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With the exception of a recently published study and the analyses provided in the test 
manual, structural validity is mostly uninvestigated for the German version of the Wechsler 
Intelligence Scale for Children - Fifth Edition (WISC-V). Therefore, the main aim of the 
present study was to examine the latent structure of the 10 WISC-V primary subtests on 
a bifurcated extended population-representative German standardization sample 
(N = 1,646) by conducting both exploratory (EFA; n = 823) and confirmatory (CFA; n = 823) 
factor analyses on the original data. Since no more than one salient subtest loading could 
be found on the Fluid Reasoning (FR) factor in EFA, results indicated a four-factor rather 
than a five-factor model solution when the extraction of more than two suggested factors 
was forced. Likewise, a bifactor model with four group factors was found to be slightly 
superior in CFA. Variance estimation from both EFA and CFA revealed that the general 
factor dominantly accounted for most of the subtest variance and construct reliability 
estimates further supported interpretability of the Full Scale Intelligence Quotient (FSIQ). 
In both EFA and CFA, most group factors explained rather small proportions of common 
subtest variance and produced low construct replicability estimates, suggesting that the 
WISC-V primary indexes were of lower interpretive value and should be evaluated with 
caution. Clinical interpretation should thus be primarily based on the FSIQ and include a 
comprehensive analysis of the cognitive profile derived from the WISC-V primary indexes 
rather than analyses of each single primary index.

Keywords: intelligence assessment, structural validity, exploratory factor analysis, confirmatory factor analysis, 
clinical interpretability, German Wechsler Intelligence Scale for Children - Fifth Edition

INTRODUCTION

The Wechsler scales are among the most frequently used diagnostic instruments worldwide for 
assessing a variety of cognitive abilities across different age groups. Following a long tradition, 
the Wechsler Intelligence Scale for Children - Fifth Edition. (WISC-V; Wechsler, 2014a) is a 
complex test battery for measuring intellectual performances of children and adolescents aged 

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2021.710929﻿&domain=pdf&date_stamp=2021-09-14
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2021.710929
https://creativecommons.org/licenses/by/4.0/
mailto:paulsf@hsu-hh.de
https://doi.org/10.3389/fpsyg.2021.710929
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.710929/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.710929/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.710929/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.710929/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.710929/full


Pauls and Daseking Factor Structure of the WISC-V

Frontiers in Psychology | www.frontiersin.org 2 September 2021 | Volume 12 | Article 710929

between 6 and 16 years. Its conceptualization and development 
were mainly inspired by the theoretical ideas of Cattell, Horn, 
and Carroll, often referred to as the Cattell-Horn-Carroll model 
(McGrew, 2009; Schneider and McGrew, 2012). Representing a 
major revision of the WISC-IV (Wechsler, 2003), the WISC-V 
incorporates several significant changes. As one major modification, 
the WISC-V now redefines the four factors of the WISC-IV 
into a new second-order five-factor structure including the primary 
indexes Verbal Comprehension Index (VCI), Visual Spatial Index 
(VSI), Fluid Reasoning Index (FRI), Working Memory Index (WMI), 
and Processing Speed Index (PSI). Each of these indexes is derived 
using two out of 10 primary subtests. Moreover, VSI and FRI 
replaced the former WISC-IV primary index Perceptual Reasoning 
Index (PRI) as part of the new second-order five-factor structure 
of the WISC-V. This conceptual framework finally describes the 
Full Scale Intelligence Quotient (FSIQ) as an estimate of the general 
intellectual ability that is composed of five cognitive subdomains.

In order to examine the validity of the factor structure on 
an empirical basis, the test publishers conducted confirmatory 
factor analyses (CFA) and compared alternative factor structures 
to identify a theoretically sound model that accounted for the 
standardization data. CFA results provided in the test manual 
indicate that most of the five-factor model solutions were 
superior in terms of their model fit when compared to four-
factor model solutions. Based on goodness-of-fit statistics, the 
second-order five-factor model was preferred and selected by 
the test publishers to best represent the WISC-V test structure 
(see Wechsler, 2014b, for a detailed description). Despite some 
attempts to support validity of the five-factor structure both 
in normative (e.g., Keith et  al., 2006) and clinical samples 
(e.g., Weiss et  al., 2013), however, there is still an ongoing 
debate on whether the WISC-V subtest performances are best 
described by a four- or a five-factor structure (Dombrowski 
et  al., 2018). Recent studies indicated that the WISC-V factor 
structure might be  best represented by four first-order factors 
(Canivez et  al., 2016), whereas a five-factor structure could 
neither be  satisfyingly replicated for the Canadian (Watkins 
et  al., 2017), the French (Lecerf and Canivez, 2018), nor the 
Spanish WISC-V (Fenollar-Cortés and Watkins, 2018). In a 
recent report, McGill et  al. (2020) have highlighted some 
methodological limitations related to several WISC-V 
standardization procedures.

In the light of these findings, the five-factor structure of 
the WISC-V has been called into question by some researchers 
(e.g., Beaujean, 2016; Canivez et  al., 2018). Since shortly after 
the WISC-V was first published in the United  States, the 
structural validation procedures reported in the test manual 
(Wechsler, 2014b) have been criticized as problematic (Beaujean, 
2016; Canivez et  al., 2017; Dombrowski et  al., 2018). Besides 
failures in fully disclosing details about the CFA methods being 
used and the retention of FR as a redundant factor, one of 
the most frequently mentioned issues referred to failures in 
considering rival bifactor models when comparing alternative 
model solutions (Beaujean, 2015). Rather than specifying a 
higher-order factor as a superordinate general factor (g) that 
is only associated with and fully mediated by the lower-order 
factors, bifactor models describe g and the group factors at 

the same level of inference, featuring independent associations 
with the subtest indicators (Reise, 2012; Canivez, 2016). Another 
point of criticism relates to the fact that neither information 
about the sources of decomposed variances nor adequate 
estimates of model-based reliability are provided in the WISC-V 
test manual. However, estimating the proportions of decomposed 
variance can be crucial for determining how much interpretative 
emphasis one should place upon the factors included in the 
model under examination.

Since no results of exploratory factor analyses (EFA) are 
reported in the WISC-V test manual, these have additionally 
been conducted either on the overall standardization sample 
(Dombrowski et  al., 2015; Canivez et  al., 2016) or on specific 
age groups (Dombrowski et  al., 2018). The according studies 
found support for four rather than five first-order factors, thus 
resembling the former WISC-IV factor structure. Comparable 
results have also been reported in studies conducting hierarchical 
or bifactor EFA and CFA on the Canadian (Watkins et  al., 
2017), French (Lecerf and Canivez, 2018), United  Kingdom 
(Canivez et  al., 2018), or Spanish versions of the WISC-V 
(Fenollar-Cortés and Watkins, 2018). Moreover, it could be shown 
that substantial proportions of subtest variance were due to 
g, whereas the group factors accounted for considerably smaller 
proportions of variance (Dombrowski et  al., 2018). It was 
concluded that the FSIQ might be  sufficiently well measured 
by the WISC-V subtests, whereas model-based reliability might 
be too weak for the WISC-V primary indexes to be meaningfully 
interpretable (Canivez et  al., 2016; Rodriguez et  al., 2016).

Even though analyses of the United States, Canadian, French, 
United Kingdom, and Spanish standardization data have already 
focused on the structural validity of the WISC-V, evidence is 
still needed to clarify which factor structure could best represent 
the German adaptation of the WISC-V. Apart from collecting 
and analyzing data from the German population, further 
significant changes were implemented as compared with the 
United  States version of the WISC-V. These changes included 
the translation and adaptation of the entire set of verbal items, 
the exclusion of some complementary scores, and several 
modifications to verbal contents (see Wechsler, 2017a, for a 
detailed description). In a recently published study, Canivez 
et  al. (2021) were the first to analyze the structural validity 
of the 15 WISC-V primary and secondary subtests based on 
the correlation matrix of the German standardization sample 
(N = 1,087). Their aim was to compare their EFA and CFA 
results with the model solution provided in the test manual 
and those models proposed for other versions of the WISC-V. 
Additionally, the authors compared bifactor model and higher-
order model solutions as rival explanations and provided detailed 
information about all sources of decomposed factor variance 
and the according model-based reliability coefficients. In line 
with the aforementioned studies on standardization and clinical 
samples of international WISC-V versions, findings of Canivez 
et  al. (2021) again supported a four-factor model rather than 
the five-factor model solution that was proposed by the test 
publishers. Furthermore, their CFA results additionally suggested 
a bifactor model with four group factors to be the best structural 
representation of the German WISC-V. The authors concluded 
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that clinical interpretations are meaningful and therefore 
permissible regarding the FSIQ as a reliable estimate of the 
general factor. Due to the insufficient unique proportion of 
true score variance that is provided by each group factor as 
well as their weak model-based reliability, however, they also 
pointed out that drawing inferences from most of the primary 
index scores beyond the FSIQ (except for PSI) might result 
in misinterpretations.

Providing further insights into the structural validity of the 
German WISC-V are an indispensable requirement when it comes 
to evaluating the interpretability of test scores (AERA, APA, and 
NCME, 2014). In general, researchers as well as clinicians may 
only then rely on results of technically sound instruments with 
demonstrated validity for the population under evaluation (Evers 
et  al., 2013). In order to make a substantial contribution to this 
field of research, the present study examined the latent factor 
structure of the 10 WISC-V primary subtests on an extended 
German standardization sample following both the EFA and the 
CFA approach. These approaches are also emphasized by the ITC 
Guidelines for Translating and Adapting Tests [International Test 
Commission (ITC) (2017)] as part of gold-standard test validation 
procedures. Both the EFA and CFA include the comparison 
between hierarchical and bifactor models as well as the examination 
of decomposed variance sources and model-based reliability. The 
present analyses can also be  regarded as an extension of those 
conducted by Canivez et  al. (2021) on the German WISC-V due 
to the following differences between both studies. First, Canivez 
et  al. included all 15 WISC-V primary and secondary subtests 
in their analyses, whereas the present analyses are based on the 
10 WISC-V primary subtests only. Given that primary subtests 
are more frequently administered in clinical practice, findings on 
the structural validity of the German WISC-V as well as the 
arising practical implications regarding the primary subtests might 
be  of greater value for clinicians. Furthermore, the present EFA 
and CFA are conducted on the extended population-representative 
German standardization sample (N = 1,646) and based on the 
original raw data, whereas all factor analyses reported by Canivez 
et  al. were exclusively based on the correlation matrix of the 
original German standardization sample (N = 1,087). Since the 
authors claimed that only little precision should be  lost when 
using correlations that are rounded to two decimal places, results 
of the present analyses that are based on the raw data could 
then be used to support or refute this assertion. In due consideration 
of these differences, a replication of the results reported by Canivez 
et  al. in the present study would at least speak to the robustness 
of the findings on the factor structure of the German WISC-V. 
Finally, results should then facilitate the evaluation of the German 
WISC-V test scores and the interpretive guidelines emphasized 
by the test publisher.

MATERIALS AND METHODS

Participants and Sample Characteristics
For conducting EFA and CFA in the present study, data of a 
total of 1,646 children and adolescents (846 males; 800 females) 

aged between 6 and 16 years were selected from an extended 
dataset of the nationally representative German WISC-V 
standardization sample. A detailed description of the 
standardization procedures is provided in the German WISC-V 
test manual (Wechsler, 2017b). The original standardization 
sample was obtained following stratified proportional sampling 
in order to match the recent German census for significant 
demographic variables including gender, age, parental education, 
type of school, and migration background. The total sample 
was bifurcated into separate EFA (n = 823) and CFA (n = 823) 
samples to match for gender, age, parental education, and 
migration background. Demographic characteristics of both 
samples are presented in Table  1.

Matching quality was evaluated using Mann-Whitney and 
Kruskal-Wallis test statistics for non-parametric data. Besides 
equal gender distributions across the EFA and CFA samples, 
test statistics also indicated similar age distributions across 
both samples (U = 338,241.00, z = −0.044, p = 0.965). The EFA 
and CFA samples did not feature any significant differences 
in parental education (χ2 (1, N = 1,646) = 1.232, p = 0.267), and 
the proportions of cases with migration background were the 
same for both samples. Univariate skewness and kurtosis 
estimation indicated no salient deviations from normal 
distributions for all subtest scores. When compared with the 
critical kurtosis value (kurtc.r.), Mardia’s kurtosis estimates 
revealed multivariate non-normality for both the EFA sample 
(kurt = 9.73 > kurtc.r. = 9.01) and the CFA sample 
(kurt = 7.27 > kurtc.r. = 6.73). Test statistics also suggested that 
there were no significant mean differences in subtest scores 
between both samples, ranging from t = −0.20, p = 0.84 (MR) 
to t = 1.29, p = 0.20 (CD). Since mean subtest scores and standard 
deviations appeared not to differ substantially from the expected 
population parameters, the EFA and CFA samples can 
be  regarded as population-representative according to the 
stratification variables.

Instrument and Measures
The German WISC-V was adapted from the original United States 
version (WISC-V US) based on a standardization kit that 
provides the basic framework for all European WISC-V versions. 
Like all Wechsler intelligence scales, the German WISC-V 
represents a comprehensive test of intelligence and provides 
a total of 15 subtests in its administration and scoring framework. 
Among those, there are 10 primary subtests including Block 
Design (BD), Similarities (SI), Matrix Reasoning (MR), Digit 
Span (DS), Coding (CD), Vocabulary (VC), Figure Weights (FW), 
Visual Puzzles (VP), Picture Span (PS), and Symbol Search 
(SS) from which seven primary subtests (BD, SI, MR, DS, 
CD, VC, and FW) are used to derive the FSIQ. Along with 
VP, PS, and SS, the scaled scores (M = 10, SD = 3) of all 10 
primary subtests are required for calculating the five primary 
index scores for VCI, VSI, FRI, WMI, and PSI. Like the FSIQ, 
these index scores are defined by standard scores on the IQ 
scale (M = 100, SD = 15). All primary subtests of the German 
WISC-V feature good to excellent internal consistency 
coefficients, with Cronbach’s alpha ranging from 0.81 to 0.93.
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Data Analyses
Exploratory factor analyses (EFA) and confirmatory factor 
analyses (CFA) in the present study were based on the subtest 
covariance matrices of the bifurcated extended German WISC-V 
standardization sample. One covariance matrix was analyzed 
by conducting principal axis analyses on the EFA sample in 
order to assess the WISC-V factor structure using SPSS 25 
and the other was subjected to CFA for model comparisons 
using AMOS 25.

Exploratory Approach
To initially determine the number of factors to be  extracted 
and retained in EFA, multiple criteria were examined to overcome 
the limitations of each single one. These criteria included 
Kaiser’s criterion of eigenvalues > 1, Cattell’s scree test, the 
standard error of scree (SEscree), Horn’s parallel analysis (HPA), 
Glorfeld’s modified parallel analysis (GPA), and the analysis 
of minimum average partials (MAP). While some criteria 
estimation algorithms were already implemented in SPSS 25, 
others had to be  additionally computed with open source 
software. Scree analysis of standard errors was performed using 
the SEscree program (Watkins, 2007) and random eigenvalues 
for HPA were produced using 100 iterations to provide stable 
eigenvalue estimates with the Monte Carlo PCA for Parallel 
Analysis software (Watkins, 2000). The CIeigenvalue program 
(Watkins, 2011) was used to calculate the 95% confidence 
intervals for eigenvalues that were then utilized for the GPA 
criterion. Since most extraction techniques tend to suggest the 
retention of only a few number of factors when there is a 
predominant general factor involved (Crawford et  al., 2010), 
more complex factor solutions were also included in the analyses 
by forcing a predetermined number of factors to be  extracted. 
These factor solutions were specified on a theoretical basis 
and evaluated in terms of their interpretability. Finally, principal 
axis analyses were used to examine the covariance matrix of 
the EFA sample and the retained factors were subjected to 
promax rotation for an oblique factor solution with κ = 4 
(Gorsuch, 1983) to allow for acceptably small correlations 
among factors. Following the recommendations made by Canivez 
and Watkins (2010), factors were required to have at least 
two salient subtest loadings (λ ≥ 0.30) to be considered tenable.

Given that subtest scores reflect combinations of higher- and 
lower-order factors within the hierarchical WISC-V scoring 
framework, variance of the second-order factor had to 
be  extracted first to residualize variance proportions from the 
first-order factors (Dombrowski et  al., 2018). This way, relative 
variance apportionment could be  examined separately for the 
first- and second-order factors. Estimating the unique variance 
proportions then allowed determining how good subtest 
indicators were represented by their respective factors. The 
Schmidt and Leiman procedure (SL procedure; Schmid and 
Leiman, 1957) has proven useful in accomplishing such a 
variance residualization and has already been applied in EFA 
studies on the WISC-V (Dombrowski et al., 2015, 2018; Canivez, 
2016; Lecerf and Canivez, 2018). The SL procedure was applied 
to the hypothesized higher-order factor solutions (four-factor 
and five-factor EFA models) for comparison purposes and was 
conducted using the MacOrtho program (Watkins, 2004).

Confirmatory Approach
Different factor structures including both hierarchical and bifactor 
models were examined by conducting CFA on the 10 WISC-V 
primary subtests. The scale of latent variables was identified by 
fixing one loading of each factor to one (Keith, 2015). Subtest 
scaled scores (M = 10, SD = 3) were used after being initially 
checked for normality. As a rule of thumb, maximum likelihood 
(ML) estimation was considered adequate for data with an absolute 
value < 2 for skewness and an absolute value < 7 for kurtosis 
(West et  al., 1995). Although the examination of univariate 
skewness and kurtosis did not reveal excessive deviation from 
normality for each single subtest score, however, Mardia’s 
multivariate kurtosis estimate indicated a salient leptokurtic 
distribution of subtest scores (kurt = 7.27 > kurtc.r. = 6.73). Since a 
significant departure from multivariate normality in ML estimation 
might lead to inflated χ2 test statistics and could thus result in 
an incorrect rejection of reasonable model solutions, the Bollen-
Stine bootstrapping procedure was used to obtain adjusted p 
values for the likelihood ratio χ2 test statistics. As recommended 
by Nevitt and Hancock (2001), bootstrapping with 2,000 bootstrap 
samples should then sufficiently correct for any biasing impact 
that multivariate non-normality might have on the assessment 
of model fit (see Bollen and Long, 1993, for an overview). Finally, 
a total of five competing CFA models were specified according 

TABLE 1 | Demographic characteristics of the exploratory factor analyses (EFA) and confirmatory factor analyses (CFA) samples according to gender, age, parental 
education, and migration background.

Gender

Age (years) Parental education (%)

N M SD Min/Max 0 1 2 3 4 Mig. (%)

  EFA sample Female 400 10.55 3.02 6/16 3.8 11.8 31.0 24.4 29.0 30.2
Male 423 10.49 2.96 6/16 3.8 11.1 29.6 20.1 35.4 29.6
Total 823 10.52 2.99 6/16 3.8 11.4 30.3 22.3 32.2 29.9

  CFA sample Female 400 10.53 3.02 6/16 3.6 11.3 31.3 25.3 28.7 30.5
Male 423 10.52 2.98 6/16 3.1 10.9 28.6 21.5 35.9 29.3
Total 823 10.52 3.00 6/16 3.3 11.1 29.9 23.4 32.3 29.9

Parental education is defined as the highest level of education achieved by either one parent or both (0 = no education, 1 = lower educational level, 2 = medium educational level,  
3 = high educational level, and 4 = highest educational level). Mig. (%) = percentage of cases with migration background (migration background is indicated when either the child/
adolescent or at least one parent is not born in Germany).
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to those that have already been examined by the test publishers, 
starting with the least complex model that comprised the 10 
WISC-V primary subtests loading only on one unidimensional 
g-factor (M1). All subsequent models with more than one first-
order factor included g as the second-order factor. In addition 
to the latter, the second model (M2) comprised the two first-
order factors Verbal (V) and Performance (P). In the third model 
(M3), the hierarchical structure was extended by Verbal (V), 
Performance (P), and Processing Speed (PS) as the first-order 
factors. The fourth model (M4) was composed of the four first-
order factors Verbal Comprehension (VC), Perceptual Reasoning 
(PR), Working Memory (WM), and Processing Speed (PS), which 
have already been described for the WISC-IV (Wechsler, 2009). 
Finally, the WISC-V second-order five-factor model structure, 
including Verbal Comprehension (VC), Visual-Spatial (VS), Fluid 
Reasoning (FS), Working Memory (WM), and Processing Speed 
(PS), was specified by the fifth model (M5). CFA models with 
four- and five first-order factors were examined using both 
hierarchical (M4 and M5) and bifactor (M6 and M7) variants.

As with other versions of the WISC-V, some latent factors are 
underidentified in the five- and four-factor models because they 
provide only two subtest indicators. In line with other studies on 
this topic (e.g., Canivez et al., 2017; Watkins et al., 2017), identification 
of latent factor scales in CFA higher-order models was accomplished 
by setting one loading on each first-order factor and one loading 
on the second-order factor to one (see, Brown, 2015, for an 
overview). Additionally, all regression weights of error terms were 
set to one. In specifying latent factors with two subtest indicators 
in CFA bifactor models, the path coefficients on their group factors 
were constrained to equality prior to estimation to ensure 
identification (see, Little et  al., 1999, for an overview).

A set of different model fit indexes was additionally analyzed 
for each single CFA model to improve evaluation. Due to the 
oversensitivity of χ2 for large sample sizes (Kline, 2016), the root 
mean square error of approximation (RMSEA) was jointly examined 
as an absolute fit index. RMSEA values of less than or equal to 
0.01 indicate an excellent fit, a value of 0.05 corresponds to a 
good fit, and an RMSEA value of 0.10 should be  used as an 
indicator for a poor fit (MacCallum et al., 1996). Following Chen’s 
(2007) recommendations, a considerable change in RMSEA values 
(ΔRMSEA > 0.015) should also be  taken into account when 
comparing the relative fit of competing CFA models. Additional 
relative fit indexes used were the comparative fit index (CFI) 
and the Tucker-Lewis index (TLI), where in both cases values 
above 0.95 correspond to a good fit (Hu and Bentler, 1999). 
Given that there are no universally accepted criteria for evaluating 
the overall model fit (McDonald, 2010), combinations of different 
heuristics were applied defining CFI and TLI ≥ 0.90 along with 
RMSEA ≤ 0.08 as a criterion for acceptable model fit and CFI 
and TLI ≥ 0.95  in combination with RMSEA ≤ 0.06 as a criterion 
for good model fit (Hu and Bentler, 1999). Finally, the Akaike 
information criterion (AIC) was used as an information-theoretic 
fit index to compare competing CFA models, with lower values 
indicating a better fit (Kaplan, 2000). Confirmatory factor analyses 
models were considered superior only if they indicated an adequate 
to good model fit and a substantially better fit (ΔCFI >0.01, 
ΔRMSEA > 0.015, ∆AIC > 10) than competing models (Chen, 2007).

Since Cronbach’s alpha is a limited reliability coefficient for 
multifactorial models (Yang and Green, 2011; Dunn et  al., 
2014), omega-hierarchical (ωH) and omega-hierarchical subscale 
(ωHS) were additionally estimated to provide meaningful model-
based reliability coefficients (Reise, 2012; Rodriguez et al., 2016; 
Watkins, 2017). The ωH coefficient represents an estimate for 
the general factor reliability independent of the group factor 
variances, whereas ωHS indicates the reliability of each group 
factor that is adjusted for all other group and general factor 
variances (Brunner et  al., 2012). Therefore, ωHS may control 
for that proportion of reliability attributable to the general 
factor and is useful for judging the informative value of each 
single first-order factor score. Robust ωHS coefficient could thus 
indicate that most of the reliable index variance are rather 
independent of the FSIQ, so that individual cognitive functioning 
may be  meaningfully interpreted on the index level. On the 
contrary, low values of ωHS would suggest that most of the 
reliable variance of the indexes are attributable to the FSIQ. 
This might then compromise the interpretability of index scores 
as unambiguous indicators of specific cognitive domains 
(Rodriguez et al., 2016). For ωH and ωHS, it has been recommended 
that values near 0.75 should be  preferred and values should 
not be  less than 0.50 (Reise et  al., 2013). Omega coefficients 
were supplemented by the construct replicability coefficient  
H to evaluate how adequate the latent variables were represented 
by their related indicators (Hancock and Mueller, 2001).  
H values should not be  less than 0.70  in order to ensure a 
high quality of indicators and replicability of latent variables. 
The Omega program (Watkins, 2013) was used to obtain all 
omega coefficients, H coefficients, and other sources of variance 
(see Zinbarg et al., 2006; Brunner et al., 2012, for an overview).

RESULTS

Exploratory Approach
The KMO test statistic indicated an adequate sampling as its 
value of 0.88 exceeded the minimum criterion of 0.60 (Kaiser, 
1974). Since Bartlett’s test of sphericity indicated that the 
correlation matrix diverged significantly from the identity matrix 
(χ2 (45) = 3,079.938, p < 0.001) and initial communality estimates 
ranged from 0.300 to 0.550 prior to extraction, the covariance 
matrix was considered appropriate for conducting EFA.

Factor Extraction
Cattell’s scree test suggested two factors to be  extracted as the 
scree plot revealed two factors that met Kaiser’s criterion of 
eigenvalues > 1, for which the SEscree also indicated nontrivial 
standard errors of estimation. Two factors with eigenvalues 
significantly greater than randomly generated eigenvalues were 
also identified in GPA, HPA, and MAP, thus supporting the 
retention of two factors in total. Since it has been recommended 
for principal axis analysis to better over-extract than under-
extract (Wood et  al., 1996), traditionally promoted Wechsler 
model structures were also considered by additionally forcing 
the extraction of three, four, and five factors in EFA. Five factors 
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were extracted at first to examine the WISC-V factor structure 
that has been proposed by the test publishers. Alternative model 
solutions were then sequentially examined for adequacy in 
descending order by the number of factors from four to 
two factors.

EFA Model Solutions
Five-Factor Model Solution (Oblique)
As presented in Table  2, the extraction of five factors produced 
one factor with only one salient factor pattern coefficient. According 
to Kaufman’s criteria (1994), a weak g-loading indicated only a 
poor association between CD and a general factor (Sg = 0.488). 
While each of four subtest pairs, including SI and VC (Verbal 
Comprehension), BD and VP (Visual Spatial), DS and PS (Working 
Memory), and CD and SS (Processing Speed), saliently loaded 
on a corresponding common factor, MR and FW appeared to 
share insufficient common variance to constitute a single factor 
for Fluid Reasoning. FW completely failed to provide a salient 
loading on any factor and the very high factor pattern coefficient 
for MR (P = 0.921) further supported the redundancy of a separate 
factor for Fluid Reasoning. Given that no reasonable factor could 
be found for Fluid Reasoning, the five-factor model was judged 
inadequate due to over-extraction.

Four-Factor Model Solution (Oblique)
When extracting four WISC-V factors, g-loadings ranged from 
Sg = 0.495 (SS) to Sg = 0.736 (SI) and were, except for SS, within 
the fair to good range based on Kaufman’s criteria. As Table  3 
illustrates, the four-factor model solution provided stable and 
well-defined factors with theoretically consistent factor patterns. 

Thus, robust factor pattern coefficients were found for Verbal 
Comprehension, including SI (P = 0.624) and VC (P = 0.948) 
and for Perceptual Reasoning, including BD (P = 0.692), VP 
(P = 0.805), MR (P = 0.461), and FW (P = 0.328). This was also 
the case for Working Memory, including reasonable pattern 
coefficients for DS (P = 0.686) and PS (P = 0.581), as well as 
for Processing Speed with strong pattern coefficients for CD 
(P = 0.813) and SS (P = 0.710). Since none of the subtests featured 
salient loadings on more than one factor, simple structure 
could be established for this model solution.

Three- and Two-Factor Model Solutions (Oblique)
EFA results for the model solutions with three and two extracted 
factors are presented in Table  4. The factors for Perceptual 
Reasoning and Working Memory from the four-factor model 
solution merged into one factor labeled as Performance (P), 
while Verbal Comprehension and Processing Speed remained 
intact in the three-factor model. For the sake of theoretical 
consistency, Verbal Comprehension was relabeled as Verbal 
and there were no salient cross-loadings on multiple factors 
among the subtests in the three-factor model solution. The 
latter also applied to the two-factor model solution, in which 
only Processing Speed remained distinct and intact. Eight out 
of ten subtests appeared to load on another single factor, which 
was labeled as General Intelligence (g) due to its complexity, 
and the patterns of subtest associations in both models clearly 
indicated a conflation of theoretically meaningful constructs. 
Since this is an already well-known phenomenon of under-
extraction in EFA, the three- and two-factor model solutions 
were both considered inadequate.

TABLE 2 | Exploratory factor analysis of the 10 WISC-V primary substests: Five-factor model solution (oblique) with promax rotation for the EFA sample (n = 823).

WISC-V 
subtest

  Sg
F1 F2 F3 F4 F5

h2P S P S P S P S P S

SI 0.730 0.642 0.778 0.011 0.566 0.068 0.586 0.107 0.619 0.026 0.390 0.622
VC 0.712 0.907 0.892 −0.021 0.524 −0.079 0.506 −0.063 0.546 −0.016 0.346 0.808
BD 0.679 0.061 0.530 0.409 0.671 0.166 0.609 0.093 0.582 0.071 0.409 0.492
VP 0.751 −0.025 0.554 0.967 0.896 −0.059 0.626 −0.002 0.602 −0.023 0.400 0.806
MR 0.697 −0.048 0.509 −0.025 0.596 0.921 0.844 −0.029 0.612 −0.013 0.337 0.717
FW 0.645 0.178 0.555 0.147 0.566 0.230 0.601 0.209 0.595 −0.024 0.323 0.436
DS 0.649 0.058 0.522 −0.028 0.512 0.140 0.588 0.560 0.694 0.016 0.359 0.492
PS 0.566 −0.039 0.430 0.029 0.456 −0.096 0.466 0.752 0.669 −0.008 0.312 0.453
CD 0.488 −0.044 0.315 −0.063 0.336 −0.068 0.313 0.181 0.413 0.738 0.748 0.570
SS 0.501 0.035 0.341 0.051 0.382 0.048 0.336 −0.163 0.327 0.815 0.796 0.643
Eigenvalue 4.58 0.79 0.58 0.73 1.20
% Variance 45.82 7.89 5.78 7.28 11.95

Factor correlations
F1 F2 F3 F4 F5

F1 1 ̶ ̶ ̶ ̶
F2 0.650 1 ̶ ̶ ̶
F3 0.650 0.736 1 ̶ ̶
F4 0.686 0.700 0.757 1 ̶
F5 0.433 0.475 0.431 0.484 1

SI = Similarities; VC = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; and 
SS = Symbol Search. F1, Verbal Comprehension; F2, Visual Spatial; F3, Fluid Reasoning; F4, Working Memory; and F5, Processing Speed. P, Pattern Coefficient (factor loading); S, 
Structure Coefficient (factor correlation); and h2, Communality (after extraction). General structure coefficients (Sg) are based on the factor coefficients for the first unrotated factor 
(g-factor loadings) and eigenvalues. Salient factor loadings (≥ 0.30) are indicated in bold numbers.
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Higher-Order Four-Factor Model Solutions  
(SL Orthogonalized)
According to the present results, the four-factor model solution 
appeared to be  the most reasonable and appropriate among 

all EFA models examined. Therefore, it was subjected to higher-
order EFA and orthogonalized using the SL procedure. As 
displayed in Table 5, all 10 subtests were exclusively associated 
with their theoretically suggested factors as proposed for the 

TABLE 3 | Exploratory factor analysis of the 10 WISC-V primary subtests: four-factor model solution (oblique) with promax rotation for the EFA sample (n = 823).

WISC-V 
subtest   Sg

F1 F2 F3 F4

h2P S P S P S P S

SI 0.736 0.624 0.780 0.080 0.624 0.137 0.627 0.023 0.368 0.632
VC 0.713 0.948 0.884 −0.038 0.569 −0.054 0.550 −0.006 0.324 0.785
BD 0.690 −0.003 0.510 0.692 0.735 0.028 0.576 0.050 0.386 0.543
VP 0.721 −0.004 0.535 0.805 0.788 −0.026 0.590 0.011 0.375 0.621
MR 0.662 −0.025 0.490 0.461 0.669 0.222 0.637 −0.042 0.310 0.488
FW 0.650 0.138 0.541 0.328 0.624 0.289 0.613 −0.040 0.299 0.445
DS 0.658 0.018 0.503 0.031 0.570 0.686 0.726 0.010 0.342 0.528
PS 0.560 −0.011 0.417 0.044 0.489 0.581 0.617 0.021 0.301 0.382
CD 0.504 −0.034 0.304 −0.120 0.352 0.151 0.404 0.813 0.811 0.668
SS 0.495 0.042 0.330 0.160 0.407 −0.150 0.321 0.710 0.734 0.552

Eigenvalue 1.20 4.58 0.79 0.73
% Variance 11.95 45.82 7.89 7.28

Factor correlations
F1 F2 F3 F4

F1 1 ̶ ̶ ̶
F2 0.686 1 ̶ ̶
F3 0.670 0.762 1 ̶
F4 0.393 0.469 0.453 1

SI = Similarities; VC = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; and 
SS = Symbol Search. F1, Verbal Comprehension; F2, Perceptual Reasoning; F3, Working Memory; and F4, Processing Speed. P, Pattern Coefficient (factor loading); S, Structure 
Coefficient (factor correlation); and h2, Communality (after extraction). General structure coefficients (Sg) are based on the factor coefficients for the first unrotated factor (g-factor 
loadings). Salient factor loadings (≥ 0.30) are indicated in bold numbers.

TABLE 4 | Exploratory factor analysis of the 10 WISC-V primary subtests: three- and two-factor model solutions (oblique) with promax rotation for the EFA sample 
(n = 823).

WISC-V 
subtest

Three-factor model solution (oblique) Two-factor model solution (oblique)

  Sg

F1 (V) F2 (P) F3 (PS)

h2 Sg

F1 (g) F2 (PS)

h2P S P S P S P S P S

SI 0.739 0.598 0.774 0.237 0.671 0.021 0.384 0.629 0.726 0.740 0.738 −0.005 0.379 0.544
VC 0.717 0.926 0.888 −0.049 0.602 −0.008 0.340 0.790 0.664 0.687 0.676 −0.020 0.337 0.458
BD 0.685 −0.015 0.493 0.686 0.705 0.055 0.404 0.499 0.687 0.650 0.687 0.070 0.408 0.475
VP 0.709 −0.005 0.517 0.725 0.733 0.022 0.395 0.538 0.710 0.696 0.715 0.037 0.399 0.513
MR 0.667 −0.055 0.472 0.773 0.708 −0.050 0.327 0.505 0.666 0.694 0.680 −0.028 0.333 0.462
FW 0.653 0.117 0.528 0.607 0.667 −0.046 0.315 0.452 0.658 0.699 0.675 −0.046 0.317 0.457
DS 0.646 0.052 0.493 0.612 0.659 0.019 0.357 0.436 0.650 0.645 0.657 0.022 0.357 0.432
PS 0.554 0.016 0.411 0.543 0.568 0.026 0.313 0.323 0.557 0.546 0.561 0.029 0.313 0.316
CD 0.500 −0.023 0.300 0.004 0.398 0.793 0.786 0.618 0.502 −0.002 0.396 0.767 0.766 0.586
SS 0.497 0.025 0.321 −0.001 0.396 0.735 0.745 0.555 0.505 0.007 0.401 0.760 0.763 0.582

Eigenvalue 1.20 4.58 0.79 4.58 1.20
% Variance 11.95 45.82 7.89 45.82 11.95

Factor correlations
F1 (V) F2 (P) F3 (PS) F1 (g) F2 (PS)

F1 1 ̶ ̶ F1 ̶ ̶
F2 0.708 1 ̶ F2 0.519 ̶
F3 0.403 0.517 1

SI = Similarities; VC = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; and 
SS = Symbol Search. F1 (V), Verbal; F2 (P), Performance; F3 (PS), Processing Speed; F1 (g), General Intelligence; F2 (PS), and Processing Speed. P, Pattern Coefficient (factor 
loading); S, Sructure Coefficient (factor correlation); and h2, Communality (after extraction). General structure coefficients (Sg) are based on the factor coefficients for the first 
unrotated factor (g-factor loadings). Salient factor loadings (≥ 0.30) are indicated in bold numbers.
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TABLE 5 | Sources of variance in the 10 WISC-V primary subtests for the EFA sample (n = 823) according to a SL-orthogonalized higher-order factor model with four 
first-order factors.

WISC-V 
subtest

  g F1 F2 F3 F4

h2 u2b S2 b S2 b S2 b S2 b S2

SI 0.629 0.396 0.422 0.178 0.055 0.003 0.099 0.010 0.016 0.000 0.574 0.426
VC 0.628 0.394 0.642 0.412 −0.026 0.001 −0.039 0.002 −0.004 0.000 0.807 0.193
BD 0.559 0.312 −0.002 0.000 0.472 0.223 0.020 0.000 0.035 0.001 0.535 0.465
VP 0.576 0.332 −0.003 0.000 0.549 0.301 −0.019 0.000 0.008 0.000 0.633 0.367
MR 0.512 0.262 −0.017 0.000 0.324 0.105 0.161 0.026 −0.029 0.001 0.367 0.633
FW 0.441 0.194 0.093 0.009 0.315 0.099 0.209 0.044 −0.028 0.001 0.294 0.706
DS 0.516 0.266 0.012 0.000 0.021 0.000 0.497 0.247 0.007 0.000 0.513 0.487
PS 0.440 0.194 −0.007 0.000 0.030 0.001 0.421 0.177 0.015 0.000 0.371 0.629
CD 0.578 0.334 −0.023 0.001 −0.082 0.007 0.109 0.011 0.563 0.317 0.651 0.349
SS 0.556 0.309 0.028 0.001 0.109 0.012 −0.109 0.011 0.492 0.242 0.551 0.449

Total S2 0.299 0.059 0.073 0.042 0.056 0.530 0.470
ECV 0.565 0.111 0.138 0.080 0.106
ω 0.883 0.814 0.766 0.612 0.750
ωH/ωHS 0.737 0.340 0.297 0.293 0.348
Relative ω 0.835 0.417 0.387 0.480 0.464
  H 0.815 0.479 0.486 0.352 0.439
PUC 0.800

SI = Similarities; VC = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; and 
SS = Symbol Search. g, General Intelligence (second-order factor); F1, Verbal Comprehension (first-order factor); F2, Perceptual Reasoning (first-order factor); F3, Working Memory 
(first-order factor); and F4, Processing Speed (first-order factor). b, Factor Loading; S2, Explained Variance; h2, Communality; u2, Unique Variance; ECV, Explained Common Variance; 
ω, Omega Coefficient; ωH, Omega-Hierarchical Coefficient (general factor); ωHS, Omega-Hierarchical Coefficient (group factors); H, Replicability Index (construct reliability); and PUC, 
Percentage of Uncontaminated Correlations. Salient factor loadings (≥ 0.30) and variance estimates are indicated in bold numbers.

WISC-IV. When analyzing the sources of variance, g appeared 
to account for 29.9% of the total variance and 56.5% of the 
common variance. It also explained between 19.4% (PS) and 
39.6% (SI) of the individual subtest variance. A total of 53% 
of the subtest score variances could be  explained by g and 
group factors combined, leaving 47% unique or error variance 
unexplained. Among all subtests, FW accounted for the smallest 
proportion of common variance (29.4%), thus being mostly 
influenced by unique variance (70.6%).

While the ωH coefficient value of 0.737 indicated that the 
second-order factor (g) was precisely measured and barely 
influenced by variances in other factors, all ωHS coefficient 
values for the first-order factors, ranging from ωHS = 0.293 (WM) 
to ωHS = 0.348 (PS), fell below the required minimum criterion 
of ωHS = 0.500 (Reise et  al., 2013). Thus, model-based reliability 
coefficients suggest that an overall measure, such as the FSIQ, 
could appear reliable for scale interpretation, whereas unit-
weighted composite scores based on the four indexes might 
contain too little true score variance for meaningful interpretation. 
This was also supported by the construct replicability coefficients. 
While the H coefficient value for the second-order factor 
(H = 0.815) indicated that g was well defined by the subtest 
indicators, all H coefficient values for the first-order factors, 
ranging from H = 0.352 (WM) to H = 0.486 (PR), failed to meet 
the required minimum criterion of H = 0.700 (Hancock and 
Mueller, 2001; Rodriguez et  al., 2016). Given that the first-
order factors appeared to be  insufficiently defined by their 
associated subtest indicators, the WISC-V primary subtests 
cannot be  suggested to produce consistent scores on the four 
indexes across measurements.

Confirmatory Approach
Results of the confirmatory factor analyses (CFA) based on 
maximum likelihood estimation and the according model fit 
statistics are presented in Table  6. As indicated by the fit 
indexes, the unidimensional g-factor model (M1) and the 
second-order two-factor model (M2) were found to inadequately 
represent the empirical data. This was due to unacceptably 
low CFI and TLI values (< 0.90) as well as too high RMSEA 
values (> 0.08) for the minimum fit criteria. However, CFI 
and TLI values (> 0.90) as well as RMSEA values (< 0.08) 
indicated at least acceptable fit for the second-order three-
factor model (M3). The second-order four-factor model (M4) 
and the second-order five-factor model (M5) both appeared 
to represent well-fitting CFA models to the data (CFI > 0.95; 
TLI > 0.95; RMSEA <0.06). When comparing the fit of both 
models with M3, M4 (ΔCFI = 0.033, ΔRMSEA = 0.036, 
ΔAIC = 101.765) and M5 (ΔCFI = 0.039, ΔRMSEA = 0.047, 
ΔAIC = 118.458) were found to be superior. Only with respect 
to the difference in AIC, M5 fitted the data slightly better 
than M4 (ΔAIC = 16.693). Likewise, the bifactor model with 
four group factors (M6) and the bifactor model with five 
group factors (M7) were found to be  well-fitting models as 
well. When comparing both higher-order models with the 
corresponding bifactor models, the bifactor model with four 
group factors (M6) turned out to slightly surpass the second-
order four-factor model (M4) but only according to the lower 
AIC (ΔAIC = 16.905). Due to its local underidentification, 
the second-order five-factor model (M5) was mathematically 
equivalent to the corresponding bifactor model (M7), thus 
featuring the same fit statistics.
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Even though the bifactor model with four group factors 
(M6) provided the most favorable fit statistics, there was no 
meaningful difference in CFI, TLI, RMSEA, and AIC values 
between M6 and the two models including five factors (M5 
and M7). However, it should be  noted that M6 was the only 
CFA model that featured an acceptable fit to the data according 
to its likelihood ratio χ2 statistic with adjusted p values 
(χ2 = 40.747, df = 28, p = 0.06). Finally, the bifactor model with 
four group factors (M6) was considered the best fitting model 
in the present CFA when taking all goodness-of-fit indexes 
into account.

Figure  1 shows the second-order five-factor model (M5) 
that has been proposed by the test publishers and Figure  2 
shows the bifactor model with four group factors (M6) that 
appeared to be  the best fitting model in the present CFA.

As shown in Table 7, all subtest indicators featured significant 
and reasonable loadings on g and on their related group 
factors in M6. However, decomposed variance estimates further 
indicated that smaller proportions of explained common 
variance (ECV), ranging from ECV = 0.069 (WM) to ECV = 0.164 
(PS), were uniquely associated with the group factors than 
those associated with g. Conclusively, about 60.7% of the 
explained common variance in the subtest indicators appeared 
to be  uniquely attributable to g. Consistent with the ECV 
estimates, the analysis of model-based reliability revealed 
rather small ωHS coefficient values for the group factors, 
ranging from ωHS = 0.187 (PR) to ωHS = 0.589 (PS), when 
compared to the ωH coefficient value of 0.794 for g. While 
g turned out to be precisely measured by the subtest indicators, 
most of the ωHS coefficient values for the group factors were 

TABLE 6 | Maximum likelihood estimation and model fit statistics based on the 10 WISC-V primary subtests for the CFA sample (n = 823).

CFA model
Indexes of model fit

χ2 df CFI TLI RMSEA (90% CI) AIC

M1: g 472.540 35 0.857 0.816 0.123 [0.114, 0.133] 512.540
M2: V, P 398.097 34 0.881 0.842 0.114 [0.104, 0.124] 440.097
M3: V, P, PS 167.417 32  0.956 0.938 0.072  [0.061, 0.083] 213.417
M4: VC, PR, WM, PS 63.652 31 0.989 0.984 0.036 [0.023, 0.048] 111.652
M5: VC, VS, FR, WM, PS 44.959 30 0.995 0.993 0.025 [0.006, 0.039] 94.959
M6: VC, VS, FR, WM, PS1 40.747 28 0.996 0.993 0.024 [0.001, 0.038] 94.747
M7: VC, VS, VC, VS, FR, WM, PS2,3 44.959 30 0.995 0.993 0.025 [0.006, 0.039] 94.959

1Subtest loadings on the underindentified factors VC, WM, and PS were constrained to be equal due to model identification.
2Subtest loadings on the underindentified factors VC, VS, FR, WM, and PS were constrained to be equal due to model identification.
3Model is mathematically equivalent to higher-order model M5 due to constraining each factor’s loading to equality.
General intelligence (g) is the second-order factor in all higher-order models, which are specified according to those reported in the WISC-V Technical and Interpretive Manual. M1 = 
unidimensional g-factor model, M2 = second-order two-factor model with Verbal (V) and Performance (P) as first-order factors, M3 = second-order three-factor model with Verbal (V), 
Performance (P), and Processing Speed (PS) as first-order factors, M4 = second-order four-factor model with Verbal Comprehension (VC), Perceptual Reasoning (PR), Working 
Memory (WM), and Processing Speed (PS) as first-order factors, M5 = second-order five-factor model with Verbal Comprehension (VC), Visual Spatial (VS), Fluid Reasoning (FR), 
Working Memory (WM), and Processing Speed (PS) as first-order factors, M6 = bifactor model with g as the general factor and VC, PR, WM, and PS as group factors, M7 = bifactor 
model with g as the general factor and VC, VS, FR, WM, and PS as group factors. CFI = comparative fit index, TLI = Tucker-Lewis index, RMSEA = root mean square error of 
approximation, (90% CI) = confidence interval for RMSEA, AIC = Akaike’s information criterion. 1 Subtest loadings on the underindentified factors VC, WM, and PS were constrained 
to be equal due to model identification. 2 Subtest loadings on the underindentified factors VC, VS, FR, WM, and PS were constrained to be equal due to model identification. 3 
Model is mathematically equivalent to higher-order model  M5  due to constraining each factor’s loading to equality.

FIGURE 1 | Second-order five-factor model including standardized estimations 
for the CFA sample (n = 823) on the 10 WISC-V primary subtests (M6 in Table 6). 
SI = Similarities, VC = Vocabulary, BD = Block Design, VP = Visual Puzzles,  
MR = Matrix Reasoning, FW = Figure Weights, DS = Digit Span, PS = Picture 
Span, CD = Coding, SS = Symbol Search. g, = General Intelligence,  
VC = Verbal Comprehension, VS = Visual Spatial, FR = Fluid Reasoning,  
WM = Working Memory, PS = Processing Speed. All standardized parameter 
estimates are significant at p < 0.001.

FIGURE 2 | Bifactor model with four group factors including standardized 
estimations for the CFA sample (n = 823) on the 10 WISC-V primary subtests (M6 
in Table 6). SI = Similarities, VC = Vocabulary, BD = Block Design, VP = Visual 
Puzzles, MR = Matrix Reasoning, FW = Figure Weights, DS = Digit Span,  
PS = Picture Span, CD = Coding, SS = Symbol Search. g = General Intelligence, 
VC = Verbal Comprehension, PR = Perceptual Reasoning, WM = Working 
Memory. All standardized parameter estimates are significant  at p < 0.05.
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TABLE 7 | Sources of variance in the 10 WISC-V primary subtests for the CFA sample (n = 823) according to a bifactor model with four group factors (M6).

WISC-V 
subtest

  g F1 F2 F3 F4

h2 u2b S2 b S2 b S2 b S2 b S2

SI 0.683 0.466 0.321 0.103 0.570 0.430
VC 0.637 0.406 0.611 0.373 0.779 0.221
BD 0.652 0.425 0.359 0.129 0.554 0.446
VP 0.637 0.406 0.444 0.197 0.603 0.397
MR 0.667 0.445 0.322 0.104 0.549 0.451
FW 0.674 0.454 0.288 0.083 0.537 0.463
DS 0.684 0.468 0.497 0.247 0.715 0.285
PS 0.604 0.365 0.421 0.177 0.542 0.458
CD 0.347 0.120 0.462 0.213 0.334 0.666
SS 0.433 0.187 0.895 0.801 0.989 0.011

Total S2 0.374 0.048 0.051 0.042 0.101 0.617 0.383
ECV 0.607 0.077 0.083 0.069 0.164
ω 0.916 0.800 0.835 0.771 0.783
ωH/ωHS 0.794 0.266 0.187 0.260 0.589
Relative ω 0.867 0.333 0.224 0.337 0.752
  H 0.865 0.415 0.375 0.352 0.811
PUC 0.800

SI = Similarities; VC = Vocabulary; BD = Block Design; VP = Visual Puzzles; MR = Matrix Reasoning; FW = Figure Weights; DS = Digit Span; PS = Picture Span; CD = Coding; and 
SS = Symbol Search. g, General Intelligence (general factor); F1, Verbal Comprehension (group factor); F2, Perceptual Reasoning (group factor); F3, Working Memory (group factor); 
and F4, Processing Speed (group factor). b, Factor Loading (significant at p < 0.05), S2, Explained Variance; h2, Communality; u2, Unique Variance; ECV, Explained Common 
Variance; ω, Omega Coefficient; ωH, Omega-Hierarchical Coefficient (general factor); ωHS, Omega-Hierarchical Coefficient (group factors); H, Replicability Index (construct reliability); 
and PUC, percentage of uncontaminated correlations.

below the required minimum criterion of ωHS = 0.500 (Reise 
et  al., 2013). As in the case of the higher-order four-factor 
EFA model, unit-weighted composite scores for three out of 
four indexes might therefore produce too little true score 
variance to fully recommend interpretation.

While the construct replicability coefficient H in Table  7 
suggested that g was well defined by the 10 subtest indicators, 
H coefficient values for the other factors, ranging from 0.352 
(WM) to 0.811 (PS), indicated that three out of four group 
factors were not adequately defined by their subtest indicators. 
This means that, with the exception of PSI, eight out of 10 
WISC-V primary subtests would not produce consistent scores 
on their related indexes VCI, PRI, and WMI across measurements.

DISCUSSION

The overall factor structure of the WISC-V has been a subject 
of controversial debate to this very day. Even though the test 
publishers claimed support for the second-order five-factor 
model based on CFA analyses, this model could not be  fully 
replicated in a variety of different standardization samples (e.g., 
Canivez et  al., 2017; Watkins et  al., 2017; Fenollar-Cortés and 
Watkins, 2018; Lecerf and Canivez, 2018). Therefore, the major 
aim of the present study was to determine structural validity 
of the German WISC-V. Since CFA results provided in the 
test manual have been frequently criticized by researchers, 
different factor analytical procedures were conducted on the 
large extended and bifurcated German standardization sample.

In line with the results reported by Canivez et  al. (2021), 
EFA failed to replicate five valid factors for the 10 primary 
subtests of the German WISC-V, thus suggesting psychometric 

inappropriateness of the second-order five-factor model. When 
forced to extract more than one factor, EFA results suggested 
a four-factor model rather than a five-factor model, particularly 
because the Fluid Reasoning (FR) factor failed to provide more 
than one salient subtest indicator. Visual spatial (VS) and  Fluid 
Reasoning (FR) were not found to emerge as distinct factors, 
as their related subtest indicators shared variance with only one 
single factor similar to Perseptual Reasoning (PR) in the WISC-IV 
framework. Moreover, hierarchical EFA with the SL 
orthogonalization indicated superiority of the second-order factor 
over the first-order factors, as g accounted for between 4 and 
7 times as much common subtest variance as any single first-
order factor and more common subtest variance than all four 
first-order factors combined. Model-based reliability estimates 
for the first-order factors appeared to be  low in value when 
compared to the reliability coefficient for the second-order factor. 
Since construct replicability estimates were also found to 
be  unacceptably low for each of the first-order factors, the 
according WISC-V indexes may be considered limited in measuring 
unique cognitive dimensions (Brunner et  al., 2012; Reise, 2012; 
Rodriguez et  al., 2016). Since Canivez et  al. reported similar 
findings when analyzing the entire set of 15 primary and secondary 
subtests of the German WISC-V, the present EFA and CFA 
results can be  considered as meaningful and robust.

Consistent with the EFA results, a four-factor structure was 
judged as being the best fitting model in CFA. While the 
second-order and bifactor five-factor model solutions both 
provided acceptable fit to the data, fit indexes tended to slightly 
favor four factors within a bifactor structure. This was also 
supported by the subtest indicators, each of which was for 
the most part saliently loading on just one associated group 
factor and thus achieving the preferable simple structure. As 

https://www.frontiersin.org/journals/psychology
www.frontiersin.org


Pauls and Daseking Factor Structure of the WISC-V

Frontiers in Psychology | www.frontiersin.org 11 September 2021 | Volume 12 | Article 710929

with the SL-orthogonalized EFA model, the assessment of 
variance sources again indicated the dominance of g on the 
one hand and the limited unique measurement of the first-
order factors on the other hand. While about 7% (WM) to 
16% (PS) of the common subtest variance could be  explained 
by the according first-order factors, g accounted for nearly 
61% of the common subtest variance. In particular, g accounted 
for between three and eight times as much common subtest 
variance as any single first-order factor and about 1.5 times 
as much common variance as all four first-order factors combined. 
Consistent with the findings of Canivez et al. (2021), the present 
EFA and CFA results were not surprising as it has previously 
been reported that the greatest proportions of common variance 
are associated with the second-order factor and smaller 
proportions of common variance are apportioned to the first-
order factors (Canivez et  al., 2016, 2017; Watkins et  al., 2017; 
Fenollar-Cortés and Watkins, 2018; Lecerf and Canivez, 2018). 
When analyzing model-based reliability and construct replicability 
according to the bifactor four-factor model, CFA results were 
consistent with what was already indicated by EFA. In both 
analyses, model-based reliability and construct replicability 
coefficients for g turned out to be  satisfactory, thus suggesting 
a confident individual interpretation of an overall measure, 
such as the FSIQ. Except for PS, however, reliability and 
replicability coefficients for the group or first-order factors 
appeared to be  too low to suggest that the according unique 
cognitive dimensions are sufficiently well represented by the 
WISC-V primary indexes. Similar results have not only been 
found for the German WISC-V as described earlier (Canivez 
et  al., 2021) but had already been observed in studies focusing 
on international versions of the WISC-IV (Watkins, 2010; 
Canivez, 2014; Canivez et  al., 2017) and on other Wechsler 
scales as well (Canivez and Watkins, 2010; Golay and Lecerf, 
2011; Watkins and Beaujean, 2014). Even though results of 
the present study indicated meaningful interpretation of an 
overall measure for g, this is only true if the corresponding 
composite score is based on all 10 primary subtests. Given 
that the FSIQ is calculated using only seven out of 10 primary 
subtest scores in all versions of the WISC-V, this measure 
could likely under- or over-estimate true levels of general 
intellectual ability. Therefore, psychometric appropriateness and 
interpretability of g cannot be  equally guaranteed for or at 
least not fully transferred to the FSIQ.

Furthermore, the present findings do not only provide 
substantial support for the results recently reported by Canivez 
et  al. (2021), they also underline the need of comparing 
hierarchical and non-hierarchical model structures when 
analyzing the structural validity of the WISC-V. In hierarchical 
models of intelligence, the second-order factor is only indirectly 
connected to the subtest indicators as the first-order factors 
are suggested to fully mediate these associations. In bifactor 
models, by contrast, the general factor and the group factors 
both directly influence the subtest indicators at the same level 
of inference (Gignac, 2008). Consequently, direct subtest 
associations are easier to interpret as general and specific subtest 
influences can be  simultaneously examined. However, there 
are still varying perspectives on which of the two model 

solutions are the most appropriate representation of intelligence 
(e.g., Brunner et al., 2012; Gignac and Watkins, 2013; Beaujean, 
2015; Frisby and Beaujean, 2015; Reynolds and Keith, 2017). 
While some researchers suggested that bifactor models in 
general benefit from statistical biases related to unmodeled 
complexity (Murray and Johnson, 2013) and unique constraints 
within hierarchical model solutions (Mansolf and Reise, 2017), 
others have not found such biases exclusively favoring bifactor 
models Canivez et al., 2017. Even though Canivez et al. (2018) 
claimed that post-hoc model modifications with a lack of 
conceptual grounding (e.g., cross-loadings and correlated error 
terms) are often added by researchers preferring hierarchical 
model solutions to only improve model fit, such post-hoc model 
modifications are not restricted to analyses of hierarchical 
models only. Bifactor models may as well over-estimate loadings 
on a higher-order factor while under-estimating variance 
accounted for lower-order factors (Markon, 2019). While general 
intelligence is an important and theoretically valid construct, 
different analytical approaches should be considered to provide 
a variety of perspectives on the underlying cognitive subdomains 
as well (Decker et  al., 2020). Since the WISC-V provides a 
scoring framework for specific index score comparisons, 
researchers and clinicians must be  certain of how well the 
WISC-V primary indexes represent unique cognitive domains. 
According to a large body of empirical evidence, bifactor models 
are often emphasized to be  the better choice when it comes 
to determining and interpreting the relative contribution of 
each single WISC-V index score independent of g (Murray 
and Johnson, 2013). However, Decker et al. (2020) also pointed 
out that studies on structural validity using bifactor models 
or SL procedures might be  at least methodologically biased 
in favor of a presumed and dominant general factor of intelligence. 
Clinical recommendations for cognitive test interpretation should 
at least consider these methodological limitations.

In summary, the second-order five-factor model structure 
that is provided in the WISC-V test manual could not be  fully 
supported by the present EFA and CFA on the extended German 
WISC-V standardization sample. The absence of two salient 
indicators for FR in EFA along with slightly worse fit indexes 
in CFA indicated that dividing VS and FR into distinct factors 
could be  considered inadequate due to over-factoring. Since 
it could also be  shown that only small proportions of true 
score variance were explained by the first-order factors, 
interpreting single index scores beyond the FSIQ could likely 
result in over-interpreting or misinterpreting the true levels 
of specific cognitive abilities. Consequently, researchers and 
clinicians should be  cautious when interpreting the WISC-V 
primary index scores individually. Regardless of whether a 
four- or five-factor structure is considered for the German 
WISC-V, group factors reflecting the primary indexes do not 
account for a sufficient proportion of variance to warrant 
confident interpretation of single index scores. Although the 
present findings clearly indicate that different levels of specific 
intellectual domains are not adequately represented by their 
corresponding WISC-V primary index scores, it has to be noted, 
however, that the WISC-V was originally designed to measure 
multiple dimensions underlying a general factor of intelligence. 
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Since Decker et  al. (2020) do not recommend to reduce 
diagnostic decision making to a single test score, clinical case 
reports should thus include comprehensive analyses that might 
be  at least supplemented by additional clinical information 
derived from the WISC-V primary indexes. Instead of over-
interpreting each single WISC-V primary index score as a 
valid composite score, these index scores should rather 
be  regarded as pseudocomposite scores representing specific 
combinations of the underlying primary subtests. If necessary, 
comparing those pseudocomposite scores as well as performances 
on the subtest level relative to each other may at best provide 
additional information about specific cognitive strengths and 
weaknesses within an individual.

Finally, it has to be noted that the present study only focused 
on the structural validity of the German WISC-V but did not 
clarify further questions pertaining to construct validity. Even 
though Pauls et  al. (2019) already examined measurement 
invariance across gender, for instance, structural validity of 
the German WISC-V has neither been examined in clinical 
samples nor in groups with extreme levels of intelligence. Since 
profoundly gifted individuals are not sufficiently represented 
in the standardization sample of the German WISC-V, for 
example, they could feature meaningful cognitive patterns 
different from those previously described. Therefore, future 
research should focus on testing the validity of the German 
WISC-V factor structure on a variety of clinical samples. In 
order to solve the overall validity disagreements regarding 
whether hierarchical or bifactor models best describe the 
structure of intellectual abilities, however, research should go 
beyond the mere comparison of statistical measures in favor 
of more theoretical approaches providing an explanatory basis 
for cognitive constructs in general (Keith and Reynolds, 2018). 
Research focusing on the integration of psychometrically sound 
models with neurocognitive outcomes based on brain networks 

could thus enhance the understanding of the complex nature 
of human intelligence.
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