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Although distributional inequality and concentration are important statistical concepts

in many research fields (including economics, political and social science, information

theory, and biology and ecology), they rarely are considered in psychological science. This

practical primer familiarizes with the concepts of statistical inequality and concentration

and presents an overview of more than a dozen useful, popular measures of inequality

(including the Gini, Hoover, Rosenbluth, Herfindahl-Hirschman, Simpson, Shannon,

generalized entropy, and Atkinson indices, and tail ratios). Additionally, an interactive web

application (R Shiny) for calculating and visualizing these measures, with downloadable

output, is described. This companion Shiny app provides brief introductory vignettes to

this suite of measures, along with easy-to-understand user guidance. The Shiny app

can readily be used as an intuitively accessible, interactive learning and demonstration

environment for teaching and exploring these methods. We provide various examples for

the application of measures of inequality and concentration in psychological science and

discuss venues for further development.

Keywords: statistical inequality, Lorenz curve, Gini index, entropy, interactive web application, R shiny, data

visualization, statistics education

INTRODUCTION

A basic goal of quantitative empirical research lies in describing the properties of distributions,
which arise from the collection of data, be these observational or experimental. In univariate
descriptive statistics, there are four well-known central statistical moments: (1) the arithmetic
mean (or expected value), (2) variance (and its square root, standard deviation), (3) skewness,
and (4) kurtosis (with the latter two being so-called normalized or standardized moments, as their
calculation also involves the second central moment). The arithmetic mean is informative about the
central tendency (or location) of the distribution, variance of its spread (or dispersion), skewness
of its symmetry, and kurtosis of its shape (i.e., tail extremity). Especially the first and second central
moments are ubiquitously utilized in psychological science. In fact, their use is common to such
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an extent that reporting alternative descriptive distributional
statistics, although these principally serve similar purposes
(like, for example, the median, mode, midrange, trimmed or
winsorized or weighted mean, or the harmonic or geometric
mean, as measures of location; or the range, interquartile or
semi-interquartile range, or mean or median absolute deviation,
or the coefficients of variation or stabilization, as measures
of dispersion), typically demand some extra justification and
explanation for their use (the most recent edition of the
Publication Manual of the American Psychological Association,
2020, p. 81, merely lists “the mean and standard deviation,
and other measures that characterize data used” in its reporting
standards for quantitative research designs). In contrast, the
third and fourth central moments are much less often used, but
still represent well-known statistical concepts within the field of
psychological science and beyond.

Here, with this practical primer we intend to introduce to
psychological science, and make more broadly known, a “fifth
element,” or distributional aspect, from univariate descriptive
statistics, namely, the family of statistical measures of inequality
and concentration (for simplicity, hereafter referred to as
inequality measures, as this is the umbrella term; Coulter, 1989).
Measures of inequality have been developed since the early
20th century (for a historical review, see Piesch, 1975) and
are important in many fields of research, including economics,
political science and the social sciences, information theory, and
biodiversity research in biology and ecology, to name but a few
(Münzner, 1963; Bruckmann, 1969; Pielou, 1969; Allison, 1981;
Magurran, 1988; Krämer, 1998). Yet, up to now, measures of
inequality evidently are little-known, and certainly less used, in
psychological science. Although in most cases the computation
of statistical inequality measures is straightforward, as their
closed-form formulas involve no estimations or iterations,
attempts to transfer inequality measures into the behavioral
and psychological sciences have been scarce. Typically, statistical
textbooks for economists contain a chapter devoted to inequality
measures (e.g., Krämer, 1998; Bleymüller et al., 2020), whereas
introductory textbooks of descriptive and applied statistics
written for psychological, sociological, or educational researchers
mostly do not mention this topic at all (for notable exceptions,
see, for instance, Polasek, 1994; Assenmacher, 2010).

Well-known applications of inequality measures concern
monetary goods, such as income or capital, for individuals or
households (e.g., OECD, 2011; Cobham and Sumner, 2014);
votes in elections or monopolies in markets for companies and
political parties (e.g., Wagschal, 1999; Fedderke and Szalontai,
2009); and the diversity of groups in sociology or species in
biology (e.g., Hill, 1973; Jost, 2006). Wherever a good or unit
(with “unit” being the preferred term hereafter; encompassing
any unit of measurement with a lower bound of 0) is
distributed among individuals, groups, or even whole countries
(all of these invariably termed “components” hereafter; i.e., the
objects, carriers, etc., to which the variable values pertain, see
below), inequality may emerge (Coulter, 1989). Inequality is
present whenever there is no equal distribution of units across
components. Units may then be concentrated in only one or
across a few components. Measures of inequality (in a narrower

sense) quantify the extent to which the distribution of units over
components is not equal, whereas measures of concentration are
more concerned with the precise location of units and quantify
whether units are concentrated in a few components or dispersed
among numerous components (seeMarfels, 1971; Coulter, 1989).

In psychological science, units could refer to scale and test
scores1 or reaction times (in ms) in the case of metric variables,
instead of capital or income. In the case of unordered categorical
(i.e., nominal-scaled) or ordered categorical (i.e., ordinal-scaled)
variables, units could refer to counts of diagnoses or school grades
(i.e., regarding their prevalence), instead of votes (if diagnoses
are counted within persons, this would render them a metric
variable). In applications typical for the field of psychological
science, components most often represent individuals (for metric
variables) or groups of persons (for categorical variables), instead
of countries, species, or political parties.

Measures of inequality are uniquely concerned with the
distribution of units over the components. This type of
distribution (see section The Lorenz Curve: A Probability Plot
of the Unit Distribution for its probability plot) contrasts with
the common frequency distribution, which displays the relative
frequency (on the y-axis) of each value (on the x-axis; with
usually binned values for metric variables). The unit distribution
(as it is termed hereafter) displays the unit share (on the y-
axis) of each component (on the x-axis; in ascending order of
units). For categorical variables, the unit distribution is identical
to the frequency distribution (with values sorted in ascending
frequency). Here, the units are the counts, or frequencies, of
the variable values themselves (i.e., the components). Measures
of inequality thus provide alternative methods to describe
the frequency distributions of categorical variables. For metric
variables, the unit distribution differs notably from the frequency
distribution. Here, measures of inequality offer unique insights
into the data, which cannot be gained from the ordinary
frequency distribution itself.

Applied to psychological science, inequality measures could
therefore prove interesting and informative. Reaction-time data
collected in experimental research, distributions and profiles of
abilities and traits encountered in differential and personality
psychology and in psychological assessment, or the diversity and
comorbidity of disorders, as investigated in clinical psychology,
can all be evaluated with measures of inequality, both within
and between subjects or samples. Inequality statistics can also
be used to detect influential or outlying cases (because outliers
make up conspicuously high or low numbers of units) and to
quantify aspects and effects not adequately represented by means
and standard deviations, or frequencies alone (see Whelan, 2008,
for an application to reaction-time data).

1Scores need to have a lower bound of 0, such that they have well-defined sums

when added together. Ratio scales satisfy this requirement by definition. For any

interval-scaled variables, this requirement may be satisfied with suitable linear

transformations (location shift), should negative values occur. While this type of

variable transformation does not change the scale type (i.e., measurement level or

structure), it makes scores amenable to the evaluation of inequality. For further

discussion regarding the adequacy of interval scales for measuring inequality, see

Allison (1978).

Frontiers in Psychology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 716164

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Tran et al. Measures of Inequality

All the measures covered in this primer break down unit
distributions into a single value to quantify inequality. However,
measures differ (a) in the way they do this; (b) in the admissible
scale levels for the variables investigated (unordered categorical
vs. ordered categorical vs. metric); and (c) regarding their
scope of application. (d) Most measures evaluate the whole unit
distribution; however, there also are measures which exclusively
scrutinize the distributional tails. Further, inequality may be
quantified in (e) absolute or in relative terms. Absolute inequality
arises when a large share of units is distributed among an
only small absolute number of components; in contrast, relative
inequality arises when a large share of units is distributed among
an only small relative number of components (Bleymüller et al.,
2020). For example, distribution A = (360, 250, 150) statistically
is more unequal than distribution B = (180, 180, 125, 125,
75, 75) in absolute terms (as the units are distributed among
fewer components for A than for B), but both distributions are
commensurably unequal in relative terms (because the value
sums, or units, of 360, 250, and 150 are distributed across
one third of components each in A as well as in B). (f)
Further, measures can be bounded (in most cases, limited to
the range of 0–1) or unbounded. And (g), depending on how
their minimum and maximum are defined, measures can either
express distributional inequality or equality. The direction (or
polarity) of any bounded measure can readily be reversed by
subtracting the respective value from its maximum.

This practical primer introduces useful, popular measures
of inequality to psychological science and presents a Shiny
app (https://psychology-vienna.shinyapps.io/visualizing_
inequality/; source code available on https://github.com/guitaric/
Visualizing-Inequality) for their calculation and visualization,
with downloadable output. Covered are (1) the Gini index, the
Hoover index, and the Rosenbluth index; (2) the Herfindahl-
Hirschman index and the Simpson index, alongside its associated
measures Gini-Simpson index and inverse Simpson index; (3)
Shannon entropy and the generalized entropy index, including
the Theil index; and (4) the Atkinson index. This ensemble
of measures is based on four different mathematical models
(namely, in above order of (1)–(4), the deviations model,
the combinatorics model, the entropy model, and the social
welfare model; Coulter, 1989), the outlines of which are
explained below. Since these distinct mathematical foundations
constitute a straightforward and useful way for categorizing
and understanding the variety of statistical inequality measures,
our primer and its accompanying Shiny app (including the
definitions and calculation formulas assembled in Table 1) are
structured along this four-part scheme. (5) In addition, this
primer covers distributional tail ratios; however, these further
related approaches are not based on any of these four models
and thus constitute a class of their own (for background and
overview, see Voracek et al., 2013).

In general, measures were selected for their frequency of
use and their relevance in diverse fields of research (e.g.,
Coulter, 1989;Wagschal, 1999; Assenmacher, 2010; Cowell, 2011;
OECD, 2011; Bleymüller et al., 2020) on the one hand, and
their amenability to visualization on the other hand (further
related measures, not covered here, are found in the referenced

sources). The Shiny app provides intuitively understandable
visualizations of these measures, which can be interactively
modified in the app to grasp their functionality. Apps which
would bundle a multitude of measures of inequality currently
are not widely available, let alone apps which would provide
visualizations for educational purposes as well. This primer and
its companion Shiny app are thus intended to serve the triple aim
of calling attention to these methods and approaches, providing
a convenient means for calculating these measures, and helping
users to better understand and learn about statistical measures of
inequality through interactive visualizations.

In the following sections, we provide brief descriptions of the
Lorenz curve (a probability plot of the unit distribution) and the
various measures of inequality, their underlying mathematical
models, their scope of application, and their characteristics and
constraints. We utilize a nomenclature and notation amenable to
psychological science and also provide 17 concrete examples and
suggestions for applying inequality measures in psychological
science, consecutively numbered within curly brackets, {Ex. 1}
to {Ex. 17}. The above-mentioned general suggestions of using
inequality measures for the detection of influential cases and
outliers {Ex. 1} and the quantification of distributional aspects of
reaction-time data (see Whelan, 2008) {Ex. 2} already constitute
the first two of these examples. Further concrete examples and
suggestions for some of the other applications listed above are
provided in the following. The aim is to supply readers general
impressions as well as varied specific ideas of how to beneficially
apply various inequality measures in their own research and
with their own data. We then describe the Shiny app and its
functions and demonstrate its capacity for data visualization. The
closing section discusses venues for future research and further
methodological developments.

STATISTICAL MEASURES OF INEQUALITY
AND CONCENTRATION

The following definitions are essential for a basic understanding
of this domain of univariate descriptive distributional statistics.
The term unit share refers to the relative share (i.e., percentage)
of the total unit sum belonging to a specific component. In
the case of metric variables (e.g., scale or test scores, reaction
times), the unit share relates to the units of each individual (with
persons being components here). In the case of unordered or
ordered categorical variables (e.g., diagnoses, school grades), the
unit share relates to the counts of the values of the categorical
variable (with the counts being units here, and the components
representing the values of the categorical variable). The unit share
of the ith component is denoted by pi = ni/N, where ni is the
number of units (or counts, for categorical variables) and N is
the total unit sum (or sum of counts, respectively).2 The term
component share refers to the relative share (again, percentage)

2For metric variables, unit shares are just the linearly transformed (scale-shifted)

original values. Yet, one needs to remember here that k refers to the number of

individuals and N (uncommonly so) to the total sum of their original values.

Further notice that in this case the unit share pi implicitly relates ni to its mean

(i.e., n̄ = N/k): N = kn̄, and therefore, pi = ni/kn̄ and kpi = ni/n̄.
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TABLE 1 | Overview of the statistical inequality measures covered in this practical primer and implemented in the companion Shiny app.

Model/Measure Polarity Admissible

scale levels

Lower,

upper limit

Formula Synonyms Interpretation

Deviations model

Gini index Inequality Categorical,

metric

0, 1− 1
k

G = 1
2k

∑k
i=1

∑k
j=1 |pi − pj | Area between the line of

equality and the Lorenz

curve

Corrected Gini index Inequality Categorical,

metric

0, 1 G
′
= G

1− 1
k

G corrected for the number

of components

Hoover index Inequality Categorical,

metric

0, 1− 1
k

H = 1
2

∑k
i=1

∣

∣pi −
1
k

∣

∣ Pietra index (Pietra,

1948); Robin-Hood

index (Atkinson and

Micklewright, 1992);

Schutz index (Schutz,

1951)

Greatest vertical distance

between the line of equality

and the Lorenz curve

Corrected Hoover

index

Inequality Categorical,

metric

0, 1 H
′
= H

1− 1
k

H corrected for the number

of components

Rosenbluth index Inequality Categorical,

metric

1
k
, 1 R = 1

2(
∑k

i=1 i pi )−1
Hall and Tideman index

(Hall and Tideman,

1967)

Reciprocal value of twice

the area above the

concentration curve

Combinatorics model

Herfindahl-Hirschman

index

Inequality Categorical,

metric

1
k
, 1 HHI =

∑k
i=1 p

2
i Herfindahl index

(Herfindahl, 1950),

Hirschman index

(Hirschman, 1945)

Probability that two random

units stem from the same

component

Simpson index Inequality Categorical 0, 1 S =
∑k

i=1 ni (ni−1)
N(N−1) Simpson’s D (diversity

index; Magurran, 1988)

Probability that two random

units stem from the same

component

Gini-Simpson index Equality Categorical 0, 1 GS = 1− S Blau index (Blau, 1977);

Hunter-Gaston

discriminatory index

(Hunter and Gaston,

1988); Gibbs-Martin

index (Gibbs and

Martin, 1962);

probability of

interspecific encounter

(PIE; Hurlbert, 1971)

Probability that two random

units stem from different

components

Inverse Simpson index Equality Categorical 1, inf IS = 1
S

Reciprocal value of the

probability that two random

units stem from the same

component

Entropy model

Shannon index Equality Categorical 0, loga(k) SI = −
∑k

i=1 pi logapi Shannon-Weaver

index, Shannon-Wiener

index (Spellerberg and

Fedor, 2003)

Average information content

of the unit distribution

Generalized entropy

index

Inequality Metric 0, ∞ GE (α) =















1
kα(α−1)

∑k
i=1 [(kpi)

α − 1] ,α 6= 0, 1

1
k

∑k
i=1 kpi ln(kpi ) ,α = 1

− 1
k

∑k
i=1 ln(kpi ) , α = 0

Average redundancy in the

unit distribution (with

fine-tuning parameter α)

Social welfare model

Atkinson index Inequality Metric 0, 1 AI (ε) =


















0 , ε = 0

1− k
N

(

1
k

∑k
i=1 n

1−ε
i

)1/(1−ε)

, 0 < ε 6= 1

1− k
N

(

∏k
i=1 ni

)1/k

, ε = 1

Fraction of the total unit

sum needed to attain a

common unit standard for

all components (with

fine-tuning parameter ε)

(Continued)
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TABLE 1 | Continued

Model/Measure Polarity Admissible

scale levels

Lower,

upper limit

Formula Synonyms Interpretation

Tail ratios

Palma ratio Inequality Metric ¼

, ∞

PR =

∑100
i=91 Pi

∑40
i=1 Pi

Ratio of the unit shares of

the top 10% to the bottom

40% of the unit distribution

S80:S20 ratio Inequality Metric 1, ∞ S80 :S20 =

∑100
i=81 Pi

∑20
i=1 Pi

20:20 ratio, quintile

share ratio

Ratio of the unit shares of

the top 20% to the bottom

20% of the unit distribution

P90:P10 ratio Inequality Metric 1, ∞ P90 :P10 =
P90
P10

Ratio of the unit shares of

the 90th percentile to the

10th percentile of the unit

distribution

P50:P10 ratio Inequality Metric 1, ∞ P50 :P10 =
P50
P10

Ratio of the unit shares of

the 50th percentile to the

10th percentile of the unit

distribution

k = number of components (categories for categorical variables); ni = number of units of the ith component (counts for categorical variables); N = total number of units; pi = ni/N, the

unit share of the ith component; loga = logarithm to the base of a; Pi = unit share of the ith percentile of the unit distribution.

of the total number (denoted by k) of components belonging to a
specific component. This notation is applicable to categorical and
metric variables alike and therefore allows using the same labels
in the formulas, thus simplifying and unifying their presentation.

Table 1 provides an overview of the measures covered
here. Some of these go under different names, depending on
research fields and traditions or authors (see Hirschman, 1964).
Therefore, for the sake of clarity and comparison, Table 1

also lists synonyms of these, as commonly encountered in the
literature. The labels of the measures in the formulas may
sometimes diverge from those preponderantly used in the extant
literature, in order tomatch themwith the unified denominations
used here.

The Lorenz Curve: A Probability Plot of the
Unit Distribution
The Lorenz curve (Lorenz, 1905) provides a straightforward
visualization of the degree of statistical inequality (Gastwirth,
1972). It relates the unit share of to the component share (De
Maio, 2007) and hence provides a straightforward visualization
of the unit distribution. In essence, the Lorenz curve is a
probability plot of the unit distribution, comparing it to a
uniform distribution (see Figure 1, bottom).

The curve is drawn in a diagram, wherein the x-axis represents
the cumulative percentage share of components and the y-axis
the cumulative percentage share of units. Components are sorted
in ascending order, beginning with the lowest unit share and
ending with the highest one. The Lorenz curve is thus applicable
to variables of any scale level (categorical or metric); however, for
ordinal variables, their inherent ordering is ignored.

In the case that every component has the same share of units,
the Lorenz curve manifests as the diagonal from the axis origin to
the point (1, 1), or 100% of both axes, respectively. This diagonal
is referred to as the line of equality. The sorting ensures that a
Lorenz curve never exceeds this line of equality. The higher the
inequality in a given distribution, the more the Lorenz curve will

remain close to the x-axis, rising to the point (1, 1) and reaching
it only from the far-right end of its possible range. In the extreme
case of maximum inequality, where 100% of all the units fall into
a single component, the Lorenz curve coincides with the x-axis
over its total range, rising sharply to (1, 1) only at the rightmost
position of its last component.

Measures Based on the Deviations Model
Measures derived from the deviations model quantify inequality
by considering the deviation of the components’ unit share from
a specific standard, as derived from the unit distribution itself.
The Gini index and the Hoover index have direct links to the
Lorenz curve (as does the Atkinson index, see section Measures
Based on the Social Welfare Model: The Atkinson Index). Even
though considered a measure based on the combinatorics model
by Coulter (1989), the Rosenbluth index is also a measure
derived from the deviations model, has intimate links to the
Gini index, and thus is presented here. In psychological science,
measures from the deviations model can be applied to quantify
the inequality of the unit distribution of any metric variable, e.g.,
to investigate individual differences either within samples {Ex. 3}
or between samples {Ex. 4}, or to detect outlying cases (or groups
of outlying cases) {Ex. 1}. Yet, these measures can also be used
to quantify inequality for categorical variables. For example, in
epidemiology the Lorenz curve and the Gini index have been
used to quantify differences in case rates between groups with
different exposure risks (Lee, 1997) {Ex. 5} or seasonal variation
phenomena in disease frequency (Lee, 1996) {Ex. 6}.

Gini Index
The Gini index (Gini, 1912) is the most widely known measure
of inequality (Gastwirth, 1972; Ceriani and Verme, 2012). It is
broadly used for evaluating income and wealth distributions of
whole countries (OECD, 2011), but has also been applied in
such diverse scientific fields as genetics, epidemiology, quality
of life research, and engineering (e.g., Lee, 1996, 1997; Asada,
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FIGURE 1 | Example visualizations of the Lorenz curve and the Gini index from the interactive web application. On the upper left side, a text vignette explains the Gini

index; on the upper right side, a slider panel with five sliders allows to create a distribution with five components; below this, a panel displays the value of the Gini

index for the created distribution. At the bottom, three plots are created (based on the specific slider inputs), showing how a Lorenz curve is constructed and

influenced by the data input, along with the area that corresponds to the Gini index.

2005; Zonoobi et al., 2011; Jiang et al., 2016). Utilizing the
Gini index, Asada (2005) quantified differences in health-
related quality of life between individuals and groups of
individuals {Ex. 7}.

The Gini index compares the unit shares of all components to
each other; i.e., it is half of the normed average absolute difference
between all pairs of components. Its modes of calculation are
manifold: Gini (1912) already listed 13 calculation formulas (see
Ceriani and Verme, 2012); the formula presented in Table 1 is yet
another one. The Gini index can be interpreted graphically as the
fraction of the area between the line of equality and the Lorenz
curve (A) to the total area below the line of equality (A+B, which
is 0.5). Hence, it satisfies the equation G = A/(A + B) = 2A.
Accordingly, the Gini index increases with A. The closer the
Lorenz curve is to the line of equality, and the smaller area A,
the lower is the Gini index.

The Gini index ranges from 0 (indicating perfect equality)
to 1–1/k (indicating maximum inequality). It is a measure of
absolute inequality, as the number of components defines its
upper bound. The corrected Gini index is bounded by the
interval 0–1 and is a measure of relative inequality, since it is
not affected by the total number (or, differences in the number)
of components.

Combined with the Lorenz curve, the Gini index leads to easy-
to-understand visual representations of inequality. However, the

Gini index is an area-based measure and for this reason only
poorly linked to the actual shape of the unit distribution. This
implies that Gini index values may be identical for distributions
differing in shape. In contrast, measures such as the generalized
entropy index (section Generalized Entropy Index and Theil
Index), the Atkinson index (sectionMeasures Based on the Social
Welfare Model: The Atkinson Index), or tail ratios (section Tail
Ratios), provide more fine-grained information with regards to
specified regions of the Lorenz curve.

Hoover Index
The Hoover index (see Hoover, 1936; but actually dating back
at least to pre-World War I time and the Italian economist and
statistician Constantino Bresciani-Turroni: see Kondor, 1971),
is one of the simplest inequality measures. In other scientific
fields, the Hoover index is used to quantify regional income
inequality (Huang and Leung, 2009) or the spatial concentration
of populations (Santic, 2014). It can be interpreted as the share
of units that need to be redistributed across components to
achieve perfect equality (or, couched in an economic context: the
amount of money which must be taken from the rich and given
to the poor to achieve an equal distribution; hence, its synonym
“Robin-Hood index”).

The Hoover index compares the unit shares of all components
to their overall mean; it is based on the sum of absolute
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deviations. Similar to the Gini index, the Hoover index can be
visualized via the Lorenz curve and is a measure of absolute
inequality in its unbounded form. Its value is equal to the
maximum vertical distance between the Lorenz curve and the line
of equality, thus ranging from 0 (for maximum equality, when
the Lorenz curve coincides with the line of equality) to 1–1/k (for
maximum inequality). The corrected Hoover index ranges from
0 to 1 and is a measure of relative inequality.

Rosenbluth Index
The Rosenbluth index (Rosenbluth, 1955) is used in economics
to determine how strongly a market is dominated by a monopoly
(e.g., Fedderke and Szalontai, 2009). For calculation, it draws on
the rank order of components and compares each component’s
unit share to the probability that two units belong to the
same component (Coulter, 1989). This approach makes it a
measure likewise rooted in the deviations model as well as in
the combinatorics model (see section Measures Based on the
Entropy Model).

Because of its rank-order definition, the Rosenbluth index can
be plotted in a diagram similar to the Lorenz curve. However, the
components are sorted in descending order (not, as otherwise
customary, in ascending order), such that the first entry in the
diagram contains the highest (not the smallest) unit share. Also,
the x-axis of the Rosenbluth index diagram does not cover the
cumulative component shares in percent (1–100%), but rather
the component numbers (1 to k) instead. For five components,
the x-axis would range from 1 to 5, and the total area of
the diagram would equal. The diagonal in this rectangle again
indicates the line of equality.

Like the Gini index, the Rosenbluth index is an area measure.
It is the reciprocal value of twice the area (A) above the
concentration curve, R = 1/(2A). Thus, the Rosenbluth index
can also be expressed in terms of the uncorrected Gini index
(Marfels, 1971): R = 1/

[

k (1− G)
]

.3 In the case of maximum
equality, the curve coincides with the line of equality, and the area
above the curve is identical to the right-angled triangle above the
line of equality,. Thus, the lower bound of the Rosenbluth index
is 1/[2 · (k/2)] = 1/k. In the case of maximum inequality, the
curve rises immediately steeply from (0, 0) to (1, 1), and then
runs horizontally to the rightmost point (k, 1). The resulting
(minimum) area above the concentration curve is then defined
by a right-angled triangle having the corner points (0, 0), (0, 1),
and (1, 1), thus spanning a total area of (1 · 1)/2 = 0.5, in which
case the Rosenbluth index yields a value of 1/(2 · 0.5) = 1.

Measures Based on the Combinatorics
Model
Measures derived from the combinatorics model quantify the
probability that two randomly selected units belong to the
same component (or, alternatively, to different ones). The
Simpson index, the Gini-Simpson index, and the inverse Simpson
index are appropriate for categorical variables. The Herfindahl-
Hirschman index, in principle, can be applied to both categorical

3As the total area in the Rosenbluth diagram is k (not unity, as in the diagram of

the Lorenz curve), the factor k also appears in this formula.

and metric variables (but see section Herfindahl-Hirschman
Index). For large N, the indexes of Herfindahl-Hirschman and
Simpson converge in value.

Herfindahl-Hirschman Index
In economics, the Herfindahl-Hirschman index (Hirschman,
1945, 1964; Herfindahl, 1950; HHI) is used to describe market
concentrations and costumers’ degree of brand loyalty, and in
political science, the degree of fragmentation of political parties
in elections (Wagschal, 1999).

The HHI is based on an urn model with replacement (i.e.,
drawing random units does not change the components’ unit
shares) and is calculated by summing the squared unit shares
of every component of the unit distribution (Coulter, 1989).
Larger unit shares are disproportionally weighted more heavily
than smaller unit shares (e.g., 0.82 = 0.64, but 0.12 = 0.01). The
HHI reaches its maximum value of 1, when a single component
possesses the total share all on its own, and its minimum value
of 1/k for evenly distributed shares. Components without a share,
also called null components, are ignored in computing the HHI.
Due to its sensitivity to the number of components, but its
disregard of null components, the HHI represents a special case
of an absolute inequality measure.

The HHI is suitable for reflecting market power because
of its emphasis on large shares and its insensitivity for small
shares. To illustrate, in a market with many companies which
sell very small numbers of products, these companies would be
of little or no importance for estimating the extent of market
separation. In psychological science, the HHI can be used for
analyzing group membership {Ex. 8} and market segregation
{Ex. 9} in social and marketing psychological applications. If
used for outlier detection {Ex. 1}, its negligence of small unit
shares makes the HHI only sensitive for outliers at the high
end (whereas not at the low end) of the unit distribution. For
applications to categorical variables, N needs to be relatively
large, as the urn model with replacement is only asymptotically
correct under such circumstances. For small-N applications,
indices from section Simpson Index, Gini-Simpson Index, and
Inverse Simpson Index should be used instead.

Simpson Index, Gini-Simpson Index, and Inverse

Simpson Index
The Simpson index (Simpson, 1949) is intended for categorical
variables and mainly used for the quantification of biodiversity
(Hill, 1973; Jost, 2006). For large N, the Simpson index and
the Herfindahl-Hirschman index converge in value. However,
numerical differences may be large for small N. The Simpson
index then is the appropriate and correct measure.

The Simpson index is defined as the probability that two
randomly selected units (e.g., individuals) belong to the same
component (e.g., group), and its limits are 0 (0%) and 1 (100%).
It is a measure of inequality and based on an urn model
without replacement (i.e., drawing random units decreases the
components’ unit share). The complementary probability of the
Simpson index (1–S), denominated as Gini-Simpson index, can
be interpreted as the probability that two randomly selected units
belong to different components. The inverse Simpson index (i.e.,
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its reciprocal value, 1/S) maps the values of the Simpson index
onto the interval [1, ∞], with positive infinity corresponding to
a probability of 0 for the Simpson index and 1 to a probability
of 1. The Gini-Simpson index and the inverse Simpson index are
measures of equality.

For psychological science, the Simpson index and the
Gini-Simpson index appear equally appealing, as they provide
straightforwardly interpretable, dimensionless numerical
information (namely, probabilities) to quantify diversity
in categorical variables, such as diagnoses {Ex. 10}, sexual
orientation {Ex. 11}, or discrete preferences and traits, like
handedness (e.g., Tran et al., 2014) {Ex. 12}. All three indices
are especially appealing for small-sample applications, under
which conditions the usage of the HHI would be inappropriate
(e.g., country of origin in systematic reviews and meta-analyses
encompassing only a few, up to a couple of dozen, primary
studies {Ex. 13}).

Measures Based on the Entropy Model
Entropy is a measure for the degree of disarray, disorganization,
or unpredictability in diverse physical systems (particularly, in
thermodynamics) and for uncertainty in information theory.
Its usage as a measure of inequality follows the idea that, in
the case of categorical variables, components (e.g., diagnoses)
occurring very frequently or very rarely have low information
content by their nature, whereas components occurring with
medium probability naturally carry much higher information
content. Thus, discrete distributions with more components,
or with components having more evenly distributed units,
carry a higher total information content than distributions
with less evenly distributed units or, at the extreme, only one
component. The Shannon index is intended for categorical
variables, whereas the generalized entropy index and the Theil
index for metric variables.

Shannon Index
The Shannon index (Shannon, 1948; Shannon andWeaver, 1949)
was originally devised to determine the information content of
a message (e.g., different letters occurring in a text; Voracek
et al., 2007 {Ex. 14}). However, it is also utilized for the
examination of species diversity in ecosystems (Spellerberg and
Fedor, 2003). The Shannon index relates the uncertainty of an
event to the gain of the received information. A maximum of
information is gained when the certainty of a given unit is
minimal, namely those observed with a probability of 0.5 (or
proportion of 50%) for dichotomous (yes vs. no) outcomes.
The more certain the occurrence of the next unit (regardless
of whether it is highly likely or highly unlikely), the lower the
respective information content.

The quantity of bit (representing a logical state with a single
value, out of two possible values) is common as the basic unit
of information within information theory; hence, the binary
logarithm (log2) is often used calculating the Shannon index.
However, using other logarithmic bases is also feasible, such
as the natural logarithm (ln) or the logarithm to the base of
10 (log10). For log2, the Shannon index can be interpreted as
the average number of yes/no-questions that must be asked to

determine to which component a randomly selected unit of the
distribution belongs to. For example, a string consisting only of
“A” s would result in a Shannon index of 0 because, trivially, every
letter is an “A.” The event of having an “A” on every position is
100% sure. In contrast, the string “ABCD”with evenly distributed
letters would result in a Shannon index of 2, because two
questions would be sufficient to determine each letter (namely,
the first question being: “AB or CD?”; and the second question
being: “A or B?” or, equivalently, “C or D?”). Duplicating each
letter (“AABBCCDD”) would result in the same Shannon index
as for the string “ABCD.” Null entries are ignored. The Shannon
index has a lower bound of 0 and an upper bound determined by
the respective logarithm (whichever is used) of k (the number of
components, i.e., categories).

Generalized Entropy Index and Theil Index
These measures (going back to Theil, 1967; for a derivation of the
generalized entropy index, see Shorrocks, 1980) generalize the
idea of entropy and compare the unit shares of each individual
component to the mean of all components (see Footnote 2; kpi
could also be substituted by ni/n̄ in Table 1). They quantify the
distance between the highest possible entropy (i.e., the uniform
distribution of units over components) and the observed entropy.
Thus, they measure inequality (in the sense of redundancy),
rather than equality (such as the Shannon index).

The unique characteristic of the generic form of these
measures, as represented by the generalized entropy index, lies
in its parameter α. Setting α = 1 yields the Theil index (Theil,
1967), which is a direct generalization of the Shannon index for
metric variables. Setting α = 0 yields the mean log deviation
(i.e., the average of the deviations of the log units to their
log mean; Theil, 1967). More generally, the value of α fine-
tunes the generalized entropy index to specified ranges of the
unit distribution with regards to the effects of hypothetical unit
transfers from one component to another on its numerical value.
That is, the more positive α, the more sensitive the index is to
inequality at the high range of the distribution; conversely, the
more negative α, the more sensitive it is to inequalities occurring
at the low range of the distribution. Thus, the Theil index is
more sensitive to inequalities at the high range of the distribution
than the mean log deviation. The generalized entropy index thus
provides a convenient way to differentially weigh inequality at
(and, in a way, to “zoom into”) the high vs. low ranges of the
unit distribution. Consequently, it allows for a more fine-grained
inspection of inequality than merely area-based measures (such
as the Gini index) are capable of.

Measures Based on the Social Welfare
Model: The Atkinson Index
The Atkinson index (Atkinson, 1970, 1987, 2008) is a measure of
income inequality with intimate links to the generalized entropy
index (and thus to the Lorenz curve as well). It is derived from
the so-called social welfare model, which is specifically concerned
with the effects of redistributing units from the high range of
the unit distribution to its low range. Similar to the generalized
entropy index (GE), the Atkinson index (AI) is characterized by
an additional parameter, in this case ε (“inequality aversion”).
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Unlike α, ε is restricted to non-negative values. The two
parameters are related through the equationε = 1−α, as are the
indices themselves, namely, AI = [ε(ε− 1)GE]1/(1−ε), for ε 6= 1,
and AI = 1− e−GE, forε= 1. Atkinson (1970) recommended to
set ε values between 1.5 and 2 (which results in α values between
−0.5 and −1). Setting ε to 0 results in an Atkinson index of 0
for all distributions. Otherwise, the Atkinson index increases with
increasing ε, given that the distribution is not perfectly equal. The
parameter ε is a fine-tuning parameter like α, but allows to “zoom
in” only into the low range of the distribution (i.e., it assigns more
and more weight to redistribute units from the high range to the
low range).

In its original conceptualization and application, the Atkinson
index is meant to be interpreted in relation to a social welfare
function and the “welfare equivalent equally distributed income,”
nε. This common standard depends on the value of the Atkinson
index itself (and, hence, on the choice of ε) and is defined, in
more general terms, as the average of units across all components
multiplied by one minus the Atkinson index, nε = n̄(1 − AI).
The Atkinson index thus satisfies the equation AI = 1 − nε/n̄.
Forε= 0, the Atkinson index is 0 and the standard is equal to the
average of units. For all other cases, the Atkinson index quantifies
the fraction of units of the total unit sum, which is needed to
reach this common standard for each component, if units were
distributed equally. For example, with an Atkinson index of 0.4,
the common standard could be reached for each component with
only 60% () of the total unit sum, if units were distributed equally.
In the case of an equal unit distribution, the Atkinson index is 0,
and the unit share of every component already corresponds to the
common standard.

The concept of the Atkinson index is rather abstract, with its
value depending on a priori “accepted” levels of inequality (as
expressed by ε). Yet, it is exactly this reference to a common
standard which makes the Atkinson index interesting for
psychological science as well. Reversing its common application,
the parameter ε can be fine-tuned to yield a value for the common
standard for given data that has a substantive interpretation:
e.g., a threshold (in ms) for valid trials in experimental
reaction-time data {Ex. 15}, or a clinically relevant cutoff for
symptom checklists4 {Ex. 16}. The Atkinson index then quantifies
inequality, and can be interpreted, with reference to this specified
value. Via the link to the generalized entropy index, inequality
can easily be expressed in an alternative metric as well.

Tail Ratios
One of the simplest ways to measure inequality is to compare
the shares of the two tail sections of the unit distribution
exclusively, while ignoring its middle section. This provides
measures of inequality which are specifically sensitive to any
differences located in the distributional tails (e.g., Langel and
Tillé, 2011; Voracek et al., 2013) and more informative of the
shape of the unit distribution than mere measures of area, like
the Gini index. Distributional tail ratios are intended for metric
variables. When the number of components is small, they should

4If this common standard is greater than the sample mean, the polarity of nε and

of the nis must be reversed by subtracting their values from the maximum ni.

be interpreted with caution, because of possible effects due to
rounding errors (e.g., imagine estimating the richest 20% based
on merely three components).

Palma Ratio, S80:S20, and Percentile Ratios
The Palma ratio (Palma, 2011) is widely used to assess gross
national income distributions. It is the ratio of the unit shares of
the top 10% to the bottom 40% of the unit distribution. Applied to
the gross national income, the Palma ratio tends to vary between
0.8 and 1.8 across Europe (OECD, 2011). A value of 1.8 indicates
that the top 10% possess 1.8 times the units that the bottom 40%
do. The S80:S20 ratio compares the share of the top fifth with the
share of the bottom fifth of the unit distribution. It follows the
logic of the Pareto distribution (Pareto, 1896) and its associated
Pareto principle (known as the 80-to-20 rule, or the principle of
factor sparsity: for many real-world phenomena, about 80% of
effects or consequences have been observed to be due to about
20% of the causes or sources). Percentile ratios compare selected
percentiles of the unit distribution. The P90:P10 ratio compares
the 90th percentile with the 10th percentile, whereas the P50:P10
relates the median (50th percentile) to the 10th percentile.

SHINY APP

Visualizing Inequality Measures
The web application “Visualizing Inequality” was developed
in the statistical computing environment R (R Core Team,
2018), utilizing the R shiny package (Chang et al., 2018), and
has been tested with the web browsers Mozilla Firefox, Google
Chrome, and Microsoft Edge. It can be accessed at https://
psychology-vienna.shinyapps.io/visualizing_inequality/ (source
code available on https://github.com/guitaric/Visualizing-
Inequality). In this Shiny app, each measure has its own page
and comes with its own built-in example. The app provides
interactive plots, such that changes in the numerical value of an
inequality index can not only be understood via accompanying
text and tables, but, above all, visually and thus intuitively.
All plots in the app have been created with the R package
ggplot2 (Wickham, 2016). Inequality measures provided in
the app have been validated against the numerical output of
the respective functions implemented in the R packages REAT
(Wieland, 2019), ineq (Zeileis and Kleiber, 2015), and diverse
(Guevara et al., 2017), as well as cross-checked against further
procedures provided in the biodiversity online calculator at
https://www.alyoung.com/labs/biodiversity_calculator.html. All
library dependencies relevant for the app are listed on https://
github.com/guitaric/Visualizing-Inequality/blob/master/ui.R. A
test file for cross-validation of the app with other R packages is
available on https://github.com/guitaric/Visualizing-Inequality/
blob/master/testfile.R.

The visualizations of the Gini index (Figure 1), the
Rosenbluth index, the Hoover index, and the Herfindahl-
Hirschman index (Figure 2) are all similarly designed. For each
of these indices, there are five sliders which can be controlled
individually. The sliders represent one component each and
control their unit numbers. Upon changing a value, i.e., the
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FIGURE 2 | Example visualizations from the interactive web application (from left to right and from top to bottom): Rosenbluth index, Hoover index,

Herfindahl-Hirschman index, generalized entropy index for different values of the fine-tuning parameter α, Atkinson index for different values of the fine-tuning

parameter ε, and tail ratios.
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FIGURE 3 | Calculating statistical measures of inequality from one’s own datasets. See main text for details.

unit number of a component, via a slider, the value of the
corresponding measure as well as its visualization are updated.

On the page illustrating the Simpson index, five optional
numerical inputs are implemented. Values from 0 to 10 can
be entered to represent the occurrence of a component (e.g.,
a certain diagnosis). By entering the occurrence numbers, a
plot shows the numbers for each component. Components
are illustrated with color-coded symbols, and the plot is
automatically updated whenever numbers are changed. The plot
is not the actual visualization of the Simpson index; rather, it
provides users with a visualization of the membership of every
unit across the different components, to allow for a better grasp
of the calculated probabilities. Whenever inputs are changed, the
index is automatically recalculated and updated. The Simpson
index, the Gini-Simpson index, and the inverse Simpson index
are all shown adjacent to each other.

For the Shannon index, the information content of a message
is presented. On this page, users can generate a string of letters,
ranging from A to F, by clicking on the corresponding buttons.
Buttons to delete the last letter, or the whole string, are provided.
While building a string of letters, a constantly updated table lists
the values to calculate the Shannon index. The first column shows
the units (i.e., counts) of each component (i.e., the letters), the
second column lists the unit shares of the components (i.e., their
relative frequencies), the third column the logarithms of the unit
shares (log2, ln, or log10), and the fourth column the negative

products of the unit shares and their logarithms. Building their
sum yields the Shannon index.

The generalized entropy index and the Atkinson index
(Figure 2) are presented with predefined unit distributions, in
order to demonstrate the behavior of these indices, conditional
on the values of the parameters α and ε. For the generalized
entropy index, α values range from −4 to 4 in the bar chart; for
the Atkinson index, ε values range from 0 to 3.

For the tail ratios (Figure 2), real-world datasets are
used for demonstration (taken from International Olympic
Committee, 2018; World Health Organization, 2018; United
Nations, 2019a,b; Government Digital Service United Kingdom,
2020; provided on https://github.com/guitaric/Visualizing-
Inequality/tree/master/Data%20files). The application to
country-level suicide rates (World Health Organization, 2018)
is a further example for the application of inequality measures
in psychological science {Ex. 17}. A stacked bar chart shows the
unit shares of the top and bottom component shares for the
Palma ratio, the S80:S20 ratio, and for a user-defined ratio (i.e.,
any other ratios can be calculated as well).

Processing Datasets
The page “Calculate” allows users to upload data for visualization
and for calculating every index discussed here (Figure 3). On
the left panel “Setup,” users can upload and set up data (up to
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a maximum file size of 5MB). The tab “How to” in the “Tables”
panel on the right side of the page gives instructions for use.

First, users must select the filetype, of which .csv (e.g., from
MS Excel) and .sav (IBM SPSS) files presently are supported. For
.csv files, the user must specify within the “Setup” panel whether
there is a column header, along with the appropriate separator for
data entries, if the data are not comma-separated. The tab “Data”
in the panel “Tables” interactively displays the data under the
current settings, so that users canmake sure the data are correctly
read in by the app.

After the upload, all dataset columns are listed and can
be selected in a drop-down menu within the “Setup” panel
on the right side of the page titled “Choose the columns of
interest.” Data need to be in a numerical format; otherwise, a
warning is displayed. Selecting a column with numerical data
immediately results in processing this column’s data. NA values
are automatically ignored, but can be seen in the “Data” tab of
the “Tables” panel on the right-hand side of the page. If negative
values are present, a warning message will be printed in the “Plot”
panel in the lower left corner of the page, where a user-selected
plot would appear otherwise, and plotting and the calculation of
measures only resumes by clicking the “Remove” checkbox.

Plots are displayed for numerical columns with exclusively
non-negative values. Users can select between two cumulative
plots (ascending and descending) and visualizations of the Gini
index, the Rosenbluth index, the Hoover index, the Herfindahl-
Hirschman index, the generalized entropy index, the Atkinson
index, and of tail ratios. For visualization, components are
merged into 20 aliquot parts (i.e., of 5% each), should their
number exceed 20. However, all calculations are based on the
actual (not on the merged) number of components.

On the panel “Measures” at the right lower part of the page,
values for the selectedmeasures in the checkbox list are displayed.
For the generalized entropy index and the Atkinson index,
numerical values for the α and ε parameters must be supplied.

Next to the “Data” tab on the upper right side, a “Summary”
tab displays summary data for all variables, and a “Table of
Distribution” tab displays a table for the selected variable with
the following columns: values (sorted); share of units in %;
cumulated share of units in %; share of components in %; and
cumulated share of components in %. The rightmost tab in
the row, labeled “Measures,” displays a table of all measures
in the app, including their polarity, the admissible scale levels,
the measures’ respective lower and upper limits, and the actual
calculated values of the inequality measures, based on the
current data.

By clicking on the two download buttons on the “Setup” panel,
the current plot can be downloaded as a .png file and the table
with the values of the inequality measures as a .csv file.

DISCUSSION

This practical primer provides a concise, structured introduction
to the domain of statistical inequality measures, mainly intended
for applications in psychological science (assembling 17 concrete
examples and suggestions for their use), and is accompanied by

a web application for visualizing and calculating this suite of
measures. The app provides a user-friendly way to process one’s
own data, to compute the discussed measures for variables of
interest, and to visualize the unit distribution of these, which
lies at the heart of many inequality measures. By highlighting
areas of the unit distribution which are relevant to the measures
of interest, the generated plots aid the user in developing an
intuition for them. While the utilization of inequality measures
may well be considered as “exotic” in psychological science, we
have confidence that this primer and its companion Shiny app
will help to foster and facilitate more widespread use of statistical
inequality measures in this field. Alongside the commonly used
descriptive distributional statistics, like the arithmetic mean
and the standard deviation or variance in particular (and, less
commonly used, distributional skewness and kurtosis), inequality
(or concentration) measures, taken as the “fifth element” of
univariate descriptive distributional statistics, can prove useful in
the context of the communicative purposes related to a variety
of research questions and findings in diverse subfields across
psychological science.

While with this primer we intend to make measures of
inequality better known within psychological science, there also
remain a number of additional points and considerations which
still may be fruitfully addressed in future research and updates of
the Shiny app. First, for many inequality measures, their variance
and standard error is known (even though there sometimes is
disagreement, or confusion, about their correct calculation; see
Langel and Tillé, 2013). For some inequality measures, this is also
true for applications in complex sampling designs (e.g., Biewen
and Jenkins, 2006; Langel and Tillé, 2013). Standard errors enable
the calculation of confidence intervals and would therefore
make inequality measures even more interesting from the view
of analytic practices based on inferential statistics, as typically
applied in psychological science. Bootstrap confidence intervals
could be provided for measures for which calculating standard
errors based on closed-form formulas currently is unknown or
intractable, or when sample size is small.

Second, the Gini index, the generalized entropy index, the
Atkinson index, and the measures based on the combinatorics
model all allow for a convenient decomposition of distributional
inequality across subgroups (e.g., Shorrocks, 1980; Lambert
and Aronson, 1993; Lande, 1996). This analytic possibility
naturally lends itself to manifold research questions, as addressed
in psychological science. Implementing such additional
functionality into the Shiny app would allow for even more
fine-grained analytic options in various applications and would
open up new venues of research.

Third, there are a number of statistical inequality measures,
not adopted here, which could be incorporated into the Shiny
app as well, such as Wilcox’s deviations from the mode (Wilcox,
1973), or Lieberson’s index of diversity (Lieberson, 1969). Further
examples include the well-known coefficient of variation (also
denominated as the relative standard deviation), suited for metric
(ratio-scaled) variables and defined as the ratio of the standard
deviation to the (absolute value of the) mean, along with its
little-known reciprocal value (the coefficient of stabilization).
Although widely used as descriptive, standardized measures
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of the dispersion of distributions (for instance, in fields like
endocrinology or analytical chemistry, to quantify assay precision
and reliability), it is lesser known that the coefficients of variation
or stabilization can as well be interpreted asmeasures of statistical
concentration (Liu and Zheng, 1989).

In essence, the present selection of measures of inequality
is meant as representative, not exhaustive, and was guided by
the importance and utilization of the respective measures in
the extant scholarly literature across various disciplines, and a
preference for variety of the selected measures with respect to
the mathematical models from which they are deduced. Further
measures could easily be incorporated in future updates of the
Shiny app.

Apart from providing a convenient tool to visualize and

calculate measures of statistical inequality for one’s own datasets,

the Shiny app provides an overview of all the measures discussed

here at one glance and in a structured way, along with
providing clues regarding their interpretation and suggestions
for meaningful application. In this way, the Shiny app may also
serve as an intuitively accessible learning and demonstration
environment in the context of exploring these methods and
teaching them in psychology and elsewhere. The Shiny app
is scheduled to be updated regularly in the future. Measures
and functions not yet included (e.g., alternative file types
for input data, or extensions to the set of the 16 different

measures currently offered) are envisaged to become available
with forthcoming versions.
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