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When confronted with novel problems, problem-solvers must decide whether to copy
a modeled solution or to explore their own unique solutions. While past work has
established that infants can learn to solve problems both through their own exploration
and through imitation, little work has explored the factors that influence which of these
approaches infants select to solve a given problem. Moreover, past work has treated
imitation and exploration as qualitatively distinct, although these two possibilities may
exist along a continuum. Here, we apply a program novel to developmental psychology
(DeepLabCut) to archival data (Lucca et al., 2020) to investigate the influence of the
effort and success of an adult’s modeled solution, and infants’ firsthand experience
with failure, on infants’ imitative versus exploratory problem-solving approaches. Our
results reveal that tendencies toward exploration are relatively immune to the information
from the adult model, but that exploration generally increased in response to firsthand
experience with failure. In addition, we found that increases in maximum force and
decreases in trying time were associated with greater exploration, and that exploration
subsequently predicted problem-solving success on a new iteration of the task. Thus,
our results demonstrate that infants increase exploration in response to failure and that
exploration may operate in a larger motivational framework with force, trying time, and
expectations of task success.

Keywords: cognitive development, exploration, infant development, motion capture technology, automated
behavioral analysis, problem solving, DeepLabCut

INTRODUCTION

The ability to overcome obstacles to achieve one’s goals is crucial to success across a broad range of
contexts. Problem-solving is particularly ubiquitous early in life. Infants are faced with a multitude
of new problems every day such as obtaining desirable, out-of-reach objects, navigating around
barriers, and learning to operate new toys. Research suggests that infants typically adopt one
of two approaches to solving problems: infants imitate the problem-solving solutions of others
(e.g., Provasi et al., 2001; Esseily et al., 2010) or explore to generate their own solutions (e.g.,
Willatts, 1999; Fagard et al., 2014). However, the circumstances that influence whether infants
adopt problem-solving approaches modeled for them versus explore new approaches are not well
understood. In this paper, we investigate whether the nature of the social input infants receive
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(namely, the effort and success of an adult’s modeled problem-
solving solution) and infants’ own firsthand experience influence
the degree to which infants use imitative versus exploratory
problem-solving solutions.

Infants are capable learners and independently generate new
solutions to problems via exploration. A variety of work suggests
that when infants are presented with problem-solving paradigms
in which they cannot obtain goal objects directly, they implement
novel solutions (Goldfield, 1983; Willatts and Rosie, 1988; Babik
et al., 2018). For instance, by the end of the first year of life,
infants discover that they must reach or crawl around a barrier
to retrieve a toy (Lockman, 1984; Lockman and Adams, 2001),
and they can pull a cloth supporting an out-of-reach toy to get the
toy (Sommerville and Woodward, 2005a,b). Critically, infants not
only implement known solutions, but often explore new solutions
iteratively until success is achieved (Willatts, 1990). With age,
infants’ ability to explore and innovate novel problem-solving
solutions continues to improve. By 16 months of age, infants
discover that they can use a rake as a tool to bring an out-of-reach
toy into reach (Fagard et al., 2014). Thus, from an early age infants
engage in exploration when presented with novel problems, often
leading to problem-solving success.

Simultaneously, a variety of evidence suggests that infants
also rely on imitation to solve problems. By 12 months of age,
infants can already solve simple problems by replicating modeled
solutions across a variety of contexts (Provasi et al., 2001; Brugger
et al., 2007; Fagard and Lockman, 2009; Fagard et al., 2016). For
example, 1-year-olds will learn from an adult model to grasp
one end of a box while simultaneously raising a lid to overcome
suction, to orient a bottle upside-down to retrieve a wooden peg,
and to use a stick as a tool to retrieve a toy from a box (Esseily
et al., 2010). Thus, infants readily imitate modeled solutions to
facilitate their own success on novel problems.

While there is ample evidence that infants imitate, they do
not do so indiscriminately; rather, infants remove superfluous
components of modeled problem-solving solutions and explore
their own solutions when modeled solutions are inefficient. For
example, infants only replicate the exact actions of an adult model
when they are the most efficient means to achieving a goal (e.g.,
Schwier et al., 2006). When steps are not causally necessary,
infants are likely to skip these steps (e.g., Hauf et al., 2004; Brugger
et al., 2007; Schulz et al., 2008). Not only do infants deviate from
imitation by omitting superfluous steps, but infants also explore
alternate solutions. When infants were shown a demonstration
in which an experimenter turned on a light with their head with
unconstrained hands, infants often utilized their own hands to
turn on the light, achieving the goal more directly (Gergely et al.,
2002; Zmyj et al., 2009). These studies demonstrate that there is
some degree of fluidity in terms of whether infants will imitate
versus explore when solving a problem.

In studies to date, imitation is often considered as qualitatively
distinct from exploration, and consequently, researchers
sometimes focus selectively on one approach or the other.
For instance, Brugger et al. (2007) studied the effects of step
necessity and adult modeling on imitation by coding whether
infants performed two modeled steps. In this way, the authors
successfully studied imitation, but exploration of novel solutions

was not considered. Likewise, many studies separately measure
imitation and exploration by providing distinct definitions of
each. For example, Muentener et al. (2018) investigated both
exploration and imitation but devised separate tasks and scales
to quantify each approach independently. At a global level,
it is reasonable to consider the constructs of imitation and
exploration separately given that researchers are trying to capture
qualitatively distinct strategies. However, individuals often also
engage in more nuanced explorations that involve variations on
modeled solutions. For example, imagine an observer watches a
model insert a key into a lock and turn it twice counterclockwise.
After watching, the observer puts their own key into the lock,
but it does not open. The observer may persevere in trying to
reproduce the exact solution of the model, or they may enact
a qualitatively distinct solution such as knocking on the door.
On the other hand, the observer may also engage in micro-
exploration: jiggling the key, varying force, or varying the angle
they use to release the lock. When this variability is taken into
consideration, it becomes clear that a continuous scale can be
construed between faithful imitation and micro-exploration.

While micro-exploration has not been studied at the level
of particular problem-solving strategies, there is evidence of
micro-exploration within infant object interactions. Nuanced
refinements of existing strategies have been argued to play
a particularly important role in infancy both for acquiring
motor skills (Robin et al., 1996; Keen, 2011) and for generating
more complicated problem-solving strategies (Lockman, 2000).
Specifically, to utilize tools and interact with objects, infants must
learn to make subtle variations in their approaches, for instance
by adjusting their trajectory and velocity while using a hammer
(Kahrs et al., 2013) or by altering their grip on a food-laden
spoon (McCarty et al., 1999), thus engaging in micro-exploration.
These findings indicate that infants engage in micro-exploration
to successfully handle objects and that they may also apply this
ability to solve challenging problems.

Thus, the ability to integrate imitation and exploration into
a continuum is important to understand the full spectrum of
strategies that infants employ to solve problems. However, the
ability to achieve this objective may be hampered by the inherent
difficulty of quantifying imitation and exploration within a
single objective and continuous scale. Research in this area has
largely been accomplished through behavioral coding schemes
and human raters. To do this, coders make qualitative judgments
about whether a subject has imitated or explored, as well as the
kind of exploratory strategy generated. In this way, participant
behavior is coded and coerced into a discrete category structure.
In order to investigate imitation and micro-exploration along a
continuum, one must move beyond behavioral coding.

Fortunately, motion capture technology presents an avenue
to generate continuous, objective measures of infants’ motor
responses in order to quantify infants’ problem-solving
approaches along an imitation-exploration continuum. Indeed,
there is a rich history of using motion capture technology in
developmental research to assess early motor, perceptual, and
cognitive development (Thelen et al., 1996; Adolph et al., 2000;
Berger and Adolph, 2003; Claxton et al., 2003; McCarty and
Keen, 2005; Gill et al., 2009; Gottwald and Gredebäck, 2015;
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Jung et al., 2015; Fragaszy et al., 2016; Gottwald et al., 2017,
2019; Ingvarsdóttir and Balkenius, 2020). Advancements in
artificial intelligence have expanded access to motion capture
by creating free, online programs for post hoc analysis such as
frame difference (e.g., Paxton and Dale, 2013) and computer
vision methods (e.g., Ossmy et al., 2020; Cao et al., 2021).
While these computer vision methods have existed for the last
decade, they have not been broadly employed in the field of
developmental psychology and are not yet in the toolbox of most
developmental researchers.

Here, we focus particularly on DeepLabCut (DLC) which
allows users to train a neural network to track motion in up to
three dimensions. DLC relies on a specialized algorithm which is
pre-trained (Deng et al., 2009) such that DLC’s neural network
only requires a small number of frames for training and can
manage lower resolution footage (Mathis et al., 2018; Cronin
et al., 2019). As such, DLC is suitable for use with small samples
but provides quality comparable to even commercial systems
(Sturman et al., 2020; Vonstad et al., 2020). Further, DLC is
incredibly versatile and is even able to track multiple, distinct
individuals (Mathis et al., 2018, 2020). Thus, once trained, a
researcher can utilize DLC with diverse data sets and variables
of interest. Finally, the software is open-source, and its use has
rapidly expanded across disciplinary lines in the last 3 years
(for a scoping meta-analysis, see Table 1). The open-source
nature of the program has stimulated an online community, with
researchers introducing specialized packages (e.g., Fiker et al.,
2020; Forys et al., 2020). As a field, developmental psychology
has a history of active contribution to open-source projects, with
many researchers releasing specialized packages in programming
languages for others’ use (e.g., Burke, 2019; Kominsky, 2019;
Sanchez et al., 2019). As such, while developmental psychologists
seem largely unaware of this technology, they are well-positioned
to benefit from the rich and accurate behavioral data generated
by DLC, as well as to contribute to the larger DLC community.

The goal of the current paper was to apply DLC to archival
videos (Lucca et al., 2020) to capture infants’ problem-solving
approaches to a challenging problem. In the original study, Lucca
et al. (2020) provided 18-month-old infants with a modeled
solution to a means-end problem: infants watched an adult
experimenter pull a rope that was attached to an out-of-reach
transparent box containing a toy, in order to bring the box and
toy within reach. Infants saw one of three demonstrations that
varied in terms of effort and success. In the Easy condition, the
experimenter pulled the rope, and the box immediately came
within reach, allowing her to retrieve the toy. In the Hard
condition, the experimenter pulled the rope five times. On the
first four pulls, the box did not move despite the experimenter’s
efforts. On the fifth pull, the box slowly began to move until it
was completely brought into reach, allowing her to retrieve the
toy. The Impossible condition demonstration was similar to the
Hard condition, except that the experimenter never succeeded in
moving the box and thus was unable to retrieve the toy. After
observing the demonstration, infants were presented with an
impossible test trial in which the toy was surreptitiously affixed to
the table. This cycle was repeated three times, and the researchers
measured how long infants engaged in pulling the rope to retrieve

the toy, as well as negative affect, maximum pulling force, help-
seeking, and hints required during a subsequent recovery trial
(designed to test supported needed on a new iteration of the task).

Lucca et al. (2020) found that the effort and success of the adult
model and accumulating firsthand experience with failure jointly
influenced how long infants attempted to solve the problem, as
well as several measures of performance. For instance, trying
time dramatically decreased across trials in the Easy condition
as infants experienced greater firsthand failure. Here, the success
of the experimenter model suggested that infants should succeed
quickly by employing the experimenter’s approach. As such,
infants may have inferred that they did not have adequate skill
to solve the problem. Similarly, in the Impossible condition,
trying time also dramatically decreased across trials, but also
started off relatively low. In this case, the experimenter’s failure,
coupled with firsthand failure across trials, may have led infants
to infer that the task was simply impossible. On the other hand,
in the Hard condition, infants’ efforts remained relatively stable
across trials. In this case, infants’ inferences about the problem
were presumably influenced by both sources of information.
The experimenter demonstration suggested that the problem
was solvable but difficult, requiring infants to try for sufficiently
long to succeed. Thus, the firsthand failure infants experienced
was not surprising or demotivating, leading to continued trying
despite failure. Together these findings indicated that the effort
and success of the adult model, along with accumulating firsthand
experience with failure, influence how long infants try to solve
a given problem.

Thus, the current study had three objectives. First, we
investigated how two manipulated factors, the effort and success
of an adult model’s problem-solving solution and firsthand
experience with problem-solving failure, influenced the degree
to which infants adopt imitative versus exploratory approaches.
Second, we looked at how individual differences in other
performance measures on the task, such as infants’ negative
affect, maximum pulling force, help-seeking, and trying time
predicted infants’ exploration. Finally, we were interested in if
imitative versus exploratory approaches predicted motivation on
a functioning version of the task.

To address our three objectives, we trained DLC to track the
coordinates of the rope handle the infants pulled during the
problem-solving task. Specifically, we considered imitation in
this context to have two components: (1) visible similarity to
the approach employed by the experimenter, and (2) consistency
of employment across time. Thus, we examined how model
success and firsthand experience with failure influenced the
degree of infants’ imitative similarity to the experimenter (i.e.,
the extent to which infants copied the experimenter model),
as well as the variability in their attempted solutions (i.e., how
much infants varied the location of their attempts). Imitative
similarity was measured using the displacement of rope pulling
in the x- and y-axes relative to imitative pulling, and variability
was measured using each participant’s standard deviation of
spatial displacement. Within the context of these variables, a
decidedly imitative problem-solving approach would be marked
by high imitative similarity and low variability, while a decidedly
exploratory problem-solving approach would be marked by
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TABLE 1 | A breakdown of peer-reviewed studies that have used DeepLabCut, organized by field of study, between 2018 and 2021.

Field of study Number of articles Authors (year)

Agriculture 2 Liu et al. (2020); Fang et al. (2021)

Biology 1 Ho et al. (2021)

Biomechanics 2 Cronin et al. (2019); Cronin (2021)

Neuroscience/Neurobiology 12 Mathis et al. (2018); Wei and Kording (2018); Fiker et al. (2020);
Forys et al. (2020); Fried et al. (2020); Kim et al. (2020); Mathis and

Mathis (2020); Mundorf et al. (2020); Rodriguez et al. (2020);
Sturman et al. (2020); Whishaw et al. (2020); Williams et al. (2020)

Orthopedics 1 White et al. (2020)

Physiology 4 Barrett et al. (2020); Haberfehlner et al. (2020); Wu et al. (2020);
Brandt et al. (2021)

Psychology Comparative
Psychology

1 López Pérez et al. (2021)

Developmental
Psychology

0

Science and Technology 5 Nath et al. (2019); Mathis et al. (2020); Vonstad et al. (2020); Huang
et al. (2021); Namba et al. (2021)

In order to identify the scope of DLC in different fields, we gathered publications that used DLC by using PsycINFO and the first 15 pages of Google Scholar with the
search term “DeepLabCut.” This analysis revealed 30 peer-reviewed papers that used DLC since its inception in 2018. Of these 30 papers, zero were in the field of
developmental psychology. While DLC is a state-of-the-art software and is widely acknowledged in other fields such as neuroscience (Fried et al., 2020), developmental
psychology has not yet taken advantage of this software.

low imitative similarity and high variability as multiple, novel
solutions would be tested.

Regarding our first research question, it is plausible that we
would find a pattern similar to Lucca et al. (2020), wherein
infants would respond to the effort and success of the adult
model, and their firsthand failure. A successful model (Easy
condition) suggests that infants should imitate the solution for
similar success, consistent with prior work showing that adults
and children tend to favor imitating the solutions of others when
others are successful (Schulz et al., 2008; Rendell et al., 2010;
Wisdom and Goldstone, 2011; Reindl and Tennie, 2018). On the
other hand, when the model fails (Impossible condition), infants
may be more likely to explore because they think imitation is
unlikely to solve the problem. Indeed, children and adults also
increase rates of exploration when modeled examples are lower
quality or less reliable (Rook and van Knippenberg, 2011; Carr
et al., 2015). When the adult shows it is difficult but possible to
solve the problem (Hard condition), infants’ responses may fall
between these two possibilities.

However, it may be the case that infants are influenced mostly
by their firsthand experiences with failure, given that infants
uniformly experience firsthand failure in all conditions and trials.
Prior work has indicated that children increase exploration when
the success of outcomes is unclear or surprising (Schulz and
Bonawitz, 2007; Gweon and Schulz, 2008; Stahl and Feigenson,
2015; Bridgers et al., 2019). Thus, given infants’ consistent
experience with failure during the test trials, we expected that
as a group, infants would explore solutions different from the
experimenter, and that greater experience with failure (within
trials and across trials) would decrease imitation, as continued
failure would suggest imitation was not fruitful.

In order to address the second research question, we
investigated whether negative affect, maximum pulling force,
help-seeking, and trying time predicted infants’ imitative

versus exploratory approaches. It is possible infants’ affective
responses may drive exploratory approaches, as infants may
be more likely to abandon modeled solutions when frustrated.
Similarly, infants may be more likely to adopt exploratory
approaches when they have exerted maximal force when pulling
the rope, compared to when they have only used minimal
force. Addressing whether help-seeking predicted exploratory
approaches will shed light on the extent to which the use of micro-
exploration is predicted by the adoption of qualitatively distinct
approaches. Furthermore, investigating whether trying time
predicts exploratory approaches will inform whether these two
metrics of performance signal conceptually related phenomena
(i.e., different forms of persistence) or distinct phenomena.

Finally, we investigated whether exploratory approaches
during test trials predicted hints needed during recovery trials
when the task was solvable. While imitative and exploratory
approaches are both means to remain engaged on the rope-
pulling task, infants may generate different expectations through
engagement in each approach. If a decidedly imitative approach
is adopted, infants will uniformly experience failure every time
they employ their method. This experience would likely lead to
low expectations that the method will succeed the next time it is
employed. On the other hand, each exploratory strategy infants
test presents a possibility of success, even if small. Thus, infants
who try a variety of strategies may require less support on a new
iteration of the task.

MATERIALS AND METHODS

Participants
Participant videos from Lucca et al. (2020) were repurposed for
this study. In the original study, 96 full-term, typically developing
18-month-olds (38 females, mean age = 18.50 months,
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range = 17.67–19.30 months) participated. Participants had
previously signed up to partake in studies through a university
database and were recruited through this database for this study.
Participants were parent-reported as White (n = 69), Asian
(n = 3), Hispanic (n = 2), mixed race (n = 21), or declined
to report (n = 1). The sample size was limited to that of
the original study.

Motor Skills Checklist
In order to ensure our results were not constrained by individual
differences in motor coordination, a measure of gross motor
development was administered. Parents were given a 24-item
motor ability checklist (Loucks and Sommerville, 2013) that was
a variation of the Bayley Scales of Motor Development (Bayley,
2006). Questions pertained to infant’s motor abilities and were
organized in chronological order of developmental milestones
(e.g., “Can your child sit alone while playing with a toy?,” “Does
your child attempt to walk?,” “Can your child stand on one
foot with help?”). The highest consecutive item parents checked
served as a measure of motor development.

Procedure
Lucca et al.’s (2020) procedure consisted of three components: (1)
a warm-up to familiarize the infants to their new environment,
(2) demonstration-test trials: the experimenter first tried to
retrieve an out-of-reach toy, then the infant was given the
opportunity to retrieve the out-of-reach toy (this cycle was
repeated three times with three different toys), and (3) a recovery
trial. A more detailed description of the methods can be found in
the original publication (Lucca et al., 2020); here we highlight the
most important components for the current study.

During the demonstration-test trials, caregivers were seated
and wearing occluding eyeglasses while infants sat on their
caregiver’s lap. In the demonstration phase, the infant observed
the experimenter attempt to retrieve an out-of-reach toy in a
transparent container by pulling on a rope that was attached to
the container. Infants were assigned to one of three conditions.
In the Easy condition, the experimenter easily retrieved the toy
by pulling on the rope. In the Hard condition, the infant saw
the experimenter struggle (she pulled the rope five times, and the
box did not move), and eventually succeed at retrieving the toy
by pulling on the rope. In the Impossible condition, the infant
saw the experimenter try to pull the rope to retrieve the toy
the same number of times as in the Hard condition, but she
did not succeed.

During the test phase, infants were presented with the same
toy in a container, attached to a rope. Unbeknownst to infants,
the apparatus had been replaced with an identical looking version
such that the container was stuck to the tabletop making the
problem impossible to solve. Each trial ended after 120 s total
had passed, or if the infant had not touched the rope for 15 s.
The demonstration-test sequence was repeated three times, with
three different toys. We analyzed the first 20 s of each trial
for two reasons. First, as we wanted to adhere closely to the
original methods. Second, as trials were variable in length and we
believed it was important to have an equal amount of data from
each participant for inferential purposes (i.e., data from 120 s

would likely be non-representative as it would only reflect the
most active infants). As such, our sample would experience rapid
attrition if other cut-offs were used (e.g., only 74% of participants
had trials which each lasted at least 30 s; see Table 2).

Finally, infants participated in the recovery trial in order
to observe infants’ expectations of task success after the
demonstration-test trials. Infants were again faced with a
toy in a clear container attached to a rope; this time the
apparatus was functional.

Coding
We focused on select variables coded by Lucca et al.
(2020); namely, time spent trying and maximum pulling
force. Additionally, data were collected on help-seeking
behaviors, and affect. During the recovery trial, the number of
hints were recorded.

Time Spent Trying
A primary coder watched each participant video and recorded
the number of seconds the infant spent trying. An infant was
classified as trying if they pulled the rope and looked directly at
the toy immediately prior to, during, or after pulling. Behaviors
such as swinging the rope side-to-side without making eye
contact with the toy, or throwing the rope were classified as
off-task behaviors, and therefore, not coded. A secondary coder
independently double-coded 100% of the videos, establishing
high reliability (ICC = 0.95, p < 0.001). The trying time data

TABLE 2 | Participant attrition in the Lucca et al. (2020) sample using different
cut-offs for trial lengths.

Trial time cut-off % participants retained

20 s 100%

25 s 90%

30 s 74%

35 s 55%

40 s 49%

45 s 41%

50 s 33%

55 s 32%

60 s 27%

65 s 25%

70 s 25%

75 s 23%

80 s 17%

85 s 15%

90 s 13%

95 s 10%

100 s 9%

105 s 8%

110 s 7%

115 s 6%

120 s 4%

The percentage of participants whose trials each lasted a minimum length rapidly
declines after 20 s.
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was not normally distributed, therefore the data were square root
transformed for analyses of trying time.

Maximum Pulling Force
The strength of trying was quantified using a 5 kg S-type load
cell discretely connected to the toy. The load cell measured
each infant’s pull in pounds per square inch (PSI) and recorded
continuous force data on a connected laptop. Maximum PSI was
extracted during the first 20 s of each test trial. The force data was
not normally distributed, therefore the data were also square root
transformed for analyses of force.

Help-Seeking Behaviors
A primary coder watched each participant video and tallied the
number of help-seeking behaviors displayed during the test trials.
Help-seeking behaviors were defined as (1) reaching to the target
object, or (2) points toward the target object or experimenter.
Since parents were instructed to wear occluding eyeglasses,
behavior directed toward the caregiver objectively could not be
informative in this task, thus these behaviors were not coded
as help-seeking. A secondary coder independently double-coded
100% of the videos, establishing strong reliability (ICC = 0.93,
p < 0.001). For analyses, a composite help-seeking measure was
created by summing both reaching and pointing behavior which
occurred during each trial.

Affect
Participant affect was coded during bouts of trying, using
still frames sampled at every 15 frames (i.e., every 510 ms)
during trying time. Coders watched close-up recording on each
participant’s face and coded emotional reactions using a coding
scheme adapted from Repacholi et al. (2016). Coding of positive
and negative affect was performed separately, therefore in very
rare instances infants could be coded as displaying both negative
and positive affect during a single frame. Positive affect was
coded if infants displayed characteristic features of a smile
(e.g., upturning of the mouth, cheek elevation, raised brows).
A secondary coder independently double-coded 50% of the
videos for positive affect, establishing high reliability (ICC = 0.97,
p < 0.001). Negative affect was coded if infants displayed
characteristic features of frustration or disgust (e.g., down turning
of the mouth, furrowed brows, wrinkled nose). A secondary coder
independently double-coded 50% of the videos for negative affect,
establishing high reliability (ICC = 0.96, p < 0.001). The total
number of frames during a trial that the infant displayed negative
affect was used in analyses.

Number of Hints Needed During Recovery Trial
The number of hints the infant required from the experimenter
to complete the task during the recovery trial were coded.
Unlike test trials, task success was possible during recovery.
Therefore, hints required was used as a proxy to assess infants’
expectations of task success (i.e., more hints would relate to
greater expectations of failure). The number of hints provided
by the experimenter was strictly a function of the amount
of time passed, as hints were provided at fixed intervals if
infants did not solve the task independently. Thus, hints did not
reflect the infants’ behavior or help-seeking. A secondary coder

independently double-coded 50% of the videos for hints required
during recovery, establishing high reliability (ICC = 0.96,
p < 0.001).

DeepLabCut Coding and Processing
As with our other variables, participant videos were trimmed
to the first 20 s of each trial to match the hand-coding scheme
employed by Lucca et al. (2020) and to ensure trials had equal
data. However, given the variability in trial lengths, we also
controlled for the trial length in our models to account for
differences in overall time trying between participants. To this
end, a human coder classified the length of trials to the nearest
second. A secondary coder independently double-coded 25% of
the videos for trial length, establishing high reliability (ICC = 0.98,
p < 0.001).

In order to quantify infants’ motion through space,
DeepLabCut (DLC), a markerless pose estimation software,
was applied to generate data on the rope coordinates for
each participant in the x- and y-axes. Data were not collected
in the z-axis as this is where pulling by the experimenter
model occurred; as such, motion in the z-axis was considered
imitative, rather than exploratory. The coordinates in the x-
and y-axes were measured in units of pixels and represented the
displacement of the rope relative to the origin (i.e., the top left
corner of the camera view). Coordinates were generated at a rate
of one coordinate pair per video frame (i.e., 30 times per second).

Our goal was to train an artificial neural network (ANN) to
identify and track the rope handle through space. The first step
was to hand-label frames with our points of interest to create
training and test data sets that would be used to train the ANN.
Estimation accuracy of a network is improved when trained
to track more than one point (Mathis et al., 2018). As such,
we trained the network to track three points on the rope: the
beginning of the rope handle, the middle of the rope handle, and
the end of the rope handle (see Figure 1). However, analyses were
conducted using the beginning of the handle, where it attached
to the rope. After observing labeled participant videos, this point
was the least likely of the three to be occluded by the infants’
hands, and thus, was the most reliable. DLC boasts < 5-pixel
error when trained on 100 hand-labeled frames (Nath et al.,
2019). In order to minimize the pixel error on our data set,
we labeled 200 frames from 10 participant videos. We chose 10
participant videos that represented the diversity of the sample
both in terms participant demographics (e.g., participant race,
participant gender), and in terms of perceptual features (e.g., shirt
color) to ensure the training could be applied to the versatile
range of participants present in Lucca et al.’s (2020) sample. Then,
200 frames that featured infants in a variety of positions were
manually selected from the 10 participant videos.

Using the recommended neural network, ResNet-50 (Nath
et al., 2019), we trained the network on 200,000 iterations of
the training set. The trained network had a mean training error
of 2.01 pixels, and a mean test error of 3.07 pixels (less than a
quarter of a cm). We found this mean error size suitable for our
work, thus we did not generate additional iterations of training
and the remainder of the participant videos were analyzed using
this network. For a detailed user guide, including instructions on
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FIGURE 1 | (A) A still from a participant video showing markers generated by DLC after training the neural network. The three parts of the rope labeled and tracked
were: the base of the rope handle (blue), the middle of the rope handle (green), and the end of the rope handle (red). (B) A graphical representation of the coordinates
extracted from DLC. Additionally, we have uploaded a video of one of this participant’s test trials with computed marker overlay. Video playback is in real time and
can be found here: https://osf.io/5z74k/.

creating a training data set, training the network, and evaluating
the trained network, please see Nath et al. (2019).

Assessing DeepLabCut’s Precision
To assess the precision of DLC’s labeling capacity, we had
two human coders evaluate the labels generated by DLC. We
randomly selected 25% of participants and then randomly
selected 20 frames from each participant for evaluation (as 20
frames per participant were used in our training set). We found
that on 90% of frames, DLC reported that it had detected the rope
handle accurately; on 97% of those frames, human coders agreed
that it was correctly labeled. For comparison, Sturman et al.
(2020) found DLC was 86 ± 3% accurate compared to human
annotated frames, and this outperformed commercial solutions.

Assessing DeepLabCut’s Validity
Once data was extracted from DLC, it was utilized to construct
several measures of exploration (see “Results” section). Before
conducting analyses, we wanted to verify that our measures
of exploration were not merely a reflection of low-level motor
phenomena. To this end, behavioral coding was performed by
human raters to identify times when infants were engaged in
playing and unproductive movements (i.e., times when the rope
was being moved but was not taut). Because infant’s attempts
were generally stochastic, shifting rapidly from one behavior to
another, coding was performed on the level of 5-s intervals to
allow for consistent classification between human raters. Two
coders were assigned approximately half the sample each and
marked how many intervals displayed unproductive movement
in each trial for each participant. Thus, infants could score up
to four intervals as unproductive per trial. In addition to coding
assignments, approximately 25% of data was double coded and
interrater reliability was moderately high (ICC = 0.83, p< 0.001).

To understand whether our measures of exploration
inadvertently captured incidental movement, rather than
concerted trying, we performed Pearson correlations between

our trial-level measures of imitative similarity and variability with
the number of intervals engaged in unproductive movements.
Indeed, we did not observe a correlation between either average
imitative similarity (r = −0.03, p = 0.57) or overall variability
(r = −0.02, p = 0.68) and our human-generated measure of
unproductive movement. Thus, we did not find evidence that
our measures of exploration reflected off-task behaviors or play.
This verification provided us with increased confidence of the
construct validity of our measures of similarity and variability as
exploratory problem-solving strategies.

RESULTS

Effects of Firsthand Experience and
Model Success on Infants’ Imitative
Similarity
In all the demonstrations, infants witnessed the experimenter
modeling straight back pulling of the rope. Our first goal was
to understand whether infants’ trying attempts were similar
to the demonstration of the experimenter or whether infants
altered the angle of their pulling along the x- and y-axes. To
this end, we produced measures to capture divergence from
imitation by centering participants’ raw displacement values in
each axis relative to imitative (i.e., straight back) pulling. As not
all participants engaged in imitative pulling, we were unable to
center each participant’s attempts relative to their own imitation.
However, data from all participants who engaged in imitative
pulling (n = 78) were utilized to generate average imitative
estimates. A given pull was defined as imitative if the rope
handle did not go beyond the shoulders in either axis, and if the
infant was properly seated in their parents’ lap (i.e., not straining
or bouncing). These video clips were run through the neural
network to obtain an average x-value (458.29 pixels; 35.25 cm
from the left of the camera frame) and an average y-value
(347.79 pixels; 26.75 cm from the top of the camera frame) for
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imitative pulling. These values were subtracted from infants’ raw
displacement values for each axis. Because we valued divergence
from imitation in both directions (i.e., right and left, up and
down), the absolute value of each deviation value was then taken.

Once these values were calculated, we performed two one-
sample t-tests to compare the displacement values in each axis to
imitation (i.e., 0) to understand whether infants’ pulling attempts
differed significantly from the experimenter. To make use of the
rich data produced by DLC, each t-test considered 60 points
per participant (20 coordinate pairs per trial for each of the
three trials), excluding outliers.1 In each of the conditions, infants
experienced failure once they attempted to solve the means-end
problem on their own. Thus, we expected that infants as a group
would generate new strategies to improve upon the strategy
modeled by the experimenter. Pulling attempts in both the x-axis
[M = 191.01 pixels/14.69 cm, SE = 1.63 pixels, t(5670) = 117.09,
p < 0.001] and the y-axis [M = 154.08 pixels/11.85 cm, SE = 1.16
pixels, t(5751) = 133.30, p < 0.001] differed significantly from
imitation. Thus, infants’ attempts differed significantly from
the experimenter in each axis. We also sought to understand
whether pulling attempts differed between the two axes, thus
we additionally performed a paired-sample t-test to understand
whether there was greater deviation in one axis than the other.
Indeed, infants’ pulling attempts in the x-axis deviated from
imitation to a significantly greater extent than in the y-axis
[Mdiff = 37.36 pixels/2.87 cm, t(5669) = 18.67, p < 0.001]. Thus,
infants did not merely replicate the actions of the experimenter
and their attempts appeared to differ to a greater extent in the
x-axis than the y-axis.

Our next goal was to understand how infants’ imitative
similarity was influenced by the effort and success of the adult
model and firsthand experience with failure. To this end, two
measures were constructed using the absolute values from the
x- and y-axes: (1) a difference score to allow us to understand
if infants systematically varied the axis of their exploration,
made by subtracting values in the y-axis from the x-axis, and
(2) an additive score representing overall imitative similarity by
summing, then reverse-scoring, the scores for interpretability.
Thus, for the difference score, positive values indicate greater
deviation from imitation in the x-axis than the y-axis, and for
the imitative similarity measure, a score of 0 indicated imitative
pulling in both axes and greater negative values represent greater
exploration (see Figure 2). Once these measures were calculated,
linear mixed effects models were built to predict changes in
the two measures, respectively. In each model, participants were
entered as random effects and the main effects of condition, trial
number, and time within the trial (in seconds) were entered as
predictors. Further, individual variation in overall trial length
and motor skill may lead to differences in infants’ experiences
trying in this task. Therefore, we also entered the main effects
of overall trial length and motor skill as covariates to control for
these effects. As we expected that greater experience with failure
(both within trials and across trials) would decrease the utility
of imitation, we additionally checked for an interaction between

1In all analyses, outliers which were more than 2.5 SD from the mean were
removed using pairwise deletion.

trial number and time within the trial. Finally, as condition was
a categorical variable with three categories, we used the Easy
condition as a baseline in accordance with Lucca et al. (2020),
though it is worth noting that the pattern of results is the same
regardless of specified baseline condition.

In the case of our difference score, we did not expect to find
systematic variability as there was no information provided by the
experimenter or across time which would suggest exploration in
one axis would be more effective than in the other. Indeed, there
were no significant main effects of condition, time within trial,
nor an interaction between trial number and time (all p’s > 0.39).
However, there was an effect of trial such that infants’ pulling
attempts differed from imitation to a greater extent in the x-axis
than the y-axis in later trials [t(5602) = 2.27, p = 0.02, β = 8.89,
SE = 3.92]. Thus, infants appeared to explore locations that were
more disparate from the experimenter particularly in the x-axis
across trials. This result may be due to the physical limitations
of the study design, wherein infants sat in their caregiver’s lap
and were less able to move vertically than horizontally. Critically,
there was not a significant effect of motor skill on the difference
score (p = 0.96).

On the other hand, we thought that our measure of imitative
similarity could be sensitive to the effort and success of the
adult model, as infants received varying information about the
success of the modeled solution, and to firsthand evidence, as
failure would suggest a necessity for strategy diversification.
Our model of imitative similarity revealed a significant main
effect of trial such that infants’ attempts became more similar
to the experimenter over trials [t(5497) = 2.14, p = 0.03,
β = 8.09, SE = 3.78] and a main effect of time such that
infants’ attempts became more imitative as trials progressed
[t(5475) = 2.51, p = 0.01, β = 1.63, SE = 0.65], as well as
a significant interaction between trial number and time such
that on later trials, infants pulling attempts diverged more from
imitation over time [t(5475) = −3.08, p = 0.002, β = −0.93,
SE = 0.30]. As before, we did not observe an effect of motor
skill in our model of imitative similarity (p = 0.22). It is worth
noting that the effects in this model were relatively small, and
that our prior analyses revealed infants’ pulling attempts were
overall significantly different from the experimenter in both axes.
Thus, though infants’ pulling attempts became more imitative
over time, these attempts were still overall dissimilar to the
experimenter. Finally, we did not observe any effects of condition
on imitative similarity (both p’s > 0.78). Thus, imitative similarity
seemed to respond more to information gained through firsthand
experience than from the adult model.

Effects of Firsthand Experience and
Model Effort and Success on Infants’
Variability
Our analyses of imitative similarity allowed us to understand
whether the locations of infants’ pulling attempts varied
significantly from the experimenter and how they varied over
time. However, in the face of continued failure, it is both sensible
to divest from imitation and also to test multiple locations and
solutions as each new attempt fails. Thus, our next goal was to
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FIGURE 2 | Imitative similarity plotted as (A) an additive score combining variation from imitation in the x- and y-axes and (B) a difference score subtracting variation
from imitation in the y-axis from the x-axis. Each graph is plotted by time, divided by condition and trial number. In the case of the additive score, greater values
represent greater imitation, while in the case of the difference score, greater values represent greater variation in the x-axis relative to the y-axis.

complement our understanding of exploration by evaluating the
variability in infants’ pulling attempts. To index spatial variability,
the coordinates returned from DLC for each participant and each
trial were used to calculate standard deviations of displacement
in both axes. Because standard deviation is highly dependent
on the mean of a given time interval, we calculated two
variability scores: (1) a per-second variability score, representing
the average standard deviation of movement in the x- and y-
axes during the previous second, which responded to the local
means of displacement in the previous second, and (2) an overall
variability score, representing the average standard deviations
of displacement in the x- and y-axes during the trial, which
responded to the global means of displacement over the entire
trial (see Figure 3). Because of skew in the per-second variability
score and for consistency between measures, the measures used
in analyses were square root transformed.

To understand how per-second variability was affected by the
effort and success of the adult model, and firsthand experience
with failure, a mixed effects model with the same specifications as
the previous models was constructed. Participants were entered
as random effects and the main effects of condition, trial
number, and time within the trial (in seconds) were entered
as predictors, the main effects of trial length and motor skill
as covariates, as well as the interaction between trial number
and time. As before, we expected that the varying success of
the adult model between conditions could have an effect on
variability. Likewise, we expected that firsthand evidence could
have an effect, though we did not have specific hypotheses as
to whether per-second variability would decrease, as failure may
encourage lesser overall engagement, or increase, as failure may
also potentiate exploration. This model revealed only trending
effects of time such that per-second variability decreased over
time [t(5479) = −1.84, p = 0.07, β = −0.03, SE = 0.02], and a
trending interaction between trial and time [t(5479) = −1.89,
p = 0.06, β = −0.02, SE = 0.01], such that per-second variability
decreased to a greater extent on later trials. There were no effects
of condition nor trial number (all p’s > 0.24). Likewise, we did
not observe an effect of motor skill on per-second variability
(p = 0.35). Thus, as infants experienced greater firsthand failure,

they exhibited less real-time variability, but we did not find
evidence of an effect of the effort and success of the adult model.

On the other hand, to understand how overall variability
varied as a function of condition and trial number, a linear mixed
effects model was built to predict overall variability. In this case,
we hypothesized that overall variability should increase across
trials as greater firsthand experience with failure should suggest
that previously tested solutions would not succeed. Participants
were entered as random effects and the main effects of trial
number and condition were entered as predictors. We also
entered the main effects of trial length and motor skill into
the model as covariates. As before, we used the Easy condition
as a baseline, though it is worth noting the pattern of results
was the same regardless of baseline. We found a main effect of
trial number, such that spatial variability increased across trials
[t(222) = 13.35, p < 0.001, β = 2.71, SE = 0.20], but there were no
significant effects of condition (both p’s > 0.43). Therefore, while
infants’ spatial variability responded to firsthand failure across
trials, we did not find evidence that it was also sensitive to the
effort and success of the adult model. As in our other models,
motor skill did not have a significant effect on overall variability
(p = 0.74). This analysis of overall variability revealed a markedly
different pattern than our analysis of per-second variability.
We discuss the potential explanations and implications of these
results in the Section “Discussion.”

Predicting Individual Differences in
Exploration
Our second analytic goal was to understand how individual
differences in performance measures predicted infants’
exploration, in order to better understand the processes
that lead to exploration. The distributions of many of our
performance measures exhibited substantial positive skew.
While we transformed these variables as necessary to reduce
skewness (e.g., trying time, maximum force, overall variability),
we additionally employed 20% percentage-bend correlations
to increase the robustness of analyses predicting exploration
utilizing negative affect, maximum pulling force, help-seeking,
and trying time, respectively. Pearson correlations may lack
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FIGURE 3 | Variability plotted (A) using a per-second score to represent variability in real-time and (B) using an overall score to represent the variability created
across the entire trial, divided by condition and trial number. For each score, greater values represent greater variability and exploration.

robustness with this type of data, as small shifts in marginal
distributions or outliers can lead to substantial variations
in correlation estimates (Wilcox, 1994). Thus, utilizing 20%
percentage-bend correlations allowed our analyses to have
greater robustness against the skew exhibited in our performance
measures. We conceptually treated each performance measure as
a predictor of imitative similarity and the square root of overall
variability, respectively. However, as we did not have specific
hypotheses about the direction of the effects, these analyses were
all exploratory and correlational.

We first looked to see how the performance measures related
to imitative similarity. Increases in maximum pulling force were
related to decreases in imitative similarity (ρpb = −0.16, p = 0.03).
Thus, infants who utilized greater maximum pulling force tended
to diverge more from imitation. However, there were no other
trending or significant relationships observed between imitative
similarity and the performance measures (all p’s > 0.28; see
Figure 4). We next performed individual difference analyses of
spatial variability (see Figure 5). Regarding force, we found that
increases in maximum pulling force were associated with greater
overall variability (ρpb = 0.22, p = 0.003). Therefore, infants
who utilized greater maximum pulling force tended to generate
greater spatial variability. We also found that increases in trying
time were associated with lower spatial variability (ρpb = −0.27,
p < 0.001). Lastly, there was a trending relationship with affect
and variability. We found that increased negative affect tended to
be associated with greater overall variability (ρpb = 0.13, p = 0.08).
Thus, infants who were more frustrated may have generated
greater spatial variability. Finally, we did not find evidence
of a relationship between help-seeking and overall variability
(ρpb = 0.11, p = 0.13).

Predicting Differences in Expectations of
Task Success
Finally, we conducted 20% percentage-bend correlations to
investigate the relationship between expectations of task success
(i.e., the number of hints infants needed on the recovery trial)
and imitative similarity and spatial variability, respectively. We
hypothesized that infants who explored more in preceding test

trials would require less support during the new iteration of
the task, as each new strategy employed would present a new
opportunity for success. Since there was only one measure of
hints required during the recovery trial for each participant, we
averaged the standard deviation of spatial displacement across
the three trials, as well as the additive imitative similarity scores,
for analyses. There was not a significant relationship between
hints required during the recovery trial and imitative similarity
(p = 0.38). However, hints required and overall variability were
moderately, negatively correlated (ρpb = −0.37, p < 0.001)
such that infants who had higher average overall variability
during the test trials required fewer hints during the recovery
trials. Importantly, our measures of spatial variability and hints
required during the recovery trial were independently collected.
Since spatial variability was measured prior to the recovery trial,
it seems that spatial variability while problem-solving predicted
the number of hints required in the recovery trial.

DISCUSSION

Insights Gained About Infants’
Problem-Solving Strategies
This paper’s primary conceptual objective was to investigate
the influence of the effort and success of an adult model,
and firsthand experience with failure on infants’ problem-
solving approaches by quantifying the extent to which these
attempts deviated from modeled solutions. To this end, we
considered multifaceted components of infants’ problem-solving
approaches by applying DLC to generate objective, high-quality
data: imitative similarity and spatial variability. Our findings
revealed that these exploratory facets of problem-solving were
relatively immune to social input (i.e., the effort and success of an
adult model) but responded to firsthand failure across and within
trials. Thus, although imitative similarity and spatial variability
were influenced by some of the same factors that influence the
time spent problem-solving (see Lucca et al., 2020), focusing
on these new measures of exploration yielded new information
about the nature of infants’ problem-solving approaches.
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FIGURE 4 | Relationship between performance measures and average imitative similarity: (A) maximum pulling force, (B) trying time, (C) negative affect, (D)
help-seeking, and (E) hints during recovery. The shaded region along the line of best fit represents standard error.

By investigating imitative similarity, we were able to assess
the extent to which infants’ pulling behaviors deviated from
the modeled solution. This process revealed that infants’ pulling

behaviors were significantly different from the experimenter
model they observed. Thus, when given an unsolvable task,
infants as a group generated solutions which were unique from
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FIGURE 5 | Relationship between performance measures and overall spatial variability: (A) maximum pulling force, (B) trying time, (C) negative affect, (D)
help-seeking, and (E) hints during recovery. The shaded region along the line of best fit represents standard error.

the experimenter by testing new locations. Imitative similarity
also varied across time; within trials, infants’ approaches tended
to become slightly more imitative as they experienced greater

failure, except on later trials, wherein their approaches became
less imitative over time. In this task, exploration is useful in that
the experimenter’s solution demonstrably fails when attempted.
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In early trials, infants may test different solutions then converge
toward the experimenter’s solution once they experience failure
with exploration. On the other hand, on later trials, infants may
increase exploration after repeated experience failing using the
modeled solution. These results suggest that infants’ problem-
solving approaches respond to firsthand experience with failure.

Likewise, we were able to investigate the variety exhibited
in infants’ problem-solving approaches by measuring variability,
rather than just overall similarity. Our spatial variability findings
differed depending on the timescale utilized for analysis. While
per-second variability decreased both within and between trials,
overall variability actually increased between trials. These results
can be interpreted as complementary, as standard deviation is
highly dependent upon the mean of a given time interval. As
such, if infants spent several seconds testing a given location or
strategy (i.e., high similarity to the mean of each second), but
also tested several disparate locations across the entire trial (i.e.,
lower similarity to the overall mean), they would demonstrate
low per-second variability but high overall variability. Thus,
the explanation most consistent with our collection of findings
may be that infants persisted for longer in each location
they tested as they experienced greater firsthand failure but
tested a wider variety of locations throughout the entirety
of the trials. Subsequently, spatial variability during test trials
predicted recovery trial performance. Infants who produced
greater variability during test trials received fewer hints during
recovery, requiring less support in the new iteration of the task.
Thus, it seems that spatial variability predicted support needed
during later recovery trials, suggesting that children who explored
more had higher expectations of task success.

Of course, alternate explanations could exist for these results.
Most concerningly, our measures of imitative similarity and
variability could merely reflect incoordination. However, we find
this interpretation quite unlikely because we controlled for motor
skill within each of our models. If indeed our measures were
merely a reflection of a lack of coordination, we would expect that
lower motor skill would be related to each measure. However, we
did not observe any significant effects of motor skill on imitative
similarity or spatial variability. Likewise, our human coding
of unproductive movement was not correlated with imitative
similarity or variability. In light of these findings, we find the
most consistent explanation is that our results reflect nuanced
adjustments to problem-solving approach as infants experienced
failure. These adjustments may be deliberate or implicit but are
observable in infants’ behavior regardless.

While these results display similarities to Lucca et al. (2020),
they also indicate departures. In the original study, infants’
trying time responded both to the effort and success of the
adult model, and to firsthand experience with failure. Thus,
both studies indicated an effect of firsthand experience such
that infants’ problem-solving approaches changed with increased
failure, but we did not find evidence for an effect of social
input. This is surprising given that similar work also suggests
that infants infer appropriate strategies based on social input
(e.g., Gweon and Schulz, 2011) and that the demonstrations
provided different information about the solution’s efficacy. For
example, while the Impossible condition cues that the modeled

solution is ineffective, the Hard condition cues that the modeled
solution will work eventually. As such, our results point to a
potential disassociation between the duration of problem-solving
and the approach adopted during problem-solving. It may be the
case that exploration represents a more implicit component of
problem-solving and responds to firsthand evidence (i.e., failure)
but does not become consciously integrated across domains
like trying time.

Utility of Applying DeepLabCut
Importantly, this project also sought to illustrate the feasibility
and utility of implementing DLC in the analysis of archival data.
By identifying a motoric proxy for a cognitive phenomenon (i.e.,
exploration) we were able to apply computer vision post hoc
to a previously collected data set to reveal novel insights about
problem-solving. This case study provides one example of DLC’s
application, but the fine-grained data that DLC produces could
also be used in more sophisticated computational models and
statistical techniques, much like linguistic corpora have been
utilized (e.g., Redington et al., 1998; Yang, 2013; Meylan et al.,
2017; Bergey et al., 2021). Importantly, DLC is particularly
useful when in-person data collection is impossible. DLC can
utilize archival data which is an invaluable tool (Gordon et al.,
2015), and gives researchers access to high-quality or even rare
data (e.g., data from samples which are not Western, Educated,
Industrialized, Rich, and Democratic; see Rad et al., 2018; Syed
et al., 2018). However, archival data is often collected to answer
specific questions and, consequently, the stimulus design may not
easily lend itself to new questions. In these cases, DLC provides
researchers with open-access tools to answer additional questions
that are otherwise very difficult or time-consuming for human
coding, extending the lifecycle of existing archival data as in the
case of our data. Thus, the advantages of DLC are pertinent
for archival research both when in-person data collection is and
is not possible.

Implications for Theories of
Problem-Solving and Related
Phenomena
Classic work demonstrates that young infants have perseverative
tendencies, wherein they will continue to apply previously
successful solutions to solve problems even when they are no
longer effective. Infants’ A-not-B task performance classically
illustrates this phenomenon: after a 10-s delay, even 12-month-
olds demonstrated perseverative errors by continuing to search
in the original location an object was hidden instead of its
current location (Diamond, 1985). Although perseveration on
this particular task diminishes across the second year of life
(Lockman and Pick, 1984; McKenzie and Bigelow, 1986; Aguiar
and Baillargeon, 1999), perseveration more broadly construed
persists into at least the preschool years in various motor-based
tasks (Schutte and Spencer, 2002; Mash et al., 2003; Sharon
and DeLoache, 2003; DeLoache et al., 2004; Smitsman and Cox,
2008; Schmuckler, 2013). In contrast to these findings, within
the context of our study, 18-month-olds demonstrated relative
flexibility, testing solutions unique from the adult model, testing

Frontiers in Psychology | www.frontiersin.org 13 November 2021 | Volume 12 | Article 705108

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-12-705108 November 2, 2021 Time: 14:5 # 14

Solby et al. New Look at Problem-Solving

a greater variety of solutions across trials, and varying imitative
similarity based on trial number. These findings suggest that
perseverative tendencies may vary both with the nature of the
task and infants’ experiences during the task. Overall, our study
juxtaposes previous work on perseveration by showcasing infants’
ability to generate productive responses in the face of failure.

Tendencies toward imitation versus exploration can also be
understood through the explore-exploit tradeoff, a common
framework describing the inherent tension between exploiting
known solutions for rewards and taking time to explore better
solutions (Mehlhorn et al., 2015). Within this framework,
imitation can be understood as exploitation, as infants can
conserve mental resources while gaining the benefits of a known
solution. Conversely, exploration may produce better solutions
but may come at the expense of efficiency, as generating
new solutions requires trial-and-error. Longitudinal comparisons
have revealed that children tend to explore to a greater extent
than adults, choosing to gather information rather than rely
on exploiting known effects, with this tendency reducing over
development (Gopnik et al., 2015, 2017; Sumner et al., 2019;
Gopnik, 2020). However, this research has generally been done
with children who are preschool-age or older, due to the cognitive
demands of the tasks employed. Our findings demonstrate a
ready tendency to explore novel solutions in infants, suggesting
that this tendency may be present from an even younger age.
Future work could adopt similar paradigms to allow for a full
developmental comparison beginning in infancy.

Previous work from this perspective has also differentiated
exploration into two subsections: directed and random
exploration (Meder et al., 2021; Wilson et al., 2021). Whereas
directed exploration serves to sample the areas of greatest
uncertainty in a problem space, random exploration simply
generates variability. Importantly, both forms of exploration
are posed as adaptive, as directed exploration allows for the
inspection of features which are likely to produce rewards, but
random exploration allows for the discovery of less obvious
features which may also be useful. Critically, our methodology
did not differentiate between directed and random exploration, as
deviation and variability could represent both random, implicit
micro-explorations and qualitatively distinct strategies. Thus,
future work may adopt methods that elucidate this distinction.

Our findings regarding exploration may also be suited to a
larger literature characterizing children’s intuitions about effort
exertion and problem solving as fundamentally rational. Effort
is costly, requiring metabolic resources and creating inherent
opportunity costs. As such, children as young as 6 months old
expect others to utilize the most efficient paths possible to obtain
their goals (Brandone and Wellman, 2009; Scott and Baillargeon,
2013; Skerry et al., 2013; Liu and Spelke, 2017). The naïve utility
calculus integrates these intuitions into a framework explaining
how children take advantage of the utility of others’ actions to
infer a wide variety of information including desires, preferences,
and prosocial tendencies (Jara-Ettinger et al., 2015a,b, 2016).
Recent research has begun to elaborate how children also display
effort efficiency in their own actions (Leonard et al., 2020; Lucca
et al., 2020; Rett and Walker, 2020). The results presented here are
consistent with this larger framework, demonstrating that infants

engaged in several exploratory behaviors which increased the
utility of their actions. Infants did not merely copy the approach
of the experimenter when they did not experience success,
but rather deviated from the demonstration. As infants were
confronted with their own failure, they also generally increased
their exploration, increasing their deviation from imitation and
trying a greater number of exploratory strategies. In other
words, infants’ approaches responded to information about the
productivity of imitation, as well as the productivity of each
strategy that they employed. Further, greater exploration related
to greater expectations of task success. As infants tested new
methods, their expectations of success may have been buffered
through failure as there is a possibility that each untested strategy
could lead to success. While these results are still speculative, they
suggest that infants may engage with problems in nuanced ways
to maximize probabilities of success rather than merely giving up
or perseverating.

Limitations
The primary limitation of this study is the correlational nature
of our data. As with any archival research, if the questions
under investigation pertain to variables that were not directly
manipulated in the original study, researchers are limited in
making causal assertions about their data. In the case of our study,
we were only able to make inferential claims about variables
which were collected or manipulated independently (i.e., adult
modeling, trial number, and recovery trial performance) but
further work will be required to make definitive conclusions
about the relations observed between other variables, particularly
the role of exploration within a larger motivational framework
as described in our individual difference analyses. However,
correlational work serves as an important exploratory space for
generating new research questions and as such, the efficiency of
DLC makes it an ideal option for researchers who are endeavoring
to test the feasibility or theoretical validity of a research question
before investing the time designing an appropriate paradigm,
collecting data, and processing data (either in-person, or online).

FUTURE DIRECTIONS AND
CONCLUSION

This work provides rich theoretical grounds for future research
through its correlational findings. In addition to the directions
identified above, we would recommend a further investigation
of other facets of exploration and the developmental trajectories
of exploratory tendencies. Here, we considered two potential
facets of exploration, demonstrating that these two facets
responded to firsthand experience with failure. Future work
should also consider which other facets may comprise a
full constellation of exploratory problem-solving behavior
beyond imitative similarity and variability. Likewise, if the
measures elaborated in this paper reflect exploration, they raise
further questions about the developmental trajectory of these
abilities (Muentener et al., 2018). Finally, our correlational
analyses of individual differences in spatial variability and
other facets of performance raise productive possibilities for
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empirical investigation and replication. Exploration may be
one component of an interplay between failure and problem-
solving. As such, it may explain divergence between learners,
in which failure results in divestment for some but growth and
learning for others. This interpretation is corroborated by our
recovery results, which suggest that greater exploration during
problem-solving leads to greater expectations of task success.
Perhaps encouraging children who do not naturally produce large
exploratory variability to explore will buffer motivational losses.
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