies.

Study Findings

Zimmermann, 2016;
Plag et al., 2017;
Tomaschek et al., 2019;
Schmitz et al., 2020

Non-morphemic > plural > clitics

Walsh and Parker, 1983 Plural > non-morphemic

Hsieh et al., 1999 Plural > third person singular

Seyfarth et al., 2017 Plural > non-morphemic

Plag et al., 2020 Genitive plural > plural

studies take into consideration all words, most experimental
studies restrict their data to homophone pairs. This limitation to
homophones and the competition between their representations
might be a problem of its own as it is unclear how members
of such homophone pairs may influence each other in speech
production. Lastly, differences in results might also arise due
to potentially confounding effects of the lexical properties and
contextual effects of the items under investigation.

But even if the direction of durational differences between
different types of S is not entirely clear yet, it appears
that there are indeed durational differences of some sort.
How is one to explain such differences? In standard feed-
forward theories of morphology-phonology interaction (e.g.,
Chomsky and Halle, 1968; Kiparsky, 1982) all types of S,
morphemic and non-morphemic, are treated in a similar
way. For morphologically complex words, e.g., words ending
in a morphological word-final S, a process named “bracket
erasure” is said to remove any morphological information.
Thus, leaving speech production with no information on the
morphology of a complex word (e.g., the plural form cats),
rendering its morphological information equal to that of a
morphologically simple word ending in a non-morphemic word-
final S (e.g., the singular form bus). In such a system, there is
nothing that could account for realisational differences between
phonologically identical forms of suffixes, clitics, and non-
morphemic segments.

A similar distinction of lexical and post-lexical processing is
also found in established theories of psycholinguistics. According
to models of speech production (e.g., Levelt et al., 1999; Roelofs
and Ferreira, 2019), morphemic types of word-final S do not
differ in their realisation from non-morphemic instances of
word-final S. For a plural form, e.g., cats, the lemma of the
lexical concept CAT and a plural specification are retrieved.
Then, during morphological encoding, the plural specification
is mapped onto the base lemma, i.e., cat, and the plural
suffix, < -s >. During phonological encoding, phonemes are
selected for the corresponding morphemes, i.e., /k/, /æ/, /t/,
and /s/. Finally, the phonemes are syllabified, resulting in a
phonological word representation. Such phonological forms
are then forwarded and used in speech production. Thus, no
information on the morphological origin of particular segments
is contained in the phonetic realisation, rendering an explanation

FIGURE 1 | Prosodic configuration for (A) non-morphemic and (B,C) plural S.

on durational differences between types of S on morphological
grounds improbable.

In prosodic phonology (e.g., Booij, 1983), differences in
phonetic realisation may arise from the position of sounds in
different configurations of prosodic constituency. For instance,
different types of word-final S can be analysed as being integrated
at different levels of the hierarchical prosodic configuration.
In the case of word-final S, different levels co-determine
differing degrees of integration of an S to the word it
belongs to. Non-morphemic S, uncontroversially, is an integral
part of the prosodic word itself (Selkirk, 1996), see (A) of
Figure 1. For plural S, Goad (1998) analyses it as an “internal
clitic”, see (B), while Goad (2002) analyses it as an “affixal
clitic”, see (C).

Thus, the prosodic approach posits a structural prosodic
difference between types of S. However, it is not so clear
what particular phonetic effects these differences would predict.
Most plausibly, a higher degree of integration would correlate
with shorter durations, predicting shortest S durations in
monomorphemic words. Yet, findings on S duration show the
opposite (e.g., Zimmermann, 2016; Plag et al., 2017; Tomaschek
et al., 2019; Schmitz et al., 2020), i.e., the duration of non-
morphemic S is longest.

An alternative explanation for durational differences between
different types of S can be found within the computational
modelling framework of naïve discriminate learning (NDL;
e.g., Ramscar and Yarlett, 2007; Ramscar et al., 2010; Baayen
et al., 2011). NDL is based on simple but powerful principles
of discriminative learning theory (Wagner and Rescorla,
1972; Rescorla, 1988), i.e., learning results from exposure
to informative relations among events in the individual’s
environment. Such events are used to form associations between
them, while the associations and their resulting representations
are constantly updated on the basis of new experiences.
Associations are built between features (“cues”, e.g., biphones)
and content lexemes or morphological functions (“outcomes”,
e.g., different types of S), which co-occur in events in which
the individual is predicting outcomes from cues (Tomaschek
et al., 2019: 11). Using the Rescorla-Wagner equations (Rescorla
and Wagner, 1972; Wagner and Rescorla, 1972; Rescorla, 1988),
relations between cues and outcomes are modelled. That is, the
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weight of an association, i.e., its strength, increases every time a
cue and an outcome co-occur, while it decreases if a cue occurs
without the outcome. The result of this process is a continuous
recalibration of association strengths, which is a crucial part of
discriminative learning.

NDL has been used successfully to model various
morphological phenomena, e.g., reaction times in studies
on morphological processing (e.g., Baayen et al., 2011; Blevins
et al., 2016; see Plag, 2018, chapter 7 for an introduction
to NDL in morphological research). For word-final S,
Tomaschek et al. (2019) reproduce the differences in duration
found by Plag et al. (2017) by means of NDL measures.
Their study shows that the duration of different types of
S can be approximated by considering the support for
these morphological functions from a word’s sublexical and
collocational properties. In the NDL network, all words and
their diphones within a five word window centred on the
target word that contained the S served as cues, and were
associated with the morphological functions, which served as
outcomes. Two main measurements from this network emerged
as predictive for S duration. First, the so-called “activation” as
a measure of an outcome’s baseline activation, i.e., of how well
an outcome is entrenched in the lexicon. Second, the so-called
“activation diversity” as a measure to quantify the extent to
which the cues in a given context also support other targets.
Taken together, the following pattern for S duration emerges:
When the uncertainty about a targeted outcome increases, i.e.,
the level of “activation” decreases and the level of “activation
diversity” increases, the duration of S decreases. In other words:
The stronger the support for a morphological function is, both
from long-term entrenchment and short-term from the context,
the longer its duration.

While NDL implementations apparently offer some form
of explanation for different durations of different types of S,
they also come with shortcomings and limitations. In NDL,
a word’s meaning is defined in terms of the presence or
absence of an outcome, i.e., NDL “adopted a stark form of
naive realism” (Baayen et al., 2019b: 4) just for computational
reasons. That is, NDL takes into account that words tend
to have similar forms, but ignores that words are also
similar in meaning. Thus, Baayen et al. (2019b) introduced
semantic vectors of reals replacing the binarily coded row
vectors of the semantic matrix (see Section “The S Matrix:
Semantic Vectors”), naming their new implementation linear
discriminative learning (LDL) instead of naïve discriminative
learning. Outcomes are no longer assumed to be independent,
i.e., semantic similarities are now reflected, and networks
are mathematically equivalent to linear mappings of matrices,
i.e., vector spaces. It is the implementation of such linear
discriminative learning that the present paper makes use
of for analysing the duration of word-final types of S.
Our paper explores whether measures derived from an LDL
implementation are predictive of different types of S and their
durations. In order to better understand the relation between
traditional psycholinguistic variables (such as lexical frequencies,
neighbourhood densities, bigram probabilities, morphological
category etc.) and LDL measurements we also compare models

that use measures derived from an LDL implementation with
models that use traditional measures to predict S durations.
Finally, we test whether measures derived from an LDL
implementation render the specification of morphological
structure proper (affix vs. no affix) as predictor variable for S
duration unnecessary.

INTRODUCTION TO LDL

Overview
Linear discriminative learning as a computational model
implements a discriminative view of learning. In contrast to
deep learning models that have multiple hidden layers based on
non-linear functions, LDL networks are very simple two-layer
networks and are linguistically transparent and interpretable.
In LDL, the mental lexicon consists of five high-dimensional
numeric matrices, each of which represents a different subsystem:
the visual matrix, retina; the auditory matrix, cochlea; the
semantic matrix; the speech matrix, speaking; and the spelling
matrix, typing. For the current implementation, the semantic and
the speech matrix are most important.

With regard to the mappings between vectors, linear mappings
are implemented. These mappings are estimated using the linear
algebra of multivariate regression. Thus, each mapping is defined
by a matrix A that transforms the row vectors in a matrix
X into the row vectors of a matrix Y , i.e., Y = XA. Then,
A = X′Y , where X′ is the generalised inverse of X. We will
return to the mapping of matrices in Section “Comprehension
and Production,” and refer the interested reader to Baayen et al.
(2019b) for an introduction to the mathematical details, as well as
to Milin et al. (2017) for a detailed discussion on the restrictions
and possibilities of linear mappings.

Another important feature of LDL is its notion of lexomes, i.e.,
basic semantic units corresponding to words or morphological
functions. As outlined in Chuang et al. (2020), lexomes
fall into two groups: content lexomes, and inflectional and
derivational lexomes. Content lexomes can be morphologically
simple or complex forms, i.e., cat and cats. Inflectional
lexomes represent inflectional functions, e.g., number, tense,
and aspect. Derivational lexomes represent derivational
functions, e.g., morphological categories such as -NESS, -
LESS, or UN-. Each lexome is paired with a vector of the
aforementioned five subsystems. That is, for the semantic
matrix, each lexome is paired with a semantic vector, making
each lexome a pointer to a semantic vector on the one hand
(Milin et al., 2017), and a location in a high-dimensional
space on the other hand. For monomorphemic words, the
semantic vector is identical to the semantic vector of the
corresponding lexome. That is, the semantic vector of the
word cat, −→cat, is identical to the vector of the lexome CAT.
For complex words, the semantic vector is the sum of its
corresponding lexome vectors. That is, the semantic vector of
the word cats, −→cats, is the sum of the semantic vectors of the
lexomes CAT and PLURAL, −→cat +

−−−→
plural. The implementation

of LDL and the matrices necessary for the present paper are
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introduced in the subsequent sections. Please refer to https:
//osf.io/zy7ar/?view_only=ef43a5caf6444270a56074027d7d6482
for the full documentation of the data set, the implementation in
R (R Core Team, 2020), and the R script.

The S Matrix: Semantic Vectors
The semantic matrix S contains semantic vectors of word forms
on basis of their corresponding lexomes. That is, the semantic
vector−→s in S for a simplex word is identical to its corresponding
lexome, while the semantic vector −→s in S for a cosmplex word
is the sum of its corresponding lexomes, e.g.,

−−→
apple+

−−−→
plural

for apples (Baayen et al., 2019b). Semantic vectors of lexomes
can be derived in different ways (e.g., Landauer and Dumais,
1997; Jones and Mewhort, 2007; Shaoul and Westbury, 2010;
Mikolov et al., 2013).

The C Matrix: Form Vectors
The present study uses triphones to represent form, as previous
studies (Milin et al., 2017; Baayen et al., 2019b; Chuang
et al., 2020) have shown that triphones capture the variability
of neighbouring phonological information well for English.
Triphones are sequences of three phones within a word form.
They overlap and can be understood as proxies for phonetic
transitions. The cue matrix C encodes the forms of words in
a binary fashion, giving information on which triphones are
part of which word. This is illustrated in (1). In each word’s
individual form vector −→c , the presence of a triphone is marked
with 1, while the absence is marked with 0. The cue vectors
of all words of a set of words constitute its C matrix. That is,
each row in such a C matrix represents a word form, while the
columns of the respective C matrix represent all triphones of its
underlying word set.

Comprehension and Production
In LDL, comprehension refers to a model that has form vectors
as input and semantic vectors as output. We illustrate the
C matrix of a set of words with a toy lexicon containing
the words cat, bus, and eel in (1). Here, the DISC keyboard
phonetic alphabet (the “Distinct Single Character” representation
introduced by Burnage, 1988) is used for triphone representation.
Word boundaries are marked by the # symbol.

C =
cat
bus
eel

#k{ k{t {t# #bV bVs Vs# #il il# 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 1

 .

For the same toy lexicon, suppose that the semantic vectors for
these three words are the row vectors of the following S matrix:

S =
cat
bus
eel

cat bus eel 1.0 0.2 0.5
0.4 1.0 0.1
0.2 0.3 1.0

 .

To map forms onto meanings we need transformation matrix F,
such that

CF = S.

The transformation matrix F is straightforward to obtain. Let C′
denote the Moore-Penrose generalised inverse1 of C, available in
R as the ginv function of the MASS package (Venables and Ripley,
2002). Then,

F = C′S.

For the toy lexicon example,

F =

#k{
k{t
{t#

#bV
bVs
Vs#
#il
il#

cat bus eel

0.33 0.06 0.16
0.33 0.06 0.16
0.33 0.06 0.16
0.13 0.33 0.03
0.13 0.33 0.03
0.13 0.33 0.03
0.10 0.15 0.50
0.10 0.15 0.50


,

with CF being exactly equal to S in this simple example. That
is, taking form vectors as input for the prediction of semantic
vectors as output, i.e., solving Ŝ = CF, this toy example
correctly predicts 100% of all (three) words’ semantics, i.e.,
ŝi = si. In more complex cases, semantic vectors are only
approximately identical, thus, for a word i and its predicted
semantic vector ŝi, comprehension is successful if ŝi shows
the highest correlation with the targeted semantic vector si
(Baayen et al., 2019b). Following this method, one can report the
percentage of comprehension accuracy.

Production as modelled in in LDL takes semantic vectors
as input and delivers form vectors as output. Using the same
toy lexicon as before, we adapt its C matrix, i.e., we borrow
the notation by Baayen et al. (2019b) and henceforth call
it T as is contains the Targeted triphones. For production,
the transformation matrix G is of interest. Similar to F for
comprehension, it is straightforward to obtain. Let S′ denote the
Moore-Penrose generalised inverse of S. Then,

G = S′T.

Given G, one can then predict the triphone matrix T̂ from the
semantic matrix S by solving

T̂ = SG.

For our toy lexicon example, the G transformation matrix is

cat
bus
eel

G =
#k{ k{t {t# #bV bVs Vs# #il il# 1.14 1.14 1.14 −0.06 −0.06 −0.06 −0.56 −0.56
−0.44 −0.44 −0.44 1.05 1.05 1.05 0.12 0.12
−0.09 −0.09 −0.09 −0.30 −0.30 −0.30 1.08 1.08

.

As this is a toy example, SG is identical to T. For more
complex cases, T̂ will not be virtually identical to T “but will be

1The inverse of a matrix needs not exist, rendering such a matrix a singular
one. Most matrices used in LDL implementations are singular matrices. Thus, an
approximation of the inverse must be used instead of an inverse itself. One such
approximation is the Moore-Penrose generalized inverse (Moore, 1920; Penrose,
1955).
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FIGURE 2 | Illustration of mapping between C and S matrix via F (i.e.,
comprehension), and S and C matrix via G (i.e., production). In production, C
is referred to as T.

an approximation of it that is optimal in the least squares sense”
(Baayen et al., 2019b: 21). Triphones with strongest support
are expected to be the triphones making up a word’s form. As
triphones are not ordered, it is also checked whether the sequence
of phones can be constructed correctly. Both, checking triphone
support and sequence, are conveniently done by the functions of
the WpmWithLdl package (Baayen et al., 2019a). Following this
method, one can report the percentage of production accuracy.

Figure 2 summarizes the mapping between form and meaning
by the F and G transformation matrix for comprehension and
production modelling.

COMBINING REAL WORDS AND
PSEUDOWORDS IN AN LDL
IMPLEMENTATION

The Semantics of Pseudowords
The present paper follows the implementational basics outlined
in Section “Introduction to LDL.” However, as we are interested
in /s/ durations in pseudowords (and not in real words), there
are a number of complications. The most important complication
arises from the widely shared belief that pseudowords do not
have meaning. So how can we map form and meaning with
forms that have no meaning? In a recent study (Chuang et al.,
2020) it was shown that the assumption that pseudowords are
bare of meaning is most probably wrong. Due to their formal
similarity with existing words, pseudowords resonate with the
lexicon. As a result, they may in fact carry meaning. The authors
demonstrate that quantitative measures gauging the semantic
neighbourhoods of pseudowords predict reaction times of lexical
decision and acoustic durations. The present study is inspired
by these results and implements a similar architecture. To model
resonance of pseudowords with the lexicon, both real words and
pseudowords must be included in the networks. The following
sections will detail the combined LDL implementation of real
words and pseudowords.

Data Set: Real Words and Pseudowords
The pseudowords and their phonetic realisations that this paper
is based on are taken from the study of word-final /s/ production
by Schmitz et al. (2020). In their study, participants were

given pictures of “alien creatures” and their respective names
(which were the target pseudowords), a short explanation of a
situation, and a question relevant to the situation which was
to be answered aloud. For each participant, pairings of pictures
and pseudowords were randomised. That is, each pseudoword
was represented by different pictures across participants. By
button-press, a question was given to elicit an answer with
the pertinent type of S while the context slowly faded out.
The fading out of the question forced participants not to rely
on the reading-aloud of the given context. In total, 24 pairs
of pseudowords were used in that study. Each pseudoword
form can act as singular or plural noun, e.g., glaits is either
realised as singular, i.e., a glaits, or as plural, i.e., two glaits.
Additionally, some pseudowords show a number of different
realisations by the participants in the experiment, e.g., prups is
sometimes produced as /p r2ps/, and sometimes it is produced as
/p rups/. Thus, not 48 (i.e., 2 × 24) but 78 different phonological
forms are included in the pseudoword set. Supplementary
Table 1 gives an overview of all pseudowords and their
phonological forms.

The second set of words contains real words and their
phonetic realisations. Following Chuang et al. (2020) we
extracted these words from the MALD corpus (Tucker et al.,
2019a). While the MALD corpus contains 26,793 real words, only
a subset of 8,285 words is used for a number of reasons. First,
some 7,577 words in the corpus contain multiple affixes. As it
was unclear how to handle such words, these were excluded.
Second, only words for which we have semantic vectors could
be used, leading to the exclusion of further 6,828 words. Third,
only words with transcriptions available in the CELEX corpus
(Baayen et al., 1995) were retained, i.e., there was no transcription
available for 818 words. Fourth, 3,285 words showed ambiguities
regarding their morphology, e.g., walks as a third person singular
verb versus the plural of a noun. As huge numbers of words lead
to extensive computation times, we decided to exclude such cases
as well. The final set of real words contains 6,165 simple and 2,120
complex word forms.

Cue Matrices
As introduced in Section “The C Matrix: Form Vectors,” cue
matrices are coded in binary form, giving information on
which triphones are part of which word. For the current
implementation, two such cue matrices are created using the
WpmWithLdl package’s (Baayen et al., 2019a) make_cue_matrix
function. First Crw, the real word cue matrix, is created for
the set of real words. Then, a second cue matrix, Cpw, is
created for the set of pseudowords. However, Cpw is a lot
smaller than Crw as there are only 78 phonological forms for
pseudowords, but more than 8,000 for real words. Thus, the
Crw is of dimension 8285 × 7610, while Cpw is of dimension
78 × 78. We will come back to this issue of differing dimensions
in the next section.

Semantic Matrices
To introduce semantics, i.e., semantic vectors, for the present
set of real words, a pre-built semantic matrix A from Baayen
et al. (2019b) was used. These authors derived semantic vectors
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based on the TASA corpus (Ivens and Koslin, 1991). For this,
words were parsed into their lexomes, i.e., inflected words were
represented by their stem and sense-disambiguated labels for
their respective inflectional functions. Ambiguous forms, e.g.,
walks, were disambiguated using part of speech tagging (Schmid,
1999). Derived words were assigned a lexome for their stem
and a lexome for derivational function. Then, following Baayen
et al., 2016 and Milin et al. (2017), Naïve Discriminative Learning
(Baayen et al., 2011; Sering et al., 2019) was used to build
semantic vectors. The Rescorla-Wagner update rule (Rescorla
and Wagner, 1972; Wagner and Rescorla, 1972; Rescorla, 1988)
was applied incrementally to the sentences of the TASA corpus.
That is, for each sentence the algorithm was given the task to
predict the lexomes in that sentence from all lexomes of that
sentence. This resulted in a 23562 × 23562 weight matrix A.
This matrix lists all lexomes as rows and columns. Thus, for a
given lexome at row i, the association strengths of this lexome
with all other lexomes as given as columns is contained. In this
state of the A matrix, lexomes predict themselves. Thus, the
diagonal of the A matrix is set to zero (see Baayen et al., 2019b,
for a discussion on this procedure). Lastly, columns which mostly
contain zeros, i.e., no information, and show small variances
(σ < 3.4 × 10−8) are removed. The resulting A matrix is
of dimension 23, 562 × 5030. Following the method outlined
in Section “The S Matrix: Semantic Vectors,” a semantic matrix
for real words Srw can be constructed based on A. That is, the
semantic vector −→s in Srw for a simplex word is identical to
its corresponding lexome, while the semantic vector −→s in Srw
for a complex word is the sum of its corresponding lexomes.
That is, the semantic vector of apple is

−−→
apple, while the semantic

vector of apples is the sum of the vectors of the lexomes APPLE

and PLURAL, i.e.,
−−−→
apples =

−−→
apple+

−−−→
plural. As a set of real

words is used, Srw contains only semantic vectors for this set
of real words (instead of, e.g., all word forms of the TASA
corpus). The final real word semantic matrix Srw is of dimension
8285 × 5487.

While this procedure is rather straightforward, the creation
of a pseudoword semantic matrix Spw is not. Due to the nature
of pseudowords, their lexomes are not contained within any
corpus or our A matrix, for that matter. Instead, one can estimate
a pseudoword’s semantic content by utilising the semantic and
phonological information on real words, i.e., their C and S matrix
(Chuang et al., 2020). That is, the same transformation matrix F
that is used for mapping real word cues onto predicted real word
meanings (see Section “Comprehension and Production”) can be
used to map pseudoword cues onto their estimated semantics.
That is, one must first solve

F = C′rwSrw

to obtain F. Then, one can make use of the pseudoword cue
matrix Cpw, and estimate pseudoword semantics, as

Spw = CpwF,

with Spw denoting the originally estimated semantic matrix for
pseudowords. In this semantic matrix, pseudowords of identical
segmental makeup show identical semantics as semantics are

calculated only based on triphone occurrence, i.e., the semantics
of pleepssingular is identical to the semantics of pleepsplural.
To differentiate between singular and plural pseudowords, the
semantic vector of the PLURAL lexome is added to all plural
pseudowords in the S matrix. Similarly, the semantic vectors of
ALIEN and CREATURE are added to all pseudoword semantic
vectors as participants in the original production experiment
were told that pseudowords describe alien creatures. As explained
in Section “Model B: LDL Measures and Affix Specification,” the
pairing of the pictures with pseudowords representing the alien
creature was randomised during the experiment by Schmitz et al.
(2020). A pertinent pseudoword thus only contains the semantics
of “alien creature” as a constant part of its own semantics,
while other factors such as appearance, e.g., colour, shape, or
number of eyes, differ across participants. We can assume that
in the course of the experiment, participants gradually came to
realize that the looks of these alien creatures, i.e., colour, shape,
etc., are not relevant to their label names. Thus participants
were just aware of the fact that these are all alien creatures,
without paying much attention to their individual features. Please
see the aforementioned complementary material for a detailed
implementation.

Comprehension and Production
Pseudoword comprehension and production are not computed
and evaluated in isolation but in combination with real
words, simulating a real person’s lexicon in a pseudoword
comprehension and production situation, respectively. For this,
we created a cue matrix Ccomb based on a combined set of words,
containing all aforementioned real words and pseudowords. In
total, 8440 word forms are part of this set of words. A combined
semantic matrix Scomb is created by attaching Spw to Srw, and
reordering its rows to reflect the same order of words as
found in Ccomb.

Then, using the functions of the WpmWithLdl package
(Baayen et al., 2019a) in R, a comprehension model is
trained and checked for accuracy. That is, taking form vectors
as input for the prediction of semantic vectors of output,
Ŝcomb = CcombF is solved. Comprehension is successfully
modelled for a word i if its predicted semantic vector ŝi is
most highly correlated with its targeted semantic vector si. This
is true for 74.41% of cases (i.e., 6,165 word forms) in our
comprehension model. In total, 25.59% of cases (i.e., 2,120 word
forms) are incorrectly predicted, with 1,912 simple and 208
complex word forms. None of the incorrectly predicted word
forms is a pseudoword.

Similarly, a production model is trained and checked for
accuracy using functions of the aforementioned R package.
Thus, semantic vectors are provided as input to predict form
vectors as output, i.e., to solve T̂comb = ScombG. Production is
successfully modelled for a word i if its predicted triphones are
those triphones present in its targeted cue vector in the correct
sequence (possible sequences of triphones will be referred to
below as “paths”). This is true for 97.3% of cases (i.e., 8,061 word
forms) in our production model. In total, 2.7% of cases (i.e., 224
word forms) are incorrectly predicted, with 98 simple and 126
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complex word forms. None of the incorrectly predicted word
forms is a pseudoword.

Measures
In order to explore the potential of different measures
emerging from the network to predict phonetic duration,
we extracted a whole range of measures, based on the
measures introduced by the WpmWithLdl package (Baayen
et al., 2019a) and by Chuang et al. (2020). Please see
the Supplementary Material for exploratory analyses of
individual measures.

In the following, we first describe the semantic measures
before we turn to the phonetic measures.

L1NORM and L2NORM: The L1NORM is the sum of
the absolute values of vector elements of a given word’s
predicted semantic vector ŝ, i.e., its city-block distance.
The L2NORM is the square root of the sum of the
squared values of a given word’s predicted vector ŝ, i.e.,
its Euclidian distance. For both variables, higher values
imply more strong links to many other lexomes. Thus,
both measures may be interpreted as semantic activation
diversity.

DENSITY: For DENSITY, the correlation values of a word’s
predicted semantic vector ŝ and its eight nearest neighbours’
semantic vectors sn1 · · · sn8 are taken into consideration. The
mean of these eight correlation values describes DENSITY, with
higher values indicating a denser semantic neighbourhood.

ALC: The Average Lexical Correlation, ALC, is the mean
value of all correlation values of a pseudoword’s estimated
semantic vector as contained in Spw with each of the real word
semantic vectors as contained in Srw. Higher ALC values indicate
that a pseudoword’s semantics are part of a denser semantic
neighbourhood. Thus, ALC may be interpreted as a measure of
semantic activation diversity for pseudowords.

EDNN: This variable describes the Euclidian Distance
between a pseudoword’s estimated semantic vector s and its
Nearest semantic real word or pseudoword Neighbour. Thus,
higher values indicate a larger distance to the nearest semantic
neighbour. EDNN may be regarded as a measure of semantic
neighbourhood density.

NNC: The Nearest Neighbour Correlation is computed by
taking a pseudoword’s estimated semantic vector as given in Spw
and checking it for the highest correlation value against all real
word semantic vectors as given in Srw. This highest correlation
value is taken as NNC value. Thus, higher values indicate that
a pseudoword is semantically close to a real word. Additionally,
one can tell which real word a pseudoword’s semantics are closest
to. This measure may be interpreted as a measure of similarity
between nonce and real words, indicating the co-activation of a
real word when confronted with a pseudoword.

SUPPORT: This measure describes the amount of support the
word-final triphone (i.e., fs#, ks#, ps#, ts#) obtains for each
pseudoword. The value of SUPPORT is extracted from T̂. Higher
values of this variable indicate a higher semantic support for the
word-final triphone which includes the segment of interest, i.e.,
word-final S.

PATH_COUNTS: PATH_COUNTS describes the number of
paths, i.e., possible sequences of triphones, detected for the
production of a word by the production model. PATH_COUNTS
may be interpreted as a measure of phonological activation
diversity, as higher values indicate the existence of multiple
candidates (and thus paths) in production.

PATH_SUM: PATH_SUM describes the summed support of
paths for a predicted form. PATH_SUM may be interpreted as a
measure of phonological certainty, with higher values indicating
a higher certainty in the candidate form.

PATH_ENTROPIES: PATH_ENTROPIES contains the Shannon
entropy values which are calculated over the path supports of the
predicted form in T̂. Thus, PATH_ENTROPIES may be interpreted
as a measure of phonological uncertainty, with higher values
indicating a higher level of disorder, i.e., uncertainty.

ALDC: The Average Levenshtein Distance of all Candidate
productions, ALDC, is the mean of all Levenshtein distances of
a word and its candidate forms. That is, for a word with only
one candidate form, the Levenshtein distance between that word
and its candidate form is its ALDC. For words with multiple
candidates, the mean of the individual Levenshtein distances
between candidates and targeted form constitutes the ALDC.
Thus, higher values indicate that a word’s candidate forms are
very different from the intended pronunciation. ALDC may
be interpreted as a measure of phonological neighbourhood
density as it takes into account real word neighbourhoods
for pseudowords, i.e., large values indicate sparse real word
neighbourhoods.

ANALYSIS

The data set by Schmitz et al. (2020) contains non-morphemic,
plural, or clitic word-final S as final segment of a pseudoword.
As our LDL implementation does not include information on
clitics, we only consider durational data on non-morphemic
and plural S for the present study. A subset of 666 data points
remains, with 303 observations with non-morphemic S and 363
observations with plural S. Due to some variable pronunciations
requiring triphones not included in our LDL implementation,
13 data points had to be excluded, resulting in a final data
set with non-morphemic and plural S durations of 653 data
points, i.e., 300 entries on non-morphemic S and 353 entries on
plural S.

Covariates
Besides the aforementioned variables extracted and computed
from the LDL implementation itself (see Section “Measures”), the
following covariates, adopted from previous analyses of word-
final S (e.g., Plag et al., 2017; Tomaschek et al., 2019; Schmitz
et al., 2020), are included in the analysis. The main reason for
this is to allow us to compare the performance of these predictors
with the performance of LDL predictors. LDL measures often
correlate with traditional measures (such as lexical frequencies,
transitional probabilities, or neighborhood densities), but the
traditional measures have no clear correlating mechanisms in
learning or processing.
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There are, however, also covariates that do not tap into lexical
properties, but that control for other influences, such as speech
rate, the speaker, gender, the order of stimuli in an experiment,
etc. These will be referred to as “non-lexical covariates” and they
will also be included in our regression models.

AFFIX: This binary variable indicates whether a word contains
an affix, i.e., whether the pertinent pseudoword is a singular or
plural form. It takes the value NM for pseudowords without affix,
and PL for pseudowords with affix.

SPEAKINGRATE: Analysing durational data, speech rate is a
self-evident variable to consider. As speech rate is no inherent
part of any LDL measure, we calculated speaking rate as the
number of syllables in an utterance divided by the duration of
the utterance (e.g., Tomaschek et al., 2019; Schmitz et al., 2020).
This was done automatically using a script in Praat (de Jong and
Wempe, 2008; Boersma and Weenink, 2019).

BASEDURLOG: Base duration was taken as a more local
measure of speech rate (e.g., Plag et al., 2017, 2020; Schmitz
et al., 2020). Here, the term “base” refers to the string of
segments preceding the word-final S, for both non-morphemic
and morphemic pseudowords. Base duration was then log-
transformed to achieve a closer to normal distribution.

PAUSEBIN: To account for final-lengthening effects,
stretches of silence between the offset of the word-final
S and the onset of the following word were measured.
Silence of 50 ms and above was considered as pause (Lee
and Oh, 1999; Krivokapić, 2007). In order to make sure
that closures of following plosives were not mistaken for
pauses, their average closure duration (see Yao, 2007) was
subtracted of the pertinent measured silence. Following
the results by Schmitz et al. (2020), pause information was
included as binary variable with the values PAUSE / NO
PAUSE.

DISC: As some pseudowords were produced with multiple
pronunciations, their transcription was incorporated as a
categorical variable. This variable is called DISC after the DISC
keyboard phonetic alphabet (Burnage, 1988).

BIPHONEPROBSUMBIN: The summed biphone probability for
each pseudoword and its phonological variants is included as
the binary variable BIPHONEPROBSUMBIN. It was calculated
using the Phonotactic Probability Calculator (Vitevitch and
Luce, 2004). The rationale for this variable is that more
probable biphones should lead to shorter durations (e.g.,
Schmitz et al., 2020).

LIST & SLIDENUMBER: To account for priming effects, the list
number (1–12) and the point of occurrence during the original
experiment by Schmitz et al. (2020) are included.

PREC: To account for potential effects of the consonant
preceding the word-final S (Umeda, 1977), it is included as PREC
variable (similar to e.g., Tomaschek et al., 2019).

BIPHONEPROB: The probability of the final biphones /fs/, /ks/,
/ps/ and /ts/ in monomorphemic words is included as covariate
to account for potential effects of phonotactics (see Schmitz et al.,
2020, for a detailed explanation).

FOLTYPE: As the segment following the word-final S is no part
of the individual pseudoword, it is also not considered in LDL
measures. Thus, the covariate FOLTYPE is introduced (similar to

e.g., Tomaschek et al., 2019), coding the following segment by its
segmental class (i.e., approximant APP for listen, fricative F for
find, nasal N for know, plosive P for cook, and vowel V for eat),
to account for potential effects of the following word (Klatt, 1976;
Umeda, 1977).

SPEAKER, GENDER, AGE, LOCATION and
MONOMULTILINGUAL: SPEAKER ID was included to account
for general inter-speaker differences in production. GENDER,
AGE, and LOCATION, i.e., the place in which the pertinent
participant spent the bigger part of their life, were included as
well. Additionally, participants who were early bilinguals were
categorised as multilingual, while all other participants were
categorised as monolingual in MONOMULTILINGUAL.

REAL: Some of the pseudowords in Schmitz et al.’s data set
have an orthographically different, but phonologically identical
real word counterpart. We introduced the variable REAL to
control for this potential confound. This variable is TRUE for
pseudowords with such a real word counterpart, and FALSE
for those without. We considered the following real words as
counterparts as given in Schmitz et al. (2020): glits corresponds
to glitz, glaiks corresponds to Gleicks, glifs corresponds to glyphs,
and pleets corresponds to pleats.

All of the following analyses make use of the following
non-lexical covariates: BASEDURLOG, SPEAKINGRATE,
SLIDENUMBER, and PAUSEBIN as variables concerning
speech rate and continuity, PREC and FOLTYPE accounting
for coarticulatory effects, LIST taking into consideration potential
priming effects, MONOMULTILINGUAL, GENDER, LOCATION,
AGE, and SPEAKER to account for speaker-individual differences,
and REAL to include potential effects of real word counterparts.

Modelling Strategy
We devised three kinds of model: First, a baseline model with the
traditional predictor variables (plus the non-lexical covariates).
Second, a model with LDL predictors that also includes AFFIX
as a covariate (plus the non-lexical covariates). Third, a model
that contains only the LDL predictors (plus the non-lexical
covariates).

The three kinds of model will allow us to answer our
research questions. Recall that our ultimate goal is to understand
how systematic durational differences emerge between words
of different, but homophonous morphological categories.
Traditional lexical variables are predictive but cannot explain
how morphology can make its way into durational differences.
But these models can show that such differences exist by looking
at the effect of the variable AFFIX. This is our baseline model. As
an alternative we implement a model that uses LDL measures.
If these measures are predictive, they offer an explanation of the
morphologically-induced phonetic differences: they emerge as a
by-product of the association of form and meaning in the mental
lexicon, and this association is the outcome of discriminative
learning. By having a model that also includes AFFIX as an
additional predictor, we can see whether the LDL measures
completely capture the morphological effect, or whether there
is a residue of morphological information that is predictive of
duration but is still not captured by the LDL measures.

Frontiers in Psychology | www.frontiersin.org 9 August 2021 | Volume 12 | Article 680889

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-680889 August 3, 2021 Time: 20:18 # 10

Schmitz et al. Modelling Morpho-Phonetic Effects in LDL

Model A: Traditional Measures
This model is meant to resemble those in previous studies
on word-final S duration (e.g., Plag et al., 2017; Schmitz
et al., 2020). Thus, we make use of similar variables: AFFIX,
BIPHONEPROBSUMBIN, and BIPHONEPROB, as well as those
control variables included in all analyses of this paper. None of
these covariates showed high correlation coefficients. Hence, no
cautionary measures regarding collinearity were taken before an
initial full model was constructed. The model selection process
proceeded as explained in section “Model B: LDL Measures
and Affix Specification.” That is, non-significant variables were
excluded in a controlled step-wise fashion.

Then, variance inflation factors were checked. The covariates
BIPHONEPROB and PREC showed high VIF values (i.e., 46.53 and
46.88, respectively), indicating potential overfitting of the model
(e.g., Zuur et al., 2010; Fox and Weisberg, 2019). Consequently,
PREC was removed from the model as it showed the highest VIF
value, following the procedure described by Zuur et al. (2010). Re-
fitting the model without PREC and re-checking the new variance
inflation factor values revealed only non-problematic values.

Finally, the resulting model’s residuals were trimmed (e.g.,
Baayen and Milin, 2010). Data points with residuals larger than
2.5 standard deviations were removed, ensuring a satisfactory
distribution of residuals. This procedure led to a loss of 4 data
points, i.e., 0.61% of all data points. An overview of all variables
used in the initial model is given in Supplementary Table 2.

Model B: LDL Measures and Affix
Specification
This model makes use of all LDL measures as well as of
the AFFIX variable. Additionally, the non-lexical covariates are
included. One issue to address when considering a model
with such a multitude of variables is collinearity (e.g., Baayen,
2008; Tomaschek et al., 2018). To avoid collinearity related
problems later on, all variables were tested for correlation using
the languageR package (Baayen and Shafaei-Bajestan, 2019).
This correlation check resulted in eight correlation coefficients
indicating a high degree of correlation, for which we assume the
threshold to be |rho| ≥ 0.5. The pairs of correlated covariates as
well as their correlation coefficients are given in Table 2.

Due to the high number of correlated variables, we opted
for a principal component analysis (PCA; e.g., Venables and
Ripley, 2002; Baayen, 2008; Tomaschek et al., 2018) to address
collinearity issues. In a PCA, the dimensionality of the data is
reduced by transforming the included variables into principal
components. These transformations result in linear combinations
of the predictors that are orthogonal to each other. Thus, the
resulting principal components are not correlated.

The PCA was carried out using the PCAmix function of the
PCAmixdata package (Chavent et al., 2017) in R, allowing the
simultaneous integration of continuous and discrete variables.
All variables given in Table 2 were included in the computation
of the principal component analysis, which yields nine principal
components. The next step of the PCA is to determine how
many of these principal components are meaningful and thus
should be retained for further use. For this decision, we followed

several rules of thumb (e.g., O’Rourke et al., 2005; Baayen, 2008).
First, any component that displays an Eigenvalue greater than
1 accounts for a greater amount of variance than had been
contributed by one variable. Such a component is therefore
potentially meaningful. Second, one should retain enough
components so that the cumulative percent of variance explained
is equal to some minimal value. Following other implementations
of principal component analyses, we aim at a value of 80% (e.g.,
O’Rourke et al., 2005). Third, only interpretable components
are to be retained. That is, each component is made up of
loadings, i.e., parts of the variables included in the PCA’s
computation represented by correlation coefficient values. If
none of these variables is strongly represented in a component,
the interpretability of that component is extremely low, rendering
the component of small interest for further analyses. Following
these three criteria, we find that the first three of the principal
components show an Eigenvalue of one or higher. Also, the
first three components account for 84% of variance. Considering
the third criterion, all three components are strongly correlated
with input variables. We therefore retain components 1 to 3 for
further analysis, all of which show an Eigenvalue greater than 1,
account for more than eighty percent of variance, and contain
strong representations of variables in their loadings.2 But what
do these principal components mean? The highest loadings of
the principal components, i.e., the correlation of the original
variables to the pertinent component, are given in Table 3.

COMPONENT1 is most strongly positively correlated with
PATH_COUNTS, PATH_ENTROPIES, and ALDC, while it is
most strongly negatively correlated with PATH_SUM and
SUPPORT. For PATH_COUNTS, higher values indicate the
existence of multiple candidates (and thus paths) in production.
It thus functions as an indicator of phonological uncertainty.
Values of PATH_ENTROPIES relate to the level of uncertainty
concerning the path supports of the predicted candidate form,
with higher values indicating a higher level of uncertainty.
For ALDC, higher values mean that a word’s candidate
forms are very different from the intended pronunciation,
indicating uncertainty in production. PATH_SUM describes the
summed support of paths for a predicted form, with higher
values indicating a higher certainty in the candidate form.
Higher values for SUPPORT suggest more certainty in the
choice of the word-final triphone. COMPONENT1 can thus
be described as a dimension that represents phonological or
articulatory certainty.

COMPONENT2 is most strongly correlated with L1NORM,
L2NORM, NNC, and AFFIX. L1NORM and L2NORM both imply
more strong links to many other lexomes with higher values
indicating a higher semantic activation diversity. Higher values of
NNC suggest a close real word neighbour, which leads to higher
levels of co-activation of that real word when confronted with the
pseudoword, also leading to higher semantic activation diversity.
As for AFFIX, COMPONENT2 is positively correlated with the
presence of non-morphemic S data points.

2In addition, a cluster analysis was performed. This analysis revealed clusters
which align well with the retained components of the principal component
analysis. The cluster analysis is also documented in the materials that can be found
at https://osf.io/zy7ar/?view_only=ef43a5caf6444270a56074027d7d6482.
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TABLE 2 | Correlated variables and their correlation coefficients.

variables rho variables rho

L1NORM L2NORM 0.98 AFFIX NNC −0.89

PATH_COUNTS PATH_ENTROPIES 0.95 PATH_COUNTS SUPPORT −0.65

PATH_COUNTS ALDC 0.89 PATH_SUM SUPPORT 0.73

PATH_ENTROPIES ALDC 0.90 PATH_ENTROPIES SUPPORT −0.63

TABLE 3 | Loadings of original predictor variables in the three retained principal
components of the first principal component analysis.

Component1 Component2 Component3

L1NORM 0.397 0.348

L2NORM 0.405 0.363

PATH_COUNTS 0.813

PATH_ENTROPIES 0.828

PATH_SUM −0.430

ALDC 0.710

NNC 0.698

SUPPORT −0.650

AFFIX 0.421 0.517

COMPONENT3 is similar to COMPONENT2 as it is also
strongly correlated with L1NORM, L2NORM, and AFFIX. Again,
for L1NORM and L2NORM higher values indicate higher semantic
activation diversity. AFFIX is positively correlated for plural S
data points. We will come back to the interpretation of this
correlation in Section “Model B: LDL Measures and AFFIX
Specification.”

In a next step, models were fitted using linear mixed-
effects regression in R (R Core Team, 2020) using RStudio
(RStudio Team, 2021) and as implemented by lme4 (Bates
et al., 2015), lmerTest (Kuznetsova et al., 2017), and
LMERConvenienceFunctions (Tremblay and Ransijn, 2020)
to analyse the data on non-morphemic and plural S duration.
The dependent variable, duration of S, was log-transformed
following standard procedures to reduce the potentially harmful
effect of skewed distributions in linear regression models (e.g.,
Winter, 2019). The name of this variable is SDURLOG.

Following the standard backward step-wise selection process
for model selection (e.g., Baayen, 2008), a first model containing
all remaining variables is created. That is, COMPONENT1,
COMPONENT2, COMPONENT3, DENSITY, ALC, EDNN,
BASEDURLOG, SPEAKINGRATE, PAUSEBIN, FOLTYPE, PREC, and
REAL were included as fixed effects. The remaining variables,
GENDER, LOCATION, MONOMULTILINGUAL, AGE, LIST, and
SPEAKER, are included as random intercepts.

This full model was then continuously reduced through step-
wise exclusion of non-significant variables. That is, a variable was
considered as significant if it passed all of three tests. First, its
F-value in the pertinent model had to yield a value below −2
or above 2. Second, the AIC value, i.e., the Akaike information
criterion value, of the model including the variable had to
be lower than the AIC value of a comparable model without
the pertinent variable. Third, the results of log-likelihood tests

comparing the model with to a model without the pertinent
variable had to yield a p-value below the 0.05 threshold, thus
indicating a significant improvement of model fit. This process
was verified using the step function of R, which resulted in an
identical model.

Then, variance inflation factors (VIFs) were computed.
Predictors showing variance inflation factor values equal or
greater than 3 are to be excluded due to the high risk of
introducing multicollinearity and thus overfitting of the model
(e.g., Zuur et al., 2010). For the present model, all variance
inflation factor values are below 3.

Finally, the resulting model needed trimming of its residuals
(e.g., Baayen and Milin, 2010). Data points with residuals larger
than 2.5 standard deviations were removed to ensure a more
satisfactory residual distribution. This procedure resulted in a
loss of six data points (0.92%). An overview of all variables
used in the initial model and their distribution is given in
Supplementary Table 2.

Model C: LDL Measures Only
This model uses all LDL measures but does not incorporate the
AFFIX covariate. As in the previous model, there was a high
number of highly correlated variables (see Table 2 with the
exception of the correlation of AFFIX and NNC, as AFFIX is
not included in this analysis). We therefore again computed a
principal component analysis, following the procedure outlined
in Section “Model B: LDL Measures and Affix Specification.”
Following the first two criteria, we find that two principal
components are to be retained. However, considering the third
criterion, we find that the two components are not readily
interpretable as they show relatively high positive or negative
correlations with all or almost all variables, without indicating
a clearly discernible dimension underlying the patterns of
correlations. We therefore turned to another procedure to reduce
collinearity issues.

For each set of variables with a correlation of |rho| > 0.5,
models containing only the pertinent variable and a random
intercept for subject are fitted and compared. Using log-
likelihood tests for model comparison, the variable contained in
a significantly better fit model is retained while those variables
highly correlated with it are no longer used. In case of a non-
significant difference, the variable of the model with the lower
AIC value is retained. This procedure leads to the exclusion of
L2NORM, PATH_COUNTS, PATH_ENTROPIES, and PATH_SUM.

Linear mixed-effects regression models were fitted according
to the procedure given in Section “Model B: LDL Measures and
Affix Specification.” That is, an initial full model was fitted with
the following variables: L1NORM, ALDC, SUPPORT, DENSITY,
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TABLE 4 | p-values of fixed effects in the final “traditional” model, fitted to the log-transformed durations of S.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( > F)

AFFIX 0.711 0.711 1 37.90 13.845 0.001

SPEAKINGRATE 0.163 0.163 1 604.07 3.165 0.076

BASEDURLOG 6.278 6.278 1 572.80 122.247 0.000

PAUSEBIN 5.430 5.430 1 635.92 105.722 0.000

BIPHONEPROBSUMBIN 0.646 0.646 1 596.28 12.580 0.000

FOLTYPE 2.199 0.550 4 605.15 10.703 0.000

TABLE 5 | Fixed-effect coefficients and p-values as computed by the final “traditional” model (mixed-effects model fitted to the log-transformed duration of S).

Estimate Std. Error df t-value Pre (> | t|)

(Intercept) −1.202 0.083 407.927 −14.520 0.000

AFFIXPL −0.087 0.023 37.896 −3.721 0.001

SPEAKINGRATE −0.022 0.012 604.072 −1.779 0.076

BASEDURLOG 0.635 0.057 572.805 11.057 0.000

PAUSEBINPAUSE 0.234 0.023 635.917 10.282 0.000

BIPHONEPROBSUMBINlow −0.076 0.021 596.279 −3.547 0.000

FOLTYPEF −0.001 0.073 610.436 −0.007 0.994

FOLTYPEN −0.004 0.028 600.528 −0.134 0.893

FOLTYPEP −0.027 0.025 599.182 −1.107 0.269

FOLTYPEV −0.145 0.025 610.241 −5.852 0.000

TABLE 6 | p-values of fixed effects in the final “LDL measures and Affix” model, fitted to the log-transformed durations of S.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( > F)

COMPONENT1 0.376 0.376 1 618.06 6.970 0.008

COMPONENT3 1.340 1.340 1 627.71 24.819 0.000

BASEDURLOG 6.751 6.751 1 620.55 125.080 0.000

PAUSEBIN 5.805 5.805 1 642.19 107.568 0.000

FOLTYPE 2.093 0.523 4 617.98 9.695 0.000

PREC 0.702 0.234 3 615.33 4.334 0.005

DENSITY 0.219 0.219 1 621.79 4.067 0.044

ALC 0.293 0.293 1 623.25 5.425 0.020

TABLE 7 | Fixed-effect coefficients and p-values as computed by the final “LDL measures and Affix” model (mixed-effects model fitted to the
log-transformed duration of S).

Estimate Std. Error df t-value Pre (> | t|)

(Intercept) −1.106 0.124 635.215 −8.952 0.000

COMPONENT1 0.014 0.005 618.057 2.640 0.008

COMPONENT3 −0.041 0.008 627.708 −4.982 0.000

BASEDURLOG 0.652 0.058 620.548 11.184 0.000

PAUSEBINpause 0.237 0.023 642.193 10.371 0.000

FOLTYPEF −0.014 0.075 621.463 −0.180 0.857

FOLTYPEN −0.006 0.029 614.760 −0.198 0.843

FOLTYPEP −0.028 0.025 615.172 −1.126 0.261

FOLTYPEV −0.141 0.025 620.352 −5.612 0.000

PRECk −0.023 0.027 614.436 −0.835 0.404

PRECp −0.040 0.027 614.491 −1.475 0.141

PRECt −0.095 0.028 615.916 −3.414 0.001

DENSITY −0.241 0.119 621.790 −2.017 0.044

ALC −5.302 2.277 623.246 −2.329 0.020
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ALC, EDNN, NNC, BASEDURLOG, SPEAKINGRATE, PAUSEBIN,
FOLTYPE, PREC and REAL. As for random effects, random
intercepts for GENDER, LOCATION, MONOMULTILINGUAL, AGE,
LIST, and SPEAKER were included.

This full model was then continuously reduced through
step-wise exclusion of non-significant variables, following the
aforementioned criteria. Then, variance inflation factors were
computed, resulting only in non-problematic values (e.g., Zuur
et al., 2010). Finally, the resulting model needed trimming of
its residuals (e.g., Baayen and Milin, 2010). That is, data points
with residuals larger than 2.5 standard deviations were removed,
ensuring a more satisfactory residual distribution. This procedure
led to a loss of 8 data points, i.e., 1.2% of all data points. An
overview of all variables used in the initial model and their
distribution is given in Supplementary Table 2.

RESULTS

Model A: Traditional Measures
The final model of traditional measures includes main effects
of the following variables: type of S (AFFIX), speaking
rate (SPEAKINGRATE), log-transformed base duration
(BASEDURLOG), pause (PAUSEBIN), the summed biphone
probability (BIPHONEPROBSUMBIN), and following segmental
type (FOLTYPE). As for random effects, random intercepts
for SPEAKER and random slopes for AFFIX are included. The
p-values of the analysis of variance of the final model are given in
Table 4.

The marginal R-squared value of the model is 0.43, i.e., fixed
effects explain 43% of variation in the data. Taking random effects
into account as well, the conditional R-squared value is 0.62.
That is, the model explains 62% of data variation in total (see
Nakagawa et al., 2017, for details on marginal and conditional
R-squared computation). Both R-squared values were computed
using the MuMIn package (Barton, 2020). The R-squared values
are similar to the values found by Schmitz et al. (2020) on their
complete data set.

The estimates of the final model and their p-values are given
in Table 5. The reference levels for the categorical predictors
are: for AFFIX it is NM, for PAUSEBIN it is no-pause, for
BIPHONEPROBSUMBIN it is high, and for FOLTYPE it is APP.

The predictor strength of individual covariates was checked by
taking the final model as template. For each predictor variable, a
model was fitted lacking the particular variable. This resulted in
seven models, each lacking a different predictor. Then, R-squared
values were computed for these models and finally compared.
The variable leading to the highest decrease in R-squared value
as compared to the final model is thus the variable showing the
highest predictor strength. The results of this comparison are
reflected in the hierarchy given in (1). The decrease in R-squared
is greatest when removing BASEDURLOG, followed by PAUSEBIN,
and so forth. The resulting order is identical to the one found by
Schmitz et al. (2020) for the complete data set.

(1) baseDurLog > > pauseBin > > Affix > > folType > >
speakingRate > > biphoneProbSumBin

Model B: LDL Measures and AFFIX
Specification
In the final model including LDL measures as well as
the AFFIX covariate as parts of the individual components
resulting from the principal component analysis, and fitted
according to the procedure described in Section “Model B:
LDL Measures and Affix Specification,” we find main effects
of the first principal component (COMPONENT1), the third
principal component (COMPONENT3), DENSITY, ALC, base
duration (BASEDURLOG), following pause (PAUSEBIN), following
segmental type (FOLTYPE), and preceding consonant (PREC).
Regarding random effects, only a SPEAKER-specific random
intercept turns out to significantly improve model fit. The
p-values of the analysis of variance of the final model are given
in Table 6.

The marginal R-squared value of the final model is 0.42,
thus fixed effects explain 42% of the variation in our data. The
conditional R-squared value of the final model is 0.60, that is fixed
and random effects taken together explain 60% of variation.

The estimates of the final model and their p-values are given
in Table 7. The reference levels for the categorical predictors are:
for PAUSEBIN it is no-pause, for FOLTYPE it is APP, and for PREC
it is f.

Similar to Section “Model B: LDL Measures and AFFIX
Specification,” the predictor strength of individual covariates was
checked by taking the final model as template. For each predictor
variable, a model was fitted lacking the pertinent variable. This
resulted in seven models, each missing a different covariate. Then,
marginal R-squared values were computed and compared. The
model showing the lowest of these values in turn missed the
covariate with the highest predictor strength. The result of this
procedure is reflected in the hierarchy in (2). The decrease in
R-squared is greatest when removing BASEDURLOG, followed by
PAUSEBIN, and so forth. In sum, variables containing measures
obtained by our LDL analysis appear to be meaningful predictors
of S duration.

(2) BASEDURLOG > > PAUSEBIN > > COMPONENT3 > >
FOLTYPE > > ALC > > DENSITY > > COMPONENT1 > >
PREC

Figure 3 shows the effect on S duration of the numerical
variables included in the model. The estimated values of
the dependent variable SDURLOG, i.e., S duration, and
BASEDURLOG, i.e., base duration, are back-transformed
into seconds. For COMPONENT1, higher values lead to longer
S durations, while for COMPONENT3 (panel A), higher values
lead to shorter S durations (panel B). Higher values of DENSITY
(panel C) and ALC (panel D) come with shorter S durations.
Longer bases come with longer S durations (panel E).

The partial effects of the categorical variables included in the
final model are illustrated in Figure 4. Pauses lead to longer
S durations (panel A), which is most likely a case of phrase-
final lengthening (e.g., Cooper and Danly, 1981). There is also
an effect of the following segment type, with S being shorter
when followed by a vowel (panel B). This difference is significant
for all consonant types being compared against vowels with the
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FIGURE 3 | Partial effects of the numerical variables included in the final “LDL measures and AFFIX” model, fitted to the log-transformed values of duration of S.
(A) COMPONENT1 (B) COMPONENT3 (C) DENSITY (D) ALC (E) back-transformed BASEDURLOG.

exception of fricatives. However, as there is only a small number
of fricative cases in our data, this non-significant difference is
potentially not meaningful. Lastly, there is an effect of preceding
consonant on S duration (panel D). S duration is significantly
longer if preceded by a voiceless labiodental fricative /f/ or
a voiceless velar stop /k/ as compared to cases where S is
preceded by a voiceless alveolar stop /t/. All other comparisons
are non-significant.

Let us turn to the variables of interest, i.e., those derived from
our LDL network. COMPONENT1 acts as a general measure of
phonological certainty. High values of COMPONENT1 come with
high values of PATH_COUNTS, PATH_ENTROPIES, and ALDC,
indicating a high level of phonological uncertainty. At the other
end of the COMPONENT1 dimension, high values of PATH_SUM
and SUPPORT indicate a high level of phonological certainty.
Higher uncertainty appears to lead to longer S durations, while
higher certainty appears to lead to shorter S durations.

Recall from Section “Model B: LDL Measures and Affix
Specification” that COMPONENT3 relates to semantic activation
diversity and to the presence of the plural suffix. Higher values
of COMPONENT3 indicate a higher level of semantic activation

diversity. Higher levels of activation diversity then lead to
shorter S durations (see panel B of Figure 3). High values of
COMPONENT3 are positively correlated with the presence of
plural S. It appears that the presence of plural makes words
semantically more similar to each other as they share this
meaning component. Hence it is to be expected that plural
words live in a space of greater semantic activation diversity.
COMPONENT3 is not only a measure of semantic activation
diversity, but also indicates that plural pseudowords show a
tendency of having a higher degree of semantic activation
diversity as compared to monomorphemic pseudowords in
general. DENSITY and ALC also tap into the semantics of
pseudowords. That is, similar to COMPONENT3, higher values
indicate higher levels of semantic activation diversity. These
higher levels then lead to shorter S durations.

Model C: LDL Measures Only
The final model of LDL measures only is fitted with main
effects of the following variables: L1NORM, ALC, NNC, log-
transformed base duration (BASEDURLOG), pause (PAUSEBIN),
following segmental type (FOLTYPE), and preceding consonant
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FIGURE 4 | Partial effects of the categorical variables included in the final “LDL measures and AFFIX” model, fitted to the log-transformed values of duration of S.
(A) PAUSEBIN (B) FOLTYPE (C) PREC.

(PREC). The SPEAKER variable is included as random intercept.
The p-values of the analysis of variance of the final model are
given in Table 8.

With a marginal R-squared value of 0.41, the fixed effects
of this model explain 41% of variation within the data. The
conditional R-squared value of the model is 0.61, that is the
complete model accounts for 61% of variation.

The coefficients of the final model and their p-values are given
in Table 9. The reference levels for the categorical covariates are:
for PAUSEBIN it is no-pause; for FOLTYPE it is APP, and for PREC
it is f.

As for both other final models, the predictor strength of
the individual predictors was checked. Models with one of the
predictor variables were constructed based on the complete final
model. Then, marginal R-squared values were computed for
each of these six models. A comparison of R-squared values
then revealed the hierarchy of predictor strength given in (3).
That is, the decrease in R-squared is greatest when removing
BASEDURLOG, followed by PAUSEBIN, and so forth.

(3) BASEDURLOG > > PAUSEBIN >> FOLTYPE >> NNC
>> L1NORM >> ALC >> PREC

Base duration and speaking rate show identical effects as
compared to the model fitted in Section “Model B: LDL Measures
and AFFIX Specification,” i.e., longer base durations come with
longer S durations, while higher speaking rates lead to shorter S
durations. As for categorical variables, pauses again come with
longer S durations, and S is shorter if followed by a vowel. There
is also an effect of the preceding consonant, with S duration

being significantly longer if preceded by a voiceless labiodental
fricative /f/ or a voiceless velar stop /k/ as compared to cases
where S is preceded by a voiceless alveolar stop /t/. These results
are generally in line with those by the analysis in the previous
section.

Taking a closer look at the variables of interest, we find
that higher values of L1NORM, and ALC, i.e., higher semantic
activation diversity, lead to shorter S durations. As in model B,
higher levels of semantic activation diversity come with shorter
S durations. For NNC, we find that S duration is longer if a
pseudoword is semantically similar to a real word. The effects of
L1NORM, ALC, and NNC are illustrated in Figure 5.

DISCUSSION

The Present Results
Previous studies (Zimmermann, 2016; Seyfarth et al.,
2017; Tomaschek et al., 2019; Plag et al., 2020, 2017;
Schmitz et al., 2020) reported that there are significant
differences in the acoustic duration between different types
of word-final S in English. Such durational differences
challenge established feed-forward theories of morphology-
phonology interaction (e.g., Chomsky and Halle, 1968;
Kiparsky, 1982) as well as theories of psycholinguistics
(e.g., Levelt et al., 1999; Roelofs and Ferreira, 2019; Turk
and Shattuck-Hufnagel, 2020). The present study investigated
whether measures derived on the basis of a discriminative
learning theory are predictive of S durations in nonce
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TABLE 8 | p-values of fixed effects in the final “LDL measures only” model, fitted to the log-transformed durations of S.

Sum Sq Mean Sq NumDF DenDF F.value Pr ( > F)

L1NORM 0.685 0.685 1 611.07 13.473 0.000

BASEDURLOG 6.047 6.047 1 627.51 118.901 0.000

PAUSEBIN 5.440 5.440 1 632.72 106.956 0.000

FOLTYPE 2.056 0.514 4 610.10 10.105 0.000

PREC 0.761 0.254 3 607.96 4.985 0.002

ALC 0.534 0.534 1 615.51 10.504 0.001

NNC 0.778 0.778 1 619.67 15.296 0.000

TABLE 9 | Fixed-effect coefficients and p-values as computed by the final “LDL measures” model (mixed-effects model fitted to the log-transformed duration of S).

Estimate Std. Error df t-value Pre (> | t|)

(Intercept) −2.334 0.320 625.440 −7.301 0.000

L1NORM −0.044 0.012 611.066 −3.671 0.000

BASEDURLOG 0.624 0.057 627.514 10.904 0.000

PAUSEBINpause 0.233 0.022 632.719 10.342 0.000

FOLTYPEF −0.019 0.073 613.088 −0.267 0.790

FOLTYPEN −0.005 0.028 607.324 −0.195 0.845

FOLTYPEP −0.023 0.024 607.817 −0.950 0.343

FOLTYPEV −0.140 0.025 611.952 −5.693 0.000

PRECk −0.029 0.027 607.726 −1.058 0.291

PRECp −0.053 0.027 607.478 −1.950 0.052

PRECt −0.101 0.028 608.068 −3.632 0.000

ALC −6.663 2.056 615.511 −3.241 0.001

NNC 1.221 0.312 619.671 3.911 0.000

FIGURE 5 | Partial effects of LDL derived variables contained in the final “LDL measures only” model, fitted to the log-transformed values of duration of S.
(A) L1NORM (B) ALC (C) NNC.

words. In particular, we implemented LDL networks that
model the production of a word based on its relation to the
rest of the lexicon.

We explored the predictive possibilities of LDL measures
by fitting three different models: a) a model based on the
traditional predictors as used in previous studies (Plag et al.,
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2017; Tomaschek et al., 2019; Schmitz et al., 2020); b) a
model with LDL measures and a variable AFFIX specifying the
presence or absence of an affix; and c) a model with LDL
measures but without a variable specifying the presence or
absence of an affix. Both models with LDL measures show
that such measures are predictive of S durations. This result
is the most important of our study. While traditional variables
such as lexical frequencies, bigram frequencies, transitional
probabilities or neighbourhood densities measure important
lexical properties, it is unclear why they would manifest
themselves in a particular morphological effect in speech
production. In LDL such effects can emerge through the
mapping of form and meaning in a clearly defined process of
discriminative learning.

All regression models showed a similar hierarchy of predictor
strength for the variables included in the models. For the
traditional model A, AFFIX is the third strongest predictor of S
duration and for model B this spot is taken by COMPONENT3,
while there is no comparable variable included in model C.
Comparing the variance explained by the fixed effects of the
different models, we find that the traditional model accounts for
most variation, i.e., 43%, while the LDL model including the
AFFIX variable accounts for 42%, and the LDL model without
the AFFIX variable accounts for 41% of variation. Thus, in
terms of marginal R-squared values, all three models are close
to each other. To check whether these differences in marginal
R-squared values are of significance, the three models were
refitted to the untrimmed data set and then compared with
an analysis of variance. The results suggest that there is no
significant difference between the traditional model and the
LDL model including the AFFIX variable. However, the LDL
model without the AFFIX variable shows a significantly worse fit
(p < 0.01). This seems to indicate that the LDL measures do not
capture the full amount of the variance that is captured by the
variable AFFIX. This means that there is still something about
the morphological function that translates into duration and
that is not properly modelled by the associative measurements
of the learning network. The same problem holds, incidentally,
for the traditional model (model A), in which the usual lexical
measures (such as lexical frequencies, neighbourhood densities,
etc.) and phonetic covariates (such as pauses, speech rate,
etc.) are also not able to cover all durational variance. The
morphological residue in both types of analysis remains a
conundrum that calls for more sophisticated approaches in
future research.

Comparison of Results to Other Studies
The LDL measures included in our final models are either
concerned with semantic activation diversity (COMPONENT3,
ALC, and DENSITY in model B; L1NORM, and ALC in model
C), semantic similarity (NNC in model C) or with phonological
certainty (COMPONENT1 in model B).

Higher degrees of semantic activation diversity come
with shorter S durations. This effect is similar to the one
which was reported by Tucker et al. (2019b) in a study
on stem vowels, and Tomaschek et al. (2019) in their
NDL study on S duration. A higher degree of activation

diversity makes it “more difficult to discriminate the targeted
outcome from its competitors” (Tomaschek et al., 2019:27).
As for production, a prolongation of the acoustic signal is
dysfunctional if the prolongation maintains or increases the
discrimination problem instead of contributing to resolving it
(Tomaschek et al., 2019).

In the model without AFFIX as predictor variable, NNC (i.e.,
a pseudoword’s semantic similarity to its closest semantic real
word neighbour) emerges as significant (see model C). Why so?
As reported in Table 2, the AFFIX variable and NNC are strongly
negatively correlated (rho =−0.89). Post-hoc analysis shows that
plural S has significantly lower NNC values as compared to non-
morphemic S (Wilcoxon test, p < 0.001). It therefore appears that
NNC takes over the role of differentiating between plural and
non-morphemic S in model C.

As for phonological certainty, we find that higher
phonological certainty leads to shorter S durations, while
higher phonological uncertainty leads to longer S durations.
Shorter durations in contexts of high phonological certainty may
be related to effects of frequency, i.e., highly frequent forms are
produced with higher certainty and are thus shorter.

Directions for Future Research and
Conclusion
The results of the present study may bring up further questions.
First, are the predictive measures found for word-final S duration
in pseudowords also predictive for word-final S duration in real
words? Tomaschek et al.’s (2019) NDL implementation suggests
that it is, but LDL networks still need to be implemented. It
would be especially interesting to model those data sets that
have yielded seemingly contradictory effects. Second, taking
into account that the specification of AFFIX in the modelling
process leads to a significantly better model fit, one may ask
what the underlying reasons for this significant effect are. This
then automatically leads to another question: Is it possible to
catch the effect of the AFFIX specification in terms of (new)
LDL measures?

To summarize, this paper was the first to investigate
durational differences between different types of word-final
S (non-morphemic vs. plural S) in pseudowords by means
of an LDL implementation, measures, and resulting statistical
analyses. The findings yielded important evidence on the
question of how such durational difference come to be, i.e.,
they can be predicted based on their pseudoword’s relations
to the lexicon. We demonstrated that durational differences
emerge from the pseudoword’s resonance with the lexicon by
way of differing degrees of semantic activation diversity and
phonological uncertainty. These manifestations of the relations
to other words in the lexicon in turn are the result of
discriminative learning.
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Krivokapić, J. (2007). Prosodic planning: effects of phrasal length and complexity
on pause duration. J. Phonetics 35, 162–179. doi: 10.1016/j.wocn.2006.04.001

Kuznetsova, A., Brockhoff, P. B., and Christensen, R. H. B. (2017). Lmertest
package: tests in linear mixed effects models. J. Statist. Softw. 82:35902. doi:
10.18637/jss.v082.i13

Landauer, T. K., and Dumais, S. T. (1997). A Solution to plato’s problem: the
latent semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychol. Rev. 104, 211–240. doi: 10.1037/0033-295X.104.2.211

Lee, S., and Oh, Y. H. (1999). Tree-based modeling of prosodic phrasing and
segmental duration for Korean TTS systems. Speech Commun. 28, 283–300.
doi: 10.1016/S0167-6393(99)00014-X

Levelt, W. J. M., Roelofs, A., and Meyer, A. S. (1999). A theory of lexical access in
speech production. Behav. Brain Sc. 22, 1–75. doi: 10.1017/S0140525X99001776

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. advances in
neural information processing systems. Arxiv [preprint]. arxiv. 1310.4546,

Milin, P., Feldman, L. B., Ramscar, M., Hendrix, P., and Baayen, R. H. (2017).
Discrimination in lexical decision. PLoS One 12:e0171935. doi: 10.1371/journal.
pone.0171935

Moore, H. E. (1920). On the reciprocal of the general algebraic matrix. Bull. Am.
Mathemat. Soc. 26, 394–395.

Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of
determination R2 and intra-class correlation coefficient from generalized linear
mixed-effects models revisited and expanded. J. Royal Soc. Int. 14. doi: 10.1098/
rsif.2017.0213

O’Rourke, N., Hatcher, L., and Stepanski, E. J. (2005). A Step-by-Step Approach to
Using SAS for Univariate & Multivariate Statistics. Cary: SAS Publishing.

Penrose, R. (1955). A generalized inverse for matrices. Mathemat. Proc. Cambridge
Philos. Soc. 51, 406–413. doi: 10.1017/S0305004100030401

Plag, I. (2018). Word-Formation in English (Second Edition). Cambridge: University
Press, doi: 10.1017/CBO9780511841323

Plag, I., Homann, J., and Kunter, G. (2017). Homophony and morphology: the
acoustics of word-final S in English. J. Linguistics 53, 181–216. doi: 10.1017/
S0022226715000183

Plag, I., Lohmann, A., Ben Hedia, S., and Zimmermann, J. (2020). “An <s> is an
<s’>, or is it? Plural and genitive-plural are not homophonous,” in Complex
Words, eds L. Körtvélyessy and P. Štekauer (Cambridge University Press).

Ramscar, M., and Yarlett, D. (2007). Linguistic self-correction in the absence of
feedback: a new approach to the logical problem of language acquisition. Cogn.
Sci. 31, 927–960. doi: 10.1080/03640210701703576

Ramscar, M., Yarlett, D., Dye, M., Denny, K., and Thorpe, K. (2010). The effects of
feature-label-order and their implications for symbolic learning. Cogn. Sci. 34,
909–957. doi: 10.1111/j.1551-6709.2009.01092.x

R Core Team (2020). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Available online at: https://www.r-
project.org/ (accessed February 15, 2021).

Rescorla, R. A. (1988). Pavlovian conditioning: it’s not what you think it is. Am.
Psychol. 43, 151–160. doi: 10.1037/0003-066X.43.3.151

Rescorla, R. A., and Wagner, A. R. (1972). “A theory of Pavlovian conditioning:
variations in the effectiveness of reinforcement and nonreinforcement,”
in Classical Conditioning II: Current Research and Theory, eds A. H.
Black and W. F. Prokasy (Newyork, NY: Appleton Century Crofts),
64–99.

Roelofs, A., and Ferreira, V. S. (2019). “The architecture of speaking,” in Human
Language: From Genes and Brains to Behavior, ed. P. Hagoort (MIT Press),
35–50.

RStudio Team (2021). R, RStudio: Integrated Development for R (1.4.1103).
Available online at: http://www.rstudio.com/ (accessed January 20,
2021).

Schmid, H. (1999). “Improvements in part-of-speech tagging with an application to
german,” in Natural Language Processing Using Very Large Corpora. Text, Speech
and Language Technology, eds S. Armstrong, K. Church, P. Isabelle, S. Manzi, E.
Tzoukermann, and D. Yarowsky (Springer), 11. doi: 10.1007/978-94-017-2390-
9_2

Schmitz, D., Baer-Henney, D., and Plag, I. (2020). The Duration of
Word-Final /s/ Differs Across Morphological Categories in English:
Evidence From Pseudowords [Manuscript submitted for publication].
Germany: English Language and Linguistics, Heinrich Heine University
Düsseldorf.

Selkirk, E. (1996). “The prosodic structure of function words,” in Signal to Syntax:
Bootstrapping from speech to grammar in early acquisition, eds K. Demuth and
J. Morgan (Routledge), 187–213.

Sering, T., Milin, P., and Baayen, R. H. (2019). Language comprehension
as a multiple label classification problem. Statistica Neerlandica. Statistica
Neerlandica 1–15.

Seyfarth, S., Garellek, M., Gillingham, G., Ackerman, F., and Malouf, R. (2017).
Acoustic differences in morphologically-distinct homophones. Lang. Cogn.
Neurosci. 33, 32–49. doi: 10.1080/23273798.2017.1359634

Shaoul, C., and Westbury, C. (2010). Exploring lexical co-occurrence space using
HiDEx. Behav. Res. Methods 42, 393–413. doi: 10.3758/BRM.42.2.393

Swanson, L. A., and Leonard, L. B. (1994). Duration of function-word vowels
in mothers’ speech to young children. J. Speech Hearing Res. 37, 1394–1405.
doi: 10.1044/jshr.3706.1394

Tomaschek, F., Hendrix, P., and Baayen, R. H. (2018). Strategies for addressing
collinearity in multivariate linguistic data. J. Phonetics 71, 249–267. doi: 10.
1016/j.wocn.2018.09.004

Tomaschek, F., Plag, I., Ernestus, M., and Baayen, R. H. (2019). Phonetic effects
of morphology and context: modeling the duration of word-final S in English
with naïve discriminative learning. J. Linguistics 2019, 1–39. doi: 10.1017/
S0022226719000203

Tremblay, A., and Ransijn, J. (2020). LMERConvenienceFunctions: Model Selection
and Post-Hoc Analysis for (G)LMER Models (3.0). Available online at: https:
//cran.r-project.org/package=LMERConvenienceFunctions (accessed June 09,
2021).

Tucker, B. V., Brenner, D., Danielson, D. K., Kelley, M. C., Nenadić, F., and Sims,
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