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Several authors have proposed that mechanisms of adaptive behavior, and
reinforcement learning in particular, can be explained by an innate tendency of
individuals to seek information about the local environment. In this article, I argue
that these approaches adhere to an essentialist view of learning that avoids the
question why information seeking should be favorable in the first place. I propose a
selectionist account of adaptive behavior that explains why individuals behave as if
they had a tendency to seek information without resorting to essentialist explanations.
I develop my argument using a formal selectionist framework for adaptive behavior,
the multilevel model of behavioral selection (MLBS). The MLBS has been introduced
recently as a formal theory of behavioral selection that links reinforcement learning
to natural selection within a single unified model. I show that the MLBS implies
an average gain in information about the availability of reinforcement. Formally, this
means that behavior reaches an equilibrium state, if and only if the Fisher information
of the conditional probability of reinforcement is maximized. This coincides with a
reduction in the randomness of the expected environmental feedback as captured
by the information theoretic concept of expected surprise (i.e., entropy). The main
result is that behavioral selection maximizes the information about the expected fitness
consequences of behavior, which, in turn, minimizes average surprise. In contrast to
existing attempts to link adaptive behavior to information theoretic concepts (e.g., the
free energy principle), neither information gain nor surprise minimization is treated as
a first principle. Instead, the result is formally deduced from the MLBS and therefore
constitutes a mathematical property of the more general principle of behavioral selection.
Thus, if reinforcement learning is understood as a selection process, there is no need
to assume an active agent with an innate tendency to seek information or minimize
surprise. Instead, information gain and surprise minimization emerge naturally because
it lies in the very nature of selection to produce order from randomness.

Keywords: behavioral selection, natural selection, information theory, Fisher information, entropy, multilevel
model of behavioral selection, covariance based law of effect, free energy principle
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INTRODUCTION

Many species adapt their behavior to changing environments
by mechanisms of learning. While early psychological learning
theories stressed the importance of temporal contiguity between
a behavior and its reinforcing consequences (Hull et al., 1940;
Thorndike, 2010/1911), more recent approaches often rely on the
concept of prediction. In this view, stimuli acquire control over
behavior only if they are reliable and non-redundant predictors of
reinforcers (Egger and Miller, 1962, 1963; Kamin, 1969; Rescorla,
1988; Williams, 1999). The importance of predictiveness for
learning seems to imply that individual learning is inherently
linked to the information that stimuli yield about the expected
consequences of behavior (Berlyne, 1957).

Several researchers have incorporated concepts from
information theory into theoretical accounts of learning and
reinforcement (Hendry, 1965, 1969; Bloomfield, 1972; Ward
et al., 2012, 2013). Information theory has also been applied in
cognitive accounts of learning and perception (Bubic et al., 2010;
Clark, 2013; Gottlieb et al., 2013) and neural theories of adaptive
behavior (Friston et al., 2006; Niv, 2009; White et al., 2019).
Although these approaches vary considerably in the way that
learning is linked to information theory, they all build on the idea
that adaptive behavior can be explained by information theoretic
concepts. In other words, the tendency to seek information
to predict the environment is generally taken to be a first
principle, an unexplained explainer. Hence, existing accounts
avoid the question why individuals accumulate information
about their environment by stipulating an innate tendency to
seek information. For example, in the free energy formulation of
predictive coding (also known as the free energy principle, FEP),
adaptive behavior and learning are explained by a tendency to
minimize predictive error—a property that is assumed to be
constitutive of all living organisms (Friston et al., 2006).

The problem with this line of reasoning is that it adheres
to an essentialist philosophy of science (Palmer and Donahoe,
1992). Essentialism goes back to Aristotle who held that all
phenomena in nature reflect some universal, enduring qualities
that are intrinsic to each class or unit. In this view, all categories
are defined by essential properties. For example, the category
of “red things” is defined as those objects that possess the
abstract property of “redness.” Essentialist explanations rely on
one or more of such properties that are assumed to be innate to
the objects under consideration. For example, Ptolemy’s theory
of epicycles explained the movement of celestial bodies by an
innate tendency to move in circles (Hanson, 1960). Similarly, the
theory of orthogenesis explained evolutionary change by an innate
tendency toward higher levels of organization and complexity
(Ulett, 2014).

In biology, essentialism was eventually replaced by Darwin’s
theory of evolution by natural selection, which provides a non-
teleological account of biological adaptations that does not rely
on innate tendencies as explanatory modes. Selectionism also
explains the observed orderliness of planetary movement as a
by-product of gravitation, since most objects in the solar system
either collapse into the sun or leave the system altogether.
Whereas essentialism has long been abandoned as “unscientific”

in the natural sciences, it still prevails as an explanatory mode in
many areas of psychology (Donahoe et al., 1993).

In this paper, I develop a selectionist explanation for the
observed connection between learning and information that does
not rely on essentialist concepts like an innate tendency to
seek information. I use a formal model of behavioral selection
that builds on an extended Price equation (Price, 1970, 1972).
Although originally intended to describe natural selection on
a genetic level, the Price equation has been adapted to explain
selection processes in other domains such as cultural selection
(Lehtonen, 2020) and individual learning (Baum, 2017). In the
context of natural selection, the Price equation has also been
applied to information theoretic concepts (Frank, 2017, 2020). In
particular, it has been shown that natural selection maximizes the
Fisher information of a random observation from a population
with regard to the amount of change from the parent population
to the descendant population (Frank, 2009).

By analyzing natural selection in terms of Fisher information,
Frank (2009) establishes a formal link between the concepts
of selection and statistical prediction. However, it is difficult
to give an intuitive interpretation to the concept of statistical
prediction on the level of an entire population. In contrast to
natural selection, when reinforcement learning is interpreted as
a selection process, the implied connection between the Price
equation and statistical predictiveness seems more intuitive.
It is straightforward to conceptualize individuals as learning
agents acting according to their statistical predictions about the
environment. Therefore, if reinforcement learning is a selection
process, a formal link between the Price equation and Fisher
information might explain why learning individuals seem to seek
information about their environment. The aim of this article is to
establish such a formal link.

In the following section I first provide a brief introduction
to the multilevel model of behavioral selection (MLBS). The
MLBS is based on an extended Price equation that captures
behavioral change due to reinforcement learning and evolution
simultaneously (Borgstede and Eggert, 2021). I then show that
the fundamental principle of behavioral selection, the covariance
based law of effect, implies that reinforcement learning coincides
with an increase in the information an individual accumulates
about the expected fitness consequences of its behavior (section
“Behavioral Selection and Fisher Information”). The main result
is that behavioral allocation is at equilibrium, if and only if the
distribution of expected evolutionary fitness has maximal Fisher
information with regard to the consequences of an individual’s
average behavior. I further show that this coincides with the
individual minimizing average surprise, i.e., information entropy,
(section “Relation to Self Information and Entropy”). This latter
result suggests a connection between behavioral selection and
the free energy principle (FEP) proposed by Friston et al. (2006),
which is claimed to provide a general theory of adaptive behavior
by means of predictive brain processes (Friston, 2010; Badcock
et al., 2019). I establish a formal connection between the MLBS
and the FEP, thereby showing that both theories arrive at the same
predictions from very different assumptions (section “Relation to
Predictive Coding”). Whereas the FEP presumes that minimizing
surprise explains behavioral adaptations, the MLBS implies that
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minimizing surprise is a consequence of behavioral selection.
Finally, the implications of the results are summarized and
discussed (section “Discussion”).

Since the link between learning and information follows
directly from the MLBS, there is no need to assume an innate
tendency of learning individuals to seek information about their
environment. Instead, reinforcement learning coincides with
a reduction in randomness (and thus a gain in information)
because it lies in the very nature of selection processes to
produce order from randomness. This clarifies the role of
information theory for reinforcement learning and explains why
individuals seem to have a tendency to seek information about
their environment.

THE MULTILEVEL MODEL OF
BEHAVIORAL SELECTION

It is a long-held belief that reinforcement learning shapes
individual behavior in a similar way that natural selection shapes
the characteristics of a species (Thorndike, 1900; Pringle, 1951;
Skinner, 1966, 1981; Staddon and Simmelhag, 1971). Several
attempts have been made to formalize the idea that learning can
be understood as a certain type of selection that is often called
behavioral selection (Donahoe et al., 1993; McDowell, 2004, 2013;
Donahoe, 2011; Baum, 2012, 2017). However, these approaches
rely on a formal analogy between the mechanisms of learning and
the principle of natural selection, thereby missing the opportunity
to give a functional integration of learning and evolution.
A second line of reasoning conceives learning mechanisms as a
result of natural selection (McNamara and Houston, 2009; Singh
et al., 2010). However, in these latter approaches, reinforcement
learning itself is not described as a selection process. Therefore,
until recently, there was no overarching theory that unifies
behavioral selection and natural selection in a way that functional
relations between both levels of selection can be established.

The MLBS provides such a unifying account (Borgstede
and Eggert, 2021). Starting with the most general description
of natural selection as the result of traits co-varying with
evolutionary fitness as specified in the Price equation
(Price, 1970, 1972), the MLBS provides a coherent formal
integration of learning and evolution. The core concept is
that reinforcers are essentially (context-specific) statistical
fitness predictors. Any trait that predicts evolutionary fitness1

on the level of the population will naturally function as
a reinforcer if it can be changed by individual behavior.
Given behavior varies within individuals, this functional
relation between (context-specific) behavior and a trait that
predicts evolutionary fitness implies a within-individuals

1Following the Price equation framework, in the MLBS, “evolutionary fitness” is
understood as the contribution of an individual to the future population with
respect to the evolving trait. This contribution does not necessarily coincide with
the number of offspring but may also include the probability of an individual’s own
survival, as well as the survival of its offspring. Moreover, since behavior can also
be transmitted to the future population via non-genetic inheritance mechanisms
(like imitation, instruction or cultural artifacts), the Price equation framework can
be used to include biologically, as well as culturally mediated fitness effects (El
Mouden et al., 2014; Aguilar and Akçay, 2018).

covariance between the behavior and the fitness predictor.
Any mechanism that fosters behavioral change in the direction
of this (individual level) covariance will, on average, yield
a higher individual fitness and is thus favored by natural
selection. Consequently, the observed similarity between
learning and evolution arises because reinforcement learning
and natural selection can both be described by means of
the covariance principle given by a multilevel extension of
the Price equation.

The MLBS relies on a molar conceptualization of
reinforcement (Rachlin, 1978). The basic assumptions of this
approach are that behavior is inherently variable and extended in
time. This implies that behavior is best analyzed on an aggregate
level that averages responses emitted in a certain context over
time (Baum, 2002). Instead of focusing on single instances of
behavior, the molar approach describes patterns of behavioral
allocation over time by means of quantitative regularities like,
for example, the matching law (Baum, 1974; Herrnstein, 1974).
Following this rationale, the MLBS models behavior as the time
an individual engages in an activity within a specified context.
A context is defined by recurring contingency structures in an
individual’s environment. Within this conceptual framework,
behavioral change due to reinforcement is analyzed by comparing
average behavioral allocation over time between multiple sets of
reinforcement trials (so-called behavioral episodes).

On the level of the whole population, change in mean
behavioral allocation 4b can be expressed by the Price equation
(Price, 1970):

w4b = Covi
(
wi, bi

)
+ Ei(wi4bi) (1)

Here, wi refers to the contribution of individual i to the
future population (i.e., individual fitness) and w designates
the corresponding population average in evolutionary fitness.
Behavior bi is conceptualized as the average behavioral allocation
of individual i in a specified context when averaged over all
instances of the corresponding contingency structure. Due to
the definition of behavior as time spent engaging in an activity,
all bi are real numbers ranging between zero and the duration
of a behavioral episode. Equation (1) separates population
change into a covariance term Covi

(
wi, bi

)
, capturing the

effects of natural selection, and an expectation term Ei(wi4bi),
capturing the effects of within-individual change. Because the
Price equation holds irrespective of the specific mechanisms of
transmission, it does not matter here whether the behavioral trait
b is passed on to the next generation via genetic inheritance or via
cultural transmission (e.g., imitation or instruction).

It is possible to expand the Price equation by further
separating the fitness weighted within-individual change wi4bi
using the same scheme. Hence, in the MLBS, change within
individuals is further partitioned into an individual-level
covariance between behavioral allocation and fitness ranging over
behavioral episodes j, and an individual-level expectation term
capturing all sources of within-individual behavioral change that
are not selection. The corresponding multilevel Price equation is:

w4b = Covi
(
wi, bi

)
+ Ei(Covj

(
wij, bij

)
+ Ej(wij1bij)) (2)
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Since fitness is measured as the contribution of an individual
to the future population (i.e., fitness is a characteristic of the
whole individual), it is not reasonable to ascribe fitness to single
behavioral episodes within individuals (as implied by the term
wij). Instead, the MLBS incorporates the concept of context-
dependent fitness predictors by means of a linear regression that
predicts individual fitness on the population level using a fitness
predictor p with w = β0 + βwpp+ ε. Substituting the wij with
the corresponding predicted values, it is possible to describe the
individual change in behavioral allocation for each individual by
the following equation:

wi4bi = βwpCovj
(
pij, bij

)
+ δ (3)

Equation (3) gives an abstract description of reinforcement
learning by means of behavioral selection and is called the
covariance based law of effect: the change in behavior due to
behavioral selection is proportional to the covariance between
behavior and a fitness predictor, and proportional to the statistical
effect of the fitness predictor on evolutionary fitness. The term
Covj

(
pij, bij

)
refers to the within-individual covariance between

behavior bij and reinforcer pij over several behavioral episodes
(e.g., trials in a behavioral experiment). The residual term δ

captures all influences on behavioral change that are not selection.
βwp is the slope of the regression of evolutionary fitness on
reinforcement (also referred to as reinforcing power) and may be
different in various contexts.2

The covariance based law of effect is closely related to
the concept of reinforcer value as a behavioral maximand.
The idea that individuals behave as if they were maximizing
some quantitative measure of value is a common theme
in behavioral psychology (Rachlin et al., 1981), behavioral
economics (Rachlin et al., 1976), behavioral ecology (Davies
et al., 2012) and formal accounts of reinforcement learning
(Frankenhuis et al., 2019). However, few have attempted
to explore the formal constraints on reinforcer value from
an evolutionary perspective (McNamara and Houston,
1986; Singh et al., 2010). Since the behavioral outcome of
reinforcement affects individual fitness, the values assigned
to different behaviors cannot be independent of natural
selection. It has been shown that, if reinforcer value and
evolutionary fitness are maximized simultaneously, marginal
reinforcer value r(b) coincides with the expected gain in
evolutionary fitness per unit change in behavioral allocation
(Borgstede, 2020).

In the context of the MLBS, this expected gain in evolutionary
fitness can be retrieved from the covariance based law of effect.
Given behavior affects fitness only by means of changes in
reinforcement, reinforcer value can be expressed in terms of
a statistical path model where the effect of behavior b on
evolutionary fitness w is completely mediated by reinforcement
p (see Figure 1). Consequently, the total fitness effect of b

2For primary reinforcers, like food or physical threat, the fitness gain per unit
of reinforcement is most likely coded in the organism’s genome resulting in
condition-dependent motivational responses to the corresponding reinforcer.
However, knowledge about fitness consequences may also stem from other sources
like, for example, observation of other individuals.

equals the product of the partial regression effects βpb and βwp,
and marginal reinforcer value becomes r(b) = βwpβpb. Since, by
standard covariance calculations, βpb = Covj

(
pij, bij

)
/Var(bij),

Equation (3) can be rearranged to:

wi4bi = r(bi)Var(bij)+ δ (4)

Thus, the covariance based law of effect implies that behavioral
change due to reinforcement is proportional to marginal
reinforcer value and proportional to the intra-individual
behavioral variance. If the fitness function of b is a smooth
concave function with a global maximum, behavioral selection
will foster change until there is no further gain in reinforcer value
(i.e., r

(
b
)
= 0). This implies that absolute reinforcer value (in

terms of evolutionary fitness) is maximized.
The MLBS gives a formal account of reinforcement learning

by means of an abstract selection principle. Its import for
the theoretical analysis of behavior is best demonstrated by
an example. Consider an organism that adapts its foraging
behavior to the current environment by means of behavioral
selection (i.e., reinforcement as specified by the MLBS). Let us
assume that, in a given environment, there are two food patches.
Given equal foraging effort, the average time to encounter food
varies between the two patches. Restricting ourselves to the
exploitation of these two food sources, behavioral allocation
b can be expressed by a single number referring to the time
spent at one of the food patches (the time spent at the
other food patch is given implicitly by the duration of a
behavioral episode). Given food is not constantly available at
the patches, the animal is subject to a concurrent variable
interval (VI) schedule of reinforcement. With regard to the
amount of reinforcement obtained from both options, variable
interval schedules yield a concave feedback function that depends
on the relative reinforcement rates. Figure 2 illustrates two
such feedback functions, along with the total amount of
expected reinforcement.3 Imagine the animal is exposed to
this contingency repeatedly. At each trial, the individual will
slightly vary its own behavioral allocation. Since reinforcement
is contingent on behavior, this will result in a corresponding
variation in reinforcement between the trials. On an aggregate
level, this contingency can be expressed in terms of the
covariance between behavioral allocation and reinforcement.
The covariance based law of effect states that behavior changes
in the direction of this covariance, with the rate of change
depending on the expected gain in evolutionary fitness per
unit change in reinforcement. From the shape of the feedback
function it follows that this covariance will be zero, if and only
if behavioral allocation is chosen such that it maximizes the
sum of reinforcement received from the two patches (compare
Figure 2B). Given that both patches yield the same food
(and hence identical fitness effects per unit of reinforcement),
maximization of reinforcement coincides with the well-known
matching law (Baum, 1981).

3For an overview of different feedback functions for variable interval schedules of
reinforcement see Nevin and Baum (1980).
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FIGURE 1 | Path model relating behavior b to evolutionary fitness w via reinforcement p. Following the MLBS, any statistical fitness predictor p will act as a reinforcer.
The partial regression coefficients βpb and βwp designate the slope of the environmental feedback function relating behavior to reinforcement, and the slope of the
fitness function relating reinforcement to fitness, respectively. The product of both partial effects constitutes the total effect of behavior on evolutionary fitness, which
is equivalent to the reinforcer value r(b) of the behavior (see Borgstede, 2020 for details).

FIGURE 2 | Expected environmental feedback from variable interval (VI) schedules of reinforcement. (A) Two VI feedback functions for different average time
between reinforcements. (B) Total expected reinforcement obtained from a concurrent VI/VI schedule of reinforcement. The red dotted line indicates the point where
the marginal gain in reinforcement is zero. Given constant fitness functions, this coincides with the maximum amount of obtained reinforcement in terms of absolute
reinforcer value (see Borgstede, 2020 for details).

BEHAVIORAL SELECTION AND FISHER
INFORMATION

Fisher information measures the amount of information
an observation provides with regard to an unknown
parameter of the underlying probability distribution. Fisher
information is mostly used in statistical estimation theory.
In the context of behavioral selection, the question arises
whether the statistical regressions stipulated by the MLBS
can be exploited to mimic an agent based approach to
reinforcement learning where the individual adapts its
behavior by predicting the expected (fitness) consequences
of its own behavior. If such an interpretation is possible, we
would expect the individual to act as if it was constructing
statistical estimates about its expected fitness. In this case, the
information of a random observation (i.e., the environmental
feedback to the individual’s behavior) with regard to the true
individual fitness would be captured by the corresponding
Fisher information.

To give a general definition of Fisher information, suppose
a random variable X that is characterized by a probability
distribution function with a given parameter θ. Let the likelihood
of this parameter with regard to X be designated by LX(θ). Fisher
information is defined as the variance of the first derivative of the
log-likelihood with regard to the underlying parameter:

FX(θ) = Var
(

dlog(Lx (θ))

dθ

)
(5)

Given the underlying distribution satisfies certain regularity
conditions, this is equivalent to the curvature of the log-
likelihood in the region of the maximum (Lehmann and Casella,
1998). For example, if X is a normally distributed variable with
given variance σ2, the Fisher information of the expected value
µ is:

FX (µ) = Var
(

dlog(Lx(µ))

dµ

)
=

1
σ2 (6)
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Thus, for a normally distributed random variable, a small
variance yields a high Fisher information. In other words, the
smaller the variance, the more information about the expected
value can be obtained from a random observation.

Since in the MLBS behavioral change only occurs to the
degree to which reinforcement predicts evolutionary fitness, it is
plausible that individuals should behave in such a way that they
can reliably predict the fitness consequences of reinforcement.
Formally, individuals are expected to behave such that the
environmental feedback has minimum variance and hence yields
maximum Fisher information. In the following, I will show that
this tendency to maximize Fischer information naturally arises
when reinforcement is understood as a selection process.

In the MLBS, expected evolutionary fitness is treated as a
probabilistic function of average behavior. Equation (4) states
that change in average behavior is proportional to marginal
reinforcer value r

(
b
)
, which corresponds to the expected change

in evolutionary fitness per unit change in behavior. As before,
we assume that behavior is inherently variable, and that r

(
b
)

is given by the slope of a linear regression of evolutionary
fitness on individual behavior with the standard assumption
of a normally distributed random error of constant variance.
We further assume a smooth concave fitness function with a
global maximum, as it is naturally produced by environmental
contingencies with diminishing returns (like the abovementioned
VI/VI schedules of reinforcement).

Under these assumptions, the conditioned probability of
individual fitness is a normally distributed random variable Wi
with expectation µi = wi and variance σ2

i = Var(wij). A random
observation from Wi corresponds to the environmental
feedback conditioned on average behavior4 (i.e., the reinforcing
consequences of the behavior in terms of expected evolutionary
fitness). By Equation (6) the Fisher information of a random
observation from Wi with regard to expected fitness µi is:

FWi (µi) =
1

Var(wij)
(7)

From Equation (7) it follows immediately, that Fisher
information with regard to expected evolutionary fitness reaches
its maximum, if and only if Var(wij) is as small as possible.
Given the above assumptions, behavioral selection will eventually
change behavior toward the point of maximum expected
evolutionary fitness (Borgstede, 2020). At this point, marginal
reinforcer value r(bi) will be zero and behavioral selection will
cease (compare Figure 2B). With decreasing marginal reinforcer
value, Var(wij) will also decrease until it reaches its minimum
value at the point of behavioral equilibrium. This conclusion
follows directly from the relation between the slope of the fitness
function and the variance in expected evolutionary fitness as
illustrated in Figure 3 (see Appendix for a formal derivation).

The individual can thus be conceptualized to adjust its
behavior to the environment, such that the information obtained

4Note that in the MLBS behavior is conceptualized as inherently variable.
If behavior were constant over trials, the variance of the expected fitness
consequences would also be constant. However, without variation there is
no selection, which is why we condition on average behavior with variance
Var

(
bij

)
> 0.

FIGURE 3 | Relation between average behavior and variance in expected
evolutionary fitness as implied by the MLBS. Given constant error variance
(indicated by the curved dashed lines), the variance of the expected fitness
consequences conditioned on average behavior depends on behavioral
variance and the slope of the fitness function (i.e., marginal reinforcer value).
Consequently, the variance of expected fitness will be higher than the error
variance when the slope of the fitness function has a high absolute value (red
lines). The covariance based law of effect predicts that behavioral change is
proportional to marginal reinforcer value. Hence, when the slope of the fitness
function is zero (blue lines), there will be no change in average behavior. This
coincides with the point where the variance in expected fitness is smallest,
resulting in maximum Fisher information about the expected fitness
consequences conditioned on average behavior.

from the behavioral consequences with regard to expected
evolutionary fitness is maximized.

RELATION TO SELF-INFORMATION AND
ENTROPY

In the context of behavioral selection, Fisher information is
closely related to another information theoretic concept, known
as Shannon information or entropy. Shannon information was
originally used to quantify the information content of a message
that is transmitted from a sender to a receiver (Shannon,
1948). In a broader sense, it provides a nonparametric measure
of the randomness of a probability distribution. In other
words, with higher entropy it becomes more difficult to make
valid predictions. Therefore, if individuals adjust their behavior
according to their predictions about their expected evolutionary
fitness, predictions are reliable if and only if the entropy of the
conditional fitness distribution is low. Thus, when behavior is
adjusted by means of behavioral selection, a low entropy should
be more favorable than a high entropy.

Formally, entropy is defined by means of self-information or
surprise. Given a probability distribution X, the self-information
I (x) of an event x equals the negative logarithm of its associated
probability P (x):

I (x) = −log(P (x)) (8)
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The expected value of self-information (i.e., the average
surprise) for the whole distribution is called Shannon
information, or entropy H(X):

H(X) = Ei (I(xi)) (9)

For a normally distributed random variable X with variance σ2,
this corresponds to:

H(X) =
1
2

log
(
2πeσ2) (10)

Because all terms inside the logarithm in Equation (10)
apart from σ2 are positive constants, the entropy of a normally
distributed random variable is a monotone increasing function
of its variance σ2. Since the Fisher information for a normal
distribution is given by 1

σ2 , maximizing Fisher information
minimizes entropy in this case. Therefore, behavioral selection
leads to minimizing the randomness of the environment
with regard to predicted fitness in a given environment.
Learning can thus be understood as a process that maximizes
the information about expected evolutionary fitness and
minimizes the average surprise (i.e., entropy) associated with the
consequences of behavior.

RELATION TO PREDICTIVE CODING

The above calculations show that, in the MLBS framework,
individuals are expected to behave as if they were maximizing the
Fisher information about their expected evolutionary fitness or,
equivalently, as if they were minimizing average surprise obtained
from environmental feedback with regard to their expected
individual fitness. These results follow straightforward from the
covariance based law of effect, which provides a strictly behavioral
account of reinforcement on a molar level of analysis.

In this section, I will explore the theoretical implications
of these results with regard to the theory of predictive coding
(TPC), where the individual is conceived as an active agent that
adapts its behavior by means of an innate tendency to minimize
predictive error between perception and its current expectations
(Clark, 2013). Predictive coding is chosen as a case study here
because it can be regarded as a paradigmatic example of an
essentialist mode of explanation in psychology. The TPC is a
neuro-cognitive account of adaptive behavior that builds on the
concept of agency. This means that individuals are conceived
as active decision makers that form internal representations of
the environment (generative models) and use the information
they obtain from environmental feedback to update their internal
world model and their current behavior. In the predictive coding
framework, perception and action are understood as being the
simultaneous result of a continuous process that minimizes
predictive error.

On a conceptual level, the idea of an active agent continuously
seeking to minimize predictive error seems to contradict the
behavioral view expressed in the MLBS. The first obvious
difference concerns the question what counts as behavior
(or “action” in the predictive coding terminology). The TPC

describes behavior as a continuous stream of action and thus
provides a molecular perspective to adaptive behavior. The MLBS
describes behavior on a different level of analysis. Instead of
describing every single action in a continuous stream of behavior,
the MLBS focuses on average behavior that is itself extended
over time. This corresponds to the aforementioned molar
view (Baum, 2002, 2013). The difference between molecular
and molar theories of behavior is analogous to the difference
between classical mechanics, which describes the motion of
single particles, and statistical mechanics, which describes the
same particles on an aggregate level. It makes little sense to
say that one of the approaches is superior to the other as
such. When dealing with a comparably simple system within
a limited time frame, a molecular analysis may be the best
choice. However, when the system becomes more complex
or the time scale becomes more extended, molecular analyses
often fail to produce accurate predictions (this also holds
for physical systems). Therefore, in these cases a molar level
of analysis can provide a better picture. Nevertheless, both
approaches deal with the same kind of phenomena—hence the
results of a molecular model should, in theory, coincide with a
corresponding molar model. Therefore, if the implied connection
between the MLBS and the TPC is supposed to be more than
metaphorical, the above results should be consistent with the
general framework of the TPC.

The second difference between the MLBS and the TPC is
a matter of perspective. The TPC describes behavior from the
perspective of the individual. This means that individuals and
their representations of the world are the primary object of
study. Consequently, the principle of error minimization is
formulated such that it can be applied to individual agents
that actively seek information and choose their corresponding
actions such that they fit the perceived environment best.
The MLBS describes adaptive behavior from the perspective
of the environment. This means that the contingencies in the
environment are the primary focus of the analysis. Hence,
the MLBS does not invoke internal representations or innate
tendencies of the individual. Instead, adaptive behavior is
described as an environmental selection process that changes the
state of the individual. The TPC gives an essentialist account
of information seeking, allocating the source of change inside
the object (in the form of innate powers), whereas the MLBS
gives a selectionist account, allocating the source of change
outside the object (in the form of applied forces). Whilst the
latter approach has become the predominant philosophy of
modern natural science, it is still a point of debate whether
it is suitable to describe the behavior of living organisms.
Therefore, if the MLBS can give a coherent explanation for the
apparent tendency of individuals to strive for better predictions
without invoking an essentialist mode of explanation, this would
be a strong case against the necessity of innate powers to
explain behavior.

In the following, both issues shall be addressed in order
to clarify the theoretical implications of the above analysis. I
focus on a formalized version of predictive coding known as
the free energy principle (FEP) that was introduced by Friston
et al. (2006) and has been applied to model adaptive behavior
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in several domains, like perception, motor control, optimal
choice and neural plasticity (see Friston, 2010 for a review). In
the following, I adhere to the formalism presented in Buckley
et al. (2017) due to its notational simplicity and clarity of
presentation.5

In the FEP framework, the concept of predictive error
minimization is conceptualized by means of an agent that forms
an internal representation of the environment (a generative
model) and uses this model to predict which sensory states should
occur in the future. The actual sensory states are the result of
the environmental feedback to the individual’s actions and may
depart from these predictions. The first source of prediction
error lies in the stochasticity of the environmental feedback. The
second source arises when the generative model differs from the
actual contingencies of the environment (i.e., the individual’s
internal representation of the structure of the world is flawed).
The core assumption of the FEP is that both, the parameters
of the generative model and the actions of the individual, are
chosen such that the actual sensory states (i.e., the experienced
environmental feedback) are most likely.

Formally, the environment is characterized by the values of a
set of environmental variables (which are called environmental
states) that jointly affect the values of a set of internal variables
(which are called sensory states). The state of the world shall
be designated ϑ , the sensory states ϕ. The probability density
over sensory states (given the individual’s generative model) is
designated p(ϕ) and the probability density over environmental
states, given sensory states p(ϑ |ϕ), respectively.

In the FEP, it is assumed that the true state of the world is not
accessible to the individual and, consequently, the conditional
probability p(ϑ |ϕ) cannot be calculated exactly but has to be
approximated by the individual’s “best guess,” the recognition
density q(ϑ). The divergence between the true probability density
over environmental states and the individual’s recognition
density introduces an additional source of predictive error,
which is formally captured by the Kullback-Leibler divergence6

D(q(ϑ)||p (ϑ | ϕ)). The sum of this Kullback-Leibler divergence
and the self-information of the sensory states −log

(
p(ϕ)

)
is

called free energy F (due to its formal similarity to the concept
of free energy from statistical mechanics):

F = −log
(
p (ϕ)

)
+ D(q(ϑ)||p (ϑ | ϕ)) (11)

The free energy principle now states that all parts of the
behavioral system that can change (i.e., the parameters of the
generative model and the action states of the individual) are
chosen by the individual such that free energy F is minimized.

To investigate the relation between the MLBS and the
FEP, we need to provide a free energy formulation of the
kind of behavioral system that is studied by molar theories
of reinforcement. We only consider the case of constant

5Note that there are different versions of the FEP employing different notational
conventions, as well as different partitionings of terms.
6The Kullback-Leibler divergence is an information theoretic measure that
quantifies the difference in randomness (as measured by entropy) between a
random variable given an estimated model as compared to the randomness given
the true model.

reinforcing power βwp (i.e., the individual’s sensitivity to
reinforcement is the same in every behavioral episode).
Under this condition, the amount of reinforcement and the
expected evolutionary fitness only differ by a constant factor.
Hence, maximum expected fitness coincides with maximum
reinforcement and Equation (7) can be equivalently stated
for the conditional distribution of expected reinforcement.
Consequently, given constant reinforcing power, behavioral
selection does not only maximize Fisher information with respect
to expected evolutionary fitness, but also with respect to expected
reinforcement. Because Fisher information is inversely related to
information entropy, the MLBS predicts that average surprise
(i.e., entropy) with regard to expected reinforcement will be
minimized.7

A free energy formulation for simple scenarios like the above
foraging example is straightforward. Here, the true structure
of the world is given by the feedback functions associated
with the food patches. We can thus identify the environmental
states ϑ with the slopes of the feedback functions. The sensory
states ϕ are a direct consequence of the amount of food that
the individual actually receives and may consist in smelling or
tasting the food obtained from the two patches. Since smelling
or tasting food usually predicts higher evolutionary fitness,
the sensory states are reinforcers in the sense of the MLBS.
Hence, p(ϕ) is the probability of reinforcement, p(ϑ |ϕ) is the
true probability of the slopes of the feedback functions given
reinforcement (which is not known to the individual) and
q(ϑ) is the individual’s “best guess” about the slopes of the
feedback functions.

Let us, for the sake of simplicity, assume that the individual
has optimized its generative model such that the recognition
density q(ϑ) approximates the true probability density p(ϑ |ϕ)
as closely as possible (i.e., the individual cannot further reduce
the Kullback-Leibler divergence D by updating its generative
model). In this case, D can be treated as a constant and
minimization of free energy F coincides with minimization
of −log

(
p (ϕ)

)
, which, in the reinforcement scenario, is

the surprise (or self-information) of a random observation
with regard to expected reinforcement. Consequently, when
averaged over a longer period of time, the free energy
formulation states that average surprise (i.e., entropy) with
regard to expected reinforcement is minimized. Therefore,
in the above example, there is a direct correspondence
between the molar predictions of the MLBS and the molecular
mechanisms of the FEP.

DISCUSSION

In this paper, I approached the question why reinforcement
learning leads to information gain from a selectionist point

7The assumption of constant reinforcing power is not strictly necessary to connect
the MLBS to the FEP. An alternative formulation would treat the conditional
distribution of absolute reinforcer value (i.e., the integral of r(b)) as the objective
of free energy minimization (cf. Borgstede, 2020). However, from the perspective
of the FEP, it may be more intuitive to focus on reinforcement itself because it is
often associated with direct sensory inputs like taste or smell.

Frontiers in Psychology | www.frontiersin.org 8 November 2021 | Volume 12 | Article 684544

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-684544 November 15, 2021 Time: 13:51 # 9

Borgstede Why Do Individuals Seek Information?

of view. I provided a formal argument that builds on a
re-interpretation of behavioral selection from an information
theoretic perspective. It was shown that the covariance based
law of effect (as specified in the MLBS) can be formally
linked to an agent based approach to reinforcement, where
the individual adapts its behavior to the environment by
predicting the expected consequences of its own behavior.
In this interpretation, individuals adapt their behavior to the
environment such that the Fisher information with regard to
expected individual fitness is maximized. This coincides with
individuals behaving as if minimizing the average surprise
(i.e., information entropy) associated with the environmental
feedback to their behavior. I further demonstrated that the
selectionist account provides an explanation for the observed
tendency of individuals to seek information by relating the MLBS
to a formalized version of the theory of predictive coding (the
free energy principle, FEP). In the FEP, information seeking is
stipulated as an essential property of living organisms without
further explanation. In contrast to essentialist explanations
of adaptive behavior, the selectionist account put forward
in this paper demonstrates that information gain emerges
from reinforcement being a selection process. Consequently,
individuals do not actually seek information. They just appear
to do so because their behavior changes as a result of a
selection process.

The main import of the MLBS for understanding the relation
between learning and information gain is that we do not
need to invoke essentialist explanations of adaptive behavior.
Selection naturally produces systems that reduce randomness.
In biology, selectionism has replaced the historically older view
that nature strives toward some ultimate goal (like complexity
or perfection). Consequently, the theory of natural selection
replaces teleologic explanations (“giraffes have a long neck
because they need to reach high hanging leaves”) with teleonomic
explanations (“giraffes have a long neck because reaching high
hanging leaves co-varies with evolutionary fitness”). Although
seemingly intentional, developing a long neck is no longer
seen as the result of an innate tendency or a goal-directed
process. In other words, we would not be inclined to say that
a species developed a long neck because it wanted to reach
high hanging leaves.

In contrast to biology, teleologic explanations are still
very common in psychology. For example, individuals that
approach another person in a bar might be said to do
so because they want to find a partner. The selectionist
account of behavior offers a corresponding teleonomic
explanation: individuals that approach another person in a
bar do so because approaching another person co-varies with
evolutionary fitness predictors like potential mating opportunities.
If individual changes in behavior can be described by the
same abstract principle of selection as population changes
in biological traits, we might reconsider how we formulate
psychological theories.

The problem with essentialist explanations becomes even
more obvious when we consider selection processes outside the
realm of biology. For example, the solar system may be regarded
as the result of an ongoing selection process (cf. Gehrz et al.,

1984). Depending on its velocity and direction of movement
relative to the sun, each planet will either collapse into the
sun, leave the system or remain in a stable orbit. For a planet
to remain in orbit, it needs just the right amount of velocity
tangent to its orbit to compensate for the gravitational force
that drags it toward the sun. Eventually, the only objects that
remain to be observed are the ones that had the requisite
velocities. Like all selection processes, the shaping of the solar
system is accompanied by an increase in predictability. The
particle cloud from which the solar system evolved was a
chaotic system. In other words, although each trajectory may
be determined by its initial condition, the complex interaction
between the particles allow only for probabilistic predictions.
However, the selection process outlined above eventually
produced highly predictable trajectories. Consequently, within
the solar system, we have an increase in information as a direct
result of selection.

Imagine we could observe the evolution of the solar system
but had no knowledge of the underlying selection process. We
might explain the increasing orderliness of movement by means
of an innate tendency of solar systems to seek information, just
like we explain the increasing orderliness of behavior by means of
an innate tendency of individuals to seek information. However,
if adaptive behavior is the result of a selection process, we have no
reason to accept essentialist explanations of individual behavior
any more than we accept an essentialist explanation of the orbits
in the solar system.

Behavioral selection theory has made considerable advances
in recent years. Whereas the analogy between learning and
evolution has been around for over a century, the MLBS states
that learning and evolution do indeed follow the same abstract
principle of selection. This paper shows that selection can also
account for the principle of information maximization—or,
equivalently, surprise minimization. Whereas other approaches
treat the tendency to minimize predictive error (or surprise) as
axiomatic (Friston et al., 2006; Niv, 2009), the MLBS offers an
explanation on the level of ultimate (i.e., evolutionary) causes.
This means that learning is not explained by an innate tendency
to seek information, but by the nature of selection itself.

The formal correspondence between selection and
information gain supports the view that selection may be
understood as a fundamental principle by which nature
generates order from randomness and may thus explain why
evolution apparently has a tendency to produce increasing levels
of complexity and organization (Brooks et al., 1989; Collier,
1998). Behavioral selection theory states that the connection
between information theory and selection equally applies to
the level of individual learning, thereby offering a conceptual
framework for theories of learning and behavior in general that
avoids essentialist thinking.
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APPENDIX

Proof That Behavioral Selection Maximizes Fisher Information
Within the MLBS, individuals are assumed to adapt their behavior to the environment using statistical fitness predictors. Changes in
behavior are thus linked to expected changes in evolutionary fitness by the covariance based law of effect:

wi4bi = r(bi)Var
(
bij

)
+ δ (A1)

Because marginal reinforcer value r
(
bi

)
corresponds to the slope of an individual-level regression of fitness on behavioral

allocation, we can express the expected fitness values for each behavioral episode by means of an individual predictive model for
the fitness associated with each behavior:

wij = ŵij + ε = β0i + r(bi)bij + ε (A2)

Since the expected value of the predicted fitness E(ŵij) corresponds to the true individual fitness wi, this model estimates the
expected evolutionary fitness of an individual, given the current behavior in the present environment. Given the standard assumptions
of linear regression, the (within-individual) variance in expected fitness is:

Var
(
wij

)
= Var

(
ŵij

)
+ Var(ε) (A3)

Since the variance of the expected fitness Var
(
ŵij

)
can be retrieved from the predictive model, it holds that Var

(
ŵij

)
=

Var
(
β0i + r(bi)bij

)
= r

(
bi

)2Var
(
bij

)
. Hence, the variance of the expected evolutionary fitness conditioned on individual behavior

is proportional to the squared marginal reinforcer value.
By standard assumptions of linear regression, the conditioned probability of predicted individual fitness is a normally distributed

random variable Wi with expectation µi = wi = E(ŵij) and variance σ2
= r

(
bi

)2Var
(
bij

)
+ Var(ε). A random observation from Wi

corresponds to the environmental feedback conditioned on average behavior (i.e., the reinforcing consequences of the behavior in
terms of expected evolutionary fitness).

The Fisher information of Wi with regard to µi can now be calculated using Equation (7):

FWi (µi) =
1

Var
(
wij

) = 1

r
(
bi

)2Var
(
bij

)
+ Var(ε)

(A4)

From Equation (A4) it follows that, if r(bi) = 0, Fisher information will be 1
Var(ε) . Given that Var(ε) is constant over the whole

range of b, this is the maximal possible value of FWi (µi). Therefore, under the given assumptions, behavioral selection maximizes
Fisher information.
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