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Cognitive diagnostic test design (CDTD) has a direct impact on the pattern match ratio

(PMR) of the classification of examinees. It is more helpful to know the quality of a test

during the stage of the test design than after the examination is taken. The theoretical

construct validity (TCV) is an index of the test quality that can be calculated without

testing, and the relationship between the PMR and the TCV will be revealed. The TCV

captures the three aspects of the appeal of the test design as follows: (1) the TCV

is a measure of test construct validity, and this index will navigate the processes of

item construction and test design toward achieving the goal of measuring the intended

objectives, (2) it is the upper bound of the PMR of the knowledge states of examinees, so

it can predict the PMR, and (3) it can detect the defects of test design, revise the test in

time, improve the efficiency of test design, and save the cost of test design. Furthermore,

the TCV is related to the distribution of knowledge states and item categories and has

nothing to do with the number of items.

Keywords: cognitive diagnostic test design, pattern match ratio, theoretical construct validity, prediction method,

upper bound

INTRODUCTION

Cognitive diagnosis (CD) has received much attention, providing diagnostic information of
knowledge or skills (often called “attributes” in the CD literature) to the examinees (de la Torre and
Douglas, 2004; de la Torre, 2008; DeCarlo, 2011; Liu et al., 2012; Kang et al., 2017; Huebner et al.,
2018). It is critical to ensure that high-quality cognitive diagnostic tests can accurately diagnose the
knowledge state (KS, i.e., the latent cognitive states) of examinees. The set of KSs is represented by
the QS matrix. In fact, cognitive diagnostic test design (CDTD) is the design of a Q matrix, called
Qt, i.e., rows representing attributes and columns representing attribute vectors, namely, items. By
anchoring the items with attribute vectors, proposition experts andmeasurement experts transform
items into measurable forms and then diagnose examinees. In a word, the design of the Qt matrix
is the problem of how to match the attribute vectors to achieve a certain predetermined goal.

The CDTDs can be divided into the following aspects based on different dimensions: the
dichotomous CDTD (Chiu et al., 2009; Ding et al., 2010) and the polytomous CDTD (Ding et al.,
2014a,b,c) according to the scoring methods; Boolean matrix CDTD (Samejima, 1995; Tatsuoka,
1995, 2009; Ding et al., 2011; Cai et al., 2018) and polytomous Qmatrix CDTD (Ding et al., 2015; Tu
and Cai, 2015) according to the values of elements in the Qt matrix; model-dependent CDTD (Chiu
et al., 2009; Kuo et al., 2016) and model-free CDTD (Shao, 2010) according to whether depending
on the cognitive diagnostic models (CDM) or not; cognitive diagnostic computerized adaptive
testing (CD-CAT) design (Cheng, 2010; Sun et al., 2019) and cognitive diagnostic testing (CDT)
design (Henson and Douglas, 2005; Henson et al., 2008; Ding et al., 2011) according to whether
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personalized diagnostic; independent structure CDTD
(Cheng, 2009, 2010; Liu et al., 2016) and dependent structure
CDTD (Ding et al., 2011; Kuo et al., 2016) according to
cognitive structure, and so on. In fact, almost all CDTDs
are multidimensional.

Until present, the studies on the CDTD methods are still
relatively weak, and they focus on the following two aspects:

(1) CDTD based on the perfect Q matrix

The so-called “perfect Q matrix” refers to the Qt matrix that
makes the ideal response pattern (IRP) and KS correspond one
to one. If the Q matrix in tests is a perfect Q matrix, the pattern
match ratio (PMR) improves no matter whether the CDTD is
either dichotomous or polytomous.

(i) Examples of dichotomous CDTD: For the four attribute
hierarchies of Leighton (Leighton et al., 2004), if the Qt matrix

is a Boolean matrix, and there is no compensation between the
attributes, then the reachablematrix (or it is equivalent classes)
acts as the submatrix of Qt which can achieve a one-to-one

correspondence between the set of IRPs and the set of KSs. The
more reachable matrices in the Qt matrix, the higher the PMR
(Ding et al., 2010, 2011). Ding et al. (2010) called such a Qt

matrix a sufficient and necessarymatrix, i.e., a perfect Qmatrix

(Cai et al., 2018). The results are similar to those of Chiu et al.
(2009), DeCarlo (2011), and Madison and Bradshaw (2015)
on independent structures. With the independent structure

and four attributes, Samejima (1995) believed that when the
Qt matrix was the identity matrix (i.e., the identity matrix of
independent structure is a reachable matrix), all of the KSs

would not be misjudged. Chiu et al. (2009) also found that the
Deterministic Input Noisy “AND”Gate (DINA)model and the
Deterministic Input Noisy Output “OR” gate (DINO) model
could diagnose all potential attribute mastery patterns when

the Qt matrix included the identity matrix. Similar results have
been addressed in other studies (DeCarlo, 2011; Madison and
Bradshaw, 2015).

(ii) Examples of polytomous CDTD: To achieve the one-to-one
correspondence between the set of KSs and the set of IRPs,
the rooted tree structure, the independent structure, and the

perfect Q matrices of the rhombus structure are introduced

under the item score rule that one ideal score is added if
mastering one attribute adhering to the item (Ding et al.,
2014a). In the initial stage of CD-CAT, each attribute can be
diagnosed by using the reachable matrix (Tu et al., 2013). In
CD-CAT, the higher the percentage of the examinees is, whose
testing items are (or contain) the reachable matrix according
to the selection strategy, the higher the PRM is.

(2) CDTD based on the index

The Cognitive Diagnostic Index (CDI) (Henson and Douglas,
2005) and the Attribute-level Discrimination Index (ADI)
(Henson et al., 2008) are based on the level of items and
attributes for CD. Kuo et al. (2016) indicated that each attribute
in the test must be measured at least three times to attain
better correct attribute classification, so they proposed modified
CDIs and ADIs, namely, MCDI and MADI. The Shannon’s

entropy (Xu et al., 2003) and posterior-weighted Kullback–
Leibler (PWKL) (Cheng, 2009) were introduced in CD-CAT.
Cheng (2010) believed that adequate coverage of each attribute
could improve the validity of the test scores, and then the
attribute-balancing index was proposed. Subsequently, the index
was further improved (Yu et al., 2011; Liu et al., 2018; Sun
et al., 2019). Adaptive multigroup testing method for cognitive
diagnosis (CD-AMGT) (Luo et al., 2018), which selects a group of
appropriate items in different diagnosis stages, has the advantages
of uniform use of item bank and less time to calculate.

The PMR is themain evaluation index for cognitive diagnostic
tests. In CDTD, the pretest evaluation of the PMR is more
positive than the posttest evaluation because the designed test
can be modified quickly, the designer can make up for possible
errors before testing, and material resources and time will be
saved. At present, the PMR is the posttest estimation based on
the data measured or simulated, so it is impossible to calculate
PMR immediately during the design process. Furthermore, it is
meaningful to discuss the maximum PMR for the pretest, and
the maximum PMR is related to the matching degree between
the designed test and the cognitive model, as well as the quality
and length of the test.

The rest of the study is organized as follows: First, the TCV
used in this study is briefly described. Second, the theoretical
proof of the relationships between the TCV and the PMR is
introduced in detail. The TCV is then evaluated in a simulation
study. The end of the study is the discussion and conclusion.

METHODS

Cognitive Diagnosis
The cognitive model is a prerequisite for CD. It is represented by
an attribute hierarchy, which specifies the psychological ordering
of the attributes required to solve test items. Attributes are those
basic cognitive processes or skills required to solve test items
correctly. There are five forms of basic hierarchical structures
(Leighton et al., 2004; Cheng, 2010), namely, A, B, C, D and E
(Figure 1).

Attribute 1 is considered a prerequisite to other attributes,
and attribute 5 depends on some attributes in models except
the independent model. The adjacency (A), reachability (R),
incidence (Q), and reduced incidence (Qr) matrices are specified
by Tatsuoka (1995). The columns of the Qr matrix indicate that
all possible items must be created to reflect the relationships
among the attributes in the hierarchy. The possible latent
cognitive states (i.e., KS), which is all the columns of the
incidence matrix, possess cognitive attributes that are consistent
with the hierarchy (when the hierarchy is based on cognitive
considerations), and they apply these attributes systematically
(when the hierarchy is based on procedural considerations)

(Gierl et al., 2007). Let qj =
(

qj1, qj2, · · · , qjK
)T (

j = 1, · · · ,m
)

denote the jth dichotomous column vector (i.e., the jth category
item) of theQr matrix. All KSs are represented by column vectors:
αi = (αi1,αi2, · · · ,αiK)T , where αik = 1(k = 1, · · · ,K)
indicates that the ith category examinee has mastered attribute
k, and αik = 0 otherwise. K is the total number of attributes
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FIGURE 1 | Five different hierarchical structures.

measured by the test. Let the Qs matrix denote all KSs, in fact,
including zero vector (denoted as 0̄, i.e., this kind of examinee
does not master any attribute) and the Qr matrix for cognitive
attribute consistency. Thus, αi and qj are all K-dimensional
vectors. The Qt matrix consists of some column vectors of the Qr

matrix. Based on the cognitive model (including attributes and
hierarchy among them), the Qr and Qs matrix can be obtained,
that is, all possible items and KSs can be obtained. On the
contrary, if the Qt matrix is known, some KSs can be obtained
through the augment algorithm (Ding et al., 2008; Yang et al.,
2008), and the cognitive model can be derived by comparing
the rows (Tatsuoka, 1995). In general, it is impossible for some
items (i.e., the Qt matrix) to replace all the items (i.e., the Qr

matrix), which express the cognitive structure, so some cognitive
structures extracted from the Qt matrix may be inconsistent with
the theoretical one.

The DINA Model
Cognitive diagnostic models have been proposed for many
years, including the rule space model (Tatsuoka, 1983),
the “Noisy Input Deterministic ‘AND’ Gate” (NIDA) model
(Maris, 1999), the fusion model (Hartz, 2002), the reduced

reparameterized unified model (R-RUM; Hartz, 2002), and the
DINA model (Haertel, 1989). The DINA model is completely
noncompensatory. The DINAmodel treats slipping and guessing
at the item level. Parameter sj indicates the probability
of “slipping,” and parameter gj denotes the probability of
“guessing.” The item response function, therefore, can be written
as follows:

P
(

Xij = 1|αi

)

=
(

1− sj
)nij g

j

1−nij
(1)

nij =

K
∏

k = 1

α
qjk
ik

(2)

When nij = 1, the ith examinee should be able to answer item
j correctly, unless he/she “slips.” Similarly, when nij = 0, the
ith examinee should not be able to answer item j correctly, unless
he/she is a lucky guesser (Cheng, 2010).

Theoretical Construct Validity
Theoretical construct validity (TCV) is used to measure the
degree of consistency between the theoretical cognitive model
and the cognitive model implied in the Qt matrix (Ding et al.,
2012).
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Definition 1 Let
{

α1,α2, · · · ,αN1

}

denote N1 KS
of the theoretical cognitive model given by experts,
{

β1,β2, · · · ,βN2

}

denote N2 KS derived from the Qt matrix,
and

{

γ1, γ2, · · · , γN3

}

=
{

β1,β2, · · · ,βN2

}

∩
{

α1,α2, · · · ,αN1

}

denote N3 KS. when γk = αi , the TCV for the Qt matrix can be
written as follows:

TCV =
∑

i

pi (3)

where pi represents the probability of the ith category examinees,
that is, the ratio of such examinees whose KS is αi in the
total population.

In particular, when all KS ratios in the total population are
equal, then

TCV =

{

N3+1
N1

; 0̄ /∈
{

β1,β2, · · · ,βN2

}

N3
N1

; Otherwise
(4)

In fact, the TCV is a measure of the degree to which the Qt matrix
represents the theoretical cognitive model (Ding et al., 2012). The
observed response pattern (ORP) and the CDM are necessary for
the set of the estimation of KSs of the examinees. The set of IRPs
is determined by the set of KSs, the test Q matrix, the element
value of the Qt matrix (the dichotomous or the polytomous),
the calculation method of the ideal score, the compensation
between attributes, and so on. The ORP is related not only to the
above mentioned factors but also to the item quality and random
factors. Thus, if there is no random factor, the better the item
quality, the closer the ORP is to the IRP. Due to the slipping and
the guessing in the answering process of examinees, the PMR
of the set of KSs estimated by the ORP is not higher than that
estimated by the IRP, that is, PMRORP ≤ PMRIRP. The PMRIRP
acts as the maximum PMRORP, and the smaller the slipping and
the guessing, the more accurate the KSs based on the ORP. How
to get the PMRIRP quickly is an interesting problem.

To clearly solve the interesting problem, a theoretical
explanation that makes sense of the complexity is firmly couched
within the examples.

Definition 2 Define the relationship between two attribute
vectors αi and qj as αi ≥ qj if and only if αik ≥ qjk , for k
= 1, 2, . . . ,K. Strict inequality between the attribute vectors is
involved (i.e., αi > qj ) if αik > qjk for at least one k (de la
Torre, 2011). αi ≤ qj and αi < qj can be defined similarly
as mentioned earlier. If the relationship does not exist, then αi

has nothing to do with qj . The definition of comparison between
column vectors also applies to row vectors.

Examples
The theoretical cognitive model is an independent structure of
three attributes, according to the methods suggested by Tatsuoka
for calculating the adjacency (A), reachability (R), incidence (Q),
and reduced incidence (Qr) matrices; then, adding zero vector to
the Qr matrix, there are 23 = 8 possible KSs, that is, N1 is 8. The

Qs matrix is represented by a 3× 8 matrix as follows:

Qs = (α1,α2, · · · ,α8) =





0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1



 (5)

where αi (i = 1, · · · , 8) is the ith category examinees.
Test items, represented by a 3 × 3 matrix, can be written

as follows:

Qt =
(

q1, q2, q3
)

=





1 0 1
0 1 0
0 0 1



 (6)

where qj is the jth item when items are not duplicated, otherwise
it represents the jth category item.

Calculation of TCV

A new matrix, called the Q+
t matrix, is made of the

Qt matrix and the two new columns. The two new columns based
on the augment algorithm (Ding et al., 2008; Yang et al., 2008)

are generated from the Qt matrix,





1 0 1
0 1 0
0 0 1





∣

∣

∣

∣

∣

∣

1
1
0

∣

∣

∣

∣

∣

∣

1
1
1

while the

non-zero vectors (0, 1, 1)T and (0, 0, 1)T in the Qs matrix cannot
be generated as follows:

Q+
t =





1 0 1 1 1

0 1 0 1 1

0 0 1 0 1



 (7)

Five KSs in the Q+
t matrix are derived from the Qt matrix,

that is, N2 is 5. There are five same possible latent cognitive
states between the theoretical cognitive model and the cognitive
model implied in the test design, that is, {γ1, γ2, γ3, γ4, γ5} =

{α2,α3,α5,α6,α8}, N3 is 5 (N1,N2, and N3 are the same as
Definition 1), when adding zero vector (0̄ = (0, 0, 0)T).

(1) When the probability distribution of the set of KSs in
the total population is discrete uniform, then TCV =

(5+ 1) /8 = 3/4.
(2) Otherwise, suppose the ratios of all αi are 0.1, 0.1, 0, 1, 0.2,

0.1, 0.2, 0.1, 0.1, respectively, TCV = 0.1+ 0.1+ 0.1+ 0.2+
0.1 = 0.6.

Calculation of PMRIRP

Ideal response (IR) depends on the relationship between αi and
qj . Let IR

(

αi , qj
)

= αi
oq j =

∏K
k = 1 (αik)

q jk = 1 denote
that the ith examinee responses correctly on the jth item, and
IR

(

αi , qj
)

= 0 otherwise. Clearly, IR
(

α1, q 1

)

= IR
(

α1, q 2

)

=

IR
(

α1, q 3

)

= 0 due to 0 ≤ α 1 < q 1 < q 3 and 0 ≤ α 1 < q 2;
IR

(

α2, q 1

)

= 1, IR
(

α2, q 2

)

= IR
(

α2, q 3

)

= 0 due to
q 1 ≤ α 2 < q 3; and α2 having nothing to do with q 2. Similarly,
the set of IRPs of the Qs matrix with respect to the Qt matrix is
represented by a 3× 8 matrix as follows:

IRP =





0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 0 0 1 0 1



 (8)
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TABLE 1 | The relationships between the theoretical construct validity (TCV) and the PMRIRP of other structures.

Theoretical cognitive model Qs Qt Q+
t TCV IRP PMRIRP















0 1 1 1 1

0

0

0

0

1 1 1

0 1 1

0 0 0 0 1





























1 1 1

0

0

1

0

1

1

0 0 1





























1 1 1

0

0

1

0

1

1

0 0 1















4/5









0 1 1 1 1

0 0 1 1 1

0 0 0 0 1









4/5















0 1 1 1 1 1

0

0

0

0

1 0 1 1

0 1 1 1

0 0 0 0 0 1





























1 1 1

0

0

1

0

1

1

0 0 1





























1 1 1

0

0

1

0

1

1

0 0 1















2/3











0 1 1 1 1 1

0 0 1 0 1 1

0 0 0 0 0 1











2/3

















0 1 1 1 1 1 1

0

0

0

0

1 0 1 0 1

0 1 1 1 1

0 0 0 0 0 1 1































1 1 1

1

0

0

1

0

1

0 0 1





























1 1 1

1

0

0

1

0

1

0 0 1















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1

1 1

1

0

1

1

6/7











0 0 1 0 1 0 1

0 0 0 1 1 1 1

0 0 0 0 0 1 1











6/7

















0 1 1 1 1 1 1 1 1

0

0

0

0

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 0 0 1 0 1 1 1































1 1 1

1

0

0

1

0

1

0 0 1





























1 1 1

1

0

0

1

0

1

0 0 1















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1

1 1

1

0

1

1

2/3











0 0 1 0 0 1 1 0 1

0 0 0 1 0 1 0 1 1

0 0 0 0 0 0 0 1 1











2/3

In Equation 8, the row represents the item, and the column
represents α

′

is IRP. There are six different IRPs, that is, six KS
can be correctly estimated without taking the slipping and the
guessing into account. In essence, the estimated five KSs based
on five IRPs are the same as vectors in the Q+

t matrix (five
different categories), and adding estimated zero vector (because
the IRP is zero vector), there are six categories. α4 = (0, 0, 1)T

and α7 = (0, 1, 1)Tare the same categories to zero vector (α1 =

0̄) and α3 = (0, 1, 0)T , respectively; thus, no new categories
are generated.

The whole process of dividing the Qs matrix can be vividly
described as follows: the Qs matrix is similar to a line, and five
vectors in the Q+

t matrix are similar to five dots that classify the
line into six categories in which only one KS can be estimated
correctly; therefore, PMRIRP = 6

8 = 3
4 .

From calculations 1 and 2, it can be known that
TCV= PMRIRP.

Examples of other structures are shown in Table 1.
Although structures are different, convergent, or divergent,

the result of the relationship between the TCV and the
PMRIRP is the same: the number of vectors of the Q+

t matrix
in the convergent structure was 3, and then the Qs matrix
could be classified into four categories; the number of vectors
of the Q+

t matrix in the divergent structure was 5 due
to two new columns derived from the Qt matrix, and
then the Qs matrix could be classified into six categories.
For the linear structure and the unstructured, the results
are similar.

Notably, all items of the Qt matrix are different because
the repetition of items does not increase the “coverage” of
the cognitive model by the Qt matrix. Repeated items only

reduce random errors; thus, in the following discussion, it is not
necessary to consider the repeated items in the Qt matrix.

Theoretical Derivation of TCV = PMRIRP
Let R denote reachable matrix, the Qr matrix is a set of all possible
items that can be written as follows:

Qr =







q
′

j

∣

∣

∣

∣

∣

∣

q
′

j =
⋃

q ∈qR

q , qR ⊆ R







(9)

In fact, Qt ⊆ Qr , Qs =
{

0,Qr

}

.
For every αi (i = 1, · · · , n) (except for zero vector) in the Qs

matrix, there should be a q
′

j(∈ Qr ) corresponding to it, that is, α

i = q
′

j.

Based on the augment algorithm, the Q+
t matrix can be defined

as follows:

Q+
t =







q j

∣

∣

∣

∣

∣

∣

q j =
∨

p∈Q

p ,Q ⊆ Qt , j = 1, . . . ,m







(10)

where V represents the Boolean union operation, p ∈ Q means
that p is the item (column) of theQmatrix, andQ ⊆ Qt indicates
that the Q matrix is a subset of the Qt matrix and contains one
or more items. New columns of the Q+

t matrix can be obtained
by the Boolean union of two or more items in the Qt matrix.
There are m columns in the Q+

t matrix, adding zero vector, m+1
categories of the KSs are derived from the Qt matrix in total.
n is the number of the set of KSs derived from the theoretical
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cognitive model, that is, n columns in the Qs matrix, so the TCV
can be calculated as follows:

TCV = (m+ 1)/n. (11)

The maximum lower bound of αi can be found in the Q+
t matrix

by comparing αi with q j in the Q+
t matrix, and it can be defined

as follows:

q j′ = max
{

q j

∣

∣q j ≤ αi, q j ∈ Q+
t ,αi ∈ Qs,

i = 1, 2, . . . , n; j = 1, 2, . . . ,m
}

(12)

In fact, j′is the subscript of the maximum item, that is, j′ =

argmax
{

q j

}

, j′ ∈ {1, 2, · · · ,m }.
Let

{

q j′
}

denote a set of αi with the same maximum lower
bound qj′ :

{

q j′
}

=
{

αi

∣

∣q j ≤ αi, q j′ = max
{

q j

}}

(13)

If q j′ does not exist, then let
{

0
}

denote αi set as follows:

{

0
}

=
{

αi

∣

∣q j > αi or αi has nothing to do with q j

}

(14)

All the α
′

is with the same IRP will be classified into one category
by comparing αi with all p items in the Qt matrix: based on the
definition of q j′ , if q j′ exists, it means that q j =

∨

p∈Q p ≤

q j′ ≤ αi, so the IRs between αi and p (p ≤ αi) are 1, that is,
IR(αi, p) = αi

op = 1, the IRs between αi and the rest of p in
the Qt matrix are 0, that is, IR(αi, p) = αip = 0. Therefore,

all the α
′

is in
{

q j′
}

have the same IR, and these α′
is belong to one

category. If q j′ does not exist, for all p items in the Qt matrix,
αi<p or αi has nothing to do with p, the IRs between αi and p is
0, IR is the same with zero vector

(

0
)

, and thus, these α′
is are the

same category as zero vector.
Proposition 1: All αis in the Qs matrix are classified into

{

q j′

}

(q j′∈Q
+
t ) or

{

0
}

(i = 1, . . . ,n; j′ = 1, . . . ,m;m≤n).

First, there must be existed a αi for every q j′ in the Q
+
t matrix,

so that αi is equal to q j′ , so q j′ is the maximum lower bound of

αi, αi is an element of a set
{

q j′
}

. m α′
is are divided into m sets

{

q j′
}

.
Second, for the remaining n-m α′

is,

(1) For every p in the Qt matrix, if αi < p or
αi has nothing to do with p, then q j′ does not exist, so αi

belongs to set
{

0̄
}

;
(2) If p ≤ αi , there must be existed q j′ acted as the maximum

lower bound of αi , so αi belongs to set
{

q j′
}

.

Combining (1) and (2), Proposition 1 is proved.
Proposition 2: If the number of q j in the Q+

t matrix ism, all

α
′

is in the Qs matrix are classified intom+1 categories.

FromProposition 1, the conclusion is clearly true, that is,m+1
categories of the set of KSs can be estimated correctly. Thus,
PMRIRP = m+1

n . The result of TCV = PMRIRP shows that
the TCV is equal to the PMR estimated by the set of IRPs. For
PMRORP ≤ PMRIRP = TCV , the TCV is the upper bound of

the PMR estimated by the ORP.When k is smaller, such as k ≤ 5,
the TCV can be calculated by pen, otherwise, it is easily derived
by using a computer.

SIMULATION STUDY

A simulation study was carried out to evaluate the relationships
between the TCV and the PMR.

Five attribute hierarchical structures were studied, namely,
independent, linear, convergent, divergent, and unstructured.
The number of attributes was set at 4, that is, K = 4. The
study needed to consider the influence of the distribution of
examinees, item attribute vector, and their proportions on the
TCV. Two kinds of distribution of the KSs of examinees were
discussed as follows: the average distribution (30 persons for
every KS) and the normal distribution. In particular, the standard
multivariate normal distributions in the independent structure
were investigated. The total number of examinees was the same.
In contrast, there were six Qt matrices for each structure, items
would be selected from the Qr matrix, and its proportions were
different. The test length was 20. The descriptive statistics of the
examinees and the Qt matrices are reported in Table 2.

To compare the effects of different slips on the TCV and the
PMR, the slips were 0.15 and 0.02, respectively. The set of IRPs
was obtained by the items of the Qt matrix and the set of KSs of
the Qs matrix. Let x denoted the IR score of an examinee on an
item, r randomly generated from Uniform (0, 1), if r> 1− s, x (x
was dichotomous) would be changed to 1–x, and x otherwise.

The DINA model and the maximum-likelihood estimation
method were used to estimate the KS. Considering the differences
in the distribution of examinees, the Qt matrix, and the slips,
there were 116 levels in total, and each level was tested 30 times.
The final PRM was an average of 30 PMRs.

The PMR index can be defined as follows:

PMR =

∑N
i = 1 αi−correct

N
(15)

where N is the number of examinees. αi−correct =

1 represents that the ith examinee is estimated correctly.

RESULTS

Table 3 compares the TCV and the PMR obtained from the
linear structure. The first column shows the different distribution
of examinees, and the other columns show the results of the
different Qt matrices.

Clearly, the TCV was superior: the TCV was uniformly higher
than the PMR regardless of the distribution of examinees and the
Qt matrices. Although the repetition of items in the Qt matrices,
the TCV was not changed when the distribution of examinees
and the category of items in the Qt matrices remain unchanged.
Therefore, this helped in explaining why repeated items were not
necessary to count. As is known to all, the smaller the slip is,
the higher the PMR is. But the TCV had nothing to do with
the slip, so the smaller the slip, the smaller the gap between the
TCV and the PMR. For all the attribute structures, when the
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TABLE 2 | The distributions of examinees and the proportions of items for five different hierarchical structures.

Attribute

structure

Distribution of

examinees

The ratio of examinees The Qt matrix The ratio of items

Linear The average

distribution

Each KS has the same ratio An item category: (1100)

Two item categories:

(1000) (1110)

①1:1 ②1:3

The normal

distribution

(0000):(1111):(1000):(1110):

(1100) = 1:1:2:2:4

Four item categories:

(1000, 1100, 1110, 1111)

①1:1:1:1②2:8:8:2

Convergent The average

distribution

Each KS has the same ratio Two item category:

(1100) (1010)

①1:1 ②1:3

The normal

distribution

(0000):(1111): (1000):(1110):

(1100):(1010) = 1:1:2:2:7:7

Four item categories:

(1000) (1100) (1010) (1110)

①1:1:1:1 ②2:8:8:2

Five item categories:

(1000) (1100) (1010)

(1110) (1111)

①1:1:1:1:1②2:4:8:4:2

Divergent The average

distribution

Each KS has the same ratio Two item category:

(1100) (1011)

①1:1 ②1:3

The normal

distribution

(0000):(1111): (1000):(1110):

(1100):(1011): (1010) =

10:10:21:21:42:42:64

Four item categories:

(1000) (1100) (1010) (1111)

①1:1:1:1 ②2:8:8:2

Six item categories: (1000)

(1100) (1010) (1011)

(1110) (1111)

①2:4:4:4:4:2②2:3:5:5:3:2

Unstructured The average

distribution

Each KS has the same ratio Four item categories:

(1000) (1010) (1101) (1011)

The normal

distribution

(0000):(1111): (1000):(1011):

(1100):(1101): (1010):(1110):

(1001) =

16:16:22:22:27:27:43:43:54

Six item categories:

(1000) (1100) (1001) (1101)

(1011) (1111)

①1:1:1:1 ②2:8:8:2

①2:4:4:4:4:2②2:3:5:5:3:2

Eight item categories:

(1000) (1100) (1010) (1001)

(1110) (1101) (1011) (1111)

①2:2:2:4:4:2:2:2②1::1:3:5:5:3:1:1

Independent The average

distribution

Each KS has the same ratio Eight item categories:

(1000) (0010) (1100) (1001)

(1110) (1101) (1011) (1111)

①2:2:2:4:4:2:2:2

②1::1:3:5:5:3:1:1

The normal

distribution

(0000):(1111):(1000):(0111):

(0100):(1011):(0010):(1101):

(0001):(1110):(1100):(0011):

(1010):(0101): (1001):(0110)

= 5:5:14:14:24:24:34:34:34:34

:38:38:43:43:48:48

Twelve item categories:

(1000) (0100) (0010) (0001)

(1100) (1010) (1001) (0101)

(0110) (0011) (1110) (1111)

①1:1:2:2:2:2:2:2:2:2:1:1

②1:1:1:1:3:3:3:3:1:1:1:1

The standard

multivariate normal

distribution

(0000):(1111):(1000):(0111):

(0100):(1011):(0010):(1101):

(0001):(1110):(1100):(0011):

(1010):(0101): (1001):(0110)

= 64:50:77:3:19:3:8:17:0:103:

90:0:28:3:13:2

Fifteen item categories:

(1000) (0100) (0010) (0001)

(1100) (1010) (1001) (0110)

(0101) (0011) (1110) (1101)

(1011) (0111) (1111)

①1:1:1:1:1:1:2:4:2:1:1:1:1:1:1

②1:1:1:2:2:2:2:2:2:2:2:2:1:1:1

The third column is the ratio of the knowledge state (KS); ① and ② are two different ratios of items in the Qt matrix; thus, there should be two different Qt matrices.

TCV was low, the PMR was also low and vice versa. Notably,
the more the item categories were, the larger the TCV would
be. In particular, if the Qt matrix contained the reachable matrix
that could augment all possible item categories, then TCV = 1,
regardless of the distribution of examinees. In other words, when
the reachable matrix was a submatrix of the Qt matrix, the PMR
would be higher than that of the Qt matrix that did not include
the reachable matrix if the other conditions were the same.

From Tables 4–7, the data of other structures show the same
results as linear. In addition, the lesser the structure, the greater
the difference between the TCV and the PMR.

DISCUSSION AND CONCLUSION

Guided by a cognitive model, the CD can detect how well
the examinees have mastered certain knowledge or skills. All
CDTDs aim at diagnosing examinees as much as possible,
and the main evaluation index is the PMR. The higher the
accuracy rate of the KSs, the higher the test construct validity.
It is more meaningful to be able to calculate the PMR
during CDTD. Tatsuoka (2009, p. 78–79) believed that the
sufficient Q matrix can improve the test construct validity.
However, how to measure the construct validity? Inspired by the
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TABLE 3 | The comparison between the TCV and the PMRORP of the linear structure.

Distribution of examinees 1 category 2 categories 4 categories

① ① ② ① ②

The average distribution TCV = 0.4

PMR = 0.4

(PMR = 0.4)

TCV = 0.6

PMR = 0.5956

(PMR = 0.6)

TCV = 0.6

PMR = 0.5780

(PMR = 0.6)

TCV = 1

PMR = 0.9413

(PMR = 1)

TCV = 1

PMR = 0.7867

(PMR = 0.9827)

The normal distribution TCV = 0.5

PMR = 0.5

(PMR = 0.5)

TCV = 0.5

PMR = 0.4971

(PMR = 0.5)

TCV = 0.5

PMR = 0.4851

(PMR = 0.5)

TCV = 1

PMR = 0.9164

(PMR = 0.9998)

TCV = 1

PMR = 0.8353

(PMR = 0.9849)

Values in brackets were the average of PMR when the slip was 0.02, and the following tables were similar.

TABLE 4 | The comparison between the TCV and the PMRORP of the convergent structure.

Distribution of examinees 2 categories 4 categories 5 categories

① ② ① ② ① ②

The average distribution TCV = 0.6667

PMR = 0.6583

(PMR = 0.6667)

TCV = 0.6667

PMR = 0.6398

(PMR = 0.6667)

TCV = 0.8333

PMR = 0.7726

(PMR = 0.8332)

TCV = 0.8333

PMR = 0.7370

(PMR = 0.8226)

TCV = 1

PMR = 0.8056

(PMR = 0.9935)

TCV = 1

PMR = 0.7600

(PMR = 0.9765)

The normal distribution TCV = 0.85

PMR = 0.8374

(PMR = 0.85)

TCV = 0.85

PMR = 0.8135

(PMR = 0.8498)

TCV = 0.95

PMR = 0.8748

(PMR = 0.95)

TCV = 0.95

PMR = 0.8954

(PMR = 0.9444)

TCV = 1

PMR = 0.8057

(PMR = 0.9987)

TCV = 1

PMR = 0.8167

(PMR = 0.9898)

TABLE 5 | The comparison between the TCV and the PMRORP of the divergent structure.

Distribution of examinees 2 categories 4 categories 6 categories

① ② ① ② ① ②

The average distribution TCV = 0.5714

PMR = 0.5610

(PMR = 0.5714)

TCV = 0.5714

PMR = 0.5316

(PMR = 0.5714)

TCV = 0.8571

PMR = 0.7773

(PMR = 0.8570)

TCV = 0.8571

PMR = 0.7095

(PMR = 0.8329)

TCV = 1

PMR = 0.8083

(PMR = 0.9740)

TCV = 1

PMR = 0.8390

(PMR = 0.9848)

The normal distribution TCV = 0.4952

PMR = 0.4883

(PMR = 0.4952)

TCV = 0.4952

PMR = 0.4835

(PMR = 0.4952)

TCV = 0.8

PMR = 0.6737

(PMR = 0.7997)

TCV = 0.8

PMR = 0.6694

(PMR = 0.7930)

TCV = 1

PMR = 0.7681

(PMR = 0.9937)

TCV = 1

PMR = 0.8300

(PMR = 0.9962)

TABLE 6 | The comparison between the TCV and the PMRORP of the unstructured structure.

Distribution of examinees 4 categories 6 categories 8 categories

① ② ① ② ① ②

The average distribution TCV = 0.6667

PMR = 0.6042

(PMR = 0.6665)

TCV = 0.6667

PMR = 0.5463

(PMR = 0.6548)

TCV = 0.7778

PMR = 0.6446

(PMR = 0.7727)

TCV = 0.7778

PMR = 0.6384

(PMR = 0.7683)

TCV = 1

PMR = 0.7078

(PMR = 0.9774)

TCV = 1

PMR = 0.7363

(PMR = 0.9641)

The normal distribution TCV = 0.5407

PMR = 0.4846

(PMR = 0.5407)

TCV = 0.5407

PMR = 0.4491

(PMR = 0.5362)

TCV = 0.6815

PMR = 0.5945

(PMR = 0.6780)

TCV = 0.6815

PMR = 0.5483

(PMR = 0.6785)

TCV = 1

PMR = 0.5662

(PMR = 0.9848)

TCV = 1

PMR = 0.7418

(PMR = 0.9815)

evaluation of the sufficient Q matrix by Tatsuoka (1995, 2009),
an evaluation index for cognitive diagnostic test (design) was
developed, i.e., TCV, which made up for the defects of Tatsuoka’s
idea (Tatsuoka, 1995, 2009).

This study proposes a simplified method for predicting the
PMR, namely, the TCV method for CD. The TCV intuitive
meaning is as follows: the set of KSs is derived from the Qt matrix
through the augment algorithm (i.e., this design can inspire some

latent cognitive states), and if the probability distribution of the
examinees in the population is known, then TCV =

∑

j pj .

In particular, when the probability distribution of the set of KSs
in the total population is discrete uniform, the TCV is equal to
the sum, which is the number of categories of the set of KSs
derived from the Qt matrix plus 1, divided by the number of
categories of the set of KSs in the population. In general, the
TCV measures the degree of consistency between the cognitive
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TABLE 7 | The comparison between the TCV and the PMRORP of the independent structure.

Distribution of examinees 8 categories 12 categories 15 categories

① ② ① ② ① ②

The average distribution TCV = 0.625

PMR = 0.4242

(PMR = 0.6094)

TCV = 0.625

PMR = 0.4515

(PMR = 0.6093)

TCV = 1

PMR = 0.6592

(PMR = 0.9597)

TCV = 1

PMR = 0.6417

(PMR = 0.9737)

TCV = 1

PMR = 0.6110

(PMR = 0.9433)

TCV = 1

PMR = 0.6285

(PMR = 0.9489)

The normal distribution TCV = 0.5813

PMR = 0.3987

(PMR = 0.5631)

TCV = 0.5813

PMR = 0.4223

(PMR = 0.5628)

TCV = 1

PMR = 0.6953

(PMR = 0.9520)

TCV = 1

PMR = 0.6390

(PMR = 0.9837)

TCV = 1

PMR = 0.6035

(PMR = 0.9472)

TCV = 1

PMR = 0.6438

(PMR = 0.9583)

The standard Multivariate

normal distribution

TCV = 0.9438

PMR = 0.5458

(PMR = 0.9014)

TCV = 0.9438

PMR = 0.6421

(PMR = 0.9254)

TCV = 1

PMR = 0.7148

(PMR = 0.9699)

TCV = 1

PMR = 0.7448

(PMR = 0.9792)

TCV = 1

PMR = 0.5848

(PMR = 0.9687)

TCV = 1

PMR = 0.6508

(PMR = 0.9490)

model derived from matrix Qt and the theoretical cognitive
model (Ding et al., 2012).

As the proof and the simulation showed, PMRORP ≤

PMRIRP = TCV . Therefore, the TCV can be used to predict
the PMR. Notably, the TCV is related to the distribution of
examinees and item category, not related to the proportion of
items. In other words, when calculating the TCV, repeated items
should be treated as one item.

The TCV is numerically equal to the PMR based on the
set of IRPs, and the factors that affect the set of IRPs are as
follows: the cognitive model (e.g., the number of attributes,
attribute hierarchy, and compensation between attributes), the
composition of the test matrix (e.g., Boolean matrix and
multivalued Q matrix), the item score (e.g., 0–1 score or
multilevel score). Whatever has an effect on the set of IRPs
influences the TCV. When the test Q matrix (Qt) is a Boolean
matrix, the score is 0 or 1, and the IR is 1 if and only if αi ≥ qj ,
the TCV is the upper bound of the PMR. The TCV has nothing to
do with the CDM (i.e., classification method); therefore, the TCV
is calculated by CDM-free. Thus, the conclusion is the same for
the DINA model, the AHM (Attribute Hierarchy Method, Gierl
et al., 2007)model, the RSM (Rule SpaceMethod, Tatsuoka, 2009)
model, and the GDD (Generalized Distance Discrimination, Sun
et al., 2011) model.

The number of attributes has an effect on the TCV. For
example, independent structure, if the probability distribution
of the set of KSs in the total population is equal, different
items containing only two attributes are selected, then when the
number of attributes K is 3, and the TCV is 5/8; when K is 4, the
TCV is 3/4; and when K is 5, the TCV is 27/32. However, under
the same conditions, the number of attributes does not affect the
conclusion that the TCV is the upper bound of the PMR at all
(as shown by the proof). Furthermore, the lower the number
of attributes, the higher the PMR. Therefore, the simulation
study selected fewer attributes (K = 4). Similarly, the smaller
the random in the ORP is, the higher the PMR is. To prove
that the TCV is the upper bound of the PMR, in the simulation
study, the random is relatively small (s = 0.02). According to the
abovementioned logic, the result that TCV is the upper bound of
the PMR is also true when the random is larger.

An interesting question arises as follows: the TCV is not equal
to the PMR, why the TCV is useful for predicting the PMR? There
are three reasons: First, the most important reason is that the
TCV can be obtained during CDTD, which is instructive to adjust
selected items at any time and to timely judge the test quality.
Second, the TCV is the upper bound of the PMR, the smaller the
slip, the smaller the gap between the TCV and the PMR. The TCV
does not change with the slip. If the TCV is high, the PMR is also
higher; therefore, it is feasible to use the TCV as an index of the
PMR to predict the test quality. Third, the TCV is easy to calculate
according to the formula.

The TCV can be used not only to predict the PMR but also,
more importantly, to detect the defects of CDTD. By using the
augment algorithm, the set of KSs can be derived from the Qt

matrix, and then, the TCV can be calculated. Under the same
conditions, if the TCV value is lower, it means that there are
fewer kinds of attribute vectors (i.e., items) of the reachable
matrix in the Qt matrix, and thus, the more KSs cannot be
accurately estimated. At this time, test designers can modify the
test Q matrix (i.e., the Qt matrix) before testing (not posttest
evaluation), that is, modify the test (such as filling the columns
of the reachable matrix or filling the columns expanded by the
reachable matrix through the augment algorithm). Adjusting the
selected items according to the TCV value at any time is not only
beneficial to evaluate the test quality in time in CDTD but also
can save cost and improve efficiency, which has the effect of two
times the result with half the effort. This method undoubtedly has
great advantages in CDTD.

If the test contains the reachable matrix, the cognitive model
derived from the test is consistent with the theoretical cognitive
model, and the TCV is 1. At this time, as long as the item
quality is good (i.e., the slip is low) and attributes are measured
a certain number of times, then the PMR is relatively high. In
most cases, however, the PMR is not equal to 1 because the test
is short, the quality of the items is poor, or the examinees do
not answer carefully. At this time, although the result is rough
when the TCV is used to predict the PMR, even so, under the
same cases, the test, which contained the reachable matrix (in this
case, the Qt matrix is complete Q matrix, Cai et al., 2018), has the
higher PMR.
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Although this study shows that the TCV method works
successfully with CD, it has limitations in several aspects: (1)
Since the TCV is determined by the Qt matrix, the Qt matrix
must be complete and reliable, which is the premise of using
the TCV. In some cases, this condition may be quite harsh. But
the RUM model allows the Qt matrix to be incomplete, and
the conclusion of this study cannot be applied. Furthermore,
the complete and accurate calibration of the Qt matrix is still a
very difficult problem. (2) If the score is 0 or 1 and IR is 1 if
αi ≥ qj , other IR rules are not applicable in this case. Nor does
it apply if there is compensation between attributes. (3) Only the
dichotomous and non-compensable attributes are considered, a
natural question that arises is how to get the TCV when the
scoring is polytomous and attributes are compensable. These will
be the interesting topics for future studies.
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