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Atypical sensorimotor developmental trajectories greatly contribute to the profound
heterogeneity that characterizes Autism Spectrum Disorders (ASD). Individuals with
ASD manifest deviations in sensorimotor processing with early markers in the use of
sensory information coming from both the external world and the body, as well as
motor difficulties. The cascading effect of these impairments on the later development of
higher-order abilities (e.g., executive functions and social communication) underlines the
need for interventions that focus on the remediation of sensorimotor integration skills.
One of the promising technologies for such stimulation is Immersive Virtual Reality (IVR).
In particular, head-mounted displays (HMDs) have unique features that fully immerse
the user in virtual realities which disintegrate and otherwise manipulate multimodal
information. The contribution of each individual sensory input and of multisensory
integration to perception and motion can be evaluated and addressed according to a
user’s clinical needs. HMDs can therefore be used to create virtual environments aimed
at improving people’s sensorimotor functioning, with strong potential for individualization
for users. Here we provide a narrative review of the sensorimotor atypicalities evidenced
by children and adults with ASD, alongside some specific relevant features of IVR
technology. We discuss how individuals with ASD may interact differently with VR
versus real environments on the basis of their specific atypical sensorimotor profiles
and describe the unique potential of HMD-delivered immersive virtual environments to
this end.

Keywords: sensorimotor development, virtual reality, IVR, HMD, autism, ASD, perception, motion

INTRODUCTION: MULTISENSORY DEVELOPMENT

Embracing a neuroconstructivist approach, we can conceive of the development of an individual as
a continuous and dynamic process of interaction among genetic constraints and environmental
landscapes through the plasticity of the brain (Karmiloff-Smith, 2009). Experience guides an
individual’s developmental trajectory in a probabilistic epigenesis and shapes the brain through
progressive specialization for elaborating certain types of stimuli (Johnson, 2001). Our senses
are the entry gates by which a given stimulation can be perceived, elaborated, and qualified as
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experience that then constructs the individual phenotype.
Numerous sensory inputs present in our environment at
any given time have to be bounded by the principles of
spatial, temporal, and semantic congruence. This multisensory
processing specializes with age so that the developmental stage
establishes which information has to be elaborated and how
and when different inputs are combined (Bremner et al., 2012).
Furthermore, information coming from different modalities
contributes to the formation of an aggregate percept to a
different extent depending on which modality is the most
precise and appropriate to the given context, goal, and task.
This is also fundamental in motor development, which requires
the combination of exteroceptive (i.e., vision), proprioceptive,
and vestibular cues, and vestibular cues, on the basis of
sensory-sensory and sensory-motor contingencies, namely the
co-occurrence of multimodal stimuli in the same spatio-temporal
window (Murray et al., 2016), and the correspondence between
sensory feedback and motor output (Baldassarre et al., 2018).

To deal with the uncertainty of multimodal combination
and integration (e.g., in case of discordant, ambiguous, or
missing information), the mind has to base its reasoning
on prior experience and decide which is the most plausible
interpretation of several possibilities (Ernst and Bilthoff, 2004).
The use of prior information in perception has been subject to
extensive investigation and also modeled within the Bayesian
framework (Pellicano and Burr, 2012). In an attempt to describe
the processes underlying the derivation of the most probable
interpretations of the environment, Pellicano and Burr (2012)
suggest formalizing sensory atypicalities in Autism Spectrum
Disorders (ASD) using this mathematical framework. In
particular, while neurotypical toddlers show limited multisensory
integration, which develops up to adolescence and results
in a sort of mandatory integration of either congruent or
incongruent cues, adolescents with ASD present a more selective
multisensory integration only for congruent stimuli (Bedford
et al., 2016). This has been interpreted as enhanced perceptual
functioning, whereby sensory inputs are weighted more than
prior or contextual knowledge in building up perception
(Palmer et al., 2017).

In sum, rather than a precise detector of reality, the human
mind is a simulation system that utilizes prior knowledge to build
expectations of the world. It goes without saying that mistakes are
honored guests at this guessing game. As a consequence, the mind
is the victim of many errors, crashes, and bugs in its predictive
coding: false memories, illusions, attentional blindness, cognitive
biases, heuristics, and so on (Buonomano, 2011).

IMMERSIVE VIRTUAL REALITY

As the mind is a simulation system that filters reality with
the precise goal of coming up with a coherent interpretation
of the world, we have considerable chances of hacking the
process and making people perceive, feel, and believe something
unreal. Immersive Virtual Reality (IVR) technologies have been
extensively studied in terms of their potential for manipulating
the boundaries of the mind. Notably, “virtual worlds are

constructed by the senses and only really exist in the mind of
users. VR is a medium for the extension of body and mind”
(Biocca and Delaney, 1995, p. 58). Indeed, the body and mind
can be extended through IVR: the technology has been used to
produce the Rubber-Hand Illusion (RHI) (Yuan and Steed, 2010),
to make users feel that they are in someone else’s body (Slater
etal., 2010), and even to change feelings, behaviors, and attitudes
(Maister et al., 2015; Bergstrom et al., 2016). When talking about
VR, one highly important point of discussion is the degree of
objective immersion and subjective sense of presence that the
device induces. One of the most immersive systems available
which is relatively affordable is the wearable head-mounted
display (HMD), which excludes the visual and auditory real
world and engages the user in a virtual simulation made of 360°
stereoscopic environments and binaural spatialized audio. The
attractiveness of HMDs is also due to the fact that they offer the
possibility for full body movements and navigation (Figure 1).
For many vyears, researchers stated that individuals’
performance within IVR mirrored their functioning in real
settings (Slater et al., 2009; Iachini et al., 2016; Maffei et al,
2016). On the other hand, recent studies are highlighting that,
even though this technology is continually and exponentially
improving, users’ experiences with HMDs do not perfectly
resemble the sensorimotor features of reality. For instance, the
way HMDs provide visual information may require a different
type of sensory processing, thus impacting the perception-action
link. Scarce cues to depth and almost absent haptic feedback may
create visual environments that primarily activate the ventral
visual path for perception and recognition of stimuli, thus
impairing the dorsal path that is specialized for the visual control
of actions (Harris et al., 2019). The issue of compromised visual
processing or higher load on the visual networks than in real
visual environments to achieve aspects of visual cognition like
depth perception is currently an active area of empirical testing
and applied research (Fulvio et al., 2020). At the neural level of
multisensory integration, a recent electroencephalography (EEG)
study on the RHI pointed out that the illusion might induce
different oscillatory underpinnings when achieved through real
stimuli or IVR. The authors suggest that the integration of
spatially congruent visuo-tactile information requires additional
cognitive control in IVR compared to real settings, as if there were
some sort of unresolved mismatch between the two modalities
(Kanayama et al., 2021). Evidence from functional magnetic
resonance imaging (fMRI) also shows that brain activity related
to spatial processing (assessed through participants’ judgments
of whether 3D objects were centered, shifted to the left or to the
right) is different in IVR as compared to known brain activations
in reality (Beck et al, 2010). Ultimately, there is mounting
awareness of the importance of multimodality in designing and
employing virtual environments for specific purposes, as well as
in assessing the ecological validity of IVR (Xu et al., 2021).
Additionally, it has been suggested that self-motion can
be altered when people interact with IVR through HMDs
(Willemsen et al., 2004; Nilsson et al.,, 2018). Indeed, tasks
requiring actual locomotion and rapid head movement increase
the occurrence of well-known after-effects such as motion
sickness, mainly due to the tracking latency that causes a temporal
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FIGURE 1 | (from left to right): Users wearing HMDs and interacting with commercially available applications through their actual hands (A), controllers in their hands’
place and their virtual hand-like representation (B), their whole body as represented by a virtual full-body shadow (C) or external movement platforms (i.e., bicycle)

lag between the user’s movement and the consequent change
in the optic flow (Allison et al., 2001). A main departure from
self-motion and navigation in reality is arguably the lack of our
own body in the visual field, which affects the three components
of embodiment: the sense of being where the (virtual) body is,
the sense of agency and control over the (virtual) body and
environment, and the sense of ownership over the (virtual) body
(Kilteni et al., 2012). Studying the role of including a virtual
body (VB) representation in IVR has long been considered an
important issue in the available literature (Slater and Usoh,
1993). With advanced technologies, HMDs can make the user see
themselves from a first-person view and can include the presence
of a graphical representation of the body at different levels of
realism: a geometric indicator of the user’s position in space, a
representation of the user’s hands, the shadow of the user, or even
a full body self-avatar (Pan and Steed, 2017). In this way, HMDs
can play an important role in presence, which is greatly discussed
in the literature on IVR. Presence refers to the degree to which a
user feels present and located within the virtual reality - it might
be indicated by the “looming effect,” where users react in the real
world to actions that are occurring in the virtual reality (George
et al., 2018). Various factors affect presence, such as the user
having a virtual body (Slater and Usoh, 1994), using real-world
navigation techniques like walking (Slater et al., 1995), and the
ability to generate vivid mental images (Iachini et al., 2019). The
existing evidence seems to indicate that enhancing visual realism
in VB representations could be important to induce realistic
responses, possibly thanks to the enhanced sense of presence they
create (Slater et al., 2009).

However, one recent study suggests that visuo-proprioceptive
congruency could be more central than visual fidelity (Zopf
et al., 2018). The authors manipulate the visual realism of the
VB by showing the participant a virtual hand or a sphere. They
also manipulate visuo-proprioceptive congruency: the VB can
move consistently or inconsistently with the users real body
movements. Both factors are implicated in the sense of presence,
but only visuo-proprioceptive congruency is crucial for the

sense of agency. This leads to the ability to manipulate visual
realism while maintaining a high sense of “acting there”. In this
regard, VB visual fidelity has been intentionally altered by some
researchers to affect the user’s perceptions, attitudes, or behaviors.
The body swapping method allows researchers to expose the user
to a different physical self. The users see a different human body
from the first-person perspective, and experience a successful
illusion of ownership that has been consistently reported via
self-report and physiological measures (Petkova and Ehrsson,
2008). Petkova and Ehrsson’s (2008) study provides additional
evidence of the need for perceptual congruence. The authors used
visuo-tactile stimulation that induced the illusion of ownership
only in the case of synchronous stimulation. Asynchronous
visuo-tactile stimulation does not induce such an illusion. After
this body swapping exposure, users appeared to even show
changes to the memory of their bodies, with interesting clinical
applications, for example for patients with eating and weight
disorders (Serino et al., 2016).

In sum, recent evidence points out that VR differs from real
environments for both low-level sensory processes and higher-
order cognitive aspects. Indeed, while sensory information in VR
differs from reality in terms of higher perceptual uncertainty,
even in perceptually “perfect” virtual environments individuals’
prior knowledge of acting in a virtual rather than real world
influences their expectations of action consequences, thus
affecting behaviors (Giesel et al., 2020).

AUTISM SPECTRUM DISORDERS

Sensory atypicalities are early risk factors which confer cascading
effects on child development, potentially marking the onset of
neurodevelopmental difficulties and disorders (Hill et al., 2012).
ASD are characterized by atypical sensory processing that may
have subsequent effects on the later development of higher-
order cognitive and social abilities (Baum et al., 2015). Currently,
ASD is diagnosed based on persistent and pervasive deficits in
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social communication and social interaction, as well as restricted
and repetitive patterns of behaviors, interests, or activities.
The latter category of symptoms consists of repetitive motor
movements, use of objects, or speech; insistence on sameness,
routines, or rituals in verbal or non-verbal behaviors; restricted,
repetitive patterns of behaviors or intensely focused interests
and preoccupations, and hyper/hypo-reactivity to sensation
(American Psychiatric Association (APA), 2013). Children with
ASD present different types of sensory symptoms, such as
hyper- or hyposensitivity, unique patterns of response to sensory
stimuli, sensory seeking (Baranek et al., 2006), and reduced
discrimination between novel and repetitive stimuli investigated
by habituation paradigms (Vivanti et al., 2018). This type of
heterogeneity in sensory responsiveness implies the existence
of subtypes within the autism spectrum (Schoen et al., 2008),
with each potentially having different cascading effects on
other areas of cognitive and social functioning (Raymaekers
et al., 2004; Schultz, 2005). Based on the direction of these
interconnections between sensory, cognitive, and social events,
specific sensory training programs could be designed through
careful identification of which level of stimulation is appropriate
for different individuals in each sensory modality.

People with ASD present unique processing of unimodal
stimuli, such as higher temporal binding of visual cues from
two years of age (Freschl et al., 2020), reduced sound tolerance
(Williams et al., 2021), atypical brain responses to both
affective and non-affective touch (Kaiser et al., 2016), olfactory
dysfunctions (Crow et al., 2020), and peculiar taste reactivity
(Avery et al., 2018). Together with atypicalities in the individual
sensory channels, people with ASD show broad differences at
the multisensory level (Hill et al., 2012; Baum et al.,, 2015).
Researchers have reported reduced multisensory facilitation and
higher reliance on unimodal processing (Collignon et al., 2013),
an extended (hence less precise and specialized) multisensory
temporal binding window (Foss-Feig et al, 2010), reduced
integration of audio-visual cues (Feldman et al., 2018), atypical
integration of interoceptive and exteroceptive stimuli such
as reduced cardio-visual temporal acuity (Noel et al, 2018),
and delayed or reduced effects of visuo-tactile stimulation on
proprioception during the RHI (Cascio et al., 2012; Greenfield
et al, 2015). Therefore, there is a widespread interest in
interventions that focus on the training of sensory processing
in ASD. Although it has been suggested that multisensory
function may be malleable with treatment, there is a relative
lack of evidence that treatment improves this functioning in
people with ASD (Cascio et al, 2016). The existing body
of research does not support the use of those therapies that
simply provide additional possibilities to obtain visual, tactile,
vestibular, or proprioceptive sensory stimulation, and challenge
motor control to promote adaptive behaviors (for example, the
so-called Sensory Integration Therapy; for a review, see Lang
et al., 2012). Tt suggests that more elaborate tasks should be
designed in order to ensure concentration on certain abilities and
control for progress.

Another aspect to consider when targeting a specific set of
skills is thorough examination of areas where the individual
functions within the normal range or even more accurately. For

example, one may focus on training various visual processing
mechanisms that lead to an efficient use of visual landmarks
for successful motor output based on studies showing that
impairments in vision are associated with lower sensorimotor
performance. This has been indicated in a number of studies
where the contributions of vision and proprioception were
studied in unisensory and multisensory conditions in spatial
cognition tasks and in which participants with ASD have
been found to rely more on proprioception (Haswell et al.,
2009; Marko et al.,, 2015) from childhood (Izawa et al., 2012)
to adulthood (Morris et al., 2015). Although it may seem
that such individuals with ASD need remediation only in the
visual domain, the neuroconstructivist approach would include
rehabilitation of proprioception as well since this efficient (or
superior) proprioceptive functioning in ASD may originate from
an atypical focus on certain sensory features that leads to the
deterioration of other skills. This approach is at the core of
the neuroconstructivist school of thought which emphasizes
the influence of the developmental trajectory of one sensory
modality/skill on the other (Karmiloff-Smith, 2009).

From an embodied cognition perspective, multisensory
development goes hand-in-hand with motor development, in
a perception-action cycle that allows the individual to learn
and explore both the self and the external world (Kiefer
and Trumpp, 2012). In concert with multisensory functioning,
physical and motor development set out age-specific constraints
and sensitive periods for the possibility of learning certain
skills. By exploring and acting as an agent within the world,
children develop mechanisms that enable optimal integration
between sensory input and motor output. Motor development
is not a trivial acquisition of milestones, but a complex
self-organization challenge to integrate the mechanical part
of the body with perceptions, thoughts, emotions, and their
physiological underpinnings (Thelen, 1989). From infancy,
babies at high risk for later diagnosis of ASD manifest delayed
and qualitatively different motor development. This is a pervasive
and consistent phenomenon, as highlighted by a recent meta-
analysis (West, 2019). Later in life, children with ASD show
a variety of motor impairments in the domains of praxis
and fine and gross motor skills (Kaur et al., 2018). Toddlers
with ASD also seem to present asymmetrical gait (Esposito
et al,, 2011), and impaired postural stability has been found
up to adolescence and adulthood in one-leg standing (Travers
et al., 2013). The postural deficit seems to be quite established
in literature, according to a systematic review and meta-
analysis of 19 studies (Lim et al., 2017). Given the unbreakable
link between the development of sensorimotor processes and
higher-order operations, options for sensorimotor interventions
need to be explored.

IVR AND SENSORIMOTOR
FUNCTIONING IN ASD

In recent years, there has been mounting interest in the
investigation of the potential that digital and multimedia
technologies might have for sensorimotor stimulation of people
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with ASD. Encouraging indications come from projects such
as the European-funded MultiSensory Environment Design for
an Interface between Autistic and Typical Expressiveness (Pares
et al,, 2005), the Magic Room: A Smart Space for Children with
Neurodevelopmental Disorder (Garzotto et al., 2019), and the
Lands of Fog (Crowell et al., 2020). These teams realized mixed
realities and multimedia interactive environments that foster
children’s sense of agency, provide sensorimotor stimulation,
and are feasible even with low-functioning individuals with
ASD. However, they did not utilize fully immersive VR, and
the extant literature is far from exhaustive, as few studies
have employed immersive tools rather than computers and
screens and most studies have small samples, no control
group, and primarily focus on social, daily-life, and safety
skills (Lorenzo et al., 2019). Some authors have made an
attempt to include sensorimotor aspects among the design
considerations of VR applications for individuals with ASD,
thus suggesting limited use of sudden loud sounds, sound
control for the user, and use of sharp visuals that include
colors, shapes, and movement of stimuli (Bozgeyikli et al.,
2018). It has been suggested that HMDs, rather than monitors,
enhance spatial presence and are preferred by children with
ASD (Malihi et al,, 2020b). However, this sense of presence
might be modulated by individual factors such as IQ and
anxiety, whereby a higher IQ seems related to greater sense of
presence and engagement only in children with low levels of
anxiety (Malihi et al., 2020a). This underlines the importance
of attending to inter-individual differences when considering
interaction with IVR.

A few studies have recently explored whether HMDs
could stimulate different sensory systems in people with
sensory conditions. Some researchers have received positive
feedback from occupational therapists who used customizable
HMD-games for children with sensory processing disorders.
Different games were designed to stimulate several sensory
systems through manipulation of visual properties (complexity
of the environment, object color and size), audio volume
and effects, and vestibular input (e.g., speed of participant’s
roller-coaster cart) (Rossi et al, 2019). However, the effects
on participants’ sensorimotor functioning were not directly
measured. HMDs have also been employed to deliver
contextual sensory integration therapy and train adults
with vestibular disorders in sitting, standing, turning,
or stepping within different scenarios (i.e., city, park,
airport). Therapists used the HMD together with their
typical rehabilitation methods, and participants compiled
self-report questionnaires that indicated improvements
in vertigo and balance (Lubetzky et al, 2019). No direct
measures of patients’ performance were included, and the
absence of a control group that did not undergo the HMD
training prevents us from attributing these benefits specifically
to the IVR. In the auditory domain, in order to address
auditory hypersensitivity, 6 adolescents with ASD have
been exposed to IVR games whereby they encountered
three-dimensional, ~spatialized sounds that they found
anxiety-provoking (according to self and parents’ reports).
Participants joined four weekly 30-min desensitization sessions,

whereby each stimulus could be delivered a maximum of
20 times and was gradually moved closer to the participant,
thus reducing their perceived anxiety and increasing the
interaction time towards the target stimuli (Johnston et al,
2020). Despite these preliminary works offering encouraging
suggestions, further investigation is needed to elucidate the
sensorimotor potential of IVR training, which would be
particularly compelling for ASD, and their acceptability to users
(Valori et al., 2020a).

Together with the interest in addressing sensorimotor
processing in people with ASD, only in the past decade
have researchers begun to investigate how individuals
with ASD perceive through HMDs. For instance, children
and adolescents with ASD seem to benefit from binaural
spatialized audio when exploring virtual environments
with HMDs (Johnston et al., 2019). On the other hand,
some evidence suggests that adults with ASD compared
to controls are less susceptible to the full body illusion in
IVR, not demonstrating the embodiment in a VB (Mul
et al, 2019). The lack of embodiment has been found
to be associated with severity of ASD traits and reduced
peripersonal space, which is the space immediately around
our body in which actions are possible (for a review on
peripersonal space, see Holmes and Spence, 2004). Indeed,
given the importance of visuo-proprioceptive congruency
to induce a sense of agency in IVR (Zopf et al, 2018),
atypical visuo-proprioceptive integration in ASD (Oldehinkel
et al, 2019) might underlie the limited sensitivity to the
VB illusion. The authors suggest that an atypical body
awareness might be related to multisensory integration
difficulties, with potential adverse effects on social abilities
(Mul et al., 2019). For instance, higher reliance on body-based
interoceptive signals impairs sensitivity to body illusions due
to a limited use of external information, which is fundamental
to interact with people and objects around us (Schauder
et al., 2015). The balance between processing and perceiving
what is happening inside or outside the self is at the heart
of social cognition processes of understanding both the
similarity and distinction between the self and the others
(Palmer and Tsakiris, 2018).

Ultimately, the pending question here is to what extent
these results are related to aspects or features of ASD and/or
HMDs. To shed light on this topic, the performance of
individuals with ASD has to be compared between equivalent
real and IVR environments. To the best of our knowledge,
this has only been investigated with respect to social behaviors
by Simoes et al. (2020) and in terms of sensorimotor
processing by our research team (Valori et al, 2020b).
Children with ASD appeared to feel comfortable with the
same interpersonal distance between them and either a real
or virtual character in an HMD-delivered IVR designed to be
a faithful reproduction of the real one (Simdes et al., 2020).
In a recent pilot experiment, we studied how children and
adults with ASD move and perceive their own movements
with different sensory information available in IVR versus
real environments (Valori et al., 2020a). Seven participants
with ASD were rotated to a certain degree while sitting on
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a swivel chair, and then asked to actively rotate back to the
starting position, thus encoding and reproducing the exact
self-motion. The task was performed in two environments
(Reality and IVR) for each of three sensory conditions (Only
Proprioception, Only Vision, Vision + Proprioception). In
our sample, those with higher accuracy when visual cues
were available performed better in reality. On the other
hand, participants who were facilitated by moving when only
proprioception was reliable (e.g., in blindfolded conditions)
showed higher self-motion accuracy in IVR compared to reality.
The latter cases of facilitation for moving without vision
appeared to be atypical compared to the strong reliance on
vision that characterized participants with typical development
across all age groups in a previous stage of our study
(Valori et al., 2020b). Our exploratory findings highlight that
inter-individual variability in sensorimotor functioning might
have a relevant impact on the possibility for people with
ASD to be facilitated by perceiving, moving, and therefore
learning in IVR.

DISCUSSION

The unique way in which HMDs provide multisensory cues
and require specific prior knowledge about the implications
of acting in a virtual rather than real world might help to
explain why this technology could be specifically useful for
those individuals with impairments in sensory processing. To
the best of our knowledge, nothing is known about how these
aspects could affect the distinctive way in which individuals with
ASD weight sensory inputs and prior or contextual knowledge
in building up perception (Palmer et al., 2017). In addition,
while virtual environments have been suggested to reduce
the engagement of the dorsal visual stream in favor of the
ventral one (Harris et al., 2019), further research is needed
to understand this effect on the atypical visual functioning
reported in ASD (Grinter et al.,, 2010). Furthermore, technical
aspects such as the display lag in tracking head position in
space (Allison et al., 2001) might allow HMDs to enlarge the
temporal window between stimuli, thus facilitating multisensory
integration for people with ASD, who manifest an enlarged
multisensory temporal binding window (TBW). Indeed, while
the width of the TBW can be narrowed through temporal
discrimination training (Zhou et al., 2018), this “remediation
approach” leaves open the question of whether we could
rather embrace a neuroconstructivist view and also provide
people with environments suited to their individual TBW.
From this perspective, we could speculate that an enlarged
inter-stimuli delay might reduce the “multisensory crowding”
associated with enlarged TBWs, resulting in sensory and learning
facilitation. Although this has yet to be investigated, our
studies suggest that IVR and HMDs disrupt proprioception
in neurotypical groups (Valori et al., 2020b) and can either
improve or worsen sensorimotor performance in individuals
with ASD depending on the way they utilize visual and
proprioceptive information, which differs across individuals
(Valori et al., 2020a).

It is worth mentioning that the present paper primarily
reviews literature that employed HMDs, which are the most
widespread, cost-effective, and easy to use immersive technology.
However, there are other systems which are generally defined
as immersive, such as the Cave Automatic Virtual Environment
(CAVE), whereby up to six synchronized projection screens
create a room of multimedia contents and visuals that can
be perceived in three dimensions through stereoscopic glasses
(Cruz-Neira et al., 1992). It is well known that the two
devices differ in the way they provide proprioceptive input (i.e.,
giving or not giving the users a weight on their head) and
visual stimulation, with different field of view, eyes-screen, and
participants-objects-screen distances that might reasonably affect
eyes’ accommodation, users’ distance and depth perception, and
even the sense of immersion and presence (Naceri et al., 2010;
Combe et al, 2021). Moreover, despite being immersive and
interactive, the CAVE does not completely separate users from
the physical world, thus allowing them to perceive and see their
own bodies almost as usual. To our knowledge, there is not
much evidence in the extant literature to shed light on the
potential discrepancies and similarities in the way individuals
with ASD perceive and move in HMDs or other immersive
environments. Although no direct comparisons between HMDs
and CAVEs have been explored with this population, some
authors investigated the combination of vision and vestibular
senses in participants with ASD interacting with a CAVE system.
In a sample from Greffou et al. (2012), 12- to 15-year-old
adolescents with ASD, compared to a neurotypical control
group, showed less postural reactivity to a visual stimulation
aimed at inducing vestibular instability through high frequency
oscillations of a virtual tunnel presented inside a CAVE. This
difference between experimental and control groups was not
detected in older participants (16-33 years) (Greffou et al,
2012). These results appear consistent with those collected in
real environments, whereby adults with ASD showed a reduced
contribution of vision in adapting to an induced postural
illusion (Morris et al., 2015). Further research is needed to
disentangle the contributions of different technologies (e.g.,
CAVE vs. HMD vs. multimedia environments) to sensorimotor
performance in IVR environments, including a consideration
of which technologies are most acceptable to users. However,
thus far, it appears that HMDs may offer a promising and cost-
effective option.

In conclusion, IVR technology is continually improving
and has shown the ability to alter perception, behavior, and
attitude. It can also be used to study sensorimotor processing
in terms of both unisensory and multisensory inputs. Given
the atypical sensorimotor functioning evidenced in individuals
with ASD and previous successful uses of HMD-delivered
IVR in this population, it appears that IVR has some specific
potential for both studying and training these abilities in
people with ASD. However, there is not one clear pattern of
processing used by individuals with ASD, and researchers and
clinicians aiming at the design and implementation of IVR
training should be aware of the individual processing styles
of the target users in order to effectively tap their needs,
strengths, and weaknesses.
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